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Abstract

A ubiquitous challenge in design space exploration or uncertainty quantification of complex engineering problems is the
minimization of computational cost. A useful tool to ease the burden of solving such systems is model reduction. This work
considers a stochastic model reduction method (SMR), in the context of polynomial chaos expansions, where low-fidelity
(LF) samples are leveraged to form a stochastic reduced basis. The reduced basis enables the construction of a bi-fidelity (BF)
estimate of a quantity of interest from a small number of high-fidelity (HF) samples. A successful BF estimate approximates
the quantity of interest with accuracy comparable to the HF model and computational expense close to the LF model. We
develop new error bounds for the SMR approach and present a procedure to practically utilize these bounds in order to assess
the appropriateness of a given pair of LF and HF models for BF estimation. The effectiveness of the SMR approach, and the
utility of the error bound are presented in three numerical examples.

Keywords Uncertainty quantification - Bi-fidelity approximation - Low-rank approximation - Stochastic model reduction

1 Introduction

A core motivation in engineering design is to understand the
behavior of some quantity of interest (Qol) as a function of
uncertain inputs. Stochastic variables may arise from uncer-
tainties in measurements, model parameters, or boundary and
initial conditions. Limited understanding of the influence that
stochastic inputs have on the Qol may yield a surplus of
confidence or mistaken reluctance to trust the model predic-
tions. The field of uncertainty quantification (UQ) addresses
this problem and has been the subject of much research
[24,38,57].

A useful technique in UQ problems is to approximate the
Qol with an expansion in multivariate orthogonal polynomi-
als, known as the polynomial chaos (PC) expansion [24,58].
In this work, we assume a d-dimensional vector of random
inputs E:=(&1, ..., E4) with joint probability density func-
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tion f (&) and set of possible realizations §2. We consider the
vector valued Qol, (&) € R, assumed to have finite vari-
ance and defined over a spatial domain of the problem. We
note that while this work focuses on spatial Qols, the method
described extends to temporal or spatio-temporal Qols. The
PC expansion approximates the vector Qol as

w(Z) =Y ¢y (8), (1)

j=1

where ¥ (Z) is a multivariate orthogonal polynomial eval-
uated at the random inputs and weighted by deterministic
coefficients ¢; € RM  The polynomials v/ j (&) are chosen to
be orthogonal with respect to the probability measure f(&).
For instance, if = follows a jointly uniform or Gaussian dis-
tribution, then v ; (&) are multivariate Legendre or Hermite
polynomials, respectively [58]. We assume (&) = 1 and
Y (E) are normalized such that E[lﬂ%(i’)] =1, where E[-]
represents the mathematical expectation operator. The expan-
sion (1) is truncated to

P P
u(E) =) ¢ Yi(E)+8p(E) = ) c;¥;(8), )

j=1 j=1
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where §p denotes the PC truncation error. The truncated
expansion (2) is accurate provided the coefficients ¢; decay
to zero in a properly ordered basis and that the Qol depends
smoothly on the inputs =. An expansion with total order p
and stochastic dimension d has P = (p + d)!/(p!d!) basis
functions. As P — oo, for a sufficiently smooth u(Z) and
when f(§) has a compact support, the PC expansion con-
verges in the mean-square sense to u [18].

The coefficients ¢; are a valuable tool for approximating
statistics, constructing surrogate models that may integrate
or differentiate our Qol or performing sensitivity analysis.
In this work, we assemble these coefficients into the matrix
C:=[cy,...,cp] € RMXP A common approach to deter-
mine C is to construct a regression problem with Monte Carlo
samples of the Qol. We denote individual realizations of =
drawn from f (&) as &;, and consider a set of N input samples
as {&; }lN: 1 and correspondingly Qol samples {u(§;) }lN: | orga-
nized in the data matrix U:=[u(&,), ..., u(&y)] € RM*N,
We seek to solve for C in the linear system

Cy ~U, 3)

where W (j,i):=y;(&;),j=1,...,Pandi =1,..., N.
If the resulting regression problem is over-determined, with
N > P, then we employ least squares approximation
whereas if it is under-determined, with N < P, then we
apply compressed sensing [11,14,30,48]. The analysis of this
work is based on the least squares optimization problem,

min {|C¥ = Ullr. “)

whose solution C' may be computed from the normal equa-
tion CW¥ W’ = UWT In (4), || - | denotes the Frobenius
norm. This technique essentially assumes a fixed basis which
means modeling a Qol in high dimensions d and/or with high
polynomial order p leads to a correspondingly high number
of PC basis functions P and to potentially expensive simu-
lations that require many HF samples.

Sparse PC expansions, e.g., via compressed sensing,
tackle this issue through exploiting sparsity in the PC
coefficients ¢; [3-5,13,14,30,41,48,59,60], and require rel-
atively smaller sample sizes. For instance, solving the £; »-
minimization problem

min [|Cll12 subjectto |C¥ —Ulr <« &)

where [ Cll1.2 == (X, IC (G, 9)[3)"", €, :) denotes the ith
row of C, || - ||1 is the £1-norm of a vector, and « is a tolerance
of solution inaccuracy [5,13,30]. In the present work, we seek
to further reduce the sampling requirement through an SMR
framework that leverages LF model evaluations. The central
theme of this work is two fold. Firstly, if one knew a stochastic

@ Springer

reduced basis {n; (E )};: 1» With » < P, associated with the
subspace on which the Qol lives then a regression problem
of the form (4) would require a relatively smaller number N
of Qol realizations, thus leading to a reduced computational
expense. Secondly, such a reduced basis may be identified—
in an approximate sense—from LF models of the problem.

In practice, for a given physical system, models of dif-
fering fidelity are available. HF models, that accurately
describe the underlying physics, may require significant
computational expense that becomes infeasible when many
evaluations are necessary. In contrast, LF models are likely to
provide a less accurate prediction of the problem physics at
a comparatively affordable computational cost. For instance,
in simulations of transient fluid flows that feature complex
geometries, HF models must have fine spatial and tempo-
ral discretizations to resolve sharp gradient regions, such
as boundary layers or separated flow. A LF counterpart
with comparatively coarse discretizations will provide less
accurate predictions that are generated more quickly. Multi-
fidelity techniques exploit this inherent variety in model
fidelity to reduce the computational expense involved in engi-
neering design [21,33,47]. Multi-fidelity methods have seen
statistical applications such as co-kriging [22,35] and numer-
ous recursive approaches designed to improve accuracy
and mitigate computational complexity [34,36,37,46,49,50],
among others. In recent years progress in multi-fidelity UQ
has been made in areas such as multi-level Monte Carlo
[8,26,27] and PC expansions [17,43—45], the subject of this
paper. These approaches typically employ a large number of
LF samples and a comparatively small number of HF sam-
ples to perform an additive and/or multiplicative correction
to the LF model.

1.1 Contributions of this work

Previous SMR work that inspires the present study con-
structs a small polynomial representation of the HF solution
though determining a reduced basis with the Karhunen Loéve
(KL) expansion of the LF solution [15,23]. This method
then estimates the HF solution via Galerkin projection of
the governing equations onto the span of the reduced poly-
nomial basis. A non-intrusive approach that determines PC
coefficients via regression as opposed to Galerkin or Petrov-
Galerkin projection is proposed in [52]. The key assumption
to these methods is that the Qol admits a low-rank covariance,
hence the existence of a reduced basis, and that the decay of
the covariance eigen-values in the LF and HF models are
similar.

At the core of our contribution is the error analysis of
approximations using the BF reduced basis. The analysis
leverages bounds for PC sampling methods and a related BF
approach in which a reduced basis and corresponding inter-
polation rule are identified from LF data [29,31]. The derived
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error estimates apply to the BF approaches of [15,23,52] and
provide practitioners with a means to assess the quality of
a LF model in leading to accurate BF estimates. One of the
error estimates can be generated using a small number of HF
samples and empirically leads to sharp estimates of the true
BF error.

In Sects. 2.1 and 2.1.2, we introduce the key components
that make up SMR. Next, in Sect. 2.2, we derive a theoretical
error bound that provides insight into the features that influ-
ence the error, and, in Sect. 2.2.1, practical enhancement for
user implementation. Sections 3.1, 3.2, and 3.3 demonstrate
the effectiveness of the SMR method and utility of the error
bound in three numerical examples, namely a lid-driven cav-
ity flow, heated flow past a cylinder and flow past a NACA
4412 airfoil. Finally, Sect. 4 gives a brief summary of this
study’s conclusions.

2 Method detail

We assume vector valued Qols u that are defined over a spa-
tial domain of the problem and exhibit a low-dimensional
subspace on which the solution to (4) lies. While the
Qols may represent an entire domain, such as an airfoil
immersed in a velocity field, we are typically interested in
more refined Qol selection, for instance the coefficient of
pressure along the airfoil surface. We denote the LF and
the corresponding HF Qols as ul:={uf, ... uk} € R"
and ufl:=(ull, ... ufl}y € RM, respectively, and use this
convention to indicate the associated fidelity of variables
throughout this manuscript. Although these vectors may be
of different lengths, they are functions of the same stochastic
inputs =.

We assemble N LF and HF realizations of the Qols—
corresponding to samples of inputs & according to f(§)—
into matrices L € R™*N and H € RM*N  which we refer
to as LF and HF data, respectively, such that

L:=[utub ... uf], H=[ul uf .. ull].

It is noted that H and L have the same number of columns
but may differ in their number of rows as LF and HF models
frequently have different spatial resolution.

The method detail is comprised of two main parts. We first
describe the SMR approach on which this study is based. Sec-
ond, we derive the error bound for this method. We provide
a nomenclature of Sect. 2 notation in Appendix 1.

2.1 Stochastic model reduction (SMR)
Following [15,23,52], we seek to establish alow-dimensional

subspace on which the solution (4) of the Qol lives. If we con-
sider the full P term polynomial basis, {1 (E.')}f:l from the

Fig. 1 The full basis {y; (5)}§):1 consists of P terms. We seek a
reduced basis {n;(E)}/_, with r <« P terms that describes a low-
dimensional manifold of the complete solution space. Performing a
regression in this basis requires a relatively smaller set of HF samples

L H n

H

Fig. 2 The three steps of SMR. First, a PC expansion is constructed
from LF data L. Second, the LF PC expansion u’(Z) is equated to
a KL expansion of the LF Qol to arrive at reduced basis {n; (£)}/_,.
Finally, regression is performed with the reduced basis and a limited
number of HF samples H/, to arrive at our BF estimate H

PC expansion in (2), as representing the entire solution space,
then our objective is to determine a reduced basis {n; (£)};_,
comprised of r « P terms as illustrated in Fig. 1. This
reduced basis can be identified via HF samples, but the evalu-
ation of numerous HF simulations is prohibitively expensive.
Instead, we use LF samples to identify the reduced basis and
derive error estimates that provide insight into conditions a
pair of LF and HF models must satisfy to lead to accurate
approximation in the identified reduced basis.

The process to achieve a BF estimate has three key steps;
see Fig. 2. First, we perform a PC expansion of the LF Qol.
Second, a reduced basis is obtained with a KL expansion
of the LF Qol, that is equated to the LF PC representation.
Finally, the reduced basis is utilized with a limited num-
ber of HF samples and the BF coefficients are found via
least squares regression. We may employ the BF coefficients
and basis to construct an estimate of many Qol samples, or
retrieve useful statistics directly from the coefficients. We
next provide the details of the aforementioned steps of the
BF framework.

2.1.1 PC expansion of LF Qol

We construct a PC expansion of the LF Qol as

P
ut(8)~ ) chyi(a), (6)

j=1
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where /(&) are the polynomial basis functions and cj.‘
are the corresponding estimated LF coefficients. We solve
for the LF coefficients with compressed sensing via £; -
minimization following Eq. (5).

2.1.2 KL expansion of LF Qol

We perform a KL expansion of the LF Qol to identify the
dominant stochastic subspace associated with this Qol. The
KL expansion is a spectral decomposition of a stochastic
process that represents a Qol in terms of the eigenvalues
and eigenvectors of its covariance function. We express the
(discrete) KL expansion of u’ as

r—1
ut(8) ~Elu1+ )\ rFoinl (&), 7
i=1

where AiL and goiL are eigenvalues and eigenvectors of the
covariance matrix of u”, approximated by Zf:z c? (ch.)T,
and niL(E ) are zero mean orthogonal random variable with
unit variance. Critical to this method is the assumption that
the covariance matrix of the LF Qol has fast decaying eigen-
values, i.e., is low-rank, and that the decay rate is similar to its
HF counterpart. Here, r can be found as the minimum inte-
ger such that er;ll AL/ >0 AF is sufficiently close to one.
Equating the KL expansion of (7) and the PC expansions of

(6) yields

P r—1
> ki (E) ~ Bt + Y /akelnk &),
j=1 i=1

where E[ul] = clL can be calculated readily from the LF
coefficients. We solve for the reduced basis {r;l.l‘(.’..;)}lr;l1
using

P
nF(E) ~ Y wijYri(E), ®)
j=2
(oF.cky . . .
where w;; = J— with (-, -) denoting the Euclidean inner

v
product. To account for the mean value of our Qol we prepend
our reduced basis with 1 so that we arrive at a reduced basis
{17]4(5)};:1 = {1, niL(E)};;ll composed of r <« P basis
functions. In the remainder of this work we omit the super-
script L from the reduced basis function for ease of notation,
proceeding with ;(Z) := 7757(5)~

@ Springer

2.1.3 BF approximation via LF reduced basis lifting

Next, we lift the LF reduced basis {5, (E )};.=1 and approxi-
mate the HF Qol as

u(Z) =3 cfn; (&) +5.(2), ©)
j=1
%Zcfnj(.’:',') =ub (&) (10)
j=1

i.e., we assume the LF low-dimensional subspace is close to
its HF counterpart. Following the analysis of [31,42], such an
assumption holds when r is relatively small and the Gramian
of matrices L and H are approximately equal up to a nor-
malizing constant, i.e., H TH « LT L. The latter condition
is more precisely described by the proximity of the inner
products of u! at two arbitrary samples of Z to that of u’
[42].1In (9), §, (Z) denotes the total error associated with this
assumption, the KL expansion truncation, and finite sample
approximation of ¢B. Notice that in (9) and (10), cf denotes
estimates of the true BF coefficients given by exact projec-
tion or infinite HF samples. We organize the coefficients cf
inC8 :=[cf, ..., cB] e RM*" andfind C® inananalogous
manner to the least squares regression problem (4), i.e.,

min ||CBy, — H,llF, (11)
CB

where H, € RM*" with H,(,s) = HC(,js), s =
1,...,n, denotes n columns of H that make up the ran-
domly selected HF samples used for the BF estimate, and
the reduced basis measurement matrix n, € R"*" is such
that 9,,(j,i):=n;&;), j =1,...,randi = 1,...,n. For
ease of notation, we continue to denote the full N sample
HF matrix as H. We note that, the regression problem (11)
requires n ~ rlog(r) HF samples, as long as the samples
are generated following the importance sampling distribution
specified in [29]. As such, the sample size n is considerably
smaller than what is needed in (4) whenr < P. At this stage,
useful statistics such as the expected value and variance of
the Qol can be easily retrieved from the coefficients.

Finally, we estimate the complete HF data H through eval-
uating the BF basis at N realizations and multiplying by the
BF coefficients as

H=C%yy. (12)

where H € RM*N denotes an estimate of H constructed
from n HF samples and 5y € R is the BF basis evalu-
ated for N samples. The main steps of this SMR method are
presented in Algorithm 1.
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Algorithm 1 Stochastic model reduction (SMR).

1: Construct the PC expansion (6) from N LF samples.

2: Determine r, the size of reduced basis, from the eigenvalue decay
of the covariance of LF Qol given by its PC approximation.

3: Solve (8) for the reduced basis {r]j@ (E.')}’/=l determined as described
in Section 2.1.2.

4: S(;}ve (11), using n ~ r log(r) HF samples, for the BF coefficients
Cc”.

5: Estimate BF statistics readily from the BF coefficients, or follow
(12) to construct a BF estimate of HF data H.

2.2 Error estimates

Having computed the BF solution u 2 (&), following Algo-
rithm 1, our goal is to derive estimates of the errors (u! —u?)
in a norm that we shall specify. In doing so, we provide
an estimate of point-wise (in space) errors (uf — u?),
i=1,...,M, where ul and u? are the ith entries of u’’
and u®, respectively. Our approach builds upon two previ-
ous theorems, one related to the interpolation-based, reduced
basis approach of [31,42], also employed in [16,19,20,54],
and the other related to the PC sampling error developed in
[29].

In the BF method of [31,42], we aim to learn an interpo-
lation rule from L that we can apply to H. To determine the
interpolation rule we construct a rank r <« N matrix inter-
polative decomposition (MID) [7,28,40] via column pivoted
QR factorization as

LP ~ Q[R1 Ri2],
= QORI R{'Ripl, (13)

where 1 is the 7 x r identity matrix, P € RV*" is a permu-
tation matrix, @ € R™*" has r orthonormal columns, R €
R"” is an upper triangular matrix, and Ry € R™*N="),
Following (13), L, := QR is equal to the left r columns
of L P and is referred to as the column skeleton of L. The
column indices of L,, iz, s = 1, ..., r, correspond to ran-
dom variable input samples {§; }{_, and LF Qol samples
{(ul (& i.)}Ys—1- To finalize the low-rank representation, we set

L _ . . .
Cc = [ I R; 11 R, ] PT to be the interpolation coefficients
and construct an estimate of the LF data as

L:=L.C", (14)

which first selects r columns of L, and second, interpolates
these columns with the coefficients C “to approximate L ~
L as a linear combination of r basis vectors.

The BF approximation is produced from sampling the HF
model for the input samples {§; }{_, identified by the LF
reduced basis, creating the HF column skeleton H .. We note
that in the SMR in Sect. 2.1, H, is comprised of n random
samples, while here with MID BF the r samples are identified

via the LF data. A BF approximation, H, is determined as
H:=H,C", (15)

where H, is a set of r columns of H, and C‘L are the coeffi-
cients found from the LF data in equation (14). In this manner
we have arrived at the MID BF estimate, H, with a total of
N LF samples and r HF samples. Note while MID uses r
HF samples, SMD requires n > r HF samples. Next, we
introduce Theorem 1 from [31].

Theorem 1 (Theorem 1 of [31]) For any t > 0, let
e(r)=||HTH —<L" L. (16)

Let L and H be rank r approximations given by (14) and
(15), respectively, and let oy denote the kth largest singular
value of L. Then,

|H—H|> < p;

where p is defined by
=L
‘= min 14+ |C to?  +e(r
P T,kfmnk(m( 1€ M2)y/Toi,, + (D)
+ L = Li2y/t + e(x)o > (17)

When k = rank(L), we set or4+1 = 0.

Remark 1 We note that this theorem is better suited for the
MID [31] than for the SMR BF algorithm of this work. How-
ever, this bound is relevant in this case as well. Of practical
relevance, this bound is identified using predominantly LF
samples, with a limited number of HF samples to estimate
(16).

The second theorem that we build upon concerns the num-
ber of samples needed to accurately recover coefficients C 2
from (11). From [29,30], we recall the coherence parameter
w of that provides a bound on the realized spectral radius of
1 as

wi=sup ) n; )1 (18)

Ee =1
We note that under coherence optimal conditions [29] u = r,
and such conditions can be guaranteed by importance sam-
pling.

We now present Theorem 2 that uses this coherence
parameter to bound the number of samples, n, necessary to
recover coefficients CB. In Theorem 2, we revisit the trunca-
tion error of equation (10), denoted for a given spatial point
as é, i (5).
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Theorem 2 (Theorem 2.1 of [29]) Let

uf(8) =" CPa, jm;(&),

j=1

where CB is the least squares solution to (11). It follows that
for &, which is independent of i, and is a sampling event that
occurs with probability

PE) > 1 —2rexp(—0.1npu™"), (19)
that
vii=E (||uf1(5) — Mﬁ(g)”%Z(Q,f); 5)

< (1 4 %") E(32,(2)). (20)
where 1 is as in (18), and
E(X: &) = /g X (&) f(E)dE = E(X|EP(E)

denotes the expectation restricted to the event (also known as
restricted expectation), and is closely related to conditional
expectation.

Remark 2 We note that this error bound applies pointwise in
space. The error from the BF approximation can be concen-
trated in certain spatial regions, and this often applies to the
PC approximations for these M points as well. Summing the
v; over all points in space allows for some simplifications, as
we shall see in Corollaries 1 and 2. Additionally, the proba-
bility estimate in (19) is a significant underestimate for small
sample sizes.

‘We now show that Theorem 1 can be utilized for the SMR
case for an a priori error consideration, at least in cases where
the MID does not fully recover H. This is assured by a mild
assumption on the relationship between L and H.

Corollary 1 Assume that there does not exist any matrix F €
RM>m with singular values restricted to {0, 1} and a constant
q such that

gFL =H. (21)

Assuming also the conditions of Theorem 2, it follows that,

L NAYEAE
v,—(l—f- n)(Np>, 22)

Iy _
(142 (R
Z”"(”n)(zv")' (23)

i=1
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Here, p is as in Theorem 1, ¢; and ¢ are random variables
which converge a.s. to finite values g, ; and g,, respectively,
R < M isthe rank of H — H, and the rest is as in Theorem 2.

Proof If IE((SE’Z.(E.')) = 0, then v; = 0, and there is nothing
to prove; hence, assume this is not the case. Implicitly define
¢; such that

pz
E@}(E)) = Gy (24)

Given that both L and H are based on N (finite) samples, p in
Theorem 1 is random; hence, ¢; in (24) is a random variable
which is defined unless p = 0. If this occurs at T = 0, then H
must be the zero matrix, which is a degenerate case for which
the bounds hold; therefore, consider the case that T > 0. In
particular, p> = 0 implies

H'™H =<L"TL.

This implies the existence of a matrix F € RM™>" whose
singular values are all in {0, 1} satisfying (21) with ¢ = /.
Hence, assuming that such a pair of F and t does not exist
implies that each ¢; > 0 is well defined. In (17), L and L
are based on N samples, and €(7) is estimated from O(n),
e.g., n + 10, samples. Therefore, the RHS of (24) depends
on N and n. Following the law of large numbers, as N — oo
and n — oo, p?/N and accordingly ¢; in (24) converge to
non-zero limiting values. This, with Theorem 2, is sufficient
to show (22).

To show (23), we note that from Theorem 2, it follows that
for some a whose limiting value is in (0, 1],

M 4,bL M

Y vi=a <1 + —> D E@E(2)). (25)
: n :

i=l1 i=l1

Consider b > 0 such that

J 2 = Rb 2

D _EE(E) = 07, (26)
i=1

where R is the rank of H — H. Note that the scaling R/N
arises from Theorem 1, and the fact that

RI|H — H| > |H - H|.
Under the same conditions as above for (24), noting that

R < M, b is finite and converges to a non-zero limit as
N — oo. Combining (25) and (26),

M _

4 Rab
I (P L
P n N
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Setting { = ab shows (23). o

Observe in the RHS of (23) that the first term is consistent
with (22) and converges to 1 as n — oo. The second term
converges to a constant as p> grows with N. An in depth
analysis of ,02 can be found in [31].

Remark 3 Estimating ¢; and ¢ in Corollary 1 requires know-
ing the true error §,(&) which is not available nor it is
practically realistic to generate. Therefore, the utility of the
results in (22) and (23) is to provide insight into the conver-
gence of the SMR approach with respect to the decay of the
spectrum of the low-fidelity matrix L and the proximity of
the low- and high-fidelity Gramian matrices—measured by
€ (t)—through p.

Remark 4 The choice of r is of practical importance, as
increasing the number of terms in the KL expansion is a
natural way to improve the BF estimate. Theorem 2 and
Corollary 1 show that the number of samples grows as the
coherence ;. When HF samples are drawn according to the
importance sampling scheme of [29], u is of order r which in
turn suggests n can be of order r log(r). Increasing r can only
reduce error to a point, as it is the LF model which determines
the KL expansion that yields the PC approximation. Theo-
rem 1 and Corollary 1 suggest that under a mild assumption
this dependence on the LF model cannot be much worse than
the dependence in the MID case, which is seen to be robust
with regards to differences between the LF and HF models
as shown in [16,20,31,42,54,61].

2.2.1 Practical bounds via moments

We now present Theorem 3, which provides a straightfor-
ward estimate of v;, useful for practical a posteriori error
estimation. In our practical estimates the number of HF sam-
ples used to compute the bound is denoted by 71 > n. We note
that the notation H ; (i, :) refers tothe ithrow of H; € RM XA,

Theorem 3 For & as in Theorem 2, assumed to be satisfied,
it follows that,

vii=E(luf'(2) = uf (D)l yq.: €)

0 ) ~
= | H;G,:) — HiG, )3 27)

D=

> vi=<IH; - Hyll (28)

S

Here, H; € RM*" s the matrix of i HF samples, flﬁ, which
is the BF approximation to H, and 6; and 6 are random
variables that converge almost surely to 1 as n — oQ.

Proof We note that 6; and 6 depend on the N HF random
samples used to estimate the error; that is, 6; and 0 are multi-
plicative factors to correct the sample mean to the true mean.
Recall that, H (i, k) contains uiH(Ek), and that I?(i, k) con-
tains the corresponding uf (&) computed via SMR. When
the sampling event £ occurs, as assumed in Theorem 2, it
follows that, (27) is an unbiased, consistent estimate for v;.
By the strong law of large numbers 6; converges to 1 almost
surely as 7 — oo. The analogous argument shows (28). 0O

In Corollary 2, below, we remove the random variables 6; and
6 from (27) and (28) by bounding them probabilistically.
To proceed, we define two random variables to which the
Berry—Esseen Theorem [2,53] will be applied. Estimating
the moments of these random variables will correspond to
bounds of the error from samples for a particular problem.

M
Vij=IHyG. )= HiG. P Wi=3 Vij. (29
i=1

We note that {V;, j}?: , and {W j}’}: | are independent and
identically distributed for each i. We define the moments of
Vi jand W; as

ay, =E(V; ); aw = E(W;); (30)
By, =EIVij—av,s By =EW;—awl® (1)
wi =ElVij—av,ls  yw=EW;—awl’. (32

Next, we define the appropriately normalized random vari-
ables as

A A

V. ﬁ—l/ZZ Vij—ay,. W= ﬁ—l/ZZ W;—aw

i = ’ - ?
=1 /SV,' =1 ,BW

(33)

to which we apply the Berry—Esseen Theorem, restated in
Theorem 4. The Berry—Esseen approach reduces the iden-
tification of a bound to that of identifying the first three
centralized moments (30)—(32), which can be estimated from
Qol samples.

Theorem 4 [2,53] Let Ff/i (+) be the cumulative distribution

for Vi and ®(-) the cumulative distribution function for the
standard normal random variable. There exists a positive
constant C < 0.4748 such that for all t,

CyV,‘ C)’W
s Fy () — @0 = S —=.
Ba i

|Fy (1) — ®(1)] <

$

3
y,Vn
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Corollary 2 Under the conditions of Theorem 3, it follows
that, for each i, any t, and with a probability

C
i) = (1) — ,
pi(t) = @(1) '3%/,“/’?

the following bound holds;

v < <av[ + i’i%’) . (35)

Similarly, for any t, and with a probability

(34)

Cyw

By i

the following bound holds;

M
; v < (aw + I%V) ) (37)

Proof This proof follows directly from algebra on the Berry—
Esseen bound, (27), and (28), using the definitions of (33).
O

p) = &) —

(36)

It is worthwhile highlighting that the approach of Corol-
lary 2 differs from cross-validation in two key respects. First,
cross-validation uses a subset of samples to compute an
estimate, and another subset to estimate the error. This is
especially useful when an estimate tends to overfit the data.
Here, we oversample when computing our estimates, and
thus mitigate overfitting. Second, the Berry—Esseen approach
can compute a single estimate, and all of the data to compute
the error with a reasonably accurate probablistic bound on
v;. This cannot be easily translated to cross-validation. Each
v; depends on the samples used to construct it, and cross-
validation depends on computing different estimates from
different samples. In this way the v; would differ, and as each
construction would share a number of samples, they would
not be independent. Averaging the various error estimates
with cross-validation, provides an estimate for an unintuitive
quantity.

Algorithm 2 presents the method of evaluating the practi-
cal error bounds in (35) and (37).

Algorithm 2 Practical error bounds of (35) and (37).

1: Choose ¢ and corresponding ®(#) from the standard normal distri-
bution.

2: Use n HF samples to evaluate the variables in (29) and their moments
in (30) - (32).

3: Evaluate the probability and associated error bound in equations (34)
and (35) for pointwise estimates, or equations (36) and (37) for a
sum of all points.
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3 Numerical examples

In this section we demonstrate the effectiveness of the
reduced basis approach and practical error bound described in
Sect. 2 (Corollary 2) on three numerical examples from fluid
mechanics. The examples model a range of Reynolds number
(Re) with uncertainty in initial and boundary conditions, fully
turbulent heat transfer with uncertain boundary conditions,
and fully turbulent flow featuring geometric uncertainty. In
each application, we are interested in estimating an output
Qol subject to stochastic inputs. We compare the perfor-
mance of estimates arrived at with LF, HF, and BF methods,
implementing the BF Algorithm 1. The LF method utilizes
N less expensive samples, while the HF method is made up
of n <« N expensive HF samples. It is assumed that the com-
putational cost of the HF model is much greater than its LF
counterpart. In each example we present the computational
expense as the ratio of LF to HF runtime, measured in core
hours on the same computational resource.

The BF approach utilizes n HF samples and N LF samples.
In this manner, the BF and HF methods use the same number
of HF samples and, provided the LF model cost is negligible,
have approximately equal computational cost. Therefore, a
practitioner can employ the BF approach in order to obtain
acceptable accuracy with fewer HF simulations and corre-
spondingly less computational expense. Identification of the
reduced basis requires the construction of a PC model of the
LF QoI and its KL expansion as described in Sect. 2.1. In the
case where the ratio of the cost of the LF and HF models is rel-
atively large a considerable part of the computational budget
may be spent on identification of the reduced basis, reduc-
ing the cost efficiency of the proposed method. We compare
model estimates of the Qols mean and variance that can be
computed from the expansion coefficients as E[u] = ¢; and
Var[u] = 25;2 c?. ‘We define the reference solution as the
full set of HF data, denoted by ref, and calculate the relative
2-norm error of of our vector Qol estimates as

E —E
Relative Errorgp,; = I [l|l|]]§l]:] f”[2u]||2; (38)
re

| Var[u],.; — Var[u]]2
”Var[u]ref Il )

Relative Erroryyy) = (39)

During the numerical examples, we employ compressive
sensing for solving the £1-minimization problem (5) to deter-
mine LF PC expansion coefficients in Eq. (6) and use least
squares to solve for the BF coefficients of Eq. (9). In each
numerical example, we investigate the utility of the practical
bounds (35) and (37) implemented via Algorithm 2. In doing
so, for all numerical test cases, we set + = 2.0 in Corol-
lary 2 and use the same n HF samples used to build the BF
approximation to compute the bound, i.e., 1 = n.
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(a) Cavity geometry. (b) LF mesh. (€) HF mesh.

Fig.3 Lid-driven cavity geometry of Example I. Qol is the vertical velocity along the line y = 0.5,0 <x <1
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Fig.4 The average relative error for (left) mean and (right) variance of the vertical velocity component through a half of the cavity in Example 1.
Plotted are the HF, LF, and BF estimates for approximation rank r. The average is calculated from 100 repetitions
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Fig.5 Vertical velocity component along the line y = 0.5 in Example I. Shown are estimates of the (left) mean and (right) variance, for rank r = 4
with n = 10 HF samples. The reference solution is given by Ref alongside the HF, LF and BF estimates
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3.1 Example I: lid-driven cavity flow

We consider the benchmark problem of a lid-driven cavity
flow [25], where the Qol is the y velocity component mea-
sured along the line y = 0.5, 0 < x < 1.0; see Fig. 3a. The
problem addresses the two-dimensional, steady, incompress-
ible Navier—Stokes equations with nominal Re = 10? and is
solved for in FEniCS using Taylor-Hood elements [1] with
codes based on [6].

The geometry is a unit square with Dirichlet boundary
conditions on all four walls as depicted in Fig. 3a. The top
wall is moving at a fixed velocity, while the remaining three
are stationary. The stochastic dimension of the problem is
two; the velocity of the top plate and the kinematic viscosity
of the fluid are treated as uniform random variables within
intervals [0.8 1.2] and [0.009 0.011], respectively.

A coarse 4 x 4 grid mesh is used as the LF model and a fine
64 x 64 grid mesh is used as the HF model, depicted in Fig.
3b, c, respectively. Grid points are more closely packed with
proximity to walls to improve the resolution of flow gradients.
The HF model’s computational expense is approximately 155
times greater than its LF counterpart.

3.1.1 Results

We first address the average BF performance over 100 repe-
titions as the number of HF samples and approximation rank
are varied, each computed from independent sets of randomly
chosen n HF samples. Figure 4 depicts the average relative
error of a PC expansion of order p = 4 constructed from
N = 200 LF samples, n HF samples, and a BF estimate that
utilizes n HF samples. The reference solution is calculated
via a PC expansion with N = 200 HF samples. BF estimates
for approximation ranks » = 2, 4, and 7 are reported.

Evident in Fig. 4 is that the LF model provides a poor esti-
mate of both the mean and variance. This is expected given
the aggressive coarseness of the LF solution and its corre-
sponding failure to accurately capture the problem physics.
A reduced basis of rank r = 4 accurately estimates the
Qol mean and variance with n > 10 HF samples available,
achieving an order of magnitude better performance than the
HF model with n = 10. Proceeding with a reduced basis of
rank » = 4, Fig. 5 compares the mean and variance estimates
made with n = 10 HF samples. The BF estimate accurately
captures both the mean and variance of the vertical velocity
component across the cavity. The HF estimate exhibits com-
parable accuracy in estimation of the mean, but is exceeded
by the BF estimation of the variance, a more challenging
statistic to approximate. The full PC expansion has P = 15
terms, reduced to » = 4 in the BF approach.

Figure 6 presents the normalized eigenvalues of the LF and
reference covariance matrices. The swift decay in eigenval-
ues of both LF and reference solutions suggest this problem is
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Fig.6 Normalized eigenvalues of the LF and reference, Ref covariance
matrices of the vertical velocity component along y = 0.5 in Example
1

Table 1 Practical error probability (36) and bound efficacy (37) in
Example I. Results are calculated as the average of 30 repetitions

Eff. (37)

Qol r n A N  Prob. (36)

Vertical velocity 4 15 15 200  0.855 1.83

amenable to reduced basis approximation. This agrees with
the reduced basis approximations of Figs. 4 and 5, where
only the first four basis functions are needed to accurately
capture the Qol.

We now consider the performance of the error bound. In
the following, we set r = 4 and n = 15. A useful metric in
our assessment of bound performance is the error bound effi-
cacy, calculated as the (average) ratio of the error bound and
the true error, for different approximation ranks » and num-
ber of HF samples n. An efficacy of 1 indicates that the error
bound is exact, and an efficacy of greater than 1 implies the
bound does not underestimate the error,which could happen
as each of the bounds are only guaranteed to hold with some
probability. Note that, while the bounded error is squared,
we take the square root in our efficacy calculation. In Table
1, we report the efficacy of the error bound (37) and asso-
ciated probability (36), calculated with + = 2.0. Note that
the probability computed in (34) matches (36). The error is
tightly bounded with high probability.

In Fig. 7a we present the pointwise reference error, calcu-
lated as the average of the entire HF ensemble for each point,
and error bound (35). Bound (35) is very tight and closely
matches the shape of the reference error over the entire inter-
val of x. Figure 7b depicts the efficacy for a given (n, r) pair
as the average of 30 repetitions. For a very small number of
HF samples the error bound is not effective, but as the num-
ber of samples increases above n = 10 we see the desired
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behavior of efficacy greater than 1. In addition, the practi-
cal error bound does not exceed more than three times the
BF error, implying evaluation of the bound in (37) can be a
useful tool for determining whether a given LF data-set is
appropriate. Together, Fig. 7a, b show that the error bound
(35) and (37) are useful to assess pointwise and ensemble
accuracy, respectively.

3.2 Example lI: flow past a heated cylinder

Gas turbines function at high combustor outlet temperatures
and endeavor to mitigate thermal stress and fatigue through
cooling flow passages. Cooling pin arrays are introduced to
the turbine airfoil that enhance heat transfer though both addi-
tional surface area and increased turbulence [39]. Extracted
coolant flow to cool the turbine can comprise as much as
10% of the engine’s core flow making it an important factor
in turbine performance [32].

We approximate the cooling of a turbine blade with a two-
dimensional incompressible flow past an array of pins, taking
inspiration from [9]. The domain is a rectangle with corners
(—0.2, —0.1) and (1.0, 0.1) and a circle centered at (0, 0)
with radius 0.05 as seen in Fig. 8. The dimensions are in
consistent units. The vertical direction is periodic to simulate
a pin separation of L/D = 1, D being the diameter of the
cylinder and L the distance between neighboring pins. Inflow
and outflow are applied from left to right and the cylinder is
no-slip. We assume the flow to be fully turbulent with Rep =
100, the Reynolds number measured with the characteristic
length as the cylinder diameter.

In practice, the fluid flow arriving to the cylinders is a
product of numerous upstream component interactions such
as the turbulators and slots [9]. The inlet velocity profile is
modeled as the sum of two waveforms with different fre-
quencies and random amplitudes as

Vlintet(y, Y1, Y2) = 156.8(1 + h1Y; cos(20m y) (40)
4+ hy Y5 cos(100m y)), 41

where y € [—0.1, 0.1]. The inlet temperature is modeled as
a Gaussian pulse of random mean and constant amplitude
given by

—0.05Y3)2
T lintet (¥, Y3) = 300 + 100 exp <—u> , (42)

2 x 0.012

where the mean is constrained within +0.05. The heat flux
over the cylinder wall is defined by an exponential as

T h3Ys cos 0
O, ¥a) = =50 exp (— <0.1 n ﬂ)) .(43)
8n cyl 2

where 6 € [0, 2] is the angle from the leading edge. Four
stochastic inputs, Y1, Y2, Y3, and Y4, all with uniform distribu-
tion U[—1, 1], alongside three constants, i1 = 0.7, hy = 0.2
and h3 = 0.9, determine the boundary conditions.

The problem is solved using the Reynolds averaged
Navier—Stokes (RANS) equations in PHASTA, a parallel
hierarchic adaptive stabilized transient analysis computa-
tional fluid dynamics (CFD) code [56]. The turbulence
closure model is Spalart—Allmaras [51,55]. The fluid is mod-
eled as air with viscosity v = 1.568 x 1073 m? s71],
density p = 1.177 [kg m_3], scalar diffusivity 23.07 x
107% [m? s~!], thermal conductivity k = 26.62 x 1073
[Wm! K_l], and turbulent Prandtl number 0.7.

A coarse 40,000 element mesh and a fine 110,000 element
mesh are employed as the LF and HF models, respectively.
The HF model resolves the boundary layer on the airfoil sur-
face and the shear layer downstream of the trailing edge while
the LF model does not. The computational cost of the HF
model is approximately 50 times greater than the LF model.
Two Qols are considered, the temperature of the cylinder
surface, Tcylinder and the temperature along a vertical line
through the geometry at x = 0.2, T,—¢2; see Fig. 8.

3.2.1 Results

We consider BF estimates that use N = 200 LF and n HF
samples. The average relative error for the mean and variance
of the temperature on the cylinder surface, with a PC expan-
sion of order p = 6, is plotted in Fig. 9. For n = 10 the LF
model outperforms both HF and BF methods in estimating
the mean and variance. As n increases the relative errors in
the HF and BF methods decrease. Further, it appears that a
truncated basis of r = 8 is sufficient to capture the solution
behavior. This is a notable reduction from the full PC expan-
sion of P = 210 terms. An appropriate choice of r can be
made follow the guidance in Sect. 2.1.2. Initial choice of r
may over- or under-estimate the optimal value of r for the
BF model. In practice, we suggest incrementally increasing r
and evaluating the error estimate until the estimate saturates.
The BF relative error in variance does not descend below
1%. This result is acceptable given the reference solution
error in variance estimation is approximately 1%, and can be
considered as the limit of the BF performance.

Figure 10 depicts the average relative error for the mean
and variance of the temperature along a vertical line at x =
0.2, with a PC expansion of order p = 6. Given that the
LF errors for both the mean and variance are small, < 0.1,
the utility of the BF method is reduced. In essence, if a LF
estimate provides satisfactory results then there is little to be
gained through HF samples and a BF approximation. In this
scenario, the proposed error bound provides a useful metric
of BF utility. The error of the LF estimate can be computed
using the same procedure and HF samples as in the case of the
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(a) Pointwise true error and error bound (35).

Fig.7 Error bound performance for the lid-driven cavity of Example 1.
We present the average calculated from 30 repetitions, where each rep-
etition includes the estimate of N = 200 samples. In a we use n = 15
HF samples and rank » = 4. In b the practical bound efficacy is cal-

Fig.8 Cylinder geometry and
coarse computational mesh of
Example II. The blue solid
circle indicates Teylinder, the
temperature of the cylinder
surface and the red dashed line st
indicates Tyx—q .2, the temperature o2 0
along a vertical line at x = 0.2
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(b) Practical error bound efficacy.

culated as the (average) ratio of the error estimated from the practical
error bound (37) and the true error for different approximation ranks r
and number of HF samples n. We use the same n HF samples used to
build the BF approximation to compute the bound
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n

Fig.9 The average relative error for the (left) mean, and (right) variance of the temperature on the cylinder surface in Example II. Plotted are the
HEF, LF, and BF estimates for approximation rank r. The average is calculated from 100 repetitions

BF error. If these two errors are similar, then there is no gain
to be made using the proposed BF model. As the number of
HF samples increases, we observe crossover points where the
HF estimate is better than the BF estimate, which is typical
of multi-fidelity approximations [10]. There is also a notable
improvement in the BF estimates when the approximation
rank is raised from r = 3 to 8.
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For both Qols, the variance is challenging to estimate.
The temperature field of four different realizations is plotted
in Fig. 11. It is apparent that, depending on the stochastic
inputs, the temperature field about the cylinder has significant
variance.

Setting n = 50 HF samples and an approximation rank
of r = 8, we compare the mean and variance estimates in
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Fig. 10 The average relative error for the (left) mean, and (right) variance of the temperature along a vertical line at x = 0.2 in Example II. Plotted
are the HF, LF, and BF estimates for approximation rank r. The average is calculated from 100 repetitions

Fig. 11 Four realizations of the
temperature field about the
cylinder in Example II
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Fig. 12 Cylinder surface temperature in Example II. Shown are (left) mean and (right) variance for rank r = 8 with n = 50 HF samples. The
reference solution is given by Ref alongside the HF, LF and BF estimates

Figs. 12 and 13.Itis evident in Fig. 12 that the BF estimate of =~ 13, the LF and HF estimates of the variance of temperature
the mean and variance of the cylinder surface temperature are ~ along the vertical line at x = 0.2 are comparable to the BF.
superior to the LF and HF, with n samples. In contrast, in Fig.  One aspect in which the LF model is inferior to the HF is
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Fig. 13 Temperature along a vertical line at x = 0.2 in Example II. Shown are (left) mean and (right) variance for rank r = 8 with n = 50 HF
samples. The reference solution is given by Ref alongside the HF, LF and BF estimates
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Fig. 14 Flow past cylinder, normalized eigenvalues of the LF and refer-
ence, Ref covariance matrices for both Teylinger and Ty—o.> for Example
11

the lack of resolution around the cylinder surface. This may
explain the greater utility of the BF approach in estimating
cylinder surface temperature as opposed to the vertical line
atx = 0.2.

The normalized eigenvalues of the LF and reference
covariance matrices for both Qols are shown in Fig. 14.
Both Qols demonstrate rapid decay in their eigenvalues.
The eigenvalues of the LF and reference solution align well
for Teylinder While in Ty—o 2 a disparity develops for indices
greater than 3. This observation agrees with the results of
Figs. 9 and 10 in that the reduced basis estimate arising from
Teylinder> in which the LF eigenvalue decay corresponds well
to its reference solution, provides an accurate estimate of the
mean and variance.
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Table 2 Practical error probability (36) and bound efficacy (37) in
Example II. Results are calculated as the average of 30 repetitions

Qol rooon n N Prob. (36)  Eff. (37)
Cylinder surface 8 50 50 200 0910 1.48
Vertical line 8 50 50 200 0910 1.65
Table 3 Uncertain input variables for Example III

Parameter Symbol Distribution
Maximum camber U[0.032, 0.048]
Location of max camber P U[0.32,0.48]
Thickness t U[0.096, 0.144]
Angle of attack o Ul[0°, 6°]

We next look at the performance of the error bound. We
setr = 8 n = 50, and t+ = 2.0. In Table 2, we present
the error bound efficacy (37) and associated probability (36).
We observe that error is tightly bounded with high probabil-
ity. The bound probabilities for both Qol are the same, and
we also note that these matched the pointwise probability
computed in (34).

In Figs. 15a and 16a, we present the pointwise reference
average and error bound (35) for the cylinder surface and
vertical line, respectively. For both Qol the practical bound
follows the shape of the reference error and is within a factor
of two.

Figures 15b and 16b depict the efficacy for a given (n, r)
pair as the average of 30 repetitions for cylinder surface and
vertical line. Where few HF samples are available we see
the bound does not perform well, but as the number of HF
samples increases the efficacy is greater than 1, as necessary.
We also observe that the efficacy is tighter for smaller values
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Fig. 15 Practical bound performance for the cylinder surface tem-
perature of Example II. We present the average calculated from 30
repetitions, where each repetition includes the estimate of N = 100
samples. In a we use n = 20 HF samples and rank » = 8. In b the effi-
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(a) Pointwise true error and error bound (35).

Fig. 16 Error bound performance for the vertical line temperature of
Example II. We present the average calculated from 30 repetitions,
where each repetition includes the estimate of N = 100 samples. In a
we use n = 50 HF samples and rank » = 8. In b the practical bound

of r. The efficacy of the practical error bound for both Qol
does not exceed more than three, demonstrating the utility
of (37) to determine the eligibility of a LF data-set for BF
estimation.

3.3 Example lll: flow around NACA airfoil

The final example we consider is a NACA 4412 airfoil solved
with a Reynolds number of 1.52 x 10° at a low angle-
of-attack (AoA) as presented in [54]. An airfoil of chord
length 1.0m is modeled in a computational domain of length
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(b) Practical error bound efficacy.

cacy is calculated as the (average) ratio of the error estimated from the
practical error bound (37) and the true error for different approximation
ranks r and number of HF samples n. We use the same n HF samples
used to build the BF approximation to compute the bound

Approximation Rank r
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(b) Practical error bound efficacy.

efficacy is calculated as the (average) ratio of the error estimated from
the practical error bound (37) and the true error for different approxi-
mation ranks r and number of HF samples n. We use the same n HF
samples used to build the BF approximation to compute the bound

999 m in the stream-wise (x-direction), vertical height 998 m
(y-direction), and span-wise width 2 m (z-direction). The
domain and accompanying boundary conditions are speci-
fied in Fig. 17 following the work of [12]. The red line on the
boundary indicates inflow, while the blue indicates outflow.
The £y and £z boundaries are set as inviscid and impenetra-
ble to model a two-dimensional problem. The airfoil surface
is subject to a no-slip condition. We examine variations in
the model geometry, varying the maximum camber m, the
position of maximum camber p and the maximum thickness
t from their nominal 4412 airfoil values. We also vary the
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Fig. 17 Schematic of the computational domain, initial NACA 0012
airfoil and accompanying boundary conditions used in Example III.
The geometry is deformed to map into a NACA series airfoil, with

Fig. 18 Computational mesh a
LF model and b HF model for
the NACA 0012 airfoil used in
Example III. The geometry is
deformed to map into a NACA
series airfoil. Figure is adapted
from [54]

(a) LF mesh.
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4412 defining the nominal geometry. The inflow velocity is given by
u and vr is the kinematic turbulence viscosity. Figure is adapted from
[54]

(b) HF mesh.
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Fig. 19 The average relative error in (left) the mean, and (right) variance of C), estimation on the airfoil surface for Example III. Plotted are the

HF, LF, and BF estimates for approximation rank r

angle of attack (AoA). All parameters are modeled by uni-
form random variables as summarized in Table 3.

The Qol considered is the coefficient of pressure, C,, on
the surface of the airfoil calculated as

P — Pco

Cp =
1 9
3PV%

(44)

where p is the pressure at specific point on the airfoil surface,
while poo, Poo, and Vo, are the pressure, density and velocity

@ Springer

of the free stream flow. To mitigate bias in the Qol from
a concentration of points at the leading and trailing edges,
we interpolate Cj, onto 200 evenly spaced points around the
airfoil surface prior to applying the BF method.

Asin Example II, the simulation is solved using the RANS
equations in PHASTA [56], with the Spalart—Allmaras (SA)
turbulence closure model [51,55]. The LF and HF meshes are
depicted in Fig. 18a, b, respectively. The LF mesh consists
of 9000 elements while the HF mesh is refined quadratically
from near the airfoil to the simulation domain boundaries and



Computational Mechanics (2022) 69:405-424

421

1

0.5.

-1 -0.5 0 0.5 1
Location on Airfoil

0.4
- 4+ Ref
HF
4 - - LF
BF
0.3

C, Variance
=]
[N}

0.1},

0 0.5 1
Location on Airfoil

Fig.20 Pressure coefficient on the NACA airfoil surface in Example III. Shown are the (left) mean and (right) variance for rank r = 8 withn = 20
HF samples. The reference solution is given by Ref alongside the HF, LF and BF estimates

has 241,000 elements. In contrast to the LF model, the HF
model adequately resolves the shear layer downstream of the
airfoil and wall effects. The computational expense of the LF
model, is however, 498 times smaller than its HF counterpart.
For further detail on the airfoil model implementation please
refer to [54].

3.3.1 Results

We consider N = 500 LF and HF samples. The average
relative error in the mean and variance with a PC expan-
sion of order p = 5 is plotted in Fig. 19. At r = 3 the BF
approach provides a limited advantage over the HF and LF
estimates. Accuracy of the BF solution saturates past r = 8,
implying that additional basis functions are not contributing
novel information to the BF approximation. The BF estimate,
however, performs better than the HF estimate for low 7, par-
ticularly in the estimation of variance. The full PC expansion
requires P = 462 terms.

Using an approximation rank of r = 8 withasetofn = 20
HF samples, we compare estimates of the mean and variance
of the pressure coefficient as a function of normalized airfoil
location in Fig. 20. Following [54], the “location on airfoil” is
calculated as the stream-wise distance from the airfoil’s trail-
ing edge. Clockwise movement about the airfoil is defined as
the positive direction, so positive “location on airfoil” values
correspond to the pressure surface and negative values to the
suction surface.

In Fig. 20 the improvement from LF to BF is obvious,
but the distinction between the HF and BF estimates is not
possible to discern. Consulting Fig. 19, we find that although
the BF estimate of the mean is more accurate than the HF,
both have small relative errors less than 102 for n = 20 and
r = 8. The distinction in variance estimates is closer to the

10° ; ; ; .
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=
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\
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3 ~
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Index i

Fig. 21 Airfoil normalized eigenvalues of the LF and reference, Ref
covariance matrices of airfoil surface C, for Example III

Table 4 Practical error probability (36) and bound efficacy (37) in
Example II. Results are calculated as the average of 30 repetitions

Eff. (37)

Qol r n i N Prob. (36)

Cp 8 20 20 500 0.891 1.40

order 10~! but still difficult to discern in Fig. 20, with the
only noticeable deviation occurring in the airfoil location —1
to —0.5.

The eigenvalues of the LF and reference Qol covariance
matrices are plotted in Fig. 21. The eigenvalues of the LF and
reference solutions align well and decay rapidly. The rapid
decay indicates this problem is a suitable candidate for SMR,
as corroborated in Figs. 19 and 20. Further, for indices greater
than seven, there is some disagreement between the reference
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Error

Location on Airfoil

(a) Pointwise true error and error bound (35).

Fig. 22 Error bound performance for the airfoil of Example III. We
present the average calculated from 30 repetitions, where each repeti-
tion includes the estimate of N = 500 samples. In a we use n = 20
HF samples and rank » = 8. In b the practical bound efficacy is cal-

and LF eigenvalues, indicating that the corresponding basis
functions may have a reduced influence on the accuracy of
SMR.

We next look at the performance of the practical error
bound. We set r = 8, n = 20 and ¢+ = 2.0. In Table 4 we
present the efficacy of the practical error bound (37) and asso-
ciated probability (36). Similar to the preceding examples,
we find that error is tightly bounded with high probability. We
also note that the probabilities (36) and (34) are calculated
to be equal.

Figure 22a presents the pointwise reference error and error
bound (35). The bound captures the shape of the pointwise
error very well, remaining tight across all points of the airfoil.
Figure 22b illustrates the efficacy for a given (n, r) pair as
the average of 30 repetitions. Consistent with the lid-driven
cavity and gas turbine efficacy plots, we find there is a corre-
lation between the number of HF samples n and the efficacy
of the error bound. Interestingly, a relationship is also evi-
dent between the rank r and the error bound efficacy, namely
errors at lower ranks may be accurately estimated via few HF
samples. For all (n, ) pairs the efficacy of the practical error
bound for both Qol does not exceed more than two imply-
ing that error bound (37) is a useful tool to calibrate the BF
estimate.

4 Conclusions

In this work, we present a BF stochastic model reduction
(SMR) approach to approximate the solutions to PDEs with
parametric or stochastic inputs. The BF estimate is obtained
through forming a PC expansion of the LF solution of inter-

@ Springer

Approximation Rank r

n

(b) Practical error bound efficacy.

culated as the (average) ratio of the error estimated from the practical
error bound (37) and the true error for different approximation ranks r
and number of HF samples n

est, truncating a KL expansion of the LF PC expansion to
form a reduced basis before regressing a limited number of
expensive HF samples against this reduced basis. Once built,
this regression model can be employed to generate solution
statistics.

We develop two types of novel error bounds for the BF
SMR approximation. The first error estimate identifies a
requirement on a pair of LF and HF models towards a success-
ful BF approximation. We also present a second error bound
from a practical perspective to estimate the SMR error using
a limited number of HF samples. To the best of our knowl-
edge these are the first error bounds that address this SMR
algorithm.

We demonstrate the effectiveness of the SMR approach
along with the efficacy of the practical error estimate in three
numerical examples. In the first example, application of the
BF approach to the lid-driven cavity achieves an order of
magnitude better accuracy while maintaining the same com-
putational expense. In the second example of heated flow
past a cylinder we observe similar improvement in the esti-
mation of the temperature on the cylinder surface, and limited
improvement in temperature along a vertical line at x = 0.2,
demonstrating the choice of Qol to be an important factor
in the BF SMR approach. In the third example modeling
geometric variability of an airfoil, we again observe the suc-
cessful application of the BF approach. In addition, we find in
all three examples that evaluation of the practical error bound
using a limited number of HF samples provides a useful and
accurate estimation of the BF SMR error.

Our future research includes employing optimal sampling
strategies to enable more intelligent selection of HF samples
when generating the BF estimates and the extension of SMR
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to account for more than two levels of model fidelity. Addi-
tionally, LF model design, where a LF model is calibrated to
achieve the best possible BF estimate, is an interesting line
of inquiry. Finally, in the numerical examples of this work
the source of differing model fidelity was mesh resolution.
However, the SMR approach is in principal applicable to sce-
narios in which the HF and LF models are based on different
governing equations. Illustrating this can be the subject of a
future study.
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A Appendix

Vector of random variables

Vector valued Qol

i PC expansion coefficients

Polynomial basis functions

PC expansion truncation error

PC total order

Matrix of PC coefficients

ith realization of random variable vector =
Matrix of Qol u samples

Number of samples in U, L and H
Measurement matrix for PC regression
LF Qol

HF Qol

LF Qol dimension

HF Qol dimension

Matrix of LF data

Matrix of HF data

PC expansion coefficients from LF data
Reduced basis functions

Number of basis functions in SMR reduced basis; number
of HF samples in MID

= I

=L~'G'2Ql"“ﬁ“q ?5\6

S
T

S W N X 3

~ =

cf BF coefficients
4, Total error in BF estimate
u® SMR BF Qol estimate
C® SMR Matrix of BF coefficients
H, SMR Limited number of n HF samples
1, Reduced basis measurement matrix for n samples
n Number of HF samples in SMR estimate
ny Reduced basis measurement matrix for N samples
}{ SMR BF estimate of H
C "~ Matrix of MID interpolation coefficients
=L .
L~ MID BF estimate of L
H, MID limited number of » HF samples
L .
H "~ MID BF estimate of H
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