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Abstract

The evolutionary history of fungus-farming ants has been the subject of multiple morphological, molecular 
phylogenetic, and phylogenomic studies. Due to its rarity, however, the phylogenetic position, natural his-
tory, and fungal associations of the monotypic genus Paramycetophylax Kusnezov have remained enigmatic. 
Here we report the first excavations of colonies of Paramycetophylax bruchi (Santschi) and describe its nest 
architecture and natural history. Utilizing specimens from these collections, we generated ultraconserved-
element (UCE) data to determine the evolutionary position of Paramycetophylax within the fungus-farming 
ants and ribosomal ‘fungal barcoding’ ITS sequence data to identify the fungal cultivar. A maximum-likelihood 
phylogenomic analysis indicates that the genus Paramycetophylax is the sister group of the yeast-cultivating 
Cyphomyrmex rimosus group, an unexpected result that renders the genus Cyphomyrmex Mayr paraphy-
letic. A Bayesian divergence-dating analysis indicates that Paramycetophylax diverged from its sister group 
around 36 mya (30–42 mya, HPD) in the late Eocene-early Oligocene, a period of global cooling, expansion of 
grasslands, and large-scale extinction of tropical organisms. Bayesian analysis of the fungal cultivar ITS gene 
fragment indicates that P. bruchi practices lower agriculture and that the cultivar grown by P. bruchi belongs 
to the Clade 1 group of lower-attine fungi, a clade that, interestingly, also includes the C. rimosus-group yeast 
cultivars. Based on these results, we conclude that a better understanding of P. bruchi and its fungal cultivar, 
including whole-genome data, is critical for reconstructing the origin of yeast agriculture, a major transition in 
the evolution of fungus-farming ants.
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The fungus-farming ants (family Formicidae: tribe Attini in part; 
here regarded as the ‘Attina’, an informal subtribal grouping, and 
referred to as ‘attine ants’) represent a classic example of mutualism 
and coevolution. They comprise a monophyletic group of 248 de-
scribed species and an additional 31 subspecies in 20 genera (Bolton 
2021), all of which cultivate fungus gardens (order Agaricales: fam-
ilies Agaricaceae and Pterulaceae) that they use for food (Wheeler 
1907; Weber 1966, 1982; Mueller et  al. 1998; Mehdiabadi and 
Schultz 2010). Attine ants include the leaf-cutting ants, a group of 
highly derived fungus-farming ant species, which are some of the 

most ecologically successful species in terrestrial ecosystems. Leaf-
cutting ants are very well known in the Americas due to their striking 
effect on vegetation, especially within human agricultural systems 
(Lugo et al. 1973), and their impressively large nests (Moreira et al. 
2004). In contrast, non-leaf-cutting ‘lower’ fungus-farming ants are 
a less conspicuous group that use fallen plant material, feces, or in-
sect pieces as substrates for fungus cultivation (Leal and Oliveira 
2000, Mehdiabadi and Schultz 2010, Ronque et al. 2019). Although 
the study of lower fungus-farming ants is crucial for understanding 
the origin and evolution of agriculture in ants (Mueller et al. 1998), 
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they have received less attention than the more derived higher-attine 
ants. This lack of study is due, in part, to the inconspicuous and 
small-sized colonies of lower-attine ants and to their negligible im-
pact on human agriculture. Nonetheless, significant contributions to 
the natural history and evolution of lower fungus-farming ants have 
been published during the past few decades, including the general 
biology of Apterostigma megacephala Lattke, the only lower-attine 
ant known to cultivate a higher-attine fungus (Schultz et al. 2015, 
Sosa-Calvo et  al. 2017a); the descriptions of three new genera 
(Brandão and Mayhé-Nunes 2001, Klingenberg and Brandão 2009, 
Sosa-Calvo et  al. 2013), with implications for the early evolution 
of agriculture in ants and for the transition to higher agriculture; 
and the general biology, including nest architecture and the iden-
tities of the fungal cultivars, of recently discovered or rare species 
(Diehl-Fleig and Diehl 2007; Klingenberg et al. 2007; Rabeling et al. 
2007; Ješovnik et  al. 2013, 2018; Schultz et  al. 2015; Sosa-Calvo 
et al. 2013, 2017a,b).

To date, the genus Paramycetophylax Kusnezov remains note-
worthy as the only fungus-farming ant genus about which little 
is known regarding general biology and phylogenetic position 
(Schultz and Brady 2008, Branstetter et al. 2017a, Li et al. 2018). 
The genus Paramycetophylax was established by Kusnezov (1956) 
to accommodate the species Sericomyrmex bruchi (Santschi 1916). 
The genus was later synonymized under Mycetophylax Emery by 
Weber (1958), who pointed out morphological similarities shared 
by S.  bruchi and M.  cristulatus (Santschi). In a taxonomic revi-
sion of the genus Mycetophylax, Klingenberg and Brandão (2009) 
synonymized M.  cristulatus (and other subspecies and varieties) 
under M.  bruchi and revived the genus Paramycetophylax to ac-
commodate M. bruchi, thereby disassociating it from the remaining 
members of Mycetophylax, M.  conformis (Mayr), M.  morschi 
(Emery), and M. simplex (Emery), as well as from the newly estab-
lished genus Kalathomyrmex Klingenberg and Brandão, containing 
the single species K. emeryi (Forel) (formerly M. emeryi). Based on 
morphology, the phylogenetic position of Paramycetophylax bruchi 
remains enigmatic, explaining why it is placed in its own monotypic 
genus (Klingenberg and Brandão 2009). Recently, Branstetter et al. 
(2017a) were able to amplify UCEs from a poorly preserved spe-
cimen but, due to its degraded DNA, only a few loci were obtained. 
Based on the tentative evidence of those loci, Paramycetophylax 
was hypothesized to have arisen somewhere near the base of the 
genus Cyphomyrmex Mayr, which includes the yeast-farming ants 
(Branstetter et al. 2017a), suggesting that the study of this species 
could be critically informative about the origin of yeast cultivation, 
one of the major transitions in the evolution of agriculture in ants 
(Schultz and Brady 2008). Paramycetophylax bruchi is only known to 
occur in dry habitats in Argentina, having been reported from at least 
eight provinces (Cuezzo 1998). A reasonably large number of speci-
mens reside in entomological collections in various museums; how-
ever, nests have never been excavated and the fungal symbiont thus 
far remains unknown. Bucher (1974) recorded a short description 
of nest entrances and subterranean nest architecture that he stated 
were shared by both P. bruchi and Kalathomyrmex emeryi colonies. 
However, as we detail below, these two species have very different 
nest architectures and Bucher’s descriptions, including his record of 
fungus garden chambers 60 cm below the surface and a large mound 
of excavated soil at nest entrances, are consistent with colonies of 
K. emeryi. Hence, in this study, for the first time, we (i) document 
P. bruchi nest architecture and colony size based on two colonies col-
lected in the Dry Chaco (Parque Nacional Sierra de las Quijadas, San 
Luis) and Monte desert (Reserva de Biósfera Ñacuñan, Mendoza) 
ecoregions in Argentina, (ii) report the phylogenetic position of 

P. bruchi within the Attina by generating new DNA sequences and 
conducting phylogenomic analyses, and (iii) report the identity of the 
fungal cultivar of P. bruchi and the agricultural system to which it 
belongs, based on ITS ‘fungal barcode’ molecular data.

Materials and Methods

Study Site
Field work was conducted in the summer during March of 2019 
in Parque Nacional Sierra de las Quijadas (PNSQ) at 702 m and 
during January of 2020 in Reserva de Biósfera Ñacuñan (RBÑ) at 
538 m.  The PNSQ (S32.46894, W66.96153), located in San Luis 
Province, protects a transitional area between the Chaco and Monte 
biogeographic regions. Mean annual precipitation in PNSQ is 
250 mm. Dry season occurs from late April to early October and 
wet season from late October to early April (Cabrera and Willink 
1980). In contrast, RBÑ (S34.04535, W67.90742) is located in the 
Mendoza Province in the central portion of the Monte desert (Karlin 
et al. 2017). The climate is semiarid and strongly seasonal, character-
ized by hot, humid summers and dry, cold winters. Mean annual pre-
cipitation in RBÑ is 338 mm (based on available records from years 
1972 to 2000), very variable between years. Seventy-five percent of 
the annual rainfall occurs in spring and summer (October–March; 
Ojeda et al. 1998). Additionally, a P. bruchi colony was discovered in 
El Borbollón, Mendoza (see other examined material). The Reserva 
Nacional Pizarro (Salta province), located in a transitional area be-
tween Yungas Forest and Dry Chaco, was also investigated but no 
P. bruchi populations were found there.

Nest Location and Excavation
The use of Cream of Rice cereal (B&G Foods, Inc., Parsippany, NJ) 
as a bait, generally useful in attine field studies (Sosa-Calvo et  al. 
2015), was ineffective for locating foragers of P.  bruchi. Instead, 
individual foragers were located by visually searching the surface 
of the ground. Workers were then followed to their nests and nest 
entrances were located and marked. We identified the specimens to 
species using the taxonomic key of Klingenberg and Brandão (2009). 
From the eight located colonies (six from PNSQ, one from RBÑ, and 
one from El Borbollón), two entire nests were excavated (one from 
PNSQ and one from RBÑ) by digging a trench (1.5–2 m deep) ~0.7 
m away from the nest entrance and by slowly shaving the soil wall 
towards the nest entrance until the nest chambers were discovered. 
Nest architecture was recorded, photographed, and measured fol-
lowing Sosa-Calvo et  al. (2015). Ants were collected with flame-
sterilized soft forceps and with an aspirator, and fungal cultivar was 
collected with a flame-sterilized spoon and carefully put into a plastic 
container. Samples of both the ants and the cultivar were placed into 
96% ethanol and RNALater (Invitrogen, ThermoFisher Scientific). 
Nest chamber dimensions were recorded, including: height (max-
imum length along the vertical axis), width (maximum length along 
the horizontal axis parallel to the excavation plane), depth (max-
imum length along the horizontal axis perpendicular to the exca-
vation plane), and distance from the surface to the chamber floor. 
A summary of the measurements is presented in Table 1. Fungal and 
ant vouchers are deposited in the entomological collection of the 
Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ in 
Buenos Aires, Argentina.

Material Examined
In addition to the material collected for this study, we examined 
other material to study the distribution of this species (Figs. 1 and 2).  
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Table 1.  Nest measurements of the two excavated colonies of Paramycetophylax bruchi, including depths and dimensions of individual 
chambers, chamber contents, and number of individuals

Nest ID Locality Date Chamber
Depth 
(cm)

Chamber dimensions 
(cm)

Field notes Colony sizeHeight Width Depth

PNSQPEH2 PNSQ 20.III.2019 1 158.5 1 2 2.5 Fungus garden, larva, dealate 
queen and workers

120 workers, 9 alate queens, 8 
pupae, 1 larva, and 1 dealate 
queen.2 163 2.7 5.5 3 Fungus garden, pupae, alate 

queens and workers
PEH1814 RBÑ 11.I.2020 1 123 2.5 4 4 Fungus garden and workers 67 workers and 1 larva

2 133 2 3.5 2 Fungus garden and workers
3 138 2 3 3.5 Fungus garden and workers
4 138 2 3 2.5 Fungus garden and workers
5 143 2.5 2 4 Fungus garden and workers

Fig. 1.  Automontage images of the worker (left and center columns) and the queen (left column) of Paramycetophylax bruchi. (A–C) Lateral view; (D–F) dorsal 
view; (G–I) full-face view; and (J–L) label information.
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Inferred locality information (due to missing GPS coordinates or in-
complete locality names on the labels) appears between brackets []. 
Geographical coordinates were estimated using Google Earth. This 
material includes:

ARGENTINA. Mendoza: [Las heras], [El] Borbollón, 
[S32.81215 W68.76573, 675 m], (no collector data), 04.XII.1950, 
9 workers, (IFML); MACN_En27824, same as previous entry, but 
S32.812153 W68.765717, 691 m, (P. E. Hanisch coll.), 30.V.2018, 
1 worker (MACN); [Santa Rosa], Reserva de Biósfera Ñacuñan, 
[S34.04502 W67.90953, 565 m], (S. Lagos coll.), 13.IX.1997, 4 
workers (IADIZA); same as previous entry, but (S. Claver coll.), 
26.V.1982, 2 workers (IADIZA); same as previous entry, but 
04.XI.1999, 7 workers (IADIZA); same as previous entry, but (G. 
Debandi coll.), XII.1995, 9 workers, 2 queens (IADIZA); Santa 
Rosa, El Divisadero, [S33.75000, W67.68333, 506 m], (M. Rosi and 
M. Cona coll.), 23.X.2004, 6 workers (IADIZA); same as previous 
entry, but 17.V.2004, 2 workers (IADIZA); same as previous entry, 
but 18.V.2004, 4 workers (IADIZA); Lavalle, Reserva [provincial] 
Telteca, [S32.38991 W68.02569, 562 m], (S. Roig and G.  Flores 
coll.), 14.V.1995, 1 worker (IADIZA); same as previous entry, but 
19.VII.1996, 1 worker, 1 queen (IADIZA); same as previous entry, 
but 24.IX.1996, 1 queen (IADIZA); same as previous entry, but 
S32.385 W68.06083, 13.IIX.1995, 1 queen (IADIZA); same as pre-
vious entry, but (G. Flores coll.), 14.VI.1996, 1 queen (IADIZA); 
same as previous entry, but (G. Debandi coll.), III.1997, 3 workers, 
4 queens; San Juan: MACN_En27823, Reserva de Uso Múltiple 
de Valle Fértil, S30.72 W67.43, 834m, (A. Saint Esteven, I.  Soto, 
and E.  Soto coll.), Pitfall, 3-7.III.2017, 1 worker (MACN). Salta: 
Anta, [S24.727730 W64.195655, 476 m], (Luna coll.), VI.1948, 15 
workers (IFML). La Rioja: [Independencia], Guayapa, [S30.10555 
W66.97666, 501 m], (no collector data), 15.VIII.1948, 2 workers 
1 queen (IFML).

IFML: Instituto y Fundación Miguel Lillo, Tucumán, Argentina
IADIZA: Instituto Argentino de Investigaciones de Zonas Áridas, 
Mendoza, Argentina
MACN: Museo Argentino de Ciencias Naturales ‘Bernardino 
Rivadavia,’ Buenos Aires, Argentina

Ant and Fungal DNA Extraction
Ant DNA was extracted using the Qiagen DNeasy Blood and Tissue 
Kit (Qiagen, Valencia, CA). DNA extractions were performed 
nondestructively by opening small holes on the right side of the spe-
cimen, especially on the pronotum and propodeum, with a sterilized 
entomological pin to facilitate the lysis process. Cell lysis was per-
formed overnight with 20 µl of Proteinase-K in a dry bath shaker 
at 56°C and at 500 rpm. We followed the recommendations of the 
manufacturer for the extraction process except that we eluted the 
cleaned, extracted DNA from the spin-collection columns with two 
(rather than one) washes, each consisting of 65 µl of nuclease-free 
water, differing from the manufacturer’s recommendation of 200 µl 
of AE buffer.

After DNA was extracted, the specimen was washed with 95% 
ethanol, point-mounted, and properly labelled in order to serve as 
a voucher specimen in future taxonomic studies (Supp Table 1 [on-
line only]).

Fungal DNA was extracted using the Qiagen DNeasy Plant Mini 
Kit (Qiagen, Valencia, CA). Fungal tissue was carefully removed 
from the substrate and placed in a 2 ml tube. Samples were placed in 
a SpeedVac for 10–15 min at 45°C to remove any ethanol present. 
Cell lysis was performed overnight in a dry bath shaker at 65°C and 

at 500 rpm. Elution of the cleaned, extracted DNA from the spin 
columns was conducted with two steps of 50 µl of AE buffer, as sug-
gested by the manufacturer.

Ant and fungal DNA extractions were quantified using 2 µl sam-
ples of DNA template in a Qubit 3.0 Fluorometer and with the High 
Sensitivity Kit (Thermo Fisher Scientific, Inc.).

Generation of UCE Data
Library Preparation
Before library preparation, 50 ng of DNA template was sheared to 
an average fragment length of 300–600 bp using a Qsonica Q800R2 
Sonicator (Qsonica LLC, Newton, CT) for 60 s. Libraries were pre-
pared in 1.5 ml tubes on a rare magnet stand using the Kapa Hyper 
Prep Library Kit (Kapa Biosystems, Wilmington, MA) as described 
in Faircloth et  al. (2015) with the iTru Adapter protocol. We im-
plemented all magnetic bead clean-up steps (Fisher et al. 2011) as 
described in Faircloth et al. (2015) and used dual-indexing TruSeq 
adapters (Faircloth and Glenn 2012, Glenn et  al. 2019) for liga-
tion. The ligation step was followed by PCR-amplification of 15 µl 
of the library product using 25 µl of KAPA HiFi ReadyMix (Kapa 
Biosystems, Wilmington, MA), 2.5  µl of each of Illumina TruSeq 
(i5 and i7) primers, and 5 µl nuclease-free ddH2O. The following 
thermal cycler program was executed: 98°C for 45 s; 13 cycles of 
98°C for 15 s, 60°C for 30 s, 72°C for 60 s; and final extension at 
72°C for 5 m. Following PCR, we purified DNA products using 1.2× 
Kapa Pure beads and rehydrated the purified product in 22 µl of 
Elution Buffer (pH = 8). Individual libraries were quantified using 
2 µl of library product in a Qubit 3.0 Fluorometer using the Broad 
Range Kit (Thermo Fisher Scientific, Inc.).

Sample Pooling and Target Enrichment of Libraries
Post-PCR libraries were pooled at equimolar concentrations into 
one pool containing the ant libraries. Pool concentration was ad-
justed to 71.5 ng/µl by drying the sample in a vacuum centrifuge for 
45–60 min or until all liquid was evaporated at 60°C, and then by 
resuspending the pool in nuclease-free water at the estimated value. 
We then used 2 µl of the resuspended product to measure the pool 
concentration in a Qubit 3.0 Fluorometer with the Broad Range Kit. 
The final concentration of the preenrichment pool was 78.3 ng/µl.

The pool was enriched by using the ant-customized bait set (‘ant-
specific-hym-v2’) targeting 2,524 conserved loci in Hymenoptera 
(Branstetter et al. 2017b) at an incubation temperature of 65°C for 
24 hr in a thermal cycler. Enrichment, bead-cleaning, and PCR reaction 
procedures partially followed the Arbor Biosciences v4.0.1 (https://
arborbiosci.com/mybaits-manual/) protocol, Borowiec (2019a), and 
Branstetter et al. (2021). The resulting reaction was purified using 1.0× 
Kapa Pure beads and the enriched pool was then rehydrated in 22 µl 
EB. Following this step, the pool was quantified using 2 µl of the en-
riched pool in a Qubit 3.0 Fluorometer with the Broad Range Kit. To 
obtain reliable estimates of DNA concentration for the enriched pool, 
we performed a quantitative qPCR on a ViiA7 Real-Time PCR System 
(Thermo Fisher Scientific, Inc.) using the KAPA Library Quantification 
Kit (Kapa Biosystems, Inc) with the KAPA SYBR FAST qPCR Master 
Mix, universal Illumina primers, and dilutions of 1:1,000,000 and 
1:2,000,000. The final enriched pool of 100  µl was submitted to 
the Laboratories for Analytical Biology (LAB) of the Smithsonian 
Institution National Museum of Natural History for quality control 
and sequencing on an Illumina MiSeq (employing the V3 600 MiSeq 
Kit). New raw sequences generated as part of this study are deposited in 
the NCBI Sequence Read Archive (SRA; BioProject ID PRJNA771174, 
BioSample accession numbers SAMN22253136–SAMN22253138).
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Amplification and Sequencing of ITS Marker for Fungal DNA
We followed the methods of Mueller et al. (1998) for amplifying and 
sequencing the nuclear ribosomal internal transcribed spacer (ITS) re-
gion employing Sanger sequencing. A list of the primers employed for 
ITS amplification can be found in Sosa-Calvo et al. (2019). Sequencing 
was performed in the Laboratories for Analytical Biology (LAB) of 
the Smithsonian Institution National Museum of Natural History on 
an ABI 3100 automated sequencer using an ABI BigDye Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems Inc., Foster City, 
CA). Sequence data were assembled and edited using the program 
Sequencher v.4.10.1 (Gene Codes Corp., Ann Arbor, MI).

To determine the identity of the fungal cultivar grown by 
Paramycetophylax bruchi, we added its ITS sequence to a large 
ITS alignment (304 taxa and 1017 characters) that includes both 
free-living fungal sequences and ant-associated fungal sequences 
(Mueller et al. 1998; Vo et al. 2009; Mehdiabadi et al. 2012; Schultz 
et al. 2015; Sosa-Calvo et al. 2017b, 2019; Sosa-Calvo and Schultz, 
unpublished data). The new ITS sequence of Paramycetophylax 
bruchi generated for this study is deposited in GenBank under acces-
sion number OK569851.

Molecular Phylogenetics
Processing of UCE Sequence Data
The ant phylogenomic analyses are based on a modified version of 
the alignments used in Branstetter et al. (2017a) and Li et al. (2018), 
into which we incorporated new sequences belonging to three col-
onies (representing two populations) of the fungus-farming ant spe-
cies Paramycetophylax bruchi and trimmed reads from eight taxa 
belonging to the tribe Crematogastrini generated for the study of 
Blaimer et  al. (2018) that we downloaded from NCBI Sequence 
Read Archive.

For the newly generated P.  bruchi sequences, we trimmed the 
demultiplexed FASTQ output files generated by the Smithsonian 
Institution National Museum of Natural History’s Laboratory 
of Analytical Biology for adapter contamination and low-quality 
bases using Illumiprocessor v.2.0.6 (Faircloth 2013), which in-
cludes Trimmomatic v0.39 (Bolger et  al. 2014). We used SPAdes 
v.3.14 (Bankvich et al. 2012, Nurk et al. 2013) for the assembly of 
reads into contigs. We relied on a series of scripts available in the 
PHYLUCE package (Faircloth 2016) to further process our data and 
we followed the methods used in Branstetter et al. (2017a), Ješovnik 
et al. (2017), and Li et al. (2018).

We aligned each UCE locus using MAFFT v7.407 (Katoh and 
Standley 2013) using the default algorithm, then we aligned each 
locus again using the L-INS-i algorithm, which tends to generate 
more accurate alignments (Katoh et al. 2005, Katoh and Standley 
2014). We trimmed poorly aligned regions in each UCE locus with 
GBLOCKS (Castresana 2000, Talavera and Castresana 2007) using 
relaxed settings (b1 = 0.5, b2 = 0.5, b3 = 12, b4 = 7). An initial align-
ment was generated by first aligning individual UCE loci with at 
least 98 taxa represented (70% completeness) using the PHYLUCE 
script phyluce_align_get_only_loci_with_min_taxa. We then con-
catenated those loci into a data matrix using the PHYLUCE script 
phyluce_align_format_nexus_files_for_raxml, named Pbruchi_70p, 
for downstream analyses. The resulting data matrix consisted of 
136 taxa (57 outgroup taxa and 79 fungus-farming-ant taxa) and 
558,222 nucleotide characters representing 942 UCE loci.

UCE Phylogenetic Analyses
Initial analyses were conducted on the unpartitioned Pbruchi_70p 
alignment using IQTREE multicore v.2.0.6 (Minh et al. 2020), the 

GTR+F+G4 model of evolution (as selected by IQTREE), the default 
number of unsuccessful iterations to stop (-nstop 100), and an initial 
neighbor-joining tree (-t BIONJ). Node support was estimated by 
conducting 2,000 ultrafast bootstraps (UFBoot; Hoang et al. 2018).

To identify and remove outlier or poorly aligned sequence frag-
ments we used the Python tool SPRUCEUP (Borowiec 2019b) on 
the Pbruchi_70p dataset. We set the parameters in the configuration 
file to the uncorrected p-distance for computing the distances, a 
window size of 20 bp with an overlap of 15 bp, a lognormal distri-
bution to identify outlier distances, and a global cutoff of 0.95. As 
a result, SPRUCEUP changed 268,450 (0.35%) outlier nucleotide-
site state assignments (i.e., matrix cell values) to gaps (Supp Table 
3 [online only]). We then used the SPRUCEUP-trimmed alignment 
and repeated the unpartitioned analysis using the same parameters 
as above, including 1,000 replicates of the SH-like approximation 
likelihood-ratio test (-alrt 1000; Guindon et al. 2010).

Using the same trimmed alignment, we conducted three different 
partition tests: (i) By-locus partitions, in which each UCE locus is a 
partition (942 total) and in which each partition is given the same 
model (GTR+G+F4). (ii) Best scheme by locus, in which ModelFinder 
(Kalyaanamoorthy et al. 2017), as implemented in IQTREE (Minh 
et al. 2020), is used to identify the best partitioning scheme by al-
lowing two or more UCE loci to be merged into partitions and to 
identify the best-fitting models. For the merging step, we used the 
-m MF+MERGE commandm, the fast relaxed -rclusterf algorithm 
(set to 10; Lanfear et al. 2017) and compared the top 10% of the 
resulting partitioning schemes using the corrected Akaike informa-
tion criterion (AICc), restricting the evaluated models to those imple-
mented in RaxML by using the command -mset raxml. The best-fit 
partitioning scheme (Pbruchi_70p_trimmed_bestscheme_bylocus) 
consisted of 484 subsets. (iii) The Sliding Window Site Characteristics 
based in Entropy method (SWSC-EN; Tagliacollo and Lanfear 2018), 
in which each UCE locus is split into three regions (a core and two 
flanking regions). The SWSC-EN algorithm identified 2,826 subsets. 
We then identified the best partitioning scheme by merging the re-
sulting subsets using ModelFinder (Kalyaanamoorthy et  al. 2017) 
as implemented in IQTREE (Minh et al. 2020), employing the same 
merging steps as in the partitioning scheme (ii) above. The best-fit 
partitioning scheme (Pbruchi_70p_trimmed_SWSC-EN) consisted 
of 853 subsets (see Supp Table 5 [online only]).

We performed further maximum-likelihood (ML) analyses on 
the trimmed alignment with the different partitioning schemes using 
IQ-TREE multicore v.2.0.6 (Chernomor et al. 2016, Minh et al. 2020), 
estimating branch support with the ultrafast bootstrap (Hoang et al. 
2018) and the SH-like approximation likelihood ratio test (Guindon 
et al. 2010) set at 1,000 replicates, with other settings set at default 
values. Maximum-likelihood analyses of the unpartitioned dataset, 
the trimmed dataset, and of datasets under the three different 
partitioning schemes listed above indicate that the results of the 
trimmed SWSC-EN partitioned dataset have a better log-likelihood 
score than the alternatives (SWSC-EN  =  −8,045,748.129; Best 
scheme by Locus = −8,124,383.749; By Locus = −8,140,819.136; 
trimmed unpartitioned = −8,195,808.463; unpartitioned = −8,799,
158.824).

We conducted matched-pair tests of symmetry (Naser-Khdour 
et al. 2019) as implemented in IQ-TREE v.2.1.2 (Chernomor et al. 
2016, Minh et al. 2020) to test model violation by testing assump-
tions of stationarity and homogeneity. To remove the bad partitions, 
we employed the --symtest-remove-bad option and set the P-value 
cutoff as the default (P = 0.05). A total of 67/853 partitions were re-
moved from the SWSC-EN partition scheme, 124/942 partitions were 
removed from the by-locus partition scheme, and 84/484 partitions 
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were removed from the merged-by-locus scheme. The resulting 
‘good’ partitions and ‘good’ alignments were then used to generate 
new ML analyses in IQTREE, which resulted in the trees in Supp Fig. 
1 [online only] with the following log-likelihood scores: SWSC-EN-
symtest = −7,231,029.242, by-locus-symtest = −7,027,206.003, and 
merged-by-locus-symtest = −6,534,146.568.

Divergence-Dating Inference
To estimate the time of divergence of the genus Paramycetophylax 
and its sole species P.  bruchi from its sister group, we used the 
Bayesian program MCMCTREE (Yang and Rannala 1997), im-
plemented as part of the PAML package (Yang 2007), which uses 
the approximate-likelihood approach of Thorne et  al. (1998). We 
input the SPRUCEUP-trimmed alignment and the topology gener-
ated using the SWSC-EN and ModelFinder best-fitting models. To 
calibrate our analysis, we employed information available from 
two fossils as well as from two published studies (as secondary 
calibrations). The two fossils were: (i) A  Pheidole Westwood spe-
cies from the Florissant Formation (34 Ma; Carpenter 1930, Ward 
et al. 2015), calibrating the crown node of the genus Pheidole and 
modeled as the Cauchy distribution L (0.34, 0.05, 0.085, 1e-300). 
(ii) Mycetomoellerius primaevus (Baroni Urbani) from Dominican 
Amber (15 mya; Baroni-Urbani 1980), calibrating the most-recent 
common ancestor (MRCA) of Mycetomoellerius Solomon et al. and 
Acromyrmex Mayr, i.e., the higher Attina, and modeled as the uni-
form distribution B (0.15, 0.35), i.e., of 15 mya to 35 mya (Supp 
Table 4 [online only]). In a recent phylogenetic study in which 
the genus Trachymyrmex s.l. was divided into three monophyletic 
genera (Solomon et al. 2019), the species ‘Trachymyrmex’ primaevus 
was tentatively placed in the genus Mycetomoellerius (Solomon 
et al. 2019). Because there remains significant uncertainty about the 
phylogenetic position of this fossil (Schultz and Sosa-Calvo, personal 
observation), we used it to conservatively calibrate the MRCA of the 
higher Attina (Mycetomoellerius + Acromyrmex, Schultz and Brady 
2008, Branstetter et al. 2017a, Li et al. 2018) rather than the crown 
node of Mycetomoellerius. The two secondary calibrations were: (i) 
The crown age of the subfamily Myrmicinae (95% CI 110.1 mya 
to 87.1 mya, median 98.6 mya; Ward et al. 2015, Branstetter et al. 
2017a), modeled as the skew-normal distribution SN (0.986, 0.06, 
0) using the R package MCMCtreeR (Puttick 2019). (ii) The crown 
age of the tribe Crematogastrini (95% CI 93.704 mya to 66.132 
mya, median 78.55 mya; Blaimer et al. 2018) modeled as the skew-
normal distribution SN (0.7855, 0.08, 0; Supp Table 4 [online only]). 
For each of the skew-normal distributions, we note that the shape 
parameter (third term) is zero, creating a symmetrical distribution 
around the median age (first term). The number of calibrations used 
in our analysis, four, differs from the number of calibrations (ten) 
employed in the study of Branstetter et al. (2017a) for three reasons: 
(i) to avoid potentially misidentified fossils (affecting one calibration, 
that of the Stenammini); (ii) to avoid conflict across calibrations (af-
fecting one calibration, that of Myrmica Latreille + Manica Jurine); 
and (iii) to avoid calibrations lacking information content, i.e., cali-
brations based on Dominican amber fossils (15 mya) for taxa that 
are clearly much older (affecting four taxa).

MCMCTREE analyses used the independent-rates clock model 
and the GTR+G4 substitution model. We conducted four inde-
pendent MCMCTREE runs, each consisting of 50 million gener-
ations, and each with the following settings: sampfreq  =  1,000, 
nsample = 50,000, and burnin = 5,000,000. We assessed run conver-
gence and stationarity by examining the resulting mcmc.txt files in 
Tracer v1.7.1 (Rambaut et al. 2018) using the criterion of ESS values 
higher than 500. Analyses were conducted on the Smithsonian High 

Performance Cluster (SI/HPC), Smithsonian Institution (https://doi.
org/10.25572/SIHPC).

Fungi
ITS Sequencing and Phylogenetics
DNA sequences of the fungal cultivar of Paramycetophylax bruchi 
were incorporated into a large ITS alignment (305 sequences) 
including both attine fungal cultivars and free-living Agaricales 
fungi generated during the past 15 years (Mueller et al. 1998, Vo 
et al. 2009, Mehdiabadi et al. 2012, Sosa-Calvo and Schultz, un-
published data). We aligned the fungal dataset using the online 
version of MAFFT v7 (Katoh et  al. 2019). The resulting align-
ment was submitted to the guide-tree-based GUIDANCE2 server 
(Sela et  al. 2015) to identify poorly aligned sites to be masked 
(excluded) from further analysis. The final ITS alignment in-
cluded 1,017 aligned sites, including indels, and 561 parsimony-
informative sites. We divided the alignment into two blocks 
(ITSfast and ITSslow) based on site variability, as in Mehdiabadi 
et al. (2012) and Masiulionis et al. (2014). We performed Bayesian 
analyses using MrBayes v.3.2.7a (Ronquist et  al. 2012) in the 
CIPRES Science Gateway (Miller et al. 2010). The analysis con-
sisted of two runs and eight chains, with a sampling frequency 
of 1,000 and 10,000,000 generations, and with burn-in set at 
1,000,000. We set the parameter brlenspr = unconstrained:Exp(1
00) due to known problems with estimation of branch lengths 
in MrBayes (Marshall et  al. 2006, Brown et  al. 2010, Marshall 
2010). We assessed burn-in, convergence, and stationarity by using 
the program TRACER v.1.7.1 (Rambaut et al. 2018).

Results

Natural History
Habitat
Based on data associated with the examined material and the type 
localities, specimens of Paramycetophylax bruchi have been collected 
from low to high elevations (50–2069 m) in the Dry Chaco and 
Monte ecoregions in Argentina (Fig. 2; Klingenberg and Brandão 
2009). We collected this species from both ecoregions at three local-
ities (PNSQ, RBÑ, and El Borbollón) from mid to high elevations 
(538–702 m). PNSQ and RBÑ sites have in common a high density 
of the tree Prosopis flexuosa De Candolle (Fabaceae), locally known 
as Algarrobo dulce (Alvarez and Villagra 2009). Populations of this 
tree species were also present in two other localities (El Borbollón, 
Mendoza, and Reserva de Uso Múltiple de Valle Fértil, San Juan; 
Hanisch and Saint Esteven, personal observation; see material exam-
ined). Moreover, all the located colonies (n = 8) were found under 
the canopy of this tree species (Fig. 3A–C). Our field observations 
indicate that workers of Paramycetophylax bruchi forage individu-
ally throughout the day for substrate near the colony (n = 7). In one 
case (RBÑ colony) the ants were only seen active at night removing 
dry leaves (presumably used-up garden substrate) from the nest. All 
foraging individuals observed were carrying Pr. flexuosa leaflets (Fig. 
3D). Typically, foragers left the leaflets inside the nest entrance and 
departed to look for another leaflet.

Nest Architecture
Nest entrances of Paramycetophylax bruchi consisted of a single incon-
spicuous hole in the ground (3–4 mm in diameter), sometimes with a 
shallow mound of excavated soil a few centimeters away from the en-
trance (Fig. 4A–C). In no case was the nest entrance located at the top 
of the excavated soil, differing in this regard from some of the colony 
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entrances of Kalathomyrmex emeryi (Bucher 1974; Fig. 4D). Two col-
onies of P. bruchi were excavated (one from PNSQ and one from RBÑ) 
and censused. Nests consisted of 2–5 chambers located 123–163 cm 
below the surface. With the exception of the deepest chamber at PNSQ, 
which was heart-shaped, chambers were elliptically shaped, 2–5.5 cm 
wide and 1–2.7  cm high. The largest garden chamber encountered 
(PNSQ, chamber 2)  was 2.7  × 5.5  cm. Information regarding nest 
architecture is summarized in Table 1 and Fig. 5.

Colony Size
The excavated PNSQ colony consisted of 120 workers, 9 alate 
queens, 8 pupae, 1 larva, and 1 dealate queen. The excavated RBÑ 

colony consisted of 67 workers and 1 larva. Because no dealate 
queen was found, the RBÑ colony excavation may have been in-
complete, unless we excavated a queenless colony or the queen es-
caped during the excavation. Based on the many queens found in the 
material examined in the IADIZA collection, nuptial flights occur 
from March to December, mostly coinciding with the time of highest 
rainfall.

Fungal Symbiont
All chambers contained fungus gardens resting on the chamber floor 
(Fig. 6A), which consisted of leaflets of Pr. flexuosa covered with 
fungal mycelium (Fig. 6B–D).

Fig. 2.  Known distribution of Paramycetophylax bruchi. Type locality (black star) and type localities of three synonymized subspecies and varieties (white stars); 
our study sites (black dots); and additional sites from examined material (white dots).
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Molecular Phylogenetics and Divergence-Dating 
Analysis
With regard to the relationships of genera and species, our phyl-
ogeny (Fig. 7, Supp Fig. 2 [online only]) agrees with previous 
phylogenomic analyses of the Attina (Branstetter et  al. 2017a, Li 
et al. 2018). As in these previous studies, we also recover with max-
imum support the monophyly of fungus-farming ants and their 
sister-group relationship to the informal subtribe ‘Dacetina’ (the 
former ‘Dacetini’ excluding Strumigenys; Fig. 7, Supp Figs. 1 and 
2 [online only]). Unlike those previous studies, however, our data 
include newly generated sequences from recently collected spe-
cimens of Paramycetophylax bruchi. Our partitioned maximum-
likelihood analysis indicates, with maximum support, that the genus 
Paramycetophylax is the sister group of the Cyphomyrmex rimosus 
group of yeast-cultivating ant species, arising between the yeast 
farmers and the mycelium-cultivating C.  wheeleri group and thus 
rendering the genus Cyphomyrmex paraphyletic (Fig. 7, Supp Figs. 
1 and 2 [online only]).

Our Bayesian divergence-dating analysis conducted in the pro-
gram MCMCTREE (Fig. 8, Supp Figs. 3–7 [online only]) produced 
slightly older ages compared to those found in Branstetter et  al. 
(2017a) and Li et  al. (2018), especially for the Attini, the Attina, 
and the two, early-diverging, sister clades of fungus-farming ants, 

the ‘Paleoattina’ and the ‘Neoattina’ clades. Our results indicate 
that the Attini evolved in the Late Cretaceous, 77 Ma (68–87 mya, 
HPD), with major genus groups evolving very shortly thereafter. The 
fungus-farming ants originated at the end of the late Cretaceous 
sometime between 68 mya (59–76 mya; crown) and 73 mya (64–82 
mya; stem). The paleoattine and the neoattine clades were recovered 
as originating 60 mya (51–69 mya) and 59 mya (51–68 mya), re-
spectively. Within the Attina, our analysis recovered dates for the 
higher attines and leaf-cutters similar to those of previous ana-
lyses (Supp Table 6 [online only]). The Cyphomyrmex clade, con-
taining the C. wheeleri group, the C. rimosus group, and the genus 
Paramycetophylax, evolved 37 mya (31–43 mya; crown) in the 
Late Eocene. The genus Paramycetophylax diverged from its sister 
group, the C. rimosus group, very shortly afterward around 36 mya 
(30–42 mya).

Bayesian analyses of the ribosomal ITS ‘fungal DNA barcoding’ 
gene fragment indicate that Paramycetophylax bruchi practices 
lower agriculture, i.e., that it cultivates a fungal species that falls 
within a known group of leucocoprineaceous ant-associated fungi 
within the family Agaricaceae. More specifically, the fungal cul-
tivar grown by P.  bruchi belongs to lower-attine ‘Clade 1’ in the 
vicinity of Clade 1 subclades 1A and 1B of Mehdiabadi et al. (2012). 
In the ITS phylogeny, this clade also includes fungi cultivated by 

Fig. 3.  Habitat of Paramycetophylax bruchi. (A) El Borbollón, Mendoza, Argentina; (B) Parque Nacional Sierra de las Quijadas, San Luis, Argentina; and (C) 
Reserva Biósfera Ñacuñan, Mendoza, Argentina. (D) A forager of P. bruchi carrying a Prosopis flexuosa leaflet. Red arrows indicate the location of the nest of 
Paramycetophylax bruchi.
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other members of the genus Cyphomyrmex (Fig. 9; e.g., C. wheeleri 
Forel, C.  longiscapus Weber, C. costatus Mann) and a gongylidia-
producing Mycocepurus Forel cultivar, and it is closely related to 
the clade of yeast fungi (Mehdiabadi and Schultz 2010, Mehdiabadi 
et al. 2012, Masiulionis et al. 2014, Sosa-Calvo et al. 2019).

Discussion

During the last three decades, fungus-farming ants have become 
a model system for the study of symbiotic evolution. As a result, 
the natural history and evolution of fungus-farming ant species 
have been the subjects of increasing study. Several new genera have 
been described (Amoimyrmex Cristiano et  al.; Cyatta Sosa-Calvo 
et al.; Kalathomyrmex, Mycetagroicus Brandão, and Mayhé-Nunes; 
Mycetomoellerius, Paratrachymyrmex Solomon et  al.; Xerolitor 
Sosa-Calvo et  al.) as a result of targeted fieldwork and molecular 
systematics (Brandão and Mayhé-Nunes 2001; Klingenberg and 
Brandão 2009; Sosa-Calvo et al. 2013, 2018; Solomon et al. 2019; 
Cristiano et al. 2020). In other cases, species have been transferred 
between genera in order to maintain taxonomic stability (Sosa-Calvo 
et al. 2017b). The study of symbiotic evolution and coevolution of 
the fungus-farming ants and their fungal cultivars has resulted in 

the recognition of five distinct ‘agricultural systems’ characterized by 
more-or-less consistent associations of phylogenetic groups (clades 
or grades) of ant species with phylogenetic groups of fungal cultivar 
species (see Schultz and Brady 2008, Mehdiabadi et al. 2012, Schultz 
et al. 2015, Branstetter et al. 2017a). The origins of these systems 
represent major transitions in the evolutionary history of ant agri-
culture (Schultz and Brady 2008).

The genus Paramycetophylax is among the most rarely collected 
of fungus-farming ant genera. As a result, its nesting behavior, 
colony demography, fungal cultivar(s), and position in the fungus-
farming ant tree of life have remained enigmatic. We were able to 
collect specimens from eight colonies, and to excavate two entire 
colonies, of the species Paramycetophylax bruchi, the sole member 
of the genus, in Argentina. Our new collections expand the known 
distribution of this species (Klingenberg and Brandão 2009). The 
areas where the colonies were collected are classified as dry to arid 
regions (Bruniard 1982, Brown et  al. 2005). Surprisingly, one of 
the colonies was found in a small town (El Borbollón) and, hence, 
in a highly disturbed area (Fig. 3A). The nests of this species, like 
those of several other species of fungus-farming ants, tend to have 
inconspicuous openings accompanied by some excavated soil near 
the entrance. Nest chambers were found at depths between 123 

Fig. 4.  Nest entrances of Paramycetophylax bruchi at (A) El Borbollón, Mendoza, Argentina; (B) Parque Nacional Sierra de las Quijadas, San Luis, Argentina; and 
(C) Reserva Biósfera Ñacuñan, Mendoza, Argentina. (D and inset) Nest entrance from Reserva Nacional Pizarro (Salta) of Kalathomyrmex emeryi shown here 
for comparison.
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and 163 cm below the surface. Some other dry-habitat-inhabiting 
fungus-farming ants (e.g., Cyatta, Mycetagroicus) excavate nests 
with a few small chambers that are much deeper than those of 
Paramycetophylax (Solomon et al. 2011, Ješovnik et al. 2013, Sosa-
Calvo et  al. 2013), whereas others, such as Xerolitor explicatus 
Kempf, which is also found in the Dry Chaco of Paraguay, have 
slightly shallower nests (Sosa-Calvo et  al. 2018). Workers of 
P. bruchi were observed collecting and carrying leaflets of the legume 
plant Prosopis flexuosa (Fabaceae) to their nest (Fig. 3D). These 
leaflets were used as a substrate for their fungal cultivar, which 
grows as small patches of mycelium on the intricate leaflet mass (see 
Fig. 6). A  similar leaf-carrying behavior has been observed in the 
paleoattine ant Apterostigma megacephala Lattke in Amazonian 
wet forest in Brazil, the only lower-attine ant known to cultivate a 
higher-attine fungus (Schultz et al. 2015, Sosa-Calvo et al. 2017a). 
Individuals of this species also collect and carry into their nest leaf-
lets of another legume plant, Pseudopiptadenia suaveolens (Miquel) 
(Fabaceae); however, in contrast to the use of Pr. flexuosa leaflets 
by P. bruchi, A. megacephala does not use Ps. suaveolens leaflets as 
a garden substrate. Instead, the leaflets were observed to serve as a 
covering for the floor of the garden chamber (Schultz et al. 2015, 

Sosa-Calvo et al. 2017a). The fact that all colonies of P. bruchi were 
associated with Pr. flexuosa is interesting, considering that the dis-
tribution of these two species is similar (Alvarez and Villagra 2009, 
Klingenberg and Brandão 2009, this study). If this correlation is 
consistent, our results suggest other localities where P. bruchi could 
be found. Prosopis flexuosa is an ecologically important species, 
serving as a major food source for vertebrates and insects, including 
ants (Milesi and Casenave 2004), and improving soil properties 
(Rossi and Villagra 2003). As a result, it produces spatial hetero-
geneity that modifies the species distributions of both plants and 
animals. Finally, it is important to point out that our data are re-
stricted to a few populations and colonies of P. bruchi and there-
fore likely reflect just a part of its biology. Therefore, the generality 
of our results should be confirmed by studying more colonies and 
populations.

Our phylogenetic analysis places Paramycetophylax within 
the genus Cyphomyrmex (Fig. 7). As currently circumscribed, 
Cyphomyrmex is phylogenetically divided into two species groups, 
each of which is distinct with regard to the agricultural system it 
practices. In the C. wheeleri group, all the species grow their culti-
vars as mycelium, consisting of chains of connected cells, whereas 
in the C. rimosus group, all the species grow their fungal cultivars 
in a yeast-like phase consisting of small nodules of nonconnected 
fungal cells. Our maximum-likelihood analysis indicates, with max-
imum support, that Paramycetophylax is the sister group to the 
C. rimosus group, thus rendering the genus Cyphomyrmex paraphy-
letic. In the interest of taxonomic stability, one of three actions is 
thus required: (i) the genus Paramycetophylax must be synonymized 
under the genus Cyphomyrmex as currently defined; (ii) the genus 
Paramycetophylax must be synonymized under a more narrowly cir-
cumscribed Cyphomyrmex consisting solely of the yeast-cultivating 
C. rimosus species, which includes the type species of Cyphomyrmex, 
and the C. wheeleri group must be elevated to the status of a sep-
arate genus; or (iii) Paramycetophylax must be maintained as a 
valid genus, the definition of Cyphomyrmex must be narrowed to 
include only the C. rimosus group, and the C. wheeleri group must 
be elevated to the status of a separate genus. We have chosen not 
to undertake any of these actions in this paper because we feel it is 
more appropriate to do so in the context of a global taxonomic re-
vision of the genus Cyphomyrmex, currently underway (Zoppas de 
Albuquerque et al. in progress).

The ages produced by our divergence-dating analyses for the 
Attini, the Attina, and the two major clades within the Attina (the 
‘Paleoattina’ and the ‘Neoattina’) are slightly older than those re-
ported by Branstetter et  al (2017a). These older ages likely result 
from differences between the two analyses, which include (i) we 
employed a reduced number of calibrations (four rather than ten; 
see Materials and Methods), and (ii) we included species from the 
Crematogastrini, a myrmicine tribe not included in the Branstetter 
et al. (2017a) study, allowing us to make use of a secondary cali-
bration taken from Blaimer et  al. (2018). Our taxon sampling of 
the genus Pheidole included Ph. fimbriata Roger, the sister group 
to the remainder of the genus (Moreau et al. 2008; Economo et al. 
2015, 2019), which allowed us to calibrate the Pheidole crown node 
based on a fossil from the Florissant Formation (34 Ma). Although 
it might be argued that the Pheidole fossil instead represents a stem 
taxon, i.e., that it is older than the MRCA of extant Pheidole spe-
cies (Economo et  al. 2015), the placement of this fossil is in fact 
irrelevant to our results. In alternative dating analyses in which we 
used the fossil to calibrate the stem node (Supp Figs. 4 and 6 [on-
line only]), and in analyses in which we did not include the Pheidole 
calibration at all (Supp Fig. 5 [online only]), we obtained nearly 

Fig. 5.  Illustration of Paramycetophylax bruchi nests at (A) Parque Nacional 
Sierra de las Quijadas, San Luis, Argentina; and (B) Reserva Biósfera 
Ñacuñan, Mendoza, Argentina.

Copyedited by: OUP

D
ow

nloaded from
 https://academ

ic.oup.com
/isd/article/6/1/11/6514766 by guest on 25 January 2022

http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab029#supplementary-data
http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab029#supplementary-data
http://academic.oup.com/isd/article-lookup/doi/10.1093/isd/ixab029#supplementary-data


11Insect Systematics and Diversity, 2022, Vol. 6, No. 1

identical dating results, indicating that the Pheidole fossil calibration 
contains little information and did not play a role in our discovery of 
ages slightly older than those found in previous studies (Supp Table 
6 [online only]). Our dating analyses indicate that the MRCA of 
Paramycetophylax and the C. rimosus group lived around 36 mya 
(30–40 mya, 95% HPD), coinciding with the Terminal Eocene Event 
(33.9 mya; Fig. 7, ‘TEE’), a period of global cooling during which 
large portions of South America underwent a change in vegetation 
from subtropical woodlands to seasonally arid savanna woodlands, 
and in which the first ice sheets formed in Antarctica and large-scale 
species turnover occurred globally due primarily to extinctions of 
tropical-adapted species (Prothero 1994, Zachos et al. 2001). Both 
sister clades are subtended by long, unbroken branches (29 Myr 
for Paramycetophylax, 20 Myr for the C. rimosus group) that indi-
cate long periods of anagenesis and/or extinction. Because P. bruchi 
currently occupies seasonally dry or arid habitats, it is tempting to 
speculate that it is the sole relict species of a dry-habitat-inhabiting 
lineage that, after originating during the TEE, remained specialized 
on dry habitats. In contrast, the 19 extant (and two fossils) species 
in the C.  rimosus group are diverse with regard to habitat, abun-
dant in wet forests but also found in dry habitats and at high eleva-
tions, ranging from the southern United States to Argentina (Kempf 
1965, Snelling and Longino 1992). This pattern of a depauperate 

dry-habitat-inhabiting lineage as sister to a diverse wet-and-dry-
habitat-inhabiting clade occurs elsewhere in the fungus-farming 
ants, most notably in the split between the lower-attine genus 
Mycetagroicus and the higher Attina (Fig. 8), which also occurred 
coincident with the TEE.

Our Bayesian phylogenetic analysis of the fungal cultivar of 
Paramycetophylax bruchi (Fig. 9) indicates that P. bruchi practices 
lower agriculture, the likely ancestral condition in fungus-farming 
ants (Schultz and Brady 2008, Branstetter et  al. 2017a), and that 
its fungal cultivar falls within Clade 1 of the lower-attine fungi 
(Mueller et  al. 1998, Vo et  al. 2009, Mehdiabadi et  al. 2012), a 
clade that, interestingly, also includes the yeast fungi cultivated by 
the Cyphomyrmex rimosus group of fungus-farming ants, the sister 
group of P.  bruchi (Fig. 7). More definitive phylogenetic analyses 
of the ant-cultivated fungi, preferably employing phylogenomic 
markers (e.g., UCEs), are necessary for understanding deeper rela-
tionships and species boundaries in the ant-cultivated fungi. Our 
results clearly indicate that increased studies of Paramycetophylax 
bruchi and of its fungal cultivar, especially analyses of whole gen-
omes compared with those of C. rimosus-group ants and fungi, are 
essential for understanding the origin of the ancestral yeast cultivar 
from a Clade 1 mycelial ancestor, one of the major transitions in the 
evolution of agriculture in ants (Schultz and Brady 2008).

Fig. 6.  Fungus gardens. (A) Subterranean garden chamber at Reserva Biósfera Ñacuñan (RBÑ), Mendoza, Argentina; (B) fungus garden and ants in field nest 
boxes at Parque Nacional Sierra de las Quijadas, San Luis, Argentina; (C–D) fungus garden and ants in field nest boxes at RBÑ.
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Fig. 7.  Phylogeny of the Myrmicinae based on a SWSC-EN partitioned maximum-likelihood analysis in IQTREE (Chernomor et al. 2016, Minh et al. 2020). Support 
values on branches indicate the SH-like approximation likelihood-ratio test (alrt) and ultrafast bootstrap (UFBoots) proportions, respectively. Red branches 
indicate the position of Paramycetophylax bruchi. Inset: Automontage image of the head of a P. bruchi worker.
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Fig. 8.  Time-calibrated phylogeny of the tribe Attini inferred from an MCMCTREE analysis (Yang and Rannala 1997). Red star indicates the origin of fungus-
farming ants. Blue dots indicate fossil calibrations (see text). Colored boxes indicate the five agricultural systems: (i) lower agriculture (yellow); (ii) coral-fungus 
(Pterulaceae) agriculture (red); (iii) yeast agriculture (green); (iv) higher agriculture (blue); and (v) leaf-cutter agriculture (orange). Taxa in red correspond to ant-
head images on right: Cyphomyrmex costatus (top), Paramycetophylax bruchi (middle), and C. rimosus (bottom). Light blue bars indicate 95% highest probability 
density (HPD). K-Pg Event = Cretaceous/Paleogene boundary; EECO = Early Eocence Climatic Optimum; TEE = Terminal Eocene Event; MMCO = Middle Miocene 
Climatic Optimum.
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2012). Ant-cultivated fungi are divided into two clades, Clade 2 (red branches) and Clade 1 (blue branches); free-living fungi are represented by black branches. 
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