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Abstract—Inkjet printing circuits onto thin, flexible substrates
is a newly explored field with respect to the transistor; a
critical element needed to form logic gates and high-level active
circuitry. The traditional approach is to achieve comparable
performance to MOSFETs or BJTs. However, the introduction
of neuromorphics, spintronics, memristors, chaotic materials
and limitations of transistor sizes have incited a shift toward
alternative computing schemes that do not behave as standard
transistors. This work explores a minimal fabrication, low-cost,
non-linear, current-controlled Graphene Inkjet Printed Artificial
Neuron that performs the computing of a recurrent neural
network when multiple units are coupled. An activation function
(inverse hyperbolic sine) is fit to the electrical curve of
the current-controlled Graphene element with R-Squared of
0.997. The standard neuron is replaced with the modeled
one in the Echo State Network for training on the MNIST
benchmark dataset for handwritten digit classification. Testing
performance of the simulated inkjet printed neuron reached
88.1% classification, and was marginally better than the sigmoid
and hyperbolic tangent functions. This work demonstrates a
minimal-fabrication alternative computing element functioning
as a simulated artificial neuron in the Echo State Network.
Benefits include low-cost fabrication, high power-efficiency,
physically flexible edge computing, and development into many
applications within telehealth, infrastructure, military, sports, etc.
This work supports efforts toward a printable, cost-effective,
flexible, and scalable physical machine learning system.

Index Terms—inKkjet-printed circuits, graphene, reservoir
computing, Echo State Network, alternative computing, physical
computing

I. INTRODUCTION

Silicon-based technology is the most well-established,
rugged and reliable method of enabling access to
high-frequency computing and ultimately the digital
domain, of which society has come to rely on significantly.
Decades-long efforts to industrialize the technology by
reducing circuit and transistor dimensions have at last
been met with physical limitations that effectively stunts
innovations into the silicon transistor’s evolution [1].
Achievements into the technology have cemented it as the
industrial standard and has become a stepping stone toward
alternative computing methods that perform in ways not
capable with the existing archetypes. For instance, discoveries
of physical, non-linear, chaotic elements are being researched
for computing, with prominent ones including the memristor
[2]-[4], spin transfer torque devices [5]-[7], quantum dot [8],
and other non-traditional methods [9]-[11].

Many of those efforts are expensive, in their early
phases of discovery, lack resources for commercialization,
are not eco-friendly in their fabrication process, and/or have
limitations of their own hindering widespread usage outside
of the laboratories [12], [13]. Inkjet-printed (IJP) circuits
is the fabrication approach used in this work, as it is
suitable to overcome the need for non-linear, small dimension,
power-efficient, eco-friendly, alternative computing that has
the added benefit of flexibility such that it can be attached
to non-uniform scenarios such as textiles, non-rigid objects,
and curved/irregular surfaces. Furthermore, IJP technology
is highly inexpensive, simple to design, instantly able to
print new revisions rather than waiting months for CMOS
fabrications, and can be printed using any home or office
inkjet printer that is Drop-on-Demand and piezoelectric [14].
In the last 20 years, researchers have successfully used
IJPs for laying conductive routing, leading to a plethora
of sensors, antenna and Reservoir-Computing (RC) circuit
designs [15]-[18]. Low-frequency 1JP transistors that operate
under the same mechanism of MOSFETs have also been
made [19], [20], typically with high-precision equipment in
a laboratory setting.

This work considers a minimal fabrication and low-cost IJP
approach to non-linear, low-frequency computing. The device
does not act as a standard MOSFET. Instead, its non-linearity
can be utilized by attaching many units together, having it act
as a neural network that linearly separates time-series data. The
output signals of the neural network may then be interpreted by
trained weights to give a classification of the input data [21].
In other words, many non-linear units together form a physical
neural network compatible with the Echo State Network (ESN)
[22], Liquid State Machine [23], and other systems [24], [25].

With [IJP’s many pros also comes with its cons, such
as its inability to perform with high-frequency applications,
uncertain fabrication reliability and repeatability, biasing
sensitivity to nearby environmental conditions, and significant
performance degradation after long-term usages. These
challenges are minimized and considered within the contents
of this work as developmental areas of improvement.

In this research, an IJP non-linear artificial neuron (IJPAN)
is characterized and considered for usage within the ESN
framework. First, an introduction is given for the modified
ESN and its activation function dynamics (Section II and III).
The IJPAN design/fabrication is explained with performance
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results and computer aided modeling in Section IV. The
modified ESN has its reservoir neuron type replaced to the
modeled IJPAN function and is evaluated on the MNIST
benchmark dataset (Section V). Results are discussed in
Section VI and concluded with future work in Section VII.

II. ESN ARCHITECTURE FOR PHYSICAL RESERVOIRS

The first reservoir computing network was created by H.
Jaeger [22], [26], [27] with the Echo State Network (ESN)
in 2001. The liquid state machine was separately invented at
the same time by W. Maass in 2002 [23], [28], [29]. The
Time Delay Reservoir was developed several years later [30],
[31]. In each type of network the framework is the same:
input data feeds into a “reservoir” that is a recurrent neural
network that transforms the data into a high-dimension space,
which can then be understood by training weights in machine
learning algorithms. Details of the modified ESN used in
this work was conducted and published in [32]. The standard
ESN has a single reservoir of sparsely connected hyperbolic
tangent activation functions that transform the input data into a
hyperspace that is linearly separable and able to be interpreted
by a linear read-out activation function (Eq. 1). Only the output
layer is trained, according to a minimum cost gradient solution
(i.e. least mean squares with ridge regularization), referred to
as ridge regression (Eq. 2).

Y =W,y xX (1)
Wout:YtargetXXT(XXXT""B XI)71 2
where:

Y = output classification
W, = output weights
Yiarger = desired output classification
X = state vector
B = regularization term

I = Identity matrix

A. Benchmark Dataset and mESN Prior Work

The MNIST benchmark dataset of handwritten digits [33]
is used in this work to evaluate the performance of the
proposed scheme. The dataset contains 60,000 handwritten
images that have been size-normalized and centered in a
fixed-size image of 28x28 pixels. Many neural networks have
been tested with this established benchmark and some papers
have examined the ESN with it, such as in [34] and [35].
Preliminary research showed that the modified ESN to classify
the MNIST digits reached 95.3% classification with 1600
hyperbolic tangent functions [32]. This is an improvement to
the standard ESN MNIST classification results of [34], where
they achieve 90.5% with 1,200 activation functions, although
they also reach above 98% classification by altering their
output layer to use Multi-Layer Perceptrons. In [34], other
recurrent neural networks are considered and show competitive
classification rates of ESNs with the MNIST benchmark
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Fig. 1. Comparison of common activation functions, including ReLU, Leaky
ReLU, Sigmoid, Hyperbolic Tangent, and Hyperbolic Inverse Sine. The sine
function can be seen not saturating for large values, and is used in this work
to model the behavior of the IJPANs.

starting at 93%. Highly-trained standard feed-forward neural
networks have reached over 99%, but come with restrictions
as to training time and computing power, mainly since all
weights throughout the network must be updated during
backpropagation. Data processing, performance metrics, and
validation details of the mESN algorithm design for MNIST
classification are included in [32] and support the efforts of
this research.

III. ACTIVATION FUNCTIONS FOR MACHINE LEARNING

Neural networks consist of artificial neurons (ANs), where
each unit non-linearly transforms its input into a set range
defined by a common function, referred to in this work as an
activation, or squashing function. The most commonly used,
as seen in Fig. 1 are sigmoid, hyperbolic tangent, and Rectified
Linear Unit (ReLU), although several variations exist. A single
AN cannot sufficiently perform linear separation on input
data, which is an essential task required for machine learning.
However, when many are connected as a network they can,
forming a neural network that may then be trained. The same
concept is applied with the modeled IJPAN of this work, where
a network of simulated IJPANs performs the task needed to
effectively train a learning algorithm.

The sigmoid function constrains the input to an output
between [0,1], while the hyperbolic tangent has the same
profile but squashes the input to [-1,1]. A limiting behavior
of standard logistic sigmoid and hyperbolic tangent functions
are that they saturate for large input values, making pattern
recognition more challenging for dynamic time-series signals
[36]. Variations of the hyperbolic function such as the
inverse hyperbolic sine (Eq. 3) have similar non-linearity as
the tangent and sigmoid, without saturation at high values.
Preserving the transformation of large positive and negative
inputs helps the algorithm converge during classification tasks
[37]. For instance, the leaky ReLU is an adaptation to the
standard ReLLU where a small slope is given to the negative
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Fig. 2. The IJPAN fabrication process is shown along with the curing approaches and relevant dimensions. Multiple layers may be printed or deposited onto
the substrate to ensure electrical properties such as maintaining open circuit at the channel region.

operating region. Information with negative input is then not
entirely lost but preserved, while still containing non-linearity.

To summarize, the inverse hyperbolic sine function contains
non-linearity, has comparable behaviors to the standard
sigmoid and hyperbolic tangent functions, does not saturate for
large input values, has no asymptotes, and is nearly identical
to the behavior seen in the IJPAN. Therefore, it is used to
model the behavior for signal biasing and computer-based
experimental simulations.

IV. 1JP PARALLEL PLATE NON-LINEAR ELEMENT

As depicted in Fig 2, the artificial neuron is designed
as silver (Ag) nanoparticle parallel plates printed onto
polyethylene terephthalate (PET) film with a standard
drop-on-demand, piezoelectric printer (Epson XP-960),
followed by bridging the channel region between the
parallel plates with graphene (GN/PEDOT:PSS) nanoparticle
semiconductor ink, deposited via electronic pipette (1uL
precision). First, silver parallel plates are printed with a gap
of approximately 130 um. The printer is rated for a minimum
of 300 um, and a significant amount of splattering is evident.
However, this challenge is mitigated by orienting the gap along
the moving axis of the print head, as the lateral movement
causes the particle scattering imperfections. Conductivity is
checked to ensure there is no shorting in the channel region.

Second, 1 uL of hexagonal Boron Nitride (hBN) is placed
by pipette onto the channel (gap) region and cured at 150°C for
5 minutes until it sets completely. This material is a dielectric
commonly used in IJP thin-film transistor designs, and serves
to create an insulated canvas needed to control the channel
region during the next steps. The coffee-ring effect, or the
natural formation of high-concentration nanoparticles around
the edge of the cured ink, is a critical flaw of IJP technology
as it disrupts nanoparticle uniformity and makes reliability and
repeatability more variable between samples. This research
has found a method of mitigating that problem by cutting
a well into the hBN across the gap, restricting the bounds
with which the GN ink can spread and interact with the silver
parallel plates. Thus, the next step to fabrication is using a
sharp blade to cut into the hBN layer to form a well between
terminals. A “Feather Dual Sided Blade” was sanitized and

used to make the cut, and without applying too much pressure,
the well is formed without damaging the PET substrate. The
cutting process may be automated with the V-One PCB printer
and will be considered in future work in repeatability and
reliability studies. Lastly, the GN ink is dropped onto the well,
which suctions into the cut space amid the cured hBN and
avoids effects of the coffee-ring.

A. IJPAN Electrical CAD Model

The I-V curve of the IJPAN is shown in Fig. 3, where
adding multiple layers of GN magnifies the amplitude while
maintaining non-linearity. A voltage sweep was performed
from -40V to +40V and back to -40V (repeated three times)
to establish that the current does not shift, settle, or have
hysteresis properties. A similar non-linear behavior seen here
also occurs without the GN or hBN (i.e. only the silver
terminals), although it is nearly imperceptible and appears
linear at a distance. This is evidence of electron hopping
between silver nanoparticles that are splattered during printing.
Recent literature shows how hopping conduction induces I-V
profile non-linearity and was used as an approach to analog
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Fig. 3. The voltage-controlled I-V curve shows a behavior similar to the
hyperbolic sine function. (a) A diagram of the fully fabricated element is
shown. (b) A zoomed-in plot shows the same non-linear profile at lower
amplitudes for when 1-2 layers of GN are placed. Adding layers of GN
proportionately increases the output current for a given supply voltage.
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General model:
f(x) = a"asinh(a™x)+c
6 | Coefficients (with 95% confidence bounds):
a=  3.516 (3.514,3.518)
c= -0.1462 (-0.1502, -0.1421)
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Goodness of fit:
SSE: 7T77.7
R-square: 0.9974
Adjusted R-square: 0.9974
RMSE: 0.2404
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Fig. 4. The blue line shows the electrical response of the current-controlled
GN IJPAN, where nano-amp current is input and voltage is output. The best
fit model uses the inverse hyperbolic sine function (red dotted line).

neural networks [38]. Without the splattering or with widely
separated terminals, the I-V curve is linear as defined by the
conductivity of the substrate’s gap between silver terminals
(i.e. open circuit). Besides GN and silver, hBN is used which
is a high-performance dielectric. Experimentation has shown
that hBN reduces non-linearity with greater concentration, as
it is restricting electron flow. The voltage-controlled curve
follows a hyperbolic sine function, which has exponentially
high outputs at large input values. The GN is causing most of
the non-linearity, while silver splattering accounts for a small
amount of the effect, and hBN dampens the non-linearity.
The cause of graphene’s non-linearity is determined to be
trapped charge in the nanoparticles that gradually dissipates or
discharges with higher applied energy. Greater concentrations
of GN increase the total electron flow but still trap the charge,
retaining its non-linearity.

A simple adjustment is then made where current is supplied,
inducing a voltage across the terminals and giving the results
shown in Fig. 4. This curve is proportional to the desired
inverse hyperbolic sine function of Eq. 3.

Out put = o x sinh™ ' (o x Input) +C 3)

where o and constant C define the biasing terms.

The least squares solution is shown in Eq. 4 and has an
R-squared value of 0.997. This physical activation function is
non-linear, differentiable, and does not saturate/explode at its
limits, allowing information at the extremes not to be lost after
activation (i.e. vanishing gradients are less common) [39].

V =3.516 x sinh~'(3.516 x |1]) — 0.1462 (4)

where V and I represent the output voltage and input current,
respectively. Thus, the GN IJPAN is a current-controlled
device with a voltage output. The conductivity and power
curves of the IJPAN can be visualized in Fig. 5. For linear
I-V profiles, the conductivity plot is a flat line (shown by the

red line). This helps to visualize the IJPAN non-linearity. The
spikes near OV are from the current’s polarity change. The
average power consumption is 108 uW per [JPAN.

Benefits of this module are that only nano-amps of current
is needed to drive the IJPAN, the output can be biased for
compatibility with a small micro-processor, reading voltage as
an output eliminates the need for a analog-to-digital converter,
and most importantly this overcomes the challenge most
commonly seen in IJP technology, which is high voltage
supply requirements. It is not unusual to see operating
voltages between [-60, 60] V. Thus, by having the device
be current-controlled, the output is a voltage that can be
biased for compatibility with microprocessors. Furthermore,
about 200 units can be printed on a single 117°x8.5” sheet of
PET film, with multiple-paper routing for scaling. The IJPAN
ESN in the following section has 200 ANs simulated as a
recurrent neural network to classify handwritten digits from a
benchmark dataset.

V. SIMULATED IJPAN ECHO STATE NETWORK

This section details the IJPAN replacement into the modified
ESN (mESN), its operation, and results that are competitive
with the standard AN types. First, the global parameters of
the ESN are defined, followed by neuron replacement with
the modeled equation (Eq. 4), and finally analysis of network
error, activation performance, and algorithm processing time.
The mESN algorithm as shown in Fig. 6, splits and distributes
the data into multiple parallel reservoirs, in addition to data
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Fig. 5. Conductance and power curves. (a) Conductance curve clearly shows
the non-linear deviations from the linear case, as noted by the horizontal red
line. (b) Power curve shows the range of energy consumed per IJPAN element.
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Fig. 6. A schematic of the modified ESN (mESN) architecture. The input
image is split into equal parts and run through scaling, noise filter, and parallel
reservoirs multiple times to allow for neuron convergence. The state vectors
are joined and multiplied by the trained weights for each digit. The highest
value of the readouts is considered the image’s classification.

augmentation via noise injection for improved robustness. The
hyperbolic tangent artificial neurons in the mESN are replaced
with the modeled GN IJPAN as explored in this section.

A. IJPAN ESN Global Parameters

The modified ESN has many global parameters that define
the system, with its performance depending strongly on what
the values are initialized to before running the algorithm. As
optimization is not within the scope of this work, a set of
chosen parameters according to Table I have been used to
generate the performance metrics of this work. The number
of train/test samples in each epoch is split 80% train and 20%
test. The added white Gaussian noise has signal-to-noise ratio
of 10. These numbers are based on an understanding of the
network dynamics and ability to perform quick evaluations
from ultra-fast training times. The spectral radius is the
maximum absolute eigenvalue of the reservoir’s weights and
identifies the memory of the system. A low spectral radius is
expected for signals exhibiting low non-linearity (e.g., discrete
images), and is further explored in [40] and [41]. A spectral
radius less than 1 helps to ensure a stable framework. The
pixels are already normalized to unity and scaling down the
input weights will allow the simulated IJPANs to take on
states between approximately [-8,8] V, as indicated in Fig. 4.
Otherwise, the neurons would have too much excitation energy
to contain the separability needed to hyper-dimensionalize the
input. In future works, automated optimization will replace
manual variable selection for best IIPAN ESN performance.

B. IJP ESN Performance Results

The images are all a 28x28 matrix for a total of 784
pixels ranging from [0,1]. Each reservoir holds 200 neurons
to represent a single sheet of sparsely-connected IJPANs. It
is well-established that sparsely connected reservoirs reduces
memory and computing power without any significant change
to the prediction rates, thus making 10% connection sparsity
effective at increasing training speeds. Adding Gaussian noise
with a Signal-to-Noise Ratio (SNR) of 10 was found to

TABLE I
LIST OF GLOBAL PARAMETERS FOR THE MODIFIED ESN.

Parameter Value
Number of Epochs 40
Number of Classes 10
Train/Test Samples per Epoch 10000
Train/Test Split 80% / 20%
Number of Neurons per Reservoir 200

Number of Parallel Reservoirs 1

Input Weight Scaling 8e-11
Spectral Radius le-8
Learning Rate 0.05
Number of Reservoir Updates 40
Regularization () 1
Gaussian Noise (SNR) 10
Connectivity of the Reservoirs 10%

produce best performances, as it injects enough uncertainty
to make the network more robust against each image’s natural
variations (Fig. 7). Fig. 8a shows the modeled IJPAN’s states
as the reservoir updates each time-step. The output is between
[-8,8] V, which is the IJPAN output range seen in the
current-controlled I-V curve (Fig. 4).

Given that the numerous global parameters of this ESN
were manually tuned in this work, classification rates of the
modified ESN for time independent inputs are lower than what
optimization process will achieve. Regardless, competitive
prediction rates can be visualized by the average error plot
(Fig. 8b) and confusion matrix of Fig. 9. Along the x-axis,
the digits 0,1,...,9 are shown as a set of 10 classes. Correct
classifications are shown along the diagonal in the green boxes
and incorrect classes are shown in the red boxes. The bottom
right corner shows the overall classification rate of 86.2% and
along the x-axis the performance for each digit is written
as percentages (green text for correct classification, red text
for the error rate). The digit 4 was correctly classified the
least at 67.5%, most commonly mistaken as a 2. Digit 0 was
recognized by the ESN more than any other digit at 98.6%.

SNR = 6 SNR =8

Fig. 7. Guassian noise injected into the input images as visualized at different
Signal-to-Noise Ratio values.
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output between [-8,8] volts, which is the IJPAN output range seen in the
current-controlled I-V curve. (b) The average classification error using the
1JP artificial neuron model and 200 neurons is 15.2%.

Training and image processing time are particularly
important when image processing speed is the most critical
factor. For 10,000 train/test digits with the values in Table I,
the entire training time is 14 minutes. The contents of Table
IT shows the overall error rate and training times for different
artificial neuron types in the mESN. In each case, the total
number of IJPANs remains the same at 200.

VI. RESULTS AND DISCUSSIONS

A. IJPAN Behavior

The viability of this IJP artificial neuron is clear based on
the results of the work, where classification performance is
equal to or marginally better than the standard sigmoid and
hyperbolic tangent activation functions. Fabrication of each
IJPAN will have varied behaviors, but can have improved
reliability and operating bias consistency with a standardized
protocol and electrical quality checks. Over 16 samples were
tested, and all obtained the same non-linear profile. However,

TABLE II
BEST MESN PERFORMANCES OF STANDARD ACTIVATION FUNCTIONS
COMPARED TO THE MODELED IJPAN.

Metric sigmoid(x) tanh(x) IJPAN
Avg. Class. Rate (%) 86.1 87.2 88.1
Avg. Train Time/Epoch (s) 25.7 259 29.3
Avg. Image Class. Time (ms)  4.04 4.23 9.69

the current biases were different depending on the variation
in nanoparticle dispersion during curing. The hBN and GN
were applied by precision pipette, but still have variation
from it being ejected by hand. Thus, Eq. 4 represents the
non-linear behavior of a single element for modeling. For
more consistent samples, plans are in place to utilize the
V-One PCB Printer to disperse the hBN and GN far more
precisely. The price of each IJPAN is estimated to be $0.02
and thus having some poor-quality neurons is not monetarily
detrimental. The output voltage range is tuned based on
the density of graphene nanoparticles in the channel region,
with less density resulting in less current flow and higher
voltage across terminals (and vice versa). High voltages can
be generated with little active material layering and may
be considered as a method of driving voltage-controlled 1JP
elements requiring high-voltages.

B. IJPAN-ESN Performance

Performances are approximately the same, as indicated in
Table II. Using a function that acts as a standard hyperbolic
tangent but does not saturate works similarly to the original
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Fig. 9. Confusion matrix of the modified ESN-based classification model.
The matrix shows the desired output digit along the x-axis and the ESN
output classification along the y-axis. The diagonal (green) shows the correctly
classified digits, with overall error rate in the bottom right corner. The error
rates of each digit can be seen along the x-axis.
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activation function. However, it has not been proven in
this work to significantly improve classification rates. The
low spectral radius of the ESN (Table I) is an indication
that the network is not relying much on its memory to
classify the handwritten digits, which is expected for the
time-invariant inputs. Instead, an optimized minimum cost
gradient is calculated and the output weights are updated.
The higher processing time of the IJPAN was mainly due
to the software-level custom function definition, as compared
to the standard sigmoid and tanh equations which are less
computationally expensive. However, the 1JP neural network
is targeted to be analog, and published work done on this
element adapted as a touch sensor shows nearly instantaneous
response times [42]. Its output would be a set of non-linear
states and the software-level function is no longer needed and
power/processing time are conserved. The results of this work
add to mounting evidence that the ESN, even with a physical
reservoir, can be used to classify time-invariant inputs.

C. Physical IJPAN Network Considerations

Forming a physical IJP neural network is a greater challenge
to consider since (1) the reservoir weights must be within
a proper spectral radius, (2) have adequate and random
connections, and (3) have the power through-put to operate.
Addressing (1) will require post-processing where the coupling
weights of the reservoir are used to calculate the proper
spectral radius. For challenge (2), the natural variability
between fabricated samples of the IIPANs along with inclusion
of IJP resistors will form the reservoir weight matrix, the
values of which being collected as a set of resistances. For
challenge (3), several connection topologies such as star, grid,
ring, etc. can be considered for minimized power utilization
while maintaining a strong non-linear network.

A critical shortfall of most IJP electronics is their operating
lifetime and reliability, as they degrade based on environmental
conditions and tactile wear. Thus, the IJPAN operating biases
will drift according to those variables, altering the spectral
radius of the physical reservoir. Mitigating the signal changes
can be done by applying proper protective layers. To ensure the
reservoir operates, an adaptive spectral radius may be included
where the reservoir weight matrix is obtained each training
cycle, the length of which being determined by studying
the element’s lifetime and long-term signal behaviors. Since
training the ESN takes 1-2 minutes, it may be quickly retrained
on the new reservoir weight matrix as a calibration technique.

Only 200 neurons were used to simplify the design to a
single sheet of PET film. However, classification response
will dramatically reduce given more neurons. For instance,
having 4 sheets of PET film in parallel, each with 200 IJPANSs,
a total of 800 IJP neurons are used, increasing the average
classification rate to 91%. Defining the weight connections
between each coupled neuron will be another challenge to
overcome, as independently testing each to fit a model and
then extracting the coupling factors may be time or energy
consuming. In that case, other IJP neural network topologies
may be considered, such as relying on only a small number of
neurons to classify, reading neuron states as a summation of
the rows, or simplifying the neuron connectivity architecture.

VII. CONCLUSION AND FUTURE WORKS

New materials that have unique and chaotic properties are
being explored for their abilities to compute as an alternative to
existing transistors. This work shows an inkjet printed artificial
neuron made from two parallel Ag terminals layered with
hBN, cut to make a well, and then bridged together with GN
nanoparticle ink. The device works closely to a hyperbolic sine
when controlled by voltage but is the inverse hyperbolic sine
when current-controlled. The IJP neuron activation function
does not saturate or explode, is sufficiently non-linear, and
performs similarly to the standard sigmoid and hyperbolic
tangent functions. A model was fit to empirical voltage data
collected from the current-controlled IJP neuron and reached a
99.7% goodness of fit. The modified ESN established in prior
works had its neurons replaced with the modeled equation
and trained to the MNIST benchmark dataset. Classification
performances average 84.8% over 100 trials, which may
be improved with network optimization. Progression of this
work may lead to an IJP-CMOS ESN, where the physical
reservoir is inkjet printed, becoming one of the first printed
and flexible neural network prototypes. This research is
highly applicable to sensor signal processing at the edge,
where irregular surfaces, large-areas, and ultra-thin profiles are
requirements. Signals in need of interpretation, classification,
or prediction benefit from this work (e.g. wearable telehealth
sensor signal processing, multi-scale sensor network fault
detection, environmental sensing/monitoring, etc.).

The performance of the modified ESN is highly dependent
on spectral radius, input scaling, and number of parallel
reservoirs, but changing any of the variables affects the system
enough to make its robustness an area in need of improvement.
This obviates the need for hyperparameter optimization, which
is a part of our future planned research. There are many
components of the ESN in this work that will be modified for
better performance. Data augmentation will include translating
and rotating images instead of just injecting noise. For more
complex datasets, feature extraction will be performed prior
to running the ESN for more enriched data. Series (i.e. deep)
IJPAN reservoirs can be implemented to images that are time
independent in a more meaningful manner since memory
capacity has less impact in those tests. The read-out layer will
be replaced with a more robust feed-forward network like the
multilayer perceptron (MLP). With respect to the IJPAN, a
study of lifetime, variability, and fabrication approaches will
give insight to its requirements for physical implementation as
described in the discussion.

This work has shown that a network of modeled IJPAN’s
can perform similarly to existing sigmoid and tangent artificial
neurons, and may be eventually implemented as an analog
neural network that is an energy efficient alternative to CMOS
neural networks.
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