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We study the behavior at tipping points close to non-smooth fold bifurcations in non-autonomous
systems. The focus is the Stommel-Box, and related climate models, which are piecewise-smooth
continuous dynamical systems, modeling thermohaline circulation. We obtain explicit asymptotic
expressions for the behavior at tipping points in the settings of both slowly varying freshwater forcing
and rapidly oscillatory fluctuations. The results, based on combined multiple scale and local analyses,
provide conditions for the sudden transitions between temperature-dominated and salinity-dominated
states. In the context of high frequency oscillations, a multiple scale averaging approach can be used
instead of the usual geometric approach normally required for piecewise-smooth continuous systems.
The explicit parametric dependencies of advances and lags in the tipping show a competition between
dynamic features of the model. We make a contrast between the behavior of tipping points close to
both smooth Saddle-Node Bifurcations and the non-smooth systems studied on this paper. In particular
we show that the non-smooth case has earlier and more abrupt transitions. This result has clear
implications for the design of early warning signals for tipping in the case of the non-smooth dynamical
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systems which often arise in climate models.
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1. Introduction
1.1. Overview

Various models of phenomena in climate have been used both
to model and to predict abrupt changes in systems with a wide
range of time-scales. As a result, there are many climate mod-
els that include non-smooth features approximating transitions
over short times relative to climate time-scales. These include
state-dependent switches, non-smooth functional descriptions of
dynamics, and discrete states delineated by boundaries. Examples
of these are given by: the PP0O4 model of sudden changes in
carbon dioxide emission rates during glacial cycles [1,2], rain-
fall [3], and the motion of the ice fronts in a glacial cycle [4],
as well as the Stommel box model for thermohaline circulation
that we study in this paper. In all such systems we see both the
dynamics commonly found in smooth systems (such as possibly
co-existing periodic and chaotic states and transitions between
them including tipping points), as well as dynamical behaviors
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specific to non-smooth systems, such as grazing, sliding, and
non-smooth bifurcations between different co-existing states [5].

Transitions in the context of bi-stability have been studied in
many contexts. A common setting is where stability is lost via
bifurcations, and the system experiences hysteresis as parame-
ters vary through these critical points, depending upon the form
of the parameter variation. For these non-autonomous systems
with varying parameters the transitions between states may be
qualitatively different, depending on the nonlinearities, the types
of underlying static bifurcations, and the vector fields near the
stable equilibria.

Throughout this paper we use the term tipping to refer to a
sudden transition from one qualitatively different state to another
in the non-autonomous setting. We note the contrast with a
bifurcation, a qualitative change in the geometry of a system
in which its flow or phase portrait is altered in the dynamical
context. Tipping is used in a wider variety of settings, generi-
cally a qualitative change in behavior along a particular time-
varying trajectory. The two are sometimes related, as tipping
may be related to a bifurcation point or some other separatrix
of a particular object in the flow, such as a fold point of a slow
manifold or stable manifold of a saddle. This relationship is in-
deed present in the systems we study here: the non-autonomous
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systems with time-varying parameters have autonomous coun-
terparts with static parameters treated as bifurcation parameters.
Given this connection, we use the term dynamic bifurcation to
refer to the specific setting where a parameter value varies in
time near or through the critical value of a static bifurcation
parameter from an underlying autonomous system.

In this paper we focus on the dynamic transitions near Non-
Smooth Fold (NSF) bifurcations, obtaining explicit results that can
be contrasted with analogous transitions near smooth Saddle-
Node Bifurcations (SNBs) [6]. We obtain explicit asymptotic ex-
pressions for the tipping points in the Stommel Box climate
model. In particular we find conditions for sudden transitions
between temperature-dominated and salinity-dominated states.
We look at time variation which is a combination of a slow
change in the mean parameter value combined with a rapidly
oscillating (seasonal) perturbation, and determine when these
lead to rapid transitions between qualitatively different states.
From the comparisons with the tipping points in smooth sys-
tems [6], there are clear implications for the development of early
warning signals, given the close connection with the dynamics
of the underlying reduced system [7,8]. Specifically we show
that tipping occurs earlier, and more abruptly in the non-smooth
model. This is because in the non-smooth case the eigenvalues
associated with the linearization about the fixed points do not
drop to zero at the tipping point and hence, unlike the smooth
case, they do not generate a warning signal that tipping is likely
to occur.

1.2. The Stommel Box model

A well-known class of models, where salinity-dominated and
temperature-dominated states are bi-stable, is that of thermoha-
line circulation (THC). Here abrupt qualitative changes are pos-
sible, see Alley [9], Marotzke [10], or Rahmstorf [11] and [12].
Recently Rahmstorf was able to find evidence of weakening oc-
curring around these abrupt changes in a system of ocean pat-
terns known as the Atlantic meridional overturning circulation
(AMOC) [13]. This evidence of ocean dynamics responding to
changes in surface temperature underscores the need to under-
stand the transitions in these types of systems. We note that such
transitions can be either smooth or non-smooth (as described
in [5]). In this paper we focus on the commonly used Stommel
two box model [14] as an exemplar for studying the transitions
in the THC (or more generally, the dynamical impact of NSF
bifurcations between equilibrium states) in a realistic climate
model. We begin with the non-dimensionalized Stommel model
as given in [15],
T=m—TA+I|T -8l
S=m—8ns +IT — Sl
The variables 7 and S are the dimensionless equatorial-to-pole
differences for temperature and salinity, respectively. The param-
eters 71, 12, and n3 are also dimensionless quantities, with 74
representing thermal variation, 7, as the freshwater flux, and s

as the ratio of relaxation times of temperature and salinity. The
dimensionless AMOC strength is captured by the difference

vV=T-S,

(1.1)

which plays an important role throughout the dynamical analysis.
With the dependence on the absolute value |7 — S|, (1.1) is
a non-smooth dynamical system. It has a discontinuity surface
at

X ={T.8):T—-8S=Vv=0}. (1.2)

The equations for 7 and S then describe different dynamics in
>+ and X~ for

2T ={T7,8):T-8>0} X ={T,8):T—8<0}.(1.3)
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The model is non-smooth through the action of the nonlinearity
|T — S| and takes the form of a piecewise-smooth continuous
system with a degree of discontinuity of 2 [5,16].

A standard analysis of the static model, where typically n; and
n3 are fixed, and 7, is treated as a bifurcation parameter, yields
stability regions for the temperature and stability dominated
states. Taking values of 77 and »s as is usual in applications [15],
there are either 3 or 1 fixed points. In the case of 3 fixed points,
we identify two different critical points, denoted 7,5 and 7,. with
Nasf > Nac. FOT Mo > M2 > 13, there are two fixed points in X
which are a saddle (S) and a stable node (N), which loses stability
at the (smooth) SNB #,s. Further for 1, > 0y in X~ there is a
fixed point which is a stable focus (F). If n; < 1, there is a single
stable node N in X', These are illustrated in Fig. 1 for V vs. ns.
Note that N corresponds to the temperature-dominated state, and
F corresponds to the salinity-dominated state.

The critical point 7,., indicated by * in Fig. 1 corresponds to
a border collision bifurcation (BCB) arising when F and S intersect
with X. This critical point can be obtained from (1.1) as

N2c = MN3 - (1.4)

This bifurcation is a Non-Smooth Fold (NSF), in which F and S
co-exist if n; > 1y and neither exist if 7, < 1. Note that the
coalescence of a saddle S with a focus F can only occur because
this is a non-smooth system. Such bifurcations do not arise in
smooth systems where a SNB necessarily indicates collision of
a stable node and a saddle. The mathematical structure near
(n2¢, 0) is substantially different from that near the smooth SNB
(nsr, Vo), indicated by o in Fig. 1. In particular at a NSF the real
parts of the eigenvalues of the linearizations of either of the fixed
points do not drop to zero.

In general, parameters are not static in climate models of
this type, but rather can oscillate (seasonally for example) with
a mean that can also drift over time. Variation of a parameter
(typically n, in (1.1)) can lead to tipping, which in the context
of this study corresponds to a solution starting at the focus F
(or N) that does not stay close to F (or N) but rapidly evolves
to a qualitatively different state, typically to N (or F) or to a large
amplitude periodic orbit. Tipping often occurs when the variation
drives a solution starting near F or N to encounter the unstable
manifold of saddle S, or via a dynamic bifurcation through the
underlying static fold point. Given the different characteristics of
the fold points 7,. and 7, we expect clear differences between
the tipping near these different critical values. We note that
tipping close to a NSF is different in many respects from tipping
close to a SNB, because, as noted above, the eigenvalues of the
linearization of the system about the fixed point do not drop to
zero in the non-smooth case.

To capture the impact of this parameter variation, we consider
the case where both 7, and 7n; oscillate rapidly, with the mean
behavior of 1, varying slowly in time. Specifically, we take

n1 — 01+ Bsin(2t) and 1, — nz(t)+fn’sin(9t)

in (1.1), where 7, = —e with ¢ <« 1 and £ > 1. We rewrite
(1.1) in terms of the AMOC strength V, which plays the role of
the switch parameter (measuring the closeness of the solution to
X),and set A= B — B to get

V= —nt)+n3(T — V)= T — V|V| + Asin 2t,

T =n — T(1+|V|) + Bsin 2t (1.5)
Ny = —€, €K1, 2>1.
As is typical for applied settings [ 15], we follow certain parameter
assumptions; first, that n3 < 1, which results in a SNB in (1.5)

for the branch v > 0. It is frequently assumed that the salinity’s
relaxation time is much longer than that of temperature, giving
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Fig. 1. Tipping close to a NSF via dynamic bifurcation in (1.5) with both slowly varying and rapid oscillatory behavior of the parameter 7, Blue and red curves
give the equilibria for static parameters, solid lines indicate stable equilibria as a node (N) and focus (F), and the dotted line as a saddle (S). o indicates the smooth

SNB at (125, Vasr ), and * indicates the NSF bifurcation at (1, 0). The black solid line corresponds to the solution of (1.5) with 7, =

(A = B =0). Magenta solutions correspond to both 7, =

—e with no oscillatory forcing

—e and A and B non-zero, with £ >> 1, the ratio of A/$2 = 0.05 (transition away from F closer to #,.) and

A/$§2 = 0.125. Here n; = 3, n3 = 0.3, and ¢ = 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.).

n3 < 1. Furthermore, we take n; = O(1) so that n,c = n3n =
O(1) and nyc < . That is, there is a non-trivial bi-stability range
for the two stable equilibria on the branches N (V > 0) and F
(V < 0) as shown in Fig. 1. For convenience of notation, we take
A and B to be non-negative in our analysis below. The analysis for
A < 0 or B < 0 is analogous, and yields the same identification
of the tipping points in the case of high frequency forcing.

Our primary focus in this paper is on the tipping behavior as
n2(t) in (1.5) varies dynamically close to the static NSF bifurcation
point 7. Fig. 1 illustrates this tipping behavior, where there is a
relatively rapid transition between the salinity- and temperature-
dominated states, F and N. From the results shown in Fig. 1,
without oscillatory forcing, the tipping via dynamic bifurcation
is lagged relative to 7. In contrast, the tipping from F to N
is advanced when there is oscillatory forcing, with increasing
values of A/$2 increasing this advance. Below we explore the
separate and combined effects of both slowly varying 7, and a
high frequency oscillatory forcing £2 > 1 that drives tipping near
the NSF point.

The influence of these types of variations has been explored in
the context of a SNB [6], based on an analysis developed for its
normal form, and employed in other applications. With a slowly
varying bifurcation parameter a(t), this normal form is

2(t) = a(t) — 2% + Asin(£2t), a=ag — et. (1.6)

Combined multiple scales and local analyses yield analytical ex-
pressions for the location of the tipping point via dynamic bi-
furcation, relative to the static SNB at a. = 0, x. = 0. Results
are qualitatively similar to those for the NSF shown in Fig. 1,
namely, the tipping is lagged for the dynamic bifurcation with no
oscillations A = 0, € # 0, advanced for oscillations only A # 0,
€ = 0, and the lag and advance compete for the case with both
slowly varying bifurcation parameter and oscillatory forcing.

Our goal in this paper is to develop a related multiple scale
analytical approach for approximating the tipping point in the
setting of a dynamic NSF bifurcation, including the case where
there is also high frequency forcing. The analysis provides both
precise quantitative and qualitative descriptions of the tipping
behavior, from which we can determine the influence of dynamic
parameters as well as of the oscillatory forcing. It might be ex-
pected, given that we are considering non-smooth systems, that it
is necessary to construct piecewise-smooth solutions from which
to obtain the tipping behavior [16]. However, for high frequency
oscillatory forcing, we instead use a multiple scales approach
in which we derive equations for the mean of the oscillatory
solutions. When the oscillations cross the switching manifold
X, they do not simply average out, but rather give nonlinear
contributions to the dynamics of the mean behavior. From the
nonlinear dynamics of the mean, we can then determine the shift
in the tipping point relative to the static case. Furthermore, the
approach provides information about the validity of the multiple
scale approach based on the high frequency forcing oscillations.
Then we have the range of frequencies over which the approxi-
mations are valid, relative to other parameters such the strength
of the forcing and time scale of the dynamic bifurcation. These
results also indicate the conditions under which a piecewise
construction of the solution is needed to predict tipping, instead
of capturing the averaged nonlinear effects of the non-smooth
dynamics.

We develop this multi-scale approach first in the setting of a
single degree-of-freedom (DoF) model with an underlying static
bifurcation structure that mirrors certain aspects of the static
Stommel Box model (1.5) close to the NSF. This is a relatively
generic and simple model with a region of bi-stability of two sta-
ble states that lose stability via a smooth SNB or NSF bifurcation
(in this case given by a coalescence of a saddle point and a node
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Fig. 2. (Left) The bifurcation diagram for (2.1) with stable upper and lower equilibrium branches in red solid lines and the unstable middle branch shown with a
red dash-dotted line. The NSF bifurcation occurs at (0,0) with the blue % and the SNB occurs at (1,1) with the red o. The numerical solution (blue dotted line) to
(2.1) is shown for A = 0 and ¢ = 0.05. (Right) The tipping value for us, approximated by (2.11) (solid red line) and the numerical result from (2.1) (black dots)

with A = 0, taking x, = 1.

with the discontinuity surface X)) for this single DoF system.
The model provides a framework in which we can develop the
asymptotic expressions for tipping points in three cases: slowly
varying bifurcation parameter only, high frequency oscillatory
forcing only, and both types of variation combined. We then
extend the method to the case of the full two DoF Stommel Box
model. The approach uses multiple scale approximations, based
on the different time scales associated with the slow rate ¢ < 1 of
variation near or through the static bifurcation value, the period
of the oscillations proportional to 2~ ! « 1, and the time scale
t of the model. The multiple scales analysis is applied to both
outer and inner expansions, relevant away from and near the
tipping point, respectively. Both the multiple time scales and the
development of a local expansion are necessary to approximate
the solution, leading to explicit expressions for the tipping points
in different settings.

1.3. Paper summary

The remainder of this paper is organized as follows. In Sec-
tion 2 we consider the case of the dynamic bifurcation where the
bifurcation parameter varies slowly through a static NSF in the
single DoF problem and without oscillatory forcing. Section 3 cov-
ers the case where the bifurcation parameter is static and there
is high frequency oscillatory forcing. It also discusses conditions
under which the multiple scale analysis is appropriate to study
tipping, in contrast to situations that would require a geometric-
based approach that exploits the piecewise-smoooth structure
of the problem [16] (postponed to future work). In Section 4
we consider the combined effects of slowly varying bifurcation
parameter and high frequency oscillatory forcing. In each section
we first demonstrate the approach on the single DoF model,
constructing both outer and local expansions for the solutions
from which we determine the tipping point or critical value of
the bifurcation parameter. Then we use this same approach in
the Stommel model to identify tipping points, the critical values
of 1, in each setting.

2. Dynamic bifurcation for a NSF
2.1. Overview

In this section we look at the problem of a dynamic bifurcation
close to the non-smooth fold (NSF) in both the Stommel model
and in the single DoF analogy to this model. We consider the
case of a slowly changing bifurcation parameter without any
oscillatory forcing. We show that in both cases the tipping close
to the NSF is lagged relative to the location of the NSF. This

behavior is qualitatively similar to that found close to a saddle-
node bifurcation (SNB). However the magnitude of the lag is
different, as the eigenvalues of the fixed points do not drop to
zero at the NSF, unlike the case of the SNB.

2.2. Dynamic bifurcation in the single degree-of-freedom model

In this subsection we use a single DoF non-smooth model to
develop our approach and results for the dynamic bifurcation. In
particular we consider the model:

X = —u + 2|x| — x|x| + Asin(£2t),
x(0)=x%, w0)=u’>0, ex1.

taking A = 0 in this case. As in the Stommel model, the presence
of the |x| term means that there is a discontinuity surface at
x = 0, denoted by X,. Across X, the flow and its deriva-
tives are continuous, but the second derivative of the flow is
discontinuous.

As in the Stommel model, the underlying static model with
€ = 0 has two equilibrium branches, denoted x;rq and Xeq in Fig. 2,
with x > 0 and x < 0, respectively. The equilibrium xJ;, loses
stability via a SNB at usp = 1, Xs0p = 1, so that it is sta?)le for
x > 1 and unstable for 0 < x < 1. The discontinuity surface
X, yields a NSF bifurcation, where the equilibrium branch x
terminates at u. = 0,x. = 0, as shown in Fig. 2. The NSF arises
when the saddle and the node intersect with X,. (This differs
from the Stommel model in which we see an intersection of a
saddle with a focus at the NSF). Observe that the corresponding
eigenvalues of the linearization at the NSF about the saddle and
the node are £+2 and hence do not vanish.

For slowly varying u without oscillations (A = 0) we deter-
mine values of u for which we have (non-smooth) tipping points
(or dynamic bifurcations), at which the solution transitions from
following Xeq 1O following x;. We take initial conditions near

the lower branch given by xX* = 1 — /1+ u% < 0, and use a
combination of outer and local asymptotic approximations for the
solution x.

We first give an approximation for x for O(1) slowly varying
values of u > 0, that is, away from the NSF value of u. = 0.
Termed the outer expansion, it may appear that this approx-
imation is not relevant to tipping, since it describes behavior
away from u. = 0 where the dynamics follow x,, rather than
experiencing tipping to another solution. However, this expan-
sion provides the motivation for a valuable rescaling for u near
e = 0, on which an inner expansion is based. Approximating the
solution with this inner expansion yields the calculation of the
tipping point. To get the outer expansion, we look for a solution
as a function of the slow time 7 = et,

o= (2.1)

X(1) ~ xo(T)+ex1(T)+€Xx(0)+0(e3), k= e% =ex,. (2.2)
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Substituting into (2.1) yields the sequence of equations at orders
of €,

0(1): 0= —pu(t)—2x +x2, (2.3)
0(6) . Xor = —2X1 + 2x1Xg. (24)
Note that as X, < 0 we take |x| = —x in this approximation,

yielding the asymptotic result for ¢ < 1

€
x(t)~1—4/1 t)— ———— + 0(e%). 2.5

(t) + wu(t) 4(1+M(f))+ (€7) (2.5)
This solution is attracting for x < 0 and © = O(1), as can be
verified through a linear stability analysis, based on a multiple
scale analysis. This approximation is no longer valid for values
of u = O(¢), since xo = O(¢) and the ordering of terms in (2.5)
is no longer correct. Furthermore, for x approaching 0, we must
consider the possibility that x is not strictly negative, so that the
non-smooth dynamics starts to play a role. Thus we use a local
analysis near the critical value (., x.) = (0, 0). We rescale x and
w near this value via

X=¢€y, u=e€em, (2'6)

which we substitute into (2.1) to get the local equation,

y=—m(t)+ 2yl —elyl’,

P (2.7)

From (2.1) we provide an approximation for y (and thus x) near
the NSF at u, = 0.

Since we are interested in the behavior of y as a function
of m, we write the differentiation on y directly in terms of the
parameter m. Taking y ~ yo + €y1, we find the leading order
equation for yyq,

dyo
—— =m—2|yo|. (2.8)
dm

For m > 0, the leading order approximation for the attracting
solution is yo = —m/2 — 1/4, which is the same as the leading

order approximation to (2.5) written in terms of (2.6). From that
result, we conclude that yo(—1/2) = 0 and that y, > O for
m < —1/2. Then we find the leading order approximation for
the solution of (2.7) for m < —1/2,

m 1
yt(m) = Ce 2" + 371 +0(¢) for m<—3 and y >0,
corresponding to the solution crossing Y. Here C is chosen so
that y*(—1/2) = 0, for continuity of the solution across y = 0. In
terms of the original variables, we then use (2.6) to provide the
local approximation of x for || < 1,

for u > —%

Xt)~ =5 -3, 2
X(t) ~ eCe~2m0/e 4 1D (2.9)
—$ +o(e?), for p < —¢ C=(2e)".

7
Note that this solution grows exponentially fast for p < —e/2,
so that from (2.9) we identify the tipping value us, for which the
solution x reaches x = Xjp. A leading order approximation to jigy
in € is given by

1
I’Lgv ~ 56 log(é) 5

€

(2.10)

and (2.10) can be used to obtain higher order corrections from
(2.9),
yloge +ud —1/2
2Xtip
1 _ log(C/xiip)
Hey = f .

Msv ™~ Mgv + GM;\/ +e€

(2.11)
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In Fig. 2 we compare (2.11) to the tipping value u at which x
reaches a critical value x;;, = 1, obtained from simulations of the
full system (2.1) with slowly varying « and A = 0.

We contrast the result (2.11) with the tipping value for the
dynamic bifurcation near a SNB as in (1.6) with A = 0, studied
in [17]. There the tipping value of a = ay, is negative, so that
the dynamic bifurcation is lagged relative to the static SNB value
a = 0, with

0 > a;, = 0(e*?).

Note that this dependence of the tipping value on the slow rate
€ is different from that of the dynamic NSF bifurcation given
in (2.11). Then the dynamic bifurcations near an SNB and NSF
are lagged relative to the corresponding static bifurcation points,
but there is a longer lag for the SNB than for the NSF of (2.1).
This is discussed further below, in the context of additional rapid
oscillatory forcing (see Section 4.3).

2.3. Dynamic bifurcation in the Stommel model

We now turn our attention to (1.5), the transformed Stommel
two-box model with slowly varying fresh water flux 7,,

V=m—m+mn(T-V)-T-VV|
T=m-TA+ V)

Ny = —¢€
TO0)=7T, V(0)=Vi, nA0)=m > mmns3.

Here we have set A = B = 0 in (1.5), postponing the treatment
of periodic forcing to later sections.

As in the analysis of (2.1), we seek an analytical expression
for the tipping point n,,, as n, varies through the NSF, ;. =
n1ns. This tipping point corresponds to the rapid transition from
solutions near the salinity-dominated branch of focus points F
to the temperature-dominated branch of nodes N in Fig. 1. We
again first find the outer expansion, approximating the behavior
away from 7, where the dynamics follow F rather than experi-
encing tipping to another solution. This expansion again provides
the motivation for a valuable rescaling for 7, near 7, and for
an inner expansion for the solution, from which we derive the
tipping point.

With a focus on the lower branch F with V < 0, we approxi-
mate the slowly varying outer solution V(t), 7(t), away from 7,
by substituting in (2.12) a regular asymptotic expansion in e,

V(T) ~Vo(t) + eVi(T) + €2V + - -
T(T) ~To(T) + €Ta(T) + € T(T) + - -,

using T = et. For V < 0 we obtain the sequence of equations as
coefficients of powers of ¢,

(2.12)

(2.13)

_ _ _ _ 2
o(1) - {0— N1 — n2(t) +n3(To — Vo) — To + Vg, (2.14)
O: 771—76(1—V0)s
= —Vy) - 2
o) : {vof n3(T1 — V1) — Ti + 2V1), (2.15)
Tor = —Ti(1—=V)+ViTo.

We solve (2.14) simultaneously for the pseudo-equilibria, treating
n2(t) as a constant in the approximation,

m
1-V’
0 =11 — na(7) — To(Vo) + n3(To(Vo) — Vo) + V5.
Corrections to the pseudo-equilibrium from (2.16) can be ob-
tained from (2.15), which are used below in the detailed calcu-
lation of the tipping point.

The expansion (2.13) breaks down if V approaches zero, and
we note this is the case in the vicinity of the NSF, (7, V, 2¢) =

To(Vo) =

(2.16)
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(n1, 0, n1n3). We perform a separate local analysis analogous to
Section 2.2 using a similar scaling, at n,. = n1ns. Specifically, we
substitute

N2 =mns3 + €g, V=X, T =n +e€Y. (2.17)
into (2.12) to get

X = —¢(t) = ;X — (1= m3)Y — eXIX],

Y =-—mlX|-Y—eXly, ¢=-1 (2.18)

By linearizing (2.18) for X « 1 and Y « 1, specifically,

(X)_( —n3 —(1—n3)> (x)_<;(r)>
y) = \ —msgn(x) -1 Y o)

we can approximate the location of the tipping point for solutions
transitioning from F to N.

For ¢ > 0 and X < 0 (V < 0) the eigenvalues in (2.19) have
negative real part for n3 < 1 and n; > 1 such that n3n; = 0(1),
as discussed following (1.4). Then we do not see growth of the
solution away from F. As ¢ decreases, eventually we have V > 0
and the dynamics changes. Using ¢ = —1 together with the chain

(2.19)

rule % = %‘;—f to replace % with —% in (2.19) we solve
Xe) (X 4 _(m 1-m
()20) () ez ) e
The solution is based on the corresponding eigenvalues
m+1 1
ha = £ oV ns P+ dm(—ns)—ns).  (221)

which are real, since n3 < 1 guarantees that the discriminant
is always positive. However, since we have one positive and one
negative eigenvalue, A1 < 0 < A, we have exponential growth
for X > 0, which takes the form for X = (X, Y)",

X(2) ~KieM¥ +Kye™?® +Cie +Cy. (2.22)
Here C; C, are obtained from the particular solution of (2.20),
namely, C; = MC,, MC; = —(1 0)'. Writing (2.22) in terms of

the original variables V = €X and 1, = 1y + €¢, we find the
approximation

V(t) ~ C1(na(t) — n2c) + €Crz + €Ky ROV 4 o(e?) .
G=(GiG) K =(KiKp)' (2.23)
Note that we drop the term with coefficient K, since A, > 0 and
that term is exponentially small for ¢ < 0.
Approximating K1 as described in Appendix A.1, using (2.16)
and the expressions for C;, completes the approximation of V

in (2.23). Taking logarithms in (2.23) yields an equation for the
tipping value 7y, at which V reaches Vyp,

€

M2sy ™~ M2 = 3~ [loge — log(Vep) + log Ki1 ]
1

e*)hl(’IZSv*WZC)/€

Ki124

Similar to ug in (2.10)-(2.11), we obtain the leading order con-
tribution to 7,5 which is then in turn used to compute higher
order corrections,

(Cr1(masv — m2c) + €Cq2). (2.24)

2
€ C
Nasv ™~ ngsv + n;sv + |:” Ing - Clln;sv + 6C12] (225)

2Vep | 1

- £ loge My = £ [—log(Vip) + log(K11)] -

At A

The expression for 7, results in a lag in the tipping of
O(e In €) relative to the NSF bifurcation 7. It is noticeably similar
to the leading order term for ug from Section 2.2. In Fig. 3
we compare the analytical approximation for 7,,, to numerical
results.

0
7725\, = 772C
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Fig. 3. The tipping value for 1, — 1, approximated by (2.24) (solid red line)
compared to the numerical result from (2.12) (black stars) with A = 0, taking
Vip=.5,m =4and n3 = %.

3. High frequency oscillatory forcing
3.1. Overview

In this section we look at the influence of high frequency
oscillatory forcing on the attracting solutions in both the Stommel
model and in the single DoF analogous model (2.1) close to the
NSF. In both cases we restrict our attention to a constant bifurca-
tion parameter, that can be viewed as the mean of the forcing. We
determine the critical value of the bifurcation parameter at which
tipping is observed, with the attracting solution shifting from the
lower branch (x., in (2.1) and F in the Stommel model) to the
upper branch (x;1 in (2.1) and N in the Stommel model). In both
cases the critical value of the bifurcation parameter is greater
than the value of the static NSF, corresponding to an advance
of the critical parameter. While in general one might expect in
the non-smooth setting to have to construct a piecewise-smooth-
type solution as the basis for a stability analysis [16], in the case
of high frequency forcing we develop a multiple scale, averaging-
type approach that captures the contribution of the oscillations
to the shift in the critical parameter value.

3.2. The single DoF model

We first analyze the influence of oscillatory (seasonal) forcing
near the NSF bifurcation in the single DoF model (2.1) for constant
u > 0. That is, we take A ~ O(1), 2 > 1 and ¢ = 0. As for
the Stommel model, we take A > 0 for convenience of notation,
noting that the same results for tipping are obtained for A < 0.
For high frequency forcing, £2 > 1, we have both an O(1) time
scale t for the overall evolution and a fast time scale T = 2t for
the forcing. We use a multiple scales approximation x(t) = x(t, T)
to give an asymptotic approximation for the attracting solution
near x.,. We note that for large £2 the response of the solution to
the forcing is ©(1/£2) in magnitude, and this guides our overall
analysis. From the behavior of this approximation, we obtain the
critical value of w below which there is no longer an attracting
solution near x, [18].

First we determine the outer solution for which x(t) < 0. A
simple ansatz of the form x(t) = x+R cos(§2t) yields the structure
of the attracting periodic behavior for large t,

x~1—1+pu— 2 "Acos(2t) + 0(£272). (3.1)

The form of (3.1) is motivated via a linear analysis or via a
multiple scales analysis. The details of determining (3.1) via a
formal multiple scales expansion are outlined in Appendix A.2.1.
While this approach is not needed to obtain this simple outer
solution, the steps provide a useful template, valuable for more
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Fig. 4. (Left) The non-smooth function vy — Acos(T)| is shown by the solid red line, with dash-dotted vertical black lines indicating T; and T, from (3.8) for a
sample value of vy shown by the dotted blue line. (Right) Attracting solutions of (2.1) for ¢ =0, A =2 and £ = 10 are shown by short vertical lines superimposed
on the static bifurcation diagram for x. The dashed vertical green line indicates u = 2A/£2, with (3.1) valid for u > 2A/£2. The dashed vertical blue line indicates the
critical value s (3.10). Note that for values between these two dashed lines, the attracting solution for x takes both positive and negative values. For u < tesc, the
attracting solution is centered near x;rq. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

complex cases in the sections below, for both outer solutions and
local solutions from which the tipping values are determined.

Since the result is obtained only for the region for which
x < 0, the solution in the form (3.1) is valid only when A/ <
[T — /1 + p|. If u is small this region is approximated by taking
the range A/$2 < /2.

For £ > 1, we now look for an inner solution for u <« 1,
specifically for

24
0<pu<. (32)

Thus we consider the solution as i approaches . = 0, with x(t)
then taking both positive and negative values and hence with the
non-smooth effects being important. We rescale x and u via a
straightforward balancing argument,

m=2 'u, x=87y, (3.3)

and introduce a multiple scales expansion for the local variable
Y,

Yt T) ~ yo(t, T)+ 27 'y (¢, T) + 0(272). (34)
Substituting this expansion into (2.1) yields

O(1): yor = Asin(T), (3.5)
027" yir + Yoo = —m+2|yl. (3.6)

Solving the leading order equation (3.5) yields yo(t, T) = vo(t) —
Acos(T) for an unknown function vg(t). Then applying the solv-
ability condition (A.5) to (3.6) leads to

2
vo(t) = —m+ % / |vo(t) — Acos(T)| dT. (3.7)
0

The case where A < |vp| for all t yields vo &~ —m/2, corre-
sponding to the expression (3.1) for © < 1 and x < 0 for all t.
Therefore we restrict our attention to the case where A > |v|
and © > 0, corresponding to the solution x that crosses the
discontinuity boundary X,. In order to evaluate the integral in
(3.7), we break the integration into regions based on the sign of
vg — Acos(T), noting that the zeros of the integrand occur at

T = T, = arccos(vy/A),

T =T, = 2w — arccos(vg/A), (38)

0<Ti<T, <2m,

as shown in Fig. 4. Treating vo(t) as a constant relative to T under
the multiple scales approximation, we evaluate the integral in

(3.7) and use sin(arccos(x)) = /1 — x2 to get the equation for
Vo,

4
Vor = —m+ — (arcsin(vo/A)vo + /A% — vé) = F(vo; m). (3.9)
T

We find the critical value of m below which there is no stable
equilibrium solution to (3.9) for vg. The function F(vg; m) (3.9)
has a minimum with respect to vg at vg = 0. For values of m
above the critical value m = mgy, F(vg; m) = 0 at the stable
equilibrium vy < 0 of (3.9). At the critical value of m = mgy,
F(0; mysc) = 0. Thus, we find that there is no attracting solution
for vy for m < mysc = 4A/7. Written in terms of w, mgsc is then

4A
a2’
From (3.9) we can obtain the equilibrium for vy implicitly for u >

Hosc. A Taylor expansion about the critical value, for vy/A = 0,

yields the approximate equation
m+ 4A n 2,
vor X — — 4+ —yg,
ot b4 7A°

which gives an explicit expression approximating the equilibrium
solution

(3.10)

Mosc =

(3.11)

(3.12)

Then, the approximate attracting solution to (2.1) for u > osc,
in terms of x and wu is

41A|

x(t)~— [ (M ﬂg) — 27 'Acos(2t) + 0(272).

(3.13)

For i < s, there is no attracting solution near the lower
bifurcation branch xg,, but instead |vo| increases rapidly, moving
away from x;, due to contributions from the absolute value
nonlinearity in (3.7). This is shown in Fig. 5, where the attracting
solution for u < pesc Obtained computationally is shown cen-
tered around the upper bifurcation branch qu, while for © >
Josc the attracting solution x remains near Xeq- Since fiosc > 0
for A # 0, the oscillations advance this critical value relative
to u, = O from the static, unforced case (A = 0). Then the
range of u for which there is bi-stability of x;, and qu is reduced
with oscillatory forcing, implying that this bi-stable region can be
eliminated entirely for certain A and £2.
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Fig. 5. The critical value p,s obtained from (3.10) (black solid line) compared
with the numerically obtained values of i, based on the attracting behavior
for large t of x from simulations of (2.1) with € = 0. For < posc computational
solutions of (2.1) do not remain centered near Xeq for large t. Results are shown
for different amplitudes: A = .5 (red *'s), A = 4 (black diamonds), and A = 8
(blue o’s).

In Fig. 5 we compare the critical values of © = o5 With
the critical values observed from simulations of (2.1) for different
values of A and £2, indicating good agreement for a range of A/ 2.
As expected, for larger values of §2 the approximation improves.
For smaller values of §2 or larger values of A, the approximation
is less accurate: in those cases x is dominated by oscillations that
approach both x;, and x;rq, which violates both the assumption
that the expansion (3.4) is near x_, and the separation of scales
assumption used to evaluate (3.7), on which (3.10) is based.

3.3. The Stommel model

We now consider the full Stommel system with oscillatory
forcing given by (1.5) with A, B ~ 0(1), £2 > 1 and € = 0. Similar
to the analysis given in Section 3.2, we expect to find an attracting
oscillatory solution centered near F in Fig. 1 for parameter values
12 > 120sc, Where 1,05 is the critical value below which such an
attractor no longer exists.

We again take £ > 1, so that there are again slow t and
fast T = £t time scales. Again the response to the forcing is
small, of O(A/£2, B/S2), so that the forced dynamics can be well
approximated by the linearization of the Stommel model around
its fixed points if £2 is large, and/or if A, B are small (a case to
be considered in a later paper). Then substituting the appropriate
multiple scale expansions in 27! for Vv = V(t,T) and T =
T(t, T), as shown in Appendix A.2.2, we obtain the approximate
outer solution corresponding to oscillations of amplitude As2~!
centered on the salinity-dominated branch F of the form,

Y~V — 27 TAcos(T)+ 27 'V (t). ..
T ~To — 2 'Beos(T) + 27 'T4(t). ..

where Vy and 7y are the equilibrium values on F and V;; and
T11 give corrections on the t time scale to the oscillatory terms
Asin(T) and Bsin(T). We do not have explicit expressions for
these corrections, but a local stability analysis shows that these
terms remain small for O(1) values of 1, — 1. > 0.
Significantly, this approximation breaks down when, for ex-
ample, Vy ~ A27! and the solution may then intersect X. Since
Vo decreases linearly with n, — 7 > 0, and as A = O(1),
then similarly to the behavior of the single DoF model above in
Section 3.2, this approximation breaks down for parameter values

(3.14)
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near the NSF value, that is, for , — 7. = 0(£27'). To consider
these values, we rescale

n =mns+ 27'¢.
(3.15)

v=0"1X, T= m+27,

Substituting (3.15) into (1.5), together with the multiple scales
expansion,

X(t, T) ~Xo(t, T) + 27X;1(t, T) + 0(272), (3.16)
Y(t, T) ~Yo(t, T)+ 27Yq(t, T) + O(£272), ’

yields the series at sequential powers of £2~!. We then have the
inner system of equations for X and Y near 1. (¢ = 0),

o1y |for= Asin(l), (3.17)
Yor = Bsin(T),
oL {XlT +Xor = —¢ —n3Xo — (1 —m3)Yo, (3.18)
Yir +Yor = —milXol = Yo.
From (3.17) we find that the leading order terms are
Xo = Po(t) —Acos(T), Yo = Qo(t)— Bcos(T). (3.19)

for Py, Qo functions of the slow time scale t, which must be
determined in order to locate the center of the oscillations. Sub-
stituting (3.19) into (3.18), we apply the solvability condition
(A.5) to get the equations for Py and Qg

Po; = — ¢ — n3Po — (1 — 13)Qo,
m [ (3.20)

Qo =— — |Po — Acos(T)|dT — Qo .

27 Jo

The case A < |Py| corresponds to V < 0, which is treated in
the outer expansion above. For the range of 1, where |Py(t)| < A,
the integral in (3.20) has the same form as in (3.7). We use the
same approach to evaluate it as described in (3.7)-(3.8), replacing
vo with Py, and treating Py as a constant relative to integration
over the fast time T. Similar to Section 3.2, the argument of the
absolute value alternates sign over the regions delineated by T;
and T, where T; = arccos(Py/A) and T, = 2w — arccos(Py/A).
Integrating over each region to evaluate (3.20) yields

Py = —& — n3Po(t) — (1 — 13)Qo,

2
Qo; = —% (arcsin(Po/A)Po + /A2 — P§) —Qp.

In the high frequency forcing case of £2 > 1, we use a quasi-
steady approximation, discussed further in Section 3.4. We set
Qo = 0in (3.22), solve for Qg and substitute in (3.21), yielding

2
Poy = =8 — n3Po(t) — (1 — 773)% (arCSiﬂ(Po/A)Po + /A — P&)

G(Po: ). (3.23)

As in Section 3.2, we find the critical value of ¢ by looking for the
maximum value of ¢ for which there is no equilibrium solution
for Py in (3.23). The function G(Py; ¢) in (3.9) has a minimum

at Pomin = Asin|{ n3m /[2(1 — n3)n1] |. For G(Pomin; ¢) < O, the

(3.21)
(3.22)

value Py < Popi, at which G(Py; ¢) = 0 corresponds to the
stable equilibrium of (3.23). At the critical value of ¢ = o,
G(Pomin; Cosc) = 0. Thus, we find that there is no attracting
solution for Py in (3.23) for ¢ < esc, Where
Cose = 2073011 A cos (2(137;)”1) —
N20sc = N113 + -Qi]é'osc-

(3.24)
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Fig. 6. The critical value n,,, from (3.24) (blue dotted lines) compared with
the critical value obtained from simulations of (1.5) with n; = 4, n3 = % and
€ = 0. The values for the forcing are A= —1,B=0:red *'s; A=1, B=2:
black diamonds; A = 4, B =5: blue -’s.

Then 7, corresponds to the critical value of 7,, below which
the attracting high frequency oscillatory solution of (1.5) with
€ = 0 does not remain near the salinity-dominated branch F in
Fig. 1. Note that the expression (3.24) indicates an advance of the
critical value relative to 1, = 1113, for the restriction on 3 < 1
discussed in Section 1.

In Fig. 6 we compare (3.24) to the results observed from
numerical simulations of (1.5) over a range of £2~!. We note that
the approximation (3.24) breaks down for larger values of A/S2.
We discuss the source of this breakdown in Section 3.4, which has
implications for the case where € # 0, and for cases with lower
frequency forcing.

3.4. Linear analysis of the Stommel model near to the NSF

In Fig. 7 we graph the attracting solution V and 7 of (1.5) in
the V — 7 plane, for ¢ = 0 and for values of 5, for which the
solution stays near the salinity-dominated branch F. These are
super-imposed on the static bifurcation branches, F and S in the
V — T plane. We compare the result obtained from the multiple
scale, averaging-type approximation (3.19) for high frequency
forcing to that obtained from the simulation of (1.5). For example,
for the forcing Asin(T) and Bsin(T) in (1.5),

Vo~ Q27 Py —Acos(2t)] T ~ 1+ 27 [Qy — Bcos(£2t)].

(3.25)

We show the results for different types of oscillatory forcing.
These results illustrate good agreement for these solutions for
larger £2, supporting the good approximation of the critical value
N20se» @S shown in Fig. 6. Comparisons of the solutions for smaller
£2 (larger A271) also illustrate the source of the over-estimation
of 1, in these cases.

The main observation is that for larger frequency 2 (Fig. 7
(a),(c)), the multiple scale approximation (3.25) is accurate, even
for solutions that cross both X' and S when 7, < 724sc- ThUS 7206¢
yields a good approximation for the critical value. Specifically,
this approximation uses a construction composed of an oscilla-
tory term, and the mean of these oscillations given by (Po/$2, n1+
Qo/$2) in (3.22) as a function of 7,. Nonlinear contributions
from the integral in (3.20), when the oscillations in V cross the
switching manifold X, shift this mean away from the equilibrium
branch F. In Section 3.3 we obtained an explicit expression for the
tipping point ;... by using a quasi-stationary approximation for

Physica D 432 (2022) 132948

I I I I
36 365 37 375 38 38 39 39 4 4.05

Fig. 7. Comparison of the attracting (large t) oscillating solutions v and 7 in the
V—T phase plane for three different values of 7,, with n; = 4 and n3 = 3/8. For
each solution, 72 > n2,,m, Where 72, is the critical value of 7, obtained from
the numerical solutions, as shown by the markers in Fig. 6. The solution is closer
to the NSF at v = 0 and 7 = n; for smaller n,. The graphs obtained from the
multiple scale approximation (3.25) (black) and numerical solutions (magenta)
are super-imposed on the branches for the static equilibria F (red solid) and S
(blue dash-dotted). Panels (a), (c): For smaller values of A/£2 (]A]/£2 = 0.033),
(3.25) is in agreement with the numerical simulations. Panels (b),(d): For larger
values of A/$2, (|A|/$2 = 0.125) (3.25) does not fully capture the behavior of v
and 7. Specifically, for npum < 12 < M20sc, (3.25) over-estimates the advance of
the tipping and there is no asymptotic approximation from (3.25) shown. Panels
(a),(b): The forcing is Asin(T), B = 0. Panels (c),(d): A = —1,B = 1, with the
forcing given by Asin(T) and Bcos(T) (in contrast with Asin(T) and Bsin(T) as
in (1.5)). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

(Po/$2, Qo/$2). A linear stability analysis of (3.22) indicates the
basis for this approximation, namely, that a change in the linear
stability of (Pg, Qp) occurs for Py above a critical value,

- Amns

2m(1—=1n3)’
Fig. 8 shows that Py terminates in the black horizontal dotted
lines corresponding to (3.26). As is consistent with simulations, as
n, reaches its critical value, Py reaches (3.26), while Qg remains
negative. Thus the tipping is primarily driven by variations in V,
captured in the dynamics of Py.

Fig. 7 indicates the source of the over-estimation by 74 Of
the critical value for larger values of A/£2 or smaller values of
£2. Panels (b),(d) show results for A2~! = 0.125, corresponding
to values in Fig. 6 where the asymptotic approximation 7y,
overestimates the advance of the critical value of #,. In Fig. 7
(b),(d) we see that v, T are not well approximated by (3.25),

Po (3.26)
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Fig. 8. Graphs of Py/$2 (blue) and Qp/$2 (red) vs. n, for three different values
of £2 = 30 (solid line), 2 = 20 (dotted line), and 2 = 8 (dash-dotted line).
Horizontal dotted black lines correspond to the critical value (3.26) of Py at
which there is a loss of stability for Py and Qo as the equilibrium solution for
(3.22). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

following from the fact that the separation of time scales used to
get (3.25) is no longer valid for £2 = O(1) or smaller. For smaller
values of 7, where the oscillations cross X' and in some cases also
S, the multiple scale approximation is not a good approximation
for the piecewise-smooth continuous solutions, whose behavior
is illustrated by the numerical solutions. For the smallest values
of n, where npum < 72 < N20sc, the multiple scale approx-
imation predicts tipping and there is no approximation from
(3.25) shown. However, the numerical calculations show attract-
ing oscillations (such as the figure-of-eight solution in Fig. 7) that
cross both X' and S, without tipping to the temperature-dominate
branch N for large V. We expect that a separate local analysis
for n, near 5. is required to determine the tipping conditions
for £ = 0O(1) or smaller, which would involve constructing the
piecewise-smooth solutions. We leave this analysis for a future
treatment which makes full use of the geometry given by the
piecewise-smooth structure [16].

4. High frequency oscillatory forcing combined with dynamic
bifurcation

4.1. Overview

In this section we give the analytical approximation for the
tipping point in the setting of dynamic NSF bifurcation, that
is, with a bifurcation parameter slowly varying with rate ¢ <«
1, combined with high frequency forcing. A > 0, 2 > 1.
The analysis uses elements from both Section 2 with the slowly
varying bifurcation parameter (only) and Section 3 with high
frequency oscillatory forcing (only). Not only are these results
helpful in designing the analytical approach, but we also see
the competition between elements shifting the location of the
tipping point: advances, observed in Section 3, and lags, observed
Section 2. We again identify multiple scales analyses that are
applied to both outer and inner expansions. As in the previous
sections, we develop the approach first in the setting of a single
DoF model and then adapt this for the Stommel model (1.5).

4.2. The single DoF model

We consider both € # 0 and A # O first in (2.1). In order
to capture results for a range of high frequency £2, with £2~!

10
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comparable to the rate ¢ for the slowly varying parameter pu,
we introduce 2 = ¢~* for A > 0. This framework allows us
to incorporate the time scales both for the oscillations and for
the slowly varying parameter u, naturally leading to the choice
of time scales T = et and T = e~*t. Using a multiple scales
approximation for x(t, T) in (2.1) yields
xr + €1x, =e*(—p(r) + 2|x| — xIx| 4 Asin(T)),
po(r)=—1.

As in the previous sections, we first consider an outer solution
for x < 0 for w > 0, which points to a local expansion from
which tipping is determined. Following the same procedures as

in Section 3.2 together with a multiple scales approach, as shown
in Appendix A.3 we obtain

x~1 =T+ p() - ———

401+ (1))

(4.1)

— *Acos(2t) + O(e '+, e?1).

(4.2)

As in Section 3.2, we see that the outer expansion (4.2) fails for

small u, for which all three terms may be the same order. For

example, taking u = em, we write this condition in terms of A

and €

2m—1
T

This condition suggests that two cases are of interest for the
behavior of the tipping point, captured by the inner expansion:
A < 1and A > 1, which correspond respectively to cases with
large or small values of A/£2.

For the inner expansion we use a multiple scale expansion

A~el™ (4.3)

for x(t, T), with slow and fast time scales t and T = e *t,

respectively, and = em. Then (2.1) takes the form

xr + €% = — & m(t) + €*2|x| — €*x|x| + €*Asin(T), (4.4)
me(t) = —1, '

which indicates that x must be scaled with a power of ¢ and its
expansion must include a term with coefficient €. Then

X6, T) =€ y(t, T) + €My (6, T) + - - €2y,(¢, T) + - - - (4.5)

with g; depending on the value of A and q; < g,. With this form,
it follows that y; = —Acos(T) + yo(t), for both cases A < 1 and
X > 1. Furthermore, it is straightforward to show that yy and y;
have the same form up to a multiplicative constant, so we can
drop yo without loss of generality.

4.2.1. Single DoF with 2 = e, A <1

Substituting (4.5) into (4.4) and balancing terms in order to
obtain non-trivial solutions, we determine q; = A, ¢ = 2A.
Then, collecting terms at successive powers of €, we find that
yi = —Acos(T), yi; = 0 at O(e*), and

0(€®*) : yar = —y1, — €' 7"m(t) 4 2|y1 — Acos(T)| . (4.6)
Applying the solvability condition (A.5) yields
1 2
Y1 = —€ 7 m(t) + ;/ ly1(t) — Acos(T)| dT. (4.7)
0

For A < |yi, this equation reduces to y;,, = —e'~*m — 2y, for

y1 < 0, from which we recover a contribution similar to the term
1— /14 upin (4.2) for u < 1. That is, we recover behavior
similar to the outer solution in (4.2). For A > |y1|, we evaluate the
integral in (4.6) as in (3.7)-(3.9), treating y; as a constant relative
to the fast time scale T,

— _ 1-A i . A A2 a2
Vi € "m+ - arcsin(y1 /Ay + yi) -

(4.8)
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We wish to determine the critical tipping value of m (and ),
at which y; increases away from Xeq- However, in this case we do
not get a closed form solution for y; from (4.8) since m(t) is time-
dependent. We use an approximation for (4.8) that allows us to
get an explicit expression for the critical value of m corresponding
to rapid growth in y,. Since |y;| < A for tipping to occur, we
expand the right hand side of (4.8) for |y;|/A < 1, keeping up
to quadratic terms. Also, it is convenient to use m'(t) = —1 to
replace yq,

4A 2,
x  mA’"
The form (4.9) allows solutions in terms of Airy functions Ai(z),
as described in Appendix B. Then y; has the form

(-3 [ TA 23 Al <€2(A_l)/3 (%)1/3 (e'*m — %)>
yi(m) ~ € (*) iy (2 e R
1{€ (ﬂ) (6 m— 7)

Vi €t (4.9)

2

and x is given by

2/3
x(t) ~ 6()»—1/2)ﬁ
2

(4.10)

The singularity in (4.10) in terms of w corresponds to the
critical value for tipping, at which the solution increases away
from Xog- This critical value is given by the first root of the Airy
function, yielding

_ (€'nA ]/35 N 4A  [(€e’nA
Mmixed = 20 r o 20
Ai(&,) =0 for & = —2.33811....

1/3
) & + osc, (4.11)

(4.12)

As in the case of a smooth SNB, the tipping point is the sum of
two contributions to the tipping point. One contribution (which is
less than zero) corresponds to a lag in the tipping relative to the
NSF point u. This lag is due to slow variation of the parameter
W, similar to [17] but with a different parametric dependence.
The second contribution s > 0 given in (3.10) corresponds
to an advance in tipping due to the oscillations, as observed in
Section 3.2 for static u. Thus we have a competition between the
factors that generate advance and lag in tipping, similar to that
observed in [6] for variation near a smooth SNB.

Note that pmixeq depends on the ratio A/$2 and on e. For fixed
€, the advance described by 5. increases with decreasing A < 1,
or decreasing frequency 2. Furthermore, we note that the result
for fmixeq is valid for A > 1/2. For A < 1/2, the asymptotic
expansion (4.5) is no longer valid, since e.g. if A = 1/2 then
g» = 21 = 1, and therefore we cannot treat the quadratic terms
as higher order, e.g. in (4.6). Note that decreasing A corresponds
to smaller frequency £2, which can no longer be treated as high
frequency, and a different approximation is required.

For A > 1, a number of the steps used to obtain (4.6) are no
longer valid, so an alternative expansion must be used. Related
to this observation, complications can be seen from (4.11), from
which we see that ppixeq decreases and crosses zero for A/2 —
O(¢) for A increasing beyond unity, corresponding to small A or
large §2. The case A > 1 is discussed further below, where it is
shown to be equivalent to the case of small A/2 for A near unity.
Then a different approximation is needed to capture the dynamics
of y; forall A > 1.

11
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4.2.2. Single DoF with 2 = €™, A > 1

We follow the same approach as for A < 1, except we
take g1 = 1 in this case as follows from a standard balancing
argument,

x(t, T) ~ —€*Acos(T) + ey1(t, T) + €2y, (£, T) + - - . (4.13)

Substituting (4.13) into (4.4) gives

O™y yar + ey, = —m(t) + 2|y1 — " 'Acos(T)|, (4.14)

taking g, = A + 1.
Applying the solvability condition to (4.14) gives

1 2
Yie = — m(t) + — / 91(6) — > A cos(T)| dT. (4.15)
T Jo

Note that this equation has the same form as (4.7) with a factor of
€*~1in front of A, due to the different choice for q;. This indicates
that for larger A, £2 is larger and the influence of the oscillations
is reduced. The same procedures as for A < 1 above yields an
equation of the form (4.8) with A replaced with ¢*~1A. However,
the use of (4.8) is valid only for ¢*A = A/2 > €y, so that, for
A = 0(1), the use of (4.8) is limited to values of A > 1. Note that
this is consistent with the behavior of pmixed, Which approaches
and crosses zero for increasing §2. Then for A > 1, we must use
a different approximation, recognizing that the critical value of u
is negative, for which the dynamics of x changes.

From (4.15) for y; and A well above 1, the contribution from
the oscillations are proportional to A/£2, and thus a small per-
turbation. Therefore the tipping point is not advanced by the
oscillations, as in the expression for o, and we expect the
tipping point to correspond to u© < 0. Then m < 0 and (4.15)
takes the form y;, = —m(t) + 2|y;| to leading order in ¢, as in
Section 2.2. Again, y; grows exponentially for m < 0 as observed
n (2.9), yielding the approximation to the tipping point as sy
from (2.11).

Fig. 9 (UPPER) compares the tipping point computed from
numerical simulations of the full model (2.1) for x with the two
different results for critical u; for A < 1, using [tmixed in (4.11)
and for A > 1 using s, in (2.11). As expected, the approximation
(4.11) is appropriate for A < 1. For A > 1, the result asymptotes
to the tipping point s, with slowly varying u only, while (4.11)
is not valid for A > 1. Fig. 9 (UPPER) also includes analogous
asymptotic results for tipping for slow variation through the
smooth SNB and oscillatory forcing, as described in (1.6) and
analyzed in [6], with z(0) > 0 2 = e?*and A = 1. In
that case the asymptotic approximation for the tipping value
iS Asmooth given in Table 1. The difference between the tipping
location near the NSF bifurcation and that near the smooth SNB is
dominated by the term that governs the lag: in the non-smooth
case this term is O(e log €) while in the smooth case this term is
0(e?/?). Fig. 9 (LOWER) shows simulations of x, illustrating tipping
for the full system (2.1) for different values of A, for the same
values of A as in Fig. 9 (UPPER). The solutions with A = 2 and
different A shown in red, green and magenta illustrate the effect
of different forcing frequencies. In contrast, to illustrate the effect
of different A, the red and blue solutions have the same A but
different amplitudes, A = 2 and A = 5 respectively. The analytical
approximations for the tipping points pmixeq and us, are also
shown for comparison.

We summarize the expressions for the tipping points of the
NSF and SNB models in Table 1.

4.3. The Stommel model

To begin our analysis of the Stommel model in this case, we
take our standard approach of tracking the solution near F for
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Fig. 9. For all panels, ¢ = 0.03. UPPER LEFT: For A = 2, comparison of the critical value pmixeq (4.11) (black solid line), valid for A < 1 and A ~ 1, and the limiting
critical value for A > 1, ug (2.11) (blue dotted line). Red stars indicate tipping in the numerical solution to (2.1), corresponding to the value of x at which x reaches
1. The red dash-dotted line is the analogous result for the SNB (@smoorn in Table 1) analyzed in [6], shown for comparison. UPPER RIGHT: Similar to LEFT panel, but
A = 5. LOWER: Simulations of the full system (2.1) for different combinations of frequency (in terms of A) and amplitude superimposed on the static bifurcation
curve (black lines), illustrating advanced tipping for larger A/$2 and delayed tipping for smaller A/£2. Diamonds indicate analytical predictions pmixeq for the tipping
point in the three cases where A < 1 (simulations of x in red and green for A =2 and A = 0.7, 1.0, respectively, and in blue for A=5 and A = 0.7), and the circle
o indicates the analytical prediction pus,, (simulation of x in magenta for A = 2, A = 2). The solutions with A = 2 and different A shown in red, green and magenta
illustrate the effect of different forcing frequencies, in contrast to the effect of different A, illustrated by the red and blue solutions with the same frequency (A = .7).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

VY < 0in (2.12) with both € « 1 and A, B ~ 0(1), that is,
V= —m—T+ns(T — V) +V +Asin(2t), (4.16)
T=m—T(Q—V)+Bsin(2t), 17, =—e. '

As in Section 4.2, we take 2 = €% for A > 0 for high
frequency. Using a standard multiple scales expansion with the
slow time 7 = et and fast time T = ¢~*t, we construct an outer
expansion,

€(Vo(1—Vo) + (1 —n3)70,)
(1 —n3)70 + (2Vo — n3)(1 — Vo)
6761’ _ GE(VOr(] _VO)+(] _'73)761')
1—=vo (1 =n3)To(1 = Vo) 4+ (2Vo — m3)(1 — Vo )?
— €*Bcos(£2t),

YV ~V + — e*Acos(£2t),

T ~To+

(4.17)

where V, and 7; are the quasi-equilibria identified for the slowly
varying Stommel model in (2.16). As in (4.2), we see that the
expansion (4.17) fails for (n; — n2c) < 1, for which all three
terms with coefficient €°, €', and €* may be of the same order.

12

For example, taking 1, = 1. + €, we observe this failure for

A=0(e""), B=0(e""). (4.18)

This condition suggests that two cases are of interest: for A < 1
and A > 1, which correspond respectively to the cases with small
or larger values of A/£2, B/S2. For the inner expansion near the
critical value ;. = n1n3 we use a multiple scale approach with
slow t and fast T = £2t in (4.16), to get

VT +€)LV[ — _e)leC

+e* (1 — T+ n3(T = V) + V|V| + Asin(T)),
€ (im — T(1— V) + Bsin(T)) ,

-1, n2(t) = nac + €4(t).

Tr + €T
&t

Analogous to (4.5), the form of (4.19) implies that V and 7 must
be scaled with a power of € near the critical value (V,7) =
(0, n1) to obtain non-trivial results, and must include a term
with coefficient ¢*. We then use (4.19) together with the inner

(4.19)
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The value of the tipping point in the different cases for the single DoF models with NSF and smooth SNB for £ > 1.

Tipping points for single DoF models: w« in (2.1) (NSF) and a in (1.6) (SNB)

(NSF) Slowly varying p only: € < 1, A=0

sy = €1n(€)/2 + corrections (2.11)

(NSF) High frequency oscillation only:
€e=0,A#0,2>1:

Hosc = % (3.10)

(NSF) Slowly varying p and high frequency oscillations:
€eK1,A#£0, 2 =¢*

1/2<x<1:
A>1:

(4.11)

e2nA

1/3
0 ) &+ Losc
sy = €1n(€)/2 + corrections (2.11)

Mmixed =

SNB: Slowly varying u and high frequency
oscillations: € € 1, A #0, 2 = ¢+

2 A?
Qsmooth = € /3Er + 202 [6]

expansions,

V(E, T) ~* X5(t, T) + €124(t, T) + €2 25(t, T) + - -,
T(ta T) ~Mm + GAy)\.(t7 T) + qu yl(ta T) + quyz(ty T) + Tty
(4.20)

in the system for V and 7 (4.16). With this form it follows that

X, = —Acos(T) + xy(t), YV, = —Bcos(T) + Yo(t) (4.21)

for both cases A < 1 and A > 1 considered below. As in
Section 4.2, it is straightforward to show that &y and ), have the
same form as & and Y4, respectively, so without loss of generality
we drop &p and Y.

4.3.1. The Stommel model with 2 = ¢, 1 <1
For g1 = X, @ = 22, and substituting (4.20) into (4.16) we
obtain Xy = 0 and Yy = 0 at O(¢*), with the notation x;, = Y

W.
Then at the next order,
0 (GZA) . {XZT = =Xy —€e'7M(t) — n3x — (1 — 3,
Wor = —V1e — ml&x1 —Acos(T)| — V.
(4.22)

assuming that we follow the branch F where x < 0 (V < 0). Note
that the result for (4.22) assumes that A > % so that quadratic
terms appear in higher order corrections. Similar to Section 3.3
we apply the solvability condition as in (A.5) to (4.22) to get

Xip =— € 77¢(t) — p3xy — (1 — m3)V1,

2
v =2 [ )~ Acostmar - 1, (423)
27 0
o= 1.

For |x1(t)] > A we recover the behavior of the outer solution,
as in (4.20) . For |xy(t)| < A, the term x;(t) — Acos(T) in (4.23)
changes sign. Then we evaluate the integral in (4.23) as in (3.20),

Xyp=— €' (b)) — n3xa(s) — (1 — n3)Vy

2
Yy =— (arcsin(X1/A)X1 + /A2 — xf) .
g

To identify the tipping point, we get an analytically explicit form
from which we identify rapid growth in x. Using a Taylor expan-
sion for x;/A < 1 as in (4.8)-(4.9), and using ¢; = —1 to replace
X1 with —xy,, we get

(4.24)

Xip =€+ s+ (1= 3

2mA
N a2 gy,
T A

(4.25)

Yie =

13

As in Section 3.3, growth is driven primarily by shifts in A7,
with Y; following accordingly. Then we neglect Yy, in (4.24)-
(4.25), which yields the quasi-steady approximation,

2 2mA
y=-—M (arcsin()q/A);q /A X12> S LYY
T TA
(4.26)

Substituting (4.26) in (4.25) then yields the non-autonomous
equation for A

2m(1—n3)A n(l—mn3) ,

—_— —C X
T TA

Now (4.27) is in the form of (B.2), from which we identify the

tipping point, as we did in (4.10)-(4.11),

Xy =e'The — + 13X — (4.27)

e DrA

1/3
(mixed = (771(1 — 773)) gr

o1 m(1—n3)A o T3 2
+e€ E— (2 (72']1(1 — TI3)> ) = (4.28)

e2mA 13
M2mixed ~ =2 & + M2osc »

for & given in (4.11). Note that the second term in ¢pixeq is the
Taylor expansion of o5 (3.24) for n3/[n1(1 — n3)] K 1, leading
to (4.29). The form of 7, pixeq 1S Similar to that of pmixed in (4.11),
that is, having a term corresponding to an advance of tipping in
N24sc and another term corresponding to a lag in tipping, which
involves the root of an Airy function. Recall that this result is valid
for . > 1/2, for which we have neglected quadratic terms in the
equation for the corrections (4.22).

(4.29)

4.3.2. The Stommel model with 2 = e, 1 > 1
Similar to the single DoF case, we start with the expansions

V(t, T) ~ — e*Acos(T) + ex;(t, T) + e x5(t, T) + - - -
T(t, T) ~ — €*Bcos(T) + eXi(t, T) + €2t T) + - - -

As in Section 4.2.1, here we take qu = 1 and ¢ = A + 1.
Substituting (4.30) into (4.16) and collecting coefficients at each
order of ¢, we find at O(¢) that X;;7 = 0, Y+ = 0 and

oy - {X2T+Xlt =¢(t) — 31 — (1 — m3 )0,

C e+ —n1|X — € TAcos(T)| — ;.
Applying the solvability condition (A.5) to (4.31) then gives
Xy = — ¢(t) — n3xy — (1 —m3)n,

(4.30)

(4.31)

2
Vie=— 21 1xi(t) — €A cos(T)| dT — ;.. (4.32)
27 0
G=—1.

This equation has the same form as (4.23) with a factor of €*~! in
front of A, due to the different choice for g;. Once again, for larger
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Table 2
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The asymptotic approximations for tipping values and critical values of 7, for different cases.

Tipping for the Stommel model with §£2 > 1 and 5, slowly varying

Slowly varying 71, only:
ekK1,A=B=0

Nasy ™~ M2 — »\% log e + corrections (2.25)

High frequency oscillation only:
€e=0,A#02>1:

N20sc = M3+
2(0—n3)m UEE
o TAcos (2(1—n3Jm ) (3.24)

Slowly varying 7, and £ > 1
eK1,A#£0, 2 =¢"

1/2<x<1:
A>1:

1/3
~ 27A

N2mixed ~ (m) &r + Magsc (4.28)

Tasv ~ Tlac — 57 log e + corrections (2.25)

A, £2 is larger and the influence of the oscillations is reduced.
Evaluating the integral, and using the same approach as for A < 1
yields (4.24) with A replaced with e*~1A. Recall that the results
such as those obtained in (4.23)-(4.25) are valid only for ¢*A =
A/$2 > eXy, so that, for A = O(1), the use of (4.32) is limited to
values of A > 1. This is consistent with the behavior of 12 ixed
in (4.28), which decreases and crosses 1, for A/£2 — O(¢). Then
for A > 1, we must use a different approximation, recognizing
that the critical value satisfies n, < 1y (¢ < 0), for which the
dynamics of X and Y change.

For A > 1, the contribution from the oscillations is pro-
portional to A/£2, and thus a small perturbation. Therefore the
tipping point is not advanced by the oscillations, as in the ex-
pression for 7,0sc, and we expect the tipping point to correspond
to ¢ < 0. Eq. (4.32) then takes the form of (2.20). Then there is
exponentially fast growth of the solution for 1, < 7, as observed
in Section 2.3, yielding the approximation to the tipping point as
125y from (2.25).

Fig. 10 compares the results for 7, pieq and 725y to the tipping
point obtained from (2.12). This illustrates the different behavior
of the tipping point for the two cases of A < 1, corresponding to
smaller §2 or larger A2™', and A > 1 corresponding to £ > 1.
Table 2 summarizes the different values of the tipping points and
critical values of 7, for the three different cases.

5. Summary and future work

Using a combination of local and multiple-scale analyses, we
provide expressions for the tipping points near a NSF bifurcation
in three settings. For the slowly varying bifurcation parameter of
“rate” ¢ only, there is a lag for the dynamic bifurcation relative to
the static NSF. The functional dependence on the rate parameter
€ is O(eloge), in contrast to €3 in the case of the smooth
SNB as (1.6). For high frequency oscillatory forcing without the
slowly varying bifurcation, there is an advance in the transi-
tion away from the branch of equilibria that terminates in the
NSF, where that advance depends linearly on the amplitude-to-
frequency ratio (A/$2) of the oscillations. With high frequency
forcing, an averaging approach based on multiple scales is ap-
plied. The nonlinearities then generate additional contributions to
the averaged behavior, shifting the tipping point. For combined
slowly varying bifurcation parameter and high frequency oscil-
latory forcing, there is a more complex functional dependence
on all parameters involved, capturing a competition between lag
and advance of the tipping point. The competition is observed
directly in the analytical expressions for the tipping points, where
there is a change in the leading order term that gives the location
of the tipping. We relate this change to the magnitude of the
amplitude-to-frequency ratio, A/£2, which characterizes the size
of the oscillations in the solution. Writing §2 in terms of the rate
parameter 2 €~*, the dominant parameter dependence of
the tipping point is different for the two ranges 1/2 < A < 1
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Fig. 10. Comparison of the critical value nomixeq (black solid line) valid for A < 1
and the limiting critical value g0 for large A (blue dotted line). Red stars
indicate tipping in the numerical solution to (2.12), corresponding to the value
of 12 — nzc at which Vv reaches the cut-off, v = 0.3. Upper: € = 0.005. Lower
€ = 0.05. Other parameters: ny =4, 13 =3/8, A= 1.

and A > 1, assuming A = O(1). Expressing this difference in
terms of A/£2, for large values the oscillation-driven advance
dominates the tipping behavior, while for small A/$2, the tipping
value asymptotes to the lag of the dynamic bifurcation. Detailed
quantitative comparisons are provided in Section 4.2 for the
tipping point behavior near the NSF vs. the results for a SNB as in
(1.6).

The methods for a NSF are developed in a single DoF model,
and the approaches are then adapted for the two DoF Stommel
model in (1.5) with slowly varying fresh water forcing parameter
n, and oscillatory forcing. In the case of high frequency forcing,
we show that the tipping behavior for the Stommel model near
noc is remarkably similar to that of the single DoF model, again
for three cases: (i) n; is slowly varying only, without oscillations
in ny or n (A = B = 0), (ii) n; and n, have high frequency
oscillations £2 > 1, without slow variation ¢ = 0; and (iii) there
is both slow variation and high frequency oscillation, with A, B,
and e all non-zero in (1.5). The direct application of the method
used in the single DoF case follows from a linear analysis near
1n2¢, indicating that when forced by high frequency oscillations,
the transition is primarily driven by fluctuations in Vv, with 7
essentially slaved to V. Then we approximate 7 with a quasi-
static approximation, leaving the calculation of the tipping point
in terms of a reduced problem similar to that given in the single
DoF system. This approximation allows us to avoid the construc-
tion of piecewise-smooth continuous solutions for V and 7 near
ny¢ in the high frequency case. Such constructions are necessary
for frequencies that are O(1) and smaller. However the analysis
in the high frequency case is simplified by the observation that
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as the focus and the saddle in the Stommel model approach the
NSF, the linearization of the system about them changes very
little (in stark contrast to the SNB case). Thus the whole system
can be studied locally by looking at the coalescence of two linear
systems separated by X. We leave this calculation for O(1) forcing
frequency for future work. The linear analysis that provides the
basis for this reduction is discussed in Section 3.4. Understanding
the limitations of the approximation for the high frequency cases
used in this study, we can also track the validity of the approxi-
mations for the tipping point over relevant frequency ranges and
indicate parameter ranges for which a fully 2D approximation is
needed.
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Appendix A. Appendices

A.1. Dynamic bifurcation for the Stommel model

To complete the expression for V in (2.23), we find the con-
stant Ky, using a quasi-steady approximation for vV ~ Vy + €V
for vV < 0. First, Vp and 7g are given by (2.16), and the correction
V; follows from solving (2.15), with Vy, and 75, obtained by
differentiating (2.16) and using 72, = —1. Then

1+mnm—m
(73 — D1 /(1 = V5> — n3 + 2V

Similar to (2.8)-(2.9), the expression for V < 0 provides the value
of 1, at which V() = 0, and thus also the initial condition for
V > 0 from which to determine Ky; in (2.23).

Vi=—

(A1)

A.2. High frequency oscillatory forcing: outer solutions

A.2.1. The single DoF model

As noted in Section 3.2 we provide steps to obtain a formal
multiple scales approximation of the outer solution of the non-
linear equation (3.1) for x < 0. While not critical for the results
for this case, these steps illustrate the approach used also in later
sections. The expansion is based on a slow time t and fast time
T = 2t for 2 > 1,

X(t, T) ~ xo(t, T)+ 27 x1(£, T) + 272,(¢, T) + 0(273).  (A2)
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Substituting (A.2) in (2.1), together with the multiple scales treat-
ment of the time derivative, x — x; + £~ 'xr, yields a sequence of
equations by collecting terms with like coefficients £2 7. The 0(1)
equation xor = 0 indicates that xo = xo(t). Then the next order
equations are

0271 Xy = —Xor — 4 — 2X0 + X3 4+ Asin(T) = Ry(t, T).

(A.3)

0(27%): Xor + X1, = —2x71 + 2%0x1 = Ro(t, T). (A4)

To ensure that x; and x, do not include secular terms that grow in
time, the right hand sides of (A.3)-(A.4) must satisfy a solvability
condition [19],

2

Ri(t,T)dT = 0. (A5)
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Applying (A.5) in the multiple scales context, the O(1) time scale t
is treated as a constant relative to the fast time T. Then we obtain
the following equations for xo(t) and x¢(T, t), for xo < 0,

Xor=——2X +X5 = x=1—/1+pn

, (A6)
X1 = Asin(T) = x1(t, T) = v4(t) — Acos(T).
Substituting (A.6) and applying (A.5) to R, in (A.4), yields
v = —2y/ 1+ puq (A7)

Noting that vy — 0 as t — oo for 4 > 0, we then obtain (3.1) as
the attracting solution near x.,.

A.2.2. The Stommel model

Following the approach in Appendix A.2.1, we substitute into
(1.5) the multiple scales expansions for V and 7 analogous to
(A.2). We seek the attracting solution for V < 0 near the lower
branch F away from n,.. Collecting coefficients of powers of 271,
the O(1) terms are Vor = Tor = 0, and

Vir = —Vor +m1 — 02 +n3(To — Vo)
onRY: —To + Vi + Asin(T), (A.8)
Tir = —Tor + 11— To(1 — Vo) + Bsin(T).

Applying a solvability condition similar to (A.5) to (A.8), we find
that the equations for Vy and 7y are (2.12) with fixed 7, and
A =B 0. Then for large t, Vy and 7y approach the stable
equilibrium on the lower branch F. Then solving (A.8) yields

(1;_:) —(g)cos(T)—}-(V“(t))a

A9
Tult) (A9)
where one can show that Vy1(t) — 0, T11(t) — O for large t.
Then the behavior near F away from 75, is given by (3.14).

A.3. Slow variation and oscillatory forcing: the single DoF model

The form of (4.1) suggests a multiple scales expansion that
includes both integer powers of € and ¢*

x(t,T) ~ xo(t, T) + €*x1(t, T) + max(e'*, €, +--- . (A.10)

Depending on whether A is less than or greater than 1, the higher
order correction may be O(e**!) or O(¢%*). For concreteness we
take A < 1 in the steps below, noting that A > 1 yields the
same results for xo and x;. Note that here we take A > 1/2 as
discussed in the main text. Substituting (A.10) into (4.1) gives a
sequence of equations at each order of €, with xo; = 0 implying
that xg = xo(7), and

R E
0(e?*)

xi7 = —u(t) — 2x0 + X5 + Asin(T), (A.11)

Xor = —El_AXOT — 2X1 + 2XOX1. (AlZ)
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Applying the solvability condition (A.5) to (A.11) and (A.12) we
find x¢ and x; as follows,
0 =— u(t) — 2x0(7) + x3(1), =

Xo(t) =1—+/1+ u(r), then

x17 =Asin(T) = x; = vy(tr) —Acos(T), and

(A13)
0=—e'*xp, — 20 +2(1 - l—i—u(r)) vy =
X T
v(r)=—e' oS
21+ p(r)
using u, = —1. Combining results yields the outer expansion
(4.2).

Appendix B. General results for non-autonomous ODEs with
quadratic nonlinearity

We use results from [17] for the general single DoF ODE
with a quadratic nonlinearity and a dynamic bifurcation near a
saddle-node bifurcation,

% =Da + ko + kix + kox?,

. (B.1)
a=—c¢,

where € <« 1. Systems of this form appear in many physical
problems like Erneux [20] and [6]. Following the approach of [17],
where x and a are rescaled with €'/3 and €%/3, and x; is rewritten
in terms of x,, the tipping point for x is obtained in terms of a
singularity corresponding to the first zero of the Airy function,
Ai(&,) = 0. Specifically, the tipping point is then

2\’ a k2
ip = (m) & — BS for a;=ko+ —

— (B.2)
Detailed calculations are provided in [6].

4|k2|,
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