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Abstract—Image classification is typically performed with
highly trained feed-forward machine learning algorithms like
deep neural networks and support vector machines. The image
can be treated as a time-series input when applied to the
network multiple times, opening the way for recurrent neural
networks to perform tasks like image classification, semantic
segmentation and auto-encoding. With this approach, ultra-fast
training, network optimization, and short-term memory effects
allows for dynamic, low-volume datasets to be quickly learned
without heavy image pre-processing or feature extraction; the
main limitation being that input images need labeled output
images for training, as is also true of most standard approaches.
In this work, the MNIST handwritten digit dataset is used as a
benchmark to evaluate metrics of a modified Echo State Network
for static image classification. The image array is passed through
a noise filter multiple times as the Echo State Network converges
to a classification. This highly dynamic approach easily adapts
to sequential image (video) tasks like object tracking and is
effective with small datasets. Classification rates reach 95.3%
with sample size of 10000 handwritten digits and training time
of approximately 5 minutes. Progression of this research enables
discrete image and time-series classification under a single
algorithm, with low computing power and memory requirements.

Index Terms—reservoir computing, Echo State Network, image
classification, MATLAB

I. INTRODUCTION

Efficient time-series analysis plays a crucial role in feature

extraction, classification, tracking, etc. Reservoir computing

networks (RCNs) were created by H. Jaeger [1] and W. Maass

[2] in 2001 and 2002, respectively, as a means of processing

time-series signals with less training requirements, faster

computing, and low memory utilization. Only the output of

RCNs are trained, with their architectures randomly initialized

and held constant, making them powerful approaches to

machine learning. RCNs have since been extensively studied

[3], [4] and used for applications such as robot control

[5], traffic prediction [6], heartbeat monitoring [7], and

recently have been considered for medical imaging semantic

segmentation [8], [9] and vehicle perception [10]. However,

their potential with time-independent signals is lacking.

In [9] and [10] the Echo State Network (ESN) is used

to perform pixel-by-pixel binary semantic segmentation on

images. Their approach requires extensive feature extraction

prior to classification, are limited to binary predictions, and

cannot scale to process image sequence streams. The goal

of this work is the evaluation of a new and adaptable

ESN architecture that uses batch processing of full images

for faster training/prediction rates and usage of parallel

reservoirs for lower error rates, with the intent of application

Fig. 1: The schematic of a conventional ESN architecture.

A time-series signal is input to the reservoir, causing neuron

states to converge upon a pattern read by the trained output

weights.

to time-sensitive domains such as autonomous vehicles and

biosignals.

The network can easily be adapted, such as neuron type,

connection sparsity, batch or continuous outputs, number of

tasks performed by the same dataset, etc. This presents an

opportunity for its usage with applications needing sensor

fusion, high-dimensional stochastic signal process, low-data

volumes, and more. The modified ESN architecture is first

explained in Section II, followed by an explanation of the

testing conditions and parameters in Section III. The ESN

performance is evaluated with common metrics in Section IV

and then discussed in Section V. Lastly, a conclusion with

future planned research is elaborated in Section VI.

II. MODIFIED ESN ARCHITECTURE

The basic Echo State Network architecture (shown in Fig.

1) demonstrates an input signal or an image represented as

a vector get multiplied by a random input weight matrix and

then passed through the reservoir. For ESNs, the reservoir is a

recurrent neural network of typically leaky integrator neurons,

which acts to transform the linear data into a high-dimensional

state space. The neurons take on a value according to the

network stimulus and the output is a set of values called the

state vector. The desired output classification or annotation is

then used with the state vector from the reservoir to generate

an output weight vector via Ridge regression (Eq. 1) or

Moore-Penrose Pseudo-inverse, which are the most commonly

used training algorithms for ESNs. With the output weights



Fig. 2: A schematic of the proposed ESN architecture. The

input image is split into equal parts and run through scaling,

noise filter, and parallel reservoirs multiple times to allow

for neuron convergence. The state vectors are joined and

multiplied by the trained weights for each digit. The highest

value of the readouts is considered the image’s classification.

calculated, the ESN simply needs an input to generate a

classification according to Eq. 2.

The concept of using multiple smaller parallel and/or series

reservoirs for improved network performance is applied to the

modified ESN by having multiple parallel reservoirs that split

the input image into equal portions as visualized in Fig. 2,

with the total neuron count being number of parallel reservoirs

times neurons per reservoir. The neuron states of each parallel

reservoir is concatenated into a single state vector, which

can be defined as the input image’s transformation into a

hyperdimensionalized space. The parallel reservoir approach

increases neuron-to-input ratio for high volume inputs like

high-resolution images without exhibiting exponential training

times associated with using a single reservoir. Instead, training

times increase linearly with the parallel reservoir approach.

The image size of the benchmark tests for this algorithm is

small compared to typical images expected from cameras or

other high-dimensional sensors.

Wout = Ytarget ∗XT (X ∗XT +β ∗ I)−1 (1)

Y =Wout ∗X (2)

where: Wout = output weights

Ytarget = desired output classification

X = state vector

β = regularization term

Y = output classification

A. Data Augmentation

A static input image independent of time can be represented

as a time-series image for compatibility with the ESN by

running the image through a standard gaussian white noise

filter multiple times to let the neurons in the reservoir

converge. The added noise has been shown in many papers to

improve classification results, and is explained well in [3]. By

training the algorithm to a noisier signal than the actual one,

the features of a noise-free image are more identifiable to the

model. Thus, the final pass of the image through the reservoirs

is without the added noise and the final updated state vectors

of the neurons are multiplied by the trained output weights to

generate a classification.

III. ESN GLOBAL PARAMETERS AND CONDITIONS

The MNIST benchmark dataset of handwritten digits [11]

is used to evaluate the performance of this modified ESN.

This dataset contains 60,000 handwritten images that have

been size-normalized and centered in a fixed-size image of

28x28 pixels. Many feed forward neural networks have been

tested with this benchmark, and some papers have examined

the ESN with it, such as in [12], [13]. Typically, since the

ESN is built for time-series tasks, chaotic and random signals

such as NARMA10 are used as the benchmark, although it is

not considered in this work.

The modified ESN has many global parameters that define

the system, with its performance depending strongly on what

the values are initialized at before running the algorithm. As

optimization is not within the scope of this work, a set of

chosen parameters according to Table I have been used to

generate the performance metrics of this work. The number

of train/test samples in each epoch is split 80% train and 20%

test. The added white Gaussian noise has signal-to-noise ratio

of 10. These numbers are based on an understanding of the

network dynamics and ability to perform quick evaluations

from ultra-fast training times. The low spectral radius (i.e.

the maximum absolute eigenvalue of the reservoir’s weight

matrix) is expected for signals exhibiting low non-linearity like

discrete images as explored in [3], [9]. The pixels are already

normalized to unity and since the neurons are excited between

[-1,1], scaling is expected to not be very low. Otherwise, the

neurons would not have the excitation energy to converge

properly. In future works, automated optimization will replace

manual variable selection for best performance and a more

thorough study of the ESN.

TABLE I: List of parameters for the modified ESN.

Parameter Value
Number of Epochs 4
Train/Test Samples per Epoch 10000
Number of Neurons per Reservoir 400
Number of Parallel Reservoirs 4
Input Scaling 0.01
Spectral Radius 0.0001
Learning Rate 0.01
Number of Reservoir Updates 100
Connectivity of the Reservoirs 10%

IV. CLASSIFICATION PERFORMANCE RESULTS

The images are all a 28x28 matrix for a total of 784

pixels ranging from [0,1], and split into 4 equal parts makes

each reservoir process 196 pixels. Each reservoir holds 400



neurons, for a input-to-neuron ratio of approximately 1:2. It

is well-established that sparsely connected reservoirs reduces

memory and computing power without any significant change

to the prediction rates, thus making 10% connection sparsity

effective at increasing training speeds. The effect of the noise

filter can be visualized in Fig. 3. As previously mentioned,

the noisy image is first generated and then passed through the

reservoir to allow convergence, followed by the original image

in the final time step. Too high of an SNR value diminishes the

performance, as the number becomes indistinguishable from

the noise. Therefore, an SNR value of 10 was used as the

noise is not high enough to cause poor performance, yet injects

enough uncertainty to make the ESN more robust against each

image’s natural noise. Image tilting was not considered, but is

expected to improve results.

Training and image processing time are particularly

important when speed is the most critical factor. For 10,000

train/test digits and the values in Table I, the entire training

time is 5.6 minutes. Comparatively, the train/test time would

have taken 3 times longer if 1 reservoir with 1,600 neurons

was used instead, with no appreciable effect on error rate.

The contour plot in Fig. 4 shows the overall error rate and

training time for different numbers of parallel reservoirs to

visualize those metrics. In each case, the total number of

neurons remains the same at 1,600 so that the work load is

conserved between parameter changes. Thus, the error rates

improve when higher values of neurons are used per reservoir

and training time generally decreases when adding parallel

reservoirs. An important note to make here is that the error

rates do not significantly change between these settings in this

test, so optimizing the network at 4 parallel reservoirs with

400 neurons or 2 reservoirs with 800 neurons makes little

difference.

Given that the numerous global parameters of this ESN

were manually tuned in this work, classification rates of the

modified ESN for time independent inputs are lower than what

optimization process will achieve. Regardless, competitive

prediction rates can be visualized by the confusion matrix of

Fig. 5. Along the x-axis, the digits 0,1,...,9 are shown as a

Fig. 3: Signal-to-noise ratio visualization. An SNR of 10 was

used in the experiments.

Fig. 4: The contour plot of classification accuracy with training

time and number of neurons per reservoir. The plot shows that

there is a significant rise in training time when fewer reservoirs

are used to process the same workload. The data point circled

in red is the test that used the values in Table I.

set of 10 classes. Correct classifications are shown along the

diagonal in the green boxes and incorrect classes in the red

boxes. The bottom right corner shows the overall classification

rate of 95.3% and along the x-axis the performance for

each digit is written as percentages (green text for correct

classification, red text for the error rate). The digit 3 was

correctly classified the least at 91.8% and 0 was recognized

by the ESN more than any other digit at 99.1%.

V. DISCUSSION AND FUTURE WORK

The performance of the modified ESN is highly dependent

on spectral radius, input scaling, and number of parallel

reservoirs, but changing any of the variables affects the system

enough to make its robustness an area in need of improvement.

This obviates the need for hyperparameter optimization, which

is a part of future planned research. The trade-off of error

rates improving with higher numbers of neurons per reservoir

and the training time generally decreasing with the addition

of parallel reservoirs may dictate how the ESN is modeled,

depending on the task. For instance, if the classification

rate is more important than the training speed, the system

can be optimized to that behavior whereas the opposite can

be done to speed up the training time at a slight cost in

prediction accuracy. Reaching optimized performance may

include optimization for time independent variables first for

fast training times, followed by the more time-consuming

parameters.

With the modified ESN, classification rates reached 95.3%

with manually chosen parameters, minimal pre-processing and

short training times. Those metrics are an improvement to

the standard ESN MNIST classification results of [12], who

achieve 90.5% with 1,200 neurons, although they also achieve

above 98% classification by altering their output layer in

various ways. In [12], other recurrent neural networks are



Fig. 5: Confusion matrix of the modified ESN-based

classification model. The matrix shows the desired output digit

along the x-axis and the ESN output classification along the

y-axis. The diagonal (green) shows the correctly classified

digits, with overall error rate in the bottom right corner. The

error rates of each digit can be seen along the x-axis.

considered and show competitive classification rates of ESNs

with MNIST benchmark starting at 93%, and some standard

methods using convolutional neural networks work lower

performance metrics. Highly-trained standard feed-forward

neural networks have reached over 99%, but come with

restrictions as to training time and computing power, mainly

since all weights throughout the network must be updated

during backpropagation.

There are many components of the ESN in this work that

can be modified for better performance. Data augmentation

could include translating and rotating images instead of just

injecting noise. For more complex datasets, feature extraction

may be performed prior to running the ESN for more enriched

data. Series (i.e. deep) reservoirs can be implemented to

images that are time independent in a more meaningful manner

since memory capacity has less impact, and is affected by

number of hidden reservoir layers. The read-out layer could

be replaced with a more robust feed-forward network like the

multilayer perceptron (MLP).

VI. CONCLUSION

This work shows that distributed processing via parallel

reservoirs and injection of noise can prove competitive

classification rates. The MNIST dataset is used to evaluate the

performance of a modified Echo State Network that processes

each handwritten digit as a batch that passes through a noise

filter and parallel reservoir multiple times for convergence.

The ability for this algorithm to scale to both time-series and

time independent tasks makes it useful for problems typically

approached with feed-forward machine learning networks. The

powerful approach of ESNs is gathering momentum as more

researchers consider it as a highly competitive method of

machine learning using recurrent neural networks.
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[8] B. Meftah, O. Lézoray, and A. Benyettou, “Novel approach using echo
state networks for microscopic cellular image segmentation,” Cognitive
Computation, vol. 8, no. 2, pp. 237–245, 2015.

[9] A. Souahlia, A. Belatreche, A. Benyettou, Z. Ahmed-Foitih,
E. Benkhelifa, and K. Curran, “Echo state network-based feature
extraction for efficient color image segmentation,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 21, 2020.

[10] S. Roychowdhury and L. S. Muppirisetty, “Fast proposals for image
and video annotation using modified echo state networks,” 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1225–1230, 2018.

[11] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” The Courant Institute of Mathematical Sciences,
NYU Google Labs, New York Microsoft Research, Redmond, 2012.

[12] L. Manneschi, M. O. A. Ellis, G. Gigante, A. C. Lin, P. Del Giudice,
and E. Vasilaki, “Exploiting multiple timescales in hierarchical echo
state networks,” Frontiers in Applied Mathematics and Statistics, vol. 6,
no. 76, 2021. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fams.2020.616658

[13] N. Schaetti, M. Salomon, and R. Couturier, “Echo state networks-based
reservoir computing for mnist handwritten digits recognition,”
International Conference on Computational Science and Engineering,
2016.


