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a b s t r a c t

We study the behavior at tipping points close to non-smooth fold bifurcations in non-autonomous
systems. The focus is the Stommel-Box, and related climate models, which are piecewise-smooth
continuous dynamical systems, modeling thermohaline circulation. We obtain explicit asymptotic
expressions for the behavior at tipping points in the settings of both slowly varying freshwater forcing
and rapidly oscillatory fluctuations. The results, based on combined multiple scale and local analyses,
provide conditions for the sudden transitions between temperature-dominated and salinity-dominated
states. In the context of high frequency oscillations, a multiple scale averaging approach can be used
instead of the usual geometric approach normally required for piecewise-smooth continuous systems.
The explicit parametric dependencies of advances and lags in the tipping show a competition between
dynamic features of the model. We make a contrast between the behavior of tipping points close to
both smooth Saddle–Node Bifurcations and the non-smooth systems studied on this paper. In particular
we show that the non-smooth case has earlier and more abrupt transitions. This result has clear
implications for the design of early warning signals for tipping in the case of the non-smooth dynamical
systems which often arise in climate models.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Overview

Various models of phenomena in climate have been used both
o model and to predict abrupt changes in systems with a wide
ange of time-scales. As a result, there are many climate mod-
ls that include non-smooth features approximating transitions
ver short times relative to climate time-scales. These include
tate-dependent switches, non-smooth functional descriptions of
ynamics, and discrete states delineated by boundaries. Examples
f these are given by: the PP04 model of sudden changes in
arbon dioxide emission rates during glacial cycles [1,2], rain-
all [3], and the motion of the ice fronts in a glacial cycle [4],
s well as the Stommel box model for thermohaline circulation
hat we study in this paper. In all such systems we see both the
ynamics commonly found in smooth systems (such as possibly
o-existing periodic and chaotic states and transitions between
hem including tipping points), as well as dynamical behaviors
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ttps://doi.org/10.1016/j.physd.2021.132948
167-2789/© 2021 Elsevier B.V. All rights reserved.
specific to non-smooth systems, such as grazing, sliding, and
non-smooth bifurcations between different co-existing states [5].

Transitions in the context of bi-stability have been studied in
many contexts. A common setting is where stability is lost via
bifurcations, and the system experiences hysteresis as parame-
ters vary through these critical points, depending upon the form
of the parameter variation. For these non-autonomous systems
with varying parameters the transitions between states may be
qualitatively different, depending on the nonlinearities, the types
of underlying static bifurcations, and the vector fields near the
stable equilibria.

Throughout this paper we use the term tipping to refer to a
sudden transition from one qualitatively different state to another
in the non-autonomous setting. We note the contrast with a
bifurcation, a qualitative change in the geometry of a system
in which its flow or phase portrait is altered in the dynamical
context. Tipping is used in a wider variety of settings, generi-
cally a qualitative change in behavior along a particular time-
varying trajectory. The two are sometimes related, as tipping
may be related to a bifurcation point or some other separatrix
of a particular object in the flow, such as a fold point of a slow
manifold or stable manifold of a saddle. This relationship is in-
deed present in the systems we study here: the non-autonomous

https://doi.org/10.1016/j.physd.2021.132948
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ystems with time-varying parameters have autonomous coun-
erparts with static parameters treated as bifurcation parameters.
iven this connection, we use the term dynamic bifurcation to
efer to the specific setting where a parameter value varies in
ime near or through the critical value of a static bifurcation
arameter from an underlying autonomous system.
In this paper we focus on the dynamic transitions near Non-

mooth Fold (NSF) bifurcations, obtaining explicit results that can
e contrasted with analogous transitions near smooth Saddle–
ode Bifurcations (SNBs) [6]. We obtain explicit asymptotic ex-
ressions for the tipping points in the Stommel Box climate
odel. In particular we find conditions for sudden transitions
etween temperature-dominated and salinity-dominated states.
e look at time variation which is a combination of a slow

hange in the mean parameter value combined with a rapidly
scillating (seasonal) perturbation, and determine when these
ead to rapid transitions between qualitatively different states.
rom the comparisons with the tipping points in smooth sys-
ems [6], there are clear implications for the development of early
arning signals, given the close connection with the dynamics
f the underlying reduced system [7,8]. Specifically we show
hat tipping occurs earlier, and more abruptly in the non-smooth
odel. This is because in the non-smooth case the eigenvalues
ssociated with the linearization about the fixed points do not
rop to zero at the tipping point and hence, unlike the smooth
ase, they do not generate a warning signal that tipping is likely
o occur.

.2. The Stommel Box model

A well-known class of models, where salinity-dominated and
emperature-dominated states are bi-stable, is that of thermoha-
ine circulation (THC). Here abrupt qualitative changes are pos-
ible, see Alley [9], Marotzke [10], or Rahmstorf [11] and [12].
ecently Rahmstorf was able to find evidence of weakening oc-
urring around these abrupt changes in a system of ocean pat-
erns known as the Atlantic meridional overturning circulation
AMOC) [13]. This evidence of ocean dynamics responding to
hanges in surface temperature underscores the need to under-
tand the transitions in these types of systems. We note that such
ransitions can be either smooth or non-smooth (as described
n [5]). In this paper we focus on the commonly used Stommel
wo box model [14] as an exemplar for studying the transitions
n the THC (or more generally, the dynamical impact of NSF
ifurcations between equilibrium states) in a realistic climate
odel. We begin with the non-dimensionalized Stommel model
s given in [15],

Ṫ = η1 − T (1+ |T − S|),
Ṡ = η2 − S(η3 + |T − S|).

(1.1)

he variables T and S are the dimensionless equatorial-to-pole
differences for temperature and salinity, respectively. The param-
eters η1, η2, and η3 are also dimensionless quantities, with η1
representing thermal variation, η2 as the freshwater flux, and η3
as the ratio of relaxation times of temperature and salinity. The
dimensionless AMOC strength is captured by the difference

V = T − S,

which plays an important role throughout the dynamical analysis.
With the dependence on the absolute value |T − S|, (1.1) is
non-smooth dynamical system. It has a discontinuity surface
t

= {(T , S) : T − S ≡ V = 0} . (1.2)

he equations for T and S then describe different dynamics in
+ and Σ− for
+
= {(T , S) : T −S > 0} Σ−

= {(T , S) : T −S < 0} . (1.3)
 r

2

he model is non-smooth through the action of the nonlinearity
T − S| and takes the form of a piecewise-smooth continuous
ystem with a degree of discontinuity of 2 [5,16].

A standard analysis of the static model, where typically η1 and
3 are fixed, and η2 is treated as a bifurcation parameter, yields
tability regions for the temperature and stability dominated
tates. Taking values of η1 and η3 as is usual in applications [15],
here are either 3 or 1 fixed points. In the case of 3 fixed points,
e identify two different critical points, denoted η2sf and η2c with
2sf > η2c . For η2sf > η2 > η2c , there are two fixed points in Σ+

hich are a saddle (S) and a stable node (N), which loses stability
t the (smooth) SNB η2sf . Further for η2 > η2c in Σ− there is a
ixed point which is a stable focus (F). If η2 < η2c there is a single
table node N in Σ+. These are illustrated in Fig. 1 for V vs. η2.
ote that N corresponds to the temperature-dominated state, and
corresponds to the salinity-dominated state.
The critical point η2c , indicated by ∗ in Fig. 1 corresponds to

border collision bifurcation (BCB) arising when F and S intersect
ith Σ . This critical point can be obtained from (1.1) as

2c ≡ η1η3 . (1.4)

his bifurcation is a Non-Smooth Fold (NSF), in which F and S
o-exist if η2 > η2c and neither exist if η2 < η2c . Note that the
oalescence of a saddle S with a focus F can only occur because
his is a non-smooth system. Such bifurcations do not arise in
mooth systems where a SNB necessarily indicates collision of
stable node and a saddle. The mathematical structure near

η2c, 0) is substantially different from that near the smooth SNB
ηsf ,V2sf ), indicated by o in Fig. 1. In particular at a NSF the real
arts of the eigenvalues of the linearizations of either of the fixed
oints do not drop to zero.
In general, parameters are not static in climate models of

his type, but rather can oscillate (seasonally for example) with
mean that can also drift over time. Variation of a parameter

typically η2 in (1.1)) can lead to tipping, which in the context
f this study corresponds to a solution starting at the focus F
or N) that does not stay close to F (or N) but rapidly evolves
o a qualitatively different state, typically to N (or F) or to a large
mplitude periodic orbit. Tipping often occurs when the variation
rives a solution starting near F or N to encounter the unstable
anifold of saddle S, or via a dynamic bifurcation through the
nderlying static fold point. Given the different characteristics of
he fold points η2c and η2sf , we expect clear differences between
he tipping near these different critical values. We note that
ipping close to a NSF is different in many respects from tipping
lose to a SNB, because, as noted above, the eigenvalues of the
inearization of the system about the fixed point do not drop to
ero in the non-smooth case.
To capture the impact of this parameter variation, we consider

he case where both η2 and η1 oscillate rapidly, with the mean
ehavior of η2 varying slowly in time. Specifically, we take

1 → η1 + B sin(Ωt) and η2 → η2(t)+ B̂ sin(Ωt)

n (1.1), where η̇2 = −ϵ with ϵ ≪ 1 and Ω ≫ 1. We rewrite
1.1) in terms of the AMOC strength V , which plays the role of
he switch parameter (measuring the closeness of the solution to
), and set A = B− B̂ to get

V̇ = η1 − η2(t)+ η3(T − V)− T − V|V| + A sinΩt,
Ṫ = η1 − T (1+ |V|)+ B sinΩt
η̇2 = −ϵ, ϵ ≪ 1, Ω ≫ 1 .

(1.5)

s is typical for applied settings [15], we follow certain parameter
ssumptions; first, that η3 < 1, which results in a SNB in (1.5)
or the branch V > 0. It is frequently assumed that the salinity’s
elaxation time is much longer than that of temperature, giving
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Fig. 1. Tipping close to a NSF via dynamic bifurcation in (1.5) with both slowly varying and rapid oscillatory behavior of the parameter η2 Blue and red curves
ive the equilibria for static parameters, solid lines indicate stable equilibria as a node (N) and focus (F), and the dotted line as a saddle (S). o indicates the smooth
NB at (η2sf ,V2sf ), and ∗ indicates the NSF bifurcation at (η2c , 0). The black solid line corresponds to the solution of (1.5) with η̇2 = −ϵ with no oscillatory forcing
A = B = 0). Magenta solutions correspond to both η̇2 = −ϵ and A and B non-zero, with Ω ≫ 1, the ratio of A/Ω = 0.05 (transition away from F closer to η2c ) and
/Ω = 0.125. Here η1 = 3, η3 = 0.3, and ϵ = 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.).
3 < 1. Furthermore, we take η1 = O(1) so that η2c = η3η1 =

(1) and η2c < η2sf . That is, there is a non-trivial bi-stability range
for the two stable equilibria on the branches N (V > 0) and F
V < 0) as shown in Fig. 1. For convenience of notation, we take
A and B to be non-negative in our analysis below. The analysis for
A < 0 or B < 0 is analogous, and yields the same identification
f the tipping points in the case of high frequency forcing.
Our primary focus in this paper is on the tipping behavior as

2(t) in (1.5) varies dynamically close to the static NSF bifurcation
point η2c . Fig. 1 illustrates this tipping behavior, where there is a
elatively rapid transition between the salinity- and temperature-
ominated states, F and N. From the results shown in Fig. 1,
ithout oscillatory forcing, the tipping via dynamic bifurcation

s lagged relative to η2c . In contrast, the tipping from F to N
s advanced when there is oscillatory forcing, with increasing
alues of A/Ω increasing this advance. Below we explore the
eparate and combined effects of both slowly varying η2 and a
igh frequency oscillatory forcing Ω ≫ 1 that drives tipping near
he NSF point.

The influence of these types of variations has been explored in
he context of a SNB [6], based on an analysis developed for its
ormal form, and employed in other applications. With a slowly
arying bifurcation parameter a(t), this normal form is

ż(t) = a(t)− z2 + A sin(Ωt), a = a0 − ϵt . (1.6)

ombined multiple scales and local analyses yield analytical ex-
ressions for the location of the tipping point via dynamic bi-
urcation, relative to the static SNB at ac = 0, xc = 0. Results
re qualitatively similar to those for the NSF shown in Fig. 1,
amely, the tipping is lagged for the dynamic bifurcation with no
scillations A = 0, ϵ ̸= 0, advanced for oscillations only A ̸= 0,

ϵ = 0, and the lag and advance compete for the case with both
slowly varying bifurcation parameter and oscillatory forcing.
3

Our goal in this paper is to develop a related multiple scale
analytical approach for approximating the tipping point in the
setting of a dynamic NSF bifurcation, including the case where
there is also high frequency forcing. The analysis provides both
precise quantitative and qualitative descriptions of the tipping
behavior, from which we can determine the influence of dynamic
parameters as well as of the oscillatory forcing. It might be ex-
pected, given that we are considering non-smooth systems, that it
is necessary to construct piecewise-smooth solutions from which
to obtain the tipping behavior [16]. However, for high frequency
oscillatory forcing, we instead use a multiple scales approach
in which we derive equations for the mean of the oscillatory
solutions. When the oscillations cross the switching manifold
Σ , they do not simply average out, but rather give nonlinear
contributions to the dynamics of the mean behavior. From the
nonlinear dynamics of the mean, we can then determine the shift
in the tipping point relative to the static case. Furthermore, the
approach provides information about the validity of the multiple
scale approach based on the high frequency forcing oscillations.
Then we have the range of frequencies over which the approxi-
mations are valid, relative to other parameters such the strength
of the forcing and time scale of the dynamic bifurcation. These
results also indicate the conditions under which a piecewise
construction of the solution is needed to predict tipping, instead
of capturing the averaged nonlinear effects of the non-smooth
dynamics.

We develop this multi-scale approach first in the setting of a
single degree-of-freedom (DoF) model with an underlying static
bifurcation structure that mirrors certain aspects of the static
Stommel Box model (1.5) close to the NSF. This is a relatively
generic and simple model with a region of bi-stability of two sta-
ble states that lose stability via a smooth SNB or NSF bifurcation

(in this case given by a coalescence of a saddle point and a node
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Fig. 2. (Left) The bifurcation diagram for (2.1) with stable upper and lower equilibrium branches in red solid lines and the unstable middle branch shown with a
red dash-dotted line. The NSF bifurcation occurs at (0,0) with the blue ∗ and the SNB occurs at (1,1) with the red o. The numerical solution (blue dotted line) to
2.1) is shown for A = 0 and ϵ = 0.05. (Right) The tipping value for µsv approximated by (2.11) (solid red line) and the numerical result from (2.1) (black dots)
with A = 0, taking xtip = 1.
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with the discontinuity surface Σx) for this single DoF system.
The model provides a framework in which we can develop the
asymptotic expressions for tipping points in three cases: slowly
varying bifurcation parameter only, high frequency oscillatory
forcing only, and both types of variation combined. We then
extend the method to the case of the full two DoF Stommel Box
model. The approach uses multiple scale approximations, based
on the different time scales associated with the slow rate ϵ ≪ 1 of
variation near or through the static bifurcation value, the period
of the oscillations proportional to Ω−1

≪ 1, and the time scale
t of the model. The multiple scales analysis is applied to both
outer and inner expansions, relevant away from and near the
tipping point, respectively. Both the multiple time scales and the
development of a local expansion are necessary to approximate
the solution, leading to explicit expressions for the tipping points
in different settings.

1.3. Paper summary

The remainder of this paper is organized as follows. In Sec-
tion 2 we consider the case of the dynamic bifurcation where the
ifurcation parameter varies slowly through a static NSF in the
ingle DoF problem and without oscillatory forcing. Section 3 cov-
rs the case where the bifurcation parameter is static and there
s high frequency oscillatory forcing. It also discusses conditions
nder which the multiple scale analysis is appropriate to study
ipping, in contrast to situations that would require a geometric-
ased approach that exploits the piecewise-smoooth structure
f the problem [16] (postponed to future work). In Section 4
e consider the combined effects of slowly varying bifurcation
arameter and high frequency oscillatory forcing. In each section
e first demonstrate the approach on the single DoF model,
onstructing both outer and local expansions for the solutions
rom which we determine the tipping point or critical value of
he bifurcation parameter. Then we use this same approach in
he Stommel model to identify tipping points, the critical values
f η2 in each setting.

. Dynamic bifurcation for a NSF

.1. Overview

In this section we look at the problem of a dynamic bifurcation
lose to the non-smooth fold (NSF) in both the Stommel model
nd in the single DoF analogy to this model. We consider the
ase of a slowly changing bifurcation parameter without any
scillatory forcing. We show that in both cases the tipping close
o the NSF is lagged relative to the location of the NSF. This
4

ehavior is qualitatively similar to that found close to a saddle–
ode bifurcation (SNB). However the magnitude of the lag is
ifferent, as the eigenvalues of the fixed points do not drop to
ero at the NSF, unlike the case of the SNB.

.2. Dynamic bifurcation in the single degree-of-freedom model

In this subsection we use a single DoF non-smooth model to
evelop our approach and results for the dynamic bifurcation. In
articular we consider the model:
˙ = −µ + 2|x| − x|x| + A sin(Ωt), µ̇ = −ϵ,

(0) = x0, µ(0) = µ0 > 0, ϵ ≪ 1 .
(2.1)

aking A = 0 in this case. As in the Stommel model, the presence
f the |x| term means that there is a discontinuity surface at
= 0, denoted by Σx. Across Σx the flow and its deriva-

ives are continuous, but the second derivative of the flow is
iscontinuous.
As in the Stommel model, the underlying static model with

= 0 has two equilibrium branches, denoted x+eq and x−eq in Fig. 2,
ith x > 0 and x < 0, respectively. The equilibrium x+eq loses
tability via a SNB at µsnb = 1, xsnb = 1, so that it is stable for
> 1 and unstable for 0 < x < 1. The discontinuity surface
x yields a NSF bifurcation, where the equilibrium branch x−eq

erminates at µc = 0, xc = 0, as shown in Fig. 2. The NSF arises
hen the saddle and the node intersect with Σx. (This differs

rom the Stommel model in which we see an intersection of a
addle with a focus at the NSF). Observe that the corresponding
igenvalues of the linearization at the NSF about the saddle and
he node are ±2 and hence do not vanish.

For slowly varying µ without oscillations (A = 0) we deter-
ine values of µ for which we have (non-smooth) tipping points

or dynamic bifurcations), at which the solution transitions from
ollowing x−eq to following x+eq. We take initial conditions near
he lower branch given by x0 = 1 −

√
1+ µ0 < 0, and use a

combination of outer and local asymptotic approximations for the
solution x.

We first give an approximation for x for O(1) slowly varying
alues of µ > 0, that is, away from the NSF value of µc = 0.

Termed the outer expansion, it may appear that this approx-
imation is not relevant to tipping, since it describes behavior
away from µc = 0 where the dynamics follow x−eq rather than
xperiencing tipping to another solution. However, this expan-
ion provides the motivation for a valuable rescaling for µ near
c = 0, on which an inner expansion is based. Approximating the
olution with this inner expansion yields the calculation of the
ipping point. To get the outer expansion, we look for a solution
s a function of the slow time τ = ϵt ,

(τ ) ∼ x0(τ )+ϵx1(τ )+ϵ2x2(τ )+O(ϵ3), ẋ = ϵ
dx

≡ ϵxτ . (2.2)

dτ
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ubstituting into (2.1) yields the sequence of equations at orders
f ϵ j,

(1) : 0 = −µ(t)− 2x0 + x20, (2.3)

O(ϵ) : x0τ = −2x1 + 2x1x0. (2.4)

ote that as x0 < 0 we take |x| = −x in this approximation,
ielding the asymptotic result for ϵ ≪ 1

(t) ∼ 1−
√
1+ µ(t)−

ϵ

4(1+ µ(t))
+ O(ϵ2). (2.5)

his solution is attracting for x < 0 and µ = O(1), as can be
erified through a linear stability analysis, based on a multiple
cale analysis. This approximation is no longer valid for values
f µ = O(ϵ), since x0 = O(ϵ) and the ordering of terms in (2.5)
s no longer correct. Furthermore, for µ approaching 0, we must
onsider the possibility that x is not strictly negative, so that the
on-smooth dynamics starts to play a role. Thus we use a local
nalysis near the critical value (µc, xc) = (0, 0). We rescale x and

µ near this value via

x = ϵ y, µ = ϵ m, (2.6)

which we substitute into (2.1) to get the local equation,

ẏ =−m(t)+ 2|y| − ϵ|y|2,
ṁ =− 1.

(2.7)

From (2.1) we provide an approximation for y (and thus x) near
the NSF at µc = 0.

Since we are interested in the behavior of y as a function
of m, we write the differentiation on y directly in terms of the
parameter m. Taking y ∼ y0 + ϵy1, we find the leading order
equation for y0,

dy0
dm

= m− 2|y0|. (2.8)

For m > 0, the leading order approximation for the attracting
olution is y0 = −m/2 − 1/4, which is the same as the leading
rder approximation to (2.5) written in terms of (2.6). From that

result, we conclude that y0(−1/2) = 0 and that y0 > 0 for
m < −1/2. Then we find the leading order approximation for
the solution of (2.7) for m < −1/2,

y+(m) = Ce−2m
+

m
2
−

1
4
+ O(ϵ) for m < −

1
2 and y > 0,

corresponding to the solution crossing Σx. Here C is chosen so
that y+(−1/2) = 0, for continuity of the solution across y = 0. In
terms of the original variables, we then use (2.6) to provide the
local approximation of x for |µ| ≪ 1,

x(t) ∼ −
µ

2 −
ϵ
4 , for µ > −

ϵ
2

x(t) ∼ ϵCe−2µ(t)/ϵ
+

µ(t)
2

−
ϵ
2 + o(ϵ2), for µ < −

ϵ
2 , C = (2e)−1 .

(2.9)

ote that this solution grows exponentially fast for µ < −ϵ/2,
o that from (2.9) we identify the tipping value µsv for which the
olution x reaches x = xtip. A leading order approximation to µsv
n ϵ is given by

0
sv ∼

1
2
ϵ log(ϵ) , (2.10)

and (2.10) can be used to obtain higher order corrections from
(2.9),

µsv ∼ µ0
sv + ϵµ1

sv + ϵ2 log ϵ + µ1
sv − 1/2

2xtip

µ1
=

log(C/xtip)
. (2.11)
sv 2 w

5

In Fig. 2 we compare (2.11) to the tipping value µ at which x
reaches a critical value xtip = 1, obtained from simulations of the
full system (2.1) with slowly varying µ and A = 0.

We contrast the result (2.11) with the tipping value for the
ynamic bifurcation near a SNB as in (1.6) with A = 0, studied

in [17]. There the tipping value of a = asv is negative, so that
the dynamic bifurcation is lagged relative to the static SNB value
a = 0, with

0 > asv = O(ϵ2/3).

Note that this dependence of the tipping value on the slow rate
ϵ is different from that of the dynamic NSF bifurcation given
in (2.11). Then the dynamic bifurcations near an SNB and NSF
are lagged relative to the corresponding static bifurcation points,
but there is a longer lag for the SNB than for the NSF of (2.1).
This is discussed further below, in the context of additional rapid
oscillatory forcing (see Section 4.3).

2.3. Dynamic bifurcation in the Stommel model

We now turn our attention to (1.5), the transformed Stommel
two-box model with slowly varying fresh water flux η2,

V̇ = η1 − η2 + η3(T − V)− T − V|V|
Ṫ = η1 − T (1+ |V|)
η̇2 = −ϵ

T (0) = Ti, V(0) = Vi, η2(0) = η2 i > η1η3 .

(2.12)

Here we have set A = B = 0 in (1.5), postponing the treatment
of periodic forcing to later sections.

As in the analysis of (2.1), we seek an analytical expression
for the tipping point η2sv as η2 varies through the NSF, η2c ≡

η1η3. This tipping point corresponds to the rapid transition from
solutions near the salinity-dominated branch of focus points F
to the temperature-dominated branch of nodes N in Fig. 1. We
again first find the outer expansion, approximating the behavior
away from η2c where the dynamics follow F rather than experi-
encing tipping to another solution. This expansion again provides
the motivation for a valuable rescaling for η2 near η2c , and for
an inner expansion for the solution, from which we derive the
tipping point.

With a focus on the lower branch F with V < 0, we approxi-
mate the slowly varying outer solution V(τ ), T (τ ), away from η2c ,
y substituting in (2.12) a regular asymptotic expansion in ϵ,

V(τ ) ∼V0(τ )+ ϵV1(τ )+ ϵ2V2 + · · ·

T (τ ) ∼T0(τ )+ ϵT1(τ )+ ϵ2T2(τ )+ · · · ,
(2.13)

sing τ = ϵt . For V < 0 we obtain the sequence of equations as
oefficients of powers of ϵ,

(1) :
{
0 = η1 − η2(τ )+ η3(T0 − V0)− T0 + V2

0 ,

0 = η1 − T0(1− V0),
(2.14)

O(ϵ) :
{
V0τ = η3(T1 − V1)− T1 + 2V1V0,

T0τ = −T1(1− V0)+ V1T0 .
(2.15)

e solve (2.14) simultaneously for the pseudo-equilibria, treating
2(τ ) as a constant in the approximation,

T0(V0) =
η1

1− V0
,

0 = η1 − η2(τ )− T0(V0)+ η3(T0(V0)− V0)+ V 2
0 .

(2.16)

orrections to the pseudo-equilibrium from (2.16) can be ob-
ained from (2.15), which are used below in the detailed calcu-
ation of the tipping point.

The expansion (2.13) breaks down if V approaches zero, and
e note this is the case in the vicinity of the NSF, (T ,V, η ) =
2c
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η1, 0, η1η3). We perform a separate local analysis analogous to
Section 2.2 using a similar scaling, at η2c = η1η3. Specifically, we
substitute

η2 = η1η3 + ϵζ , V = ϵX, T = η1 + ϵY . (2.17)

into (2.12) to get

Ẋ = −ζ (t)− η3X − (1− η3)Y − ϵX |X |,
Ẏ = −η1|X | − Y − ϵ|X |Y , ζ̇ = −1. (2.18)

By linearizing (2.18) for X ≪ 1 and Y ≪ 1, specifically,(
Ẋ
Ẏ

)
=

(
−η3 −(1− η3)

−η1sgn(X) −1

)(
X
Y

)
−

(
ζ (t)
0

)
, (2.19)

we can approximate the location of the tipping point for solutions
transitioning from F to N.

For ζ > 0 and X < 0 (V < 0) the eigenvalues in (2.19) have
negative real part for η3 < 1 and η1 > 1 such that η3η1 = O(1),
as discussed following (1.4). Then we do not see growth of the
solution away from F. As ζ decreases, eventually we have V > 0
and the dynamics changes. Using ζ̇ = −1 together with the chain
rule d

dt =
d
dζ

dζ
dt to replace d

dt with −
d
dζ in (2.19) we solve(

Xζ

Yζ

)
= M

(
X
Y

)
+

(
ζ

0

)
, M =

(
η3 1− η3
η1 1

)
. (2.20)

he solution is based on the corresponding eigenvalues

1,2 =
η3 + 1

2
±

1
2

√
(1+ η3)2 + 4(η1(1− η3)− η3) , (2.21)

hich are real, since η3 < 1 guarantees that the discriminant
s always positive. However, since we have one positive and one
egative eigenvalue, λ1 < 0 < λ2, we have exponential growth
or X > 0, which takes the form for X = (X, Y )⊤,

X(ζ ) ∼K1eλ1ζ
+ K2eλ2ζ

+ C1ζ + C2 . (2.22)

ere C1 C2 are obtained from the particular solution of (2.20),
amely, C1 = MC2, MC1 = −(1 0)⊤. Writing (2.22) in terms of
he original variables V = ϵX and η2 = η2c + ϵζ , we find the
pproximation

(t) ∼ C11(η2(t)− η2c)+ ϵC12 + ϵK11eλ1(η2(t)−η2c )/ϵ + O(ϵ2) .

Cj = (Cj1 Cj2)⊤ Kj = (Kj1 Kj2)⊤ (2.23)

ote that we drop the term with coefficient K2 since λ2 > 0 and
hat term is exponentially small for ζ < 0.

Approximating K11 as described in Appendix A.1, using (2.16)
nd the expressions for Cj, completes the approximation of V
n (2.23). Taking logarithms in (2.23) yields an equation for the
ipping value η2sv, at which V reaches Vtip,

2sv ∼ η2c −
ϵ

λ1

[
log ϵ − log(Vtip)+ log K11

]
−

e−λ1(η2sv−η2c )/ϵ

K11λ1
(C11(η2sv − η2c)+ ϵC12) . (2.24)

imilar to µsv in (2.10)–(2.11), we obtain the leading order con-
ribution to η2sv which is then in turn used to compute higher
rder corrections,

2sv ∼ η0
2sv + η1

2sv +
ϵ2

2Vtip

[
C11

λ1
log ϵ − C11η

1
2sv + ϵC12

]
(2.25)

0
2sv = η2c −

ϵ

λ1
log ϵ η1

2sv =
ϵ

λ1

[
− log(Vtip)+ log(K11)

]
.

The expression for η2sv results in a lag in the tipping of
O(ϵ ln ϵ) relative to the NSF bifurcation η2c . It is noticeably similar
to the leading order term for µsv from Section 2.2. In Fig. 3
we compare the analytical approximation for η2sv to numerical
results.
6

Fig. 3. The tipping value for η2 − η2c approximated by (2.24) (solid red line)
ompared to the numerical result from (2.12) (black stars) with A = 0, taking

Vtip = .5, η1 = 4 and η3 =
3
8 .

. High frequency oscillatory forcing

.1. Overview

In this section we look at the influence of high frequency
scillatory forcing on the attracting solutions in both the Stommel
odel and in the single DoF analogous model (2.1) close to the

NSF. In both cases we restrict our attention to a constant bifurca-
tion parameter, that can be viewed as the mean of the forcing. We
determine the critical value of the bifurcation parameter at which
tipping is observed, with the attracting solution shifting from the
lower branch (x−eq in (2.1) and F in the Stommel model) to the
upper branch (x+eq in (2.1) and N in the Stommel model). In both
ases the critical value of the bifurcation parameter is greater
han the value of the static NSF, corresponding to an advance
f the critical parameter. While in general one might expect in
he non-smooth setting to have to construct a piecewise-smooth-
ype solution as the basis for a stability analysis [16], in the case
f high frequency forcing we develop a multiple scale, averaging-
ype approach that captures the contribution of the oscillations
o the shift in the critical parameter value.

.2. The single DoF model

We first analyze the influence of oscillatory (seasonal) forcing
ear the NSF bifurcation in the single DoF model (2.1) for constant
> 0. That is, we take A ∼ O(1), Ω ≫ 1 and ϵ = 0. As for

he Stommel model, we take A > 0 for convenience of notation,
oting that the same results for tipping are obtained for A < 0.
or high frequency forcing, Ω ≫ 1, we have both an O(1) time
cale t for the overall evolution and a fast time scale T = Ωt for
he forcing. We use a multiple scales approximation x(t) = x(t, T )
o give an asymptotic approximation for the attracting solution
ear x−eq. We note that for large Ω the response of the solution to
he forcing is O(1/Ω) in magnitude, and this guides our overall
nalysis. From the behavior of this approximation, we obtain the
ritical value of µ below which there is no longer an attracting
olution near x−eq [18].
First we determine the outer solution for which x(t) < 0. A

imple ansatz of the form x(t) = x+R cos(Ωt) yields the structure
of the attracting periodic behavior for large t ,

x ∼ 1−
√
1+ µ − Ω−1A cos(Ωt)+ O(Ω−2). (3.1)

The form of (3.1) is motivated via a linear analysis or via a
multiple scales analysis. The details of determining (3.1) via a
formal multiple scales expansion are outlined in Appendix A.2.1.
While this approach is not needed to obtain this simple outer
solution, the steps provide a useful template, valuable for more
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complex cases in the sections below, for both outer solutions and
local solutions from which the tipping values are determined.

Since the result is obtained only for the region for which
x < 0, the solution in the form (3.1) is valid only when A/Ω <

1−
√
1+ µ|. If µ is small this region is approximated by taking

the range A/Ω < µ/2.
For Ω ≫ 1, we now look for an inner solution for µ ≪ 1,

pecifically for

< µ ≤
2A
Ω

. (3.2)

hus we consider the solution as µ approaches µc = 0, with x(t)
then taking both positive and negative values and hence with the
non-smooth effects being important. We rescale x and µ via a
traightforward balancing argument,

= Ω−1µ, x = Ω−1y , (3.3)

nd introduce a multiple scales expansion for the local variable
,

(t, T ) ∼ y0(t, T )+ Ω−1y1(t, T )+ O(Ω−2). (3.4)

ubstituting this expansion into (2.1) yields

O(1) : y0T = A sin(T ), (3.5)

(Ω−1) : y1T + y0t = −m+ 2|y0|. (3.6)

olving the leading order equation (3.5) yields y0(t, T ) = v0(t)−
cos(T ) for an unknown function v0(t). Then applying the solv-
bility condition (A.5) to (3.6) leads to

0t (t) = −m+
1
π

∫ 2π

0
|v0(t)− A cos(T )| dT . (3.7)

The case where A < |v0| for all t yields v0 ≈ −m/2, corre-
sponding to the expression (3.1) for µ ≪ 1 and x < 0 for all t .
herefore we restrict our attention to the case where A > |v0|

and µ > 0, corresponding to the solution x that crosses the
discontinuity boundary Σx. In order to evaluate the integral in
(3.7), we break the integration into regions based on the sign of
v0 − A cos(T ), noting that the zeros of the integrand occur at

T = T1 = arccos(v0/A),
T = T2 = 2π − arccos(v0/A), 0 < T1 < T2 < 2π ,

(3.8)

as shown in Fig. 4. Treating v0(t) as a constant relative to T under
the multiple scales approximation, we evaluate the integral in
7

(3.7) and use sin(arccos(x)) =
√
1− x2 to get the equation for

v0,

v0t = −m+
4
π

(
arcsin(v0/A)v0 +

√
A2 − v2

0

)
= F(v0;m) . (3.9)

We find the critical value of m below which there is no stable
equilibrium solution to (3.9) for v0. The function F(v0;m) (3.9)
as a minimum with respect to v0 at v0 = 0. For values of m
bove the critical value m = mosc, F(v∗

0;m) = 0 at the stable
quilibrium v∗

0 < 0 of (3.9). At the critical value of m = mosc,
(0;mosc) = 0. Thus, we find that there is no attracting solution
or v0 for m < mosc = 4A/π . Written in terms of µ, mosc is then

osc ≡
4A
πΩ

. (3.10)

rom (3.9) we can obtain the equilibrium for v0 implicitly for µ >

osc. A Taylor expansion about the critical value, for v0/A = 0,
ields the approximate equation

0t ≈ −m+
4A
π

+
2

πA
v2
0, (3.11)

hich gives an explicit expression approximating the equilibrium
olution

0 ≈ −

√
πA
2

(
m−

4A
π

)
. (3.12)

hen, the approximate attracting solution to (2.1) for µ > µosc,
n terms of x and µ is

x(t) ∼−

√
Ω−1

(
µ −

4|A|
πΩ

)
− Ω−1A cos(Ωt)+ O(Ω−2).

(3.13)

For µ < µosc , there is no attracting solution near the lower
bifurcation branch x−eq, but instead |v0| increases rapidly, moving
away from x−eq, due to contributions from the absolute value
nonlinearity in (3.7). This is shown in Fig. 5, where the attracting
solution for µ < µosc obtained computationally is shown cen-
tered around the upper bifurcation branch x+eq, while for µ >

µosc the attracting solution x remains near x−eq. Since µosc > 0
for A ̸= 0, the oscillations advance this critical value relative
to µc = 0 from the static, unforced case (A = 0). Then the
range of µ for which there is bi-stability of x−eq and x+eq is reduced
with oscillatory forcing, implying that this bi-stable region can be
eliminated entirely for certain A and Ω .



C. Budd, C. Griffith and R. Kuske Physica D 432 (2022) 132948

w
f

f
(

t
v
A
F
i
a
t
a

3

f
t

η

f

a
i

T
o
c

w
T
A
t
t

a
V
t
S

n
t

S
e

F

X

f
d
s
(

t
t
s
v

o
a
a
I

Q

I
s
Q

A
m
f

a

v
s
G
s

Fig. 5. The critical value µosc obtained from (3.10) (black solid line) compared
ith the numerically obtained values of µosc , based on the attracting behavior

or large t of x from simulations of (2.1) with ϵ = 0. For µ < µosc computational
solutions of (2.1) do not remain centered near x−eq for large t . Results are shown
or different amplitudes: A = .5 (red ∗’s), A = 4 (black diamonds), and A = 8
blue o’s).

In Fig. 5 we compare the critical values of µ = µosc with
he critical values observed from simulations of (2.1) for different
alues of A and Ω , indicating good agreement for a range of A/Ω .
s expected, for larger values of Ω the approximation improves.
or smaller values of Ω or larger values of A, the approximation
s less accurate: in those cases x is dominated by oscillations that
pproach both x−eq and x+eq, which violates both the assumption
hat the expansion (3.4) is near x−eq and the separation of scales
ssumption used to evaluate (3.7), on which (3.10) is based.

.3. The Stommel model

We now consider the full Stommel system with oscillatory
orcing given by (1.5) with A, B ∼ O(1), Ω ≫ 1 and ϵ = 0. Similar
o the analysis given in Section 3.2, we expect to find an attracting
oscillatory solution centered near F in Fig. 1 for parameter values
2 > η2osc, where η2osc is the critical value below which such an

attractor no longer exists.
We again take Ω ≫ 1, so that there are again slow t and

ast T = Ωt time scales. Again the response to the forcing is
small, of O(A/Ω, B/Ω), so that the forced dynamics can be well
pproximated by the linearization of the Stommel model around
ts fixed points if Ω is large, and/or if A, B are small (a case to
be considered in a later paper). Then substituting the appropriate
multiple scale expansions in Ω−1 for V = V(t, T ) and T =

(t, T ), as shown in Appendix A.2.2, we obtain the approximate
uter solution corresponding to oscillations of amplitude AΩ−1

entered on the salinity-dominated branch F of the form,

V ∼V0 − Ω−1A cos(T )+ Ω−1V11(t) . . .

T ∼T0 − Ω−1B cos(T )+ Ω−1T11(t) . . .
(3.14)

here V0 and T0 are the equilibrium values on F and V11 and
11 give corrections on the t time scale to the oscillatory terms
sin(T ) and B sin(T ). We do not have explicit expressions for
hese corrections, but a local stability analysis shows that these
erms remain small for O(1) values of η2 − η2c > 0.

Significantly, this approximation breaks down when, for ex-
mple, V0 ∼ AΩ−1 and the solution may then intersect Σ . Since
0 decreases linearly with η2 − η2c > 0, and as A = O(1),
hen similarly to the behavior of the single DoF model above in

ection 3.2, this approximation breaks down for parameter values

8

ear the NSF value, that is, for η2 − η2c = O(Ω−1). To consider
hese values, we rescale

V =Ω−1X, T = η1 + Ω−1Y , η2 =η1η3 + Ω−1ζ .

(3.15)

ubstituting (3.15) into (1.5), together with the multiple scales
xpansion,

X(t, T ) ∼X0(t, T )+ Ω−1X1(t, T )+ O(Ω−2),

Y (t, T ) ∼Y0(t, T )+ Ω−1Y1(t, T )+ O(Ω−2),
(3.16)

yields the series at sequential powers of Ω−1. We then have the
inner system of equations for X and Y near η2c (ζ = 0),

O(1) :
{
X0T = A sin(T ),
Y0T = B sin(T ),

(3.17)

O(Ω−1) :
{
X1T + X0t = −ζ − η3X0 − (1− η3)Y0,

Y1T + Y0t = −η1|X0| − Y0 .
(3.18)

rom (3.17) we find that the leading order terms are

0 = P0(t)− A cos(T ), Y0 = Q0(t)− B cos(T ) . (3.19)

or P0,Q0 functions of the slow time scale t , which must be
etermined in order to locate the center of the oscillations. Sub-
tituting (3.19) into (3.18), we apply the solvability condition
A.5) to get the equations for P0 and Q0

P0t =− ζ − η3P0 − (1− η3)Q0,

Q0t =−
η1

2π

∫ 2π

0
|P0 − A cos(T )|dT − Q0 .

(3.20)

The case A < |P0| corresponds to V < 0, which is treated in
he outer expansion above. For the range of η2 where |P0(t)| < A,
he integral in (3.20) has the same form as in (3.7). We use the
ame approach to evaluate it as described in (3.7)–(3.8), replacing
0 with P0, and treating P0 as a constant relative to integration
ver the fast time T . Similar to Section 3.2, the argument of the
bsolute value alternates sign over the regions delineated by T1
nd T2, where T1 = arccos(P0/A) and T2 = 2π − arccos(P0/A).
ntegrating over each region to evaluate (3.20) yields

P0t = −ζ − η3P0(t)− (1− η3)Q0, (3.21)

0t = −
2η1

π

(
arcsin(P0/A)P0 +

√
A2 − P2

0

)
− Q0 . (3.22)

n the high frequency forcing case of Ω ≫ 1, we use a quasi-
teady approximation, discussed further in Section 3.4. We set
0t = 0 in (3.22), solve for Q0 and substitute in (3.21), yielding

P0t = −ζ − η3P0(t)− (1− η3)
2η1

π

(
arcsin(P0/A)P0 +

√
A2 − P2

0

)
≡ G(P0; ζ ) . (3.23)

s in Section 3.2, we find the critical value of ζ by looking for the
aximum value of ζ for which there is no equilibrium solution

or P0 in (3.23). The function G(P0; ζ ) in (3.9) has a minimum

t P0min = A sin
(

η3π/[2(1 − η3)η1]

)
. For G(P0min; ζ ) < 0, the

alue P0 < P0min at which G(P0; ζ ) = 0 corresponds to the
table equilibrium of (3.23). At the critical value of ζ = ζosc,
(P0min; ζosc) = 0. Thus, we find that there is no attracting
olution for P0 in (3.23) for ζ < ζosc, where

ζosc =
2(1−η3)η1

π
A cos

(
η3π

2(1−η3)η1

)
H⇒

−1
(3.24)
η2osc = η1η3 + Ω ζosc.
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Then η2osc corresponds to the critical value of η2, below which
the attracting high frequency oscillatory solution of (1.5) with
ϵ = 0 does not remain near the salinity-dominated branch F in
Fig. 1. Note that the expression (3.24) indicates an advance of the
critical value relative to η2c = η1η3, for the restriction on η3 < 1
discussed in Section 1.

In Fig. 6 we compare (3.24) to the results observed from
numerical simulations of (1.5) over a range of Ω−1. We note that
the approximation (3.24) breaks down for larger values of A/Ω .
We discuss the source of this breakdown in Section 3.4, which has
implications for the case where ϵ ̸= 0, and for cases with lower
frequency forcing.

3.4. Linear analysis of the Stommel model near to the NSF

In Fig. 7 we graph the attracting solution V and T of (1.5) in
the V − T plane, for ϵ = 0 and for values of η2 for which the
solution stays near the salinity-dominated branch F. These are
super-imposed on the static bifurcation branches, F and S in the
V − T plane. We compare the result obtained from the multiple
scale, averaging-type approximation (3.19) for high frequency
forcing to that obtained from the simulation of (1.5). For example,
for the forcing A sin(T ) and B sin(T ) in (1.5),

V ∼ Ω−1
[P0 − A cos(Ωt)] T ∼ η1 + Ω−1

[Q0 − B cos(Ωt)] .
(3.25)

We show the results for different types of oscillatory forcing.
These results illustrate good agreement for these solutions for
larger Ω , supporting the good approximation of the critical value
η2osc, as shown in Fig. 6. Comparisons of the solutions for smaller
Ω (larger AΩ−1) also illustrate the source of the over-estimation
of η2osc in these cases.

The main observation is that for larger frequency Ω (Fig. 7
(a),(c)), the multiple scale approximation (3.25) is accurate, even
for solutions that cross both Σ and S when η2 ≲ η2osc. Thus η2osc
yields a good approximation for the critical value. Specifically,
this approximation uses a construction composed of an oscilla-
tory term, and the mean of these oscillations given by (P0/Ω, η1+

Q0/Ω) in (3.22) as a function of η2. Nonlinear contributions
from the integral in (3.20), when the oscillations in V cross the
switching manifold Σ , shift this mean away from the equilibrium
branch F. In Section 3.3 we obtained an explicit expression for the
tipping point η by using a quasi-stationary approximation for
2osc

9

Fig. 7. Comparison of the attracting (large t) oscillating solutions V and T in the
V−T phase plane for three different values of η2 , with η1 = 4 and η3 = 3/8. For
each solution, η2 > η2num , where η2num is the critical value of η2 obtained from
the numerical solutions, as shown by the markers in Fig. 6. The solution is closer
to the NSF at V = 0 and T = η1 for smaller η2 . The graphs obtained from the
multiple scale approximation (3.25) (black) and numerical solutions (magenta)
are super-imposed on the branches for the static equilibria F (red solid) and S
(blue dash-dotted). Panels (a), (c): For smaller values of A/Ω (|A|/Ω = 0.033),
(3.25) is in agreement with the numerical simulations. Panels (b),(d): For larger
values of A/Ω , (|A|/Ω = 0.125) (3.25) does not fully capture the behavior of V
nd T . Specifically, for ηnum < η2 < η2osc , (3.25) over-estimates the advance of
he tipping and there is no asymptotic approximation from (3.25) shown. Panels
a),(b): The forcing is A sin(T ), B = 0. Panels (c),(d): A = −1, B = 1, with the
orcing given by A sin(T ) and B cos(T ) (in contrast with A sin(T ) and B sin(T ) as
n (1.5)). (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.).

P0/Ω,Q0/Ω). A linear stability analysis of (3.22) indicates the
asis for this approximation, namely, that a change in the linear
tability of (P0,Q0) occurs for P0 above a critical value,

0 ∼
Aπη3

2η1(1− η3)
. (3.26)

Fig. 8 shows that P0 terminates in the black horizontal dotted
lines corresponding to (3.26). As is consistent with simulations, as
η2 reaches its critical value, P0 reaches (3.26), while Q0 remains
negative. Thus the tipping is primarily driven by variations in V ,
captured in the dynamics of P0.

Fig. 7 indicates the source of the over-estimation by η2osc of
the critical value for larger values of A/Ω or smaller values of
Ω . Panels (b),(d) show results for AΩ−1

= 0.125, corresponding
to values in Fig. 6 where the asymptotic approximation η2osc
overestimates the advance of the critical value of η2. In Fig. 7
(b),(d) we see that V, T are not well approximated by (3.25),



C. Budd, C. Griffith and R. Kuske Physica D 432 (2022) 132948

o
H
w

F
y
1
s
i
t

y

Fig. 8. Graphs of P0/Ω (blue) and Q0/Ω (red) vs. η2 for three different values
f Ω = 30 (solid line), Ω = 20 (dotted line), and Ω = 8 (dash-dotted line).
orizontal dotted black lines correspond to the critical value (3.26) of P0 at
hich there is a loss of stability for P0 and Q0 as the equilibrium solution for

(3.22). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

following from the fact that the separation of time scales used to
get (3.25) is no longer valid for Ω = O(1) or smaller. For smaller
values of η2, where the oscillations cross Σ and in some cases also
S, the multiple scale approximation is not a good approximation
for the piecewise-smooth continuous solutions, whose behavior
is illustrated by the numerical solutions. For the smallest values
of η2, where ηnum < η2 < η2osc, the multiple scale approx-
imation predicts tipping and there is no approximation from
(3.25) shown. However, the numerical calculations show attract-
ing oscillations (such as the figure-of-eight solution in Fig. 7) that
cross both Σ and S, without tipping to the temperature-dominate
branch N for large V . We expect that a separate local analysis
for η2 near η2c is required to determine the tipping conditions
for Ω = O(1) or smaller, which would involve constructing the
piecewise-smooth solutions. We leave this analysis for a future
treatment which makes full use of the geometry given by the
piecewise-smooth structure [16].

4. High frequency oscillatory forcing combined with dynamic
bifurcation

4.1. Overview

In this section we give the analytical approximation for the
tipping point in the setting of dynamic NSF bifurcation, that
is, with a bifurcation parameter slowly varying with rate ϵ ≪

1, combined with high frequency forcing. A > 0, Ω ≫ 1.
The analysis uses elements from both Section 2 with the slowly
varying bifurcation parameter (only) and Section 3 with high
frequency oscillatory forcing (only). Not only are these results
helpful in designing the analytical approach, but we also see
the competition between elements shifting the location of the
tipping point: advances, observed in Section 3, and lags, observed
Section 2. We again identify multiple scales analyses that are
applied to both outer and inner expansions. As in the previous
sections, we develop the approach first in the setting of a single
DoF model and then adapt this for the Stommel model (1.5).

4.2. The single DoF model

We consider both ϵ ̸= 0 and A ̸= 0 first in (2.1). In order
to capture results for a range of high frequency Ω , with Ω−1
10
comparable to the rate ϵ for the slowly varying parameter µ,
we introduce Ω = ϵ−λ for λ > 0. This framework allows us
to incorporate the time scales both for the oscillations and for
the slowly varying parameter µ, naturally leading to the choice
of time scales τ = ϵt and T = ϵ−λt . Using a multiple scales
approximation for x(τ , T ) in (2.1) yields

xT + ϵλ+1xτ =ϵλ(−µ(τ )+ 2|x| − x|x| + A sin(T )),
µτ (τ ) =− 1.

(4.1)

As in the previous sections, we first consider an outer solution
for x < 0 for µ > 0, which points to a local expansion from
which tipping is determined. Following the same procedures as
in Section 3.2 together with a multiple scales approach, as shown
in Appendix A.3 we obtain

x ∼ 1−
√
1+ µ(t)−

ϵ

4(1+ µ(t))
− ϵλA cos(Ωt)+ O(ϵ1+λ, ϵ2λ).

(4.2)

As in Section 3.2, we see that the outer expansion (4.2) fails for
small µ, for which all three terms may be the same order. For
example, taking µ = ϵm, we write this condition in terms of A
and ϵ

A ∼ ϵ1−λ 2m− 1
4

. (4.3)

This condition suggests that two cases are of interest for the
behavior of the tipping point, captured by the inner expansion:
λ ≤ 1 and λ > 1, which correspond respectively to cases with
large or small values of A/Ω .

For the inner expansion we use a multiple scale expansion
for x(t, T ), with slow and fast time scales t and T = ϵ−λt ,
respectively, and µ = ϵm. Then (2.1) takes the form

xT + ϵλxt =− ϵλ+1m(t)+ ϵλ2|x| − ϵλx|x| + ϵλA sin(T ),
mt (t) =− 1,

(4.4)

which indicates that x must be scaled with a power of ϵ and its
expansion must include a term with coefficient ϵλ. Then

x(t, T ) = ϵλyλ(t, T )+ ϵq1y1(t, T )+ · · · ϵq2y2(t, T )+ · · · (4.5)

with qj depending on the value of λ and q1 < q2. With this form,
it follows that yλ = −A cos(T ) + y0(t), for both cases λ ≤ 1 and
λ > 1. Furthermore, it is straightforward to show that y0 and y1
have the same form up to a multiplicative constant, so we can
drop y0 without loss of generality.

4.2.1. Single DoF with Ω = ϵ−λ, λ ≤ 1
Substituting (4.5) into (4.4) and balancing terms in order to

obtain non-trivial solutions, we determine q1 = λ, q2 = 2λ.
Then, collecting terms at successive powers of ϵ, we find that
yλ = −A cos(T ), y1T = 0 at O(ϵλ), and

O(ϵ2λ) : y2T = −y1t − ϵ1−λm(t)+ 2|y1 − A cos(T )| . (4.6)

Applying the solvability condition (A.5) yields

y1t = −ϵ1−λm(t)+
1
π

∫ 2π

0
|y1(t)− A cos(T )| dT . (4.7)

or A < |y1|, this equation reduces to y1m = −ϵ1−λm − 2y1 for
1 < 0, from which we recover a contribution similar to the term
−

√
1+ µ in (4.2) for µ ≪ 1. That is, we recover behavior

imilar to the outer solution in (4.2). For A > |y1|, we evaluate the
ntegral in (4.6) as in (3.7)–(3.9), treating y1 as a constant relative
o the fast time scale T ,

1t = −ϵ1−λm+
4
(
arcsin(y1/A)y1 +

√
A2 − y21

)
. (4.8)
π
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We wish to determine the critical tipping value of m (and µ),
at which y1 increases away from x−eq. However, in this case we do
not get a closed form solution for y1 from (4.8) since m(t) is time-
dependent. We use an approximation for (4.8) that allows us to
get an explicit expression for the critical value ofm corresponding
to rapid growth in y1. Since |y1| < A for tipping to occur, we
expand the right hand side of (4.8) for |y1|/A ≪ 1, keeping up
to quadratic terms. Also, it is convenient to use m′(t) = −1 to
replace y1t ,

y1m ≈ ϵ1−λm−
4A
π

−
2

πA
y21. (4.9)

he form (4.9) allows solutions in terms of Airy functions Ai(z),
s described in Appendix B. Then y1 has the form

1(m) ∼ ϵ(1−λ)/3
(

πA
2

)2/3 Ai′
(
ϵ2(λ−1)/3

( 2
πA

)1/3
(ϵ1−λm−

4A
π
)
)

Ai
(
ϵ2(λ−1)/3

( 2
πA

)1/3
(ϵ1−λm−

4A
π
)
) ,

nd x is given by

(t) ∼
[
ϵ(λ−1/2) πA

2

]2/3

×

Ai′
((

Ω

ϵ2

)1/3 ( 2
πA

)1/3
(µ(t)− 4A

πΩ
)
)

Ai
((

Ω

ϵ2

)1/3 ( 2
πA

)1/3
(µ(t)− 4A

πΩ
)
) −

A
Ω

cos(Ωt)+ · · · .

(4.10)

The singularity in (4.10) in terms of µ corresponds to the
critical value for tipping, at which the solution increases away
from x−eq. This critical value is given by the first root of the Airy
function, yielding

µmixed =

(
ϵ2πA
2Ω

)1/3

ξr +
4A
πΩ

=

(
ϵ2πA
2Ω

)1/3

ξr + µosc , (4.11)

Ai(ξr ) = 0 for ξr = −2.33811 . . . . (4.12)

As in the case of a smooth SNB, the tipping point is the sum of
two contributions to the tipping point. One contribution (which is
less than zero) corresponds to a lag in the tipping relative to the
NSF point µc . This lag is due to slow variation of the parameter
µ, similar to [17] but with a different parametric dependence.
The second contribution µosc > 0 given in (3.10) corresponds
to an advance in tipping due to the oscillations, as observed in
Section 3.2 for static µ. Thus we have a competition between the
factors that generate advance and lag in tipping, similar to that
observed in [6] for variation near a smooth SNB.

Note that µmixed depends on the ratio A/Ω and on ϵ. For fixed
, the advance described by µosc increases with decreasing λ < 1,
r decreasing frequency Ω . Furthermore, we note that the result
or µmixed is valid for λ > 1/2. For λ ≤ 1/2, the asymptotic
xpansion (4.5) is no longer valid, since e.g. if λ = 1/2 then
2 = 2λ = 1, and therefore we cannot treat the quadratic terms
s higher order, e.g. in (4.6). Note that decreasing λ corresponds
o smaller frequency Ω , which can no longer be treated as high
requency, and a different approximation is required.

For λ > 1, a number of the steps used to obtain (4.6) are no
onger valid, so an alternative expansion must be used. Related
o this observation, complications can be seen from (4.11), from
hich we see that µmixed decreases and crosses zero for A/Ω →

(ϵ) for λ increasing beyond unity, corresponding to small A or
arge Ω . The case λ > 1 is discussed further below, where it is
hown to be equivalent to the case of small A/Ω for λ near unity.
hen a different approximation is needed to capture the dynamics
f y for all λ > 1.
1

11
4.2.2. Single DoF with Ω = ϵ−λ, λ > 1
We follow the same approach as for λ < 1, except we

take q1 = 1 in this case as follows from a standard balancing
argument,

x(t, T ) ∼ −ϵλA cos(T )+ ϵy1(t, T )+ ϵq2y2(t, T )+ · · · . (4.13)

Substituting (4.13) into (4.4) gives

O(ϵλ+1) : y2T + ϵy1t = −m(t)+ 2|y1 − ϵλ−1A cos(T )| , (4.14)

taking q2 = λ + 1.
Applying the solvability condition to (4.14) gives

y1t =−m(t)+
1
π

∫ 2π

0
|y1(t)− ϵλ−1A cos(T )| dT . (4.15)

Note that this equation has the same form as (4.7) with a factor of
ϵλ−1 in front of A, due to the different choice for q1. This indicates
that for larger λ, Ω is larger and the influence of the oscillations
is reduced. The same procedures as for λ < 1 above yields an
equation of the form (4.8) with A replaced with ϵλ−1A. However,
the use of (4.8) is valid only for ϵλA = A/Ω > ϵy1, so that, for
A = O(1), the use of (4.8) is limited to values of λ ≳ 1. Note that
this is consistent with the behavior of µmixed, which approaches
and crosses zero for increasing Ω . Then for λ > 1, we must use
a different approximation, recognizing that the critical value of µ

is negative, for which the dynamics of x changes.
From (4.15) for y1 and λ well above 1, the contribution from

the oscillations are proportional to A/Ω , and thus a small per-
turbation. Therefore the tipping point is not advanced by the
oscillations, as in the expression for µosc, and we expect the
tipping point to correspond to µ < 0. Then m < 0 and (4.15)
takes the form y1t = −m(t) + 2|y1| to leading order in ϵ, as in
Section 2.2. Again, y1 grows exponentially for m < 0 as observed
in (2.9), yielding the approximation to the tipping point as µsv
from (2.11).

Fig. 9 (UPPER) compares the tipping point computed from
numerical simulations of the full model (2.1) for x with the two
different results for critical µ; for λ ≤ 1, using µmixed in (4.11)
and for λ > 1 using µsv in (2.11). As expected, the approximation
(4.11) is appropriate for λ < 1. For λ > 1, the result asymptotes
to the tipping point µsv, with slowly varying µ only, while (4.11)
is not valid for λ > 1. Fig. 9 (UPPER) also includes analogous
asymptotic results for tipping for slow variation through the
smooth SNB and oscillatory forcing, as described in (1.6) and
analyzed in [6], with z(0) > 0 Ω = ϵ−λ and A = 1. In
that case the asymptotic approximation for the tipping value
is asmooth given in Table 1. The difference between the tipping
location near the NSF bifurcation and that near the smooth SNB is
dominated by the term that governs the lag: in the non-smooth
case this term is O(ϵ log ϵ) while in the smooth case this term is
O(ϵ2/3). Fig. 9 (LOWER) shows simulations of x, illustrating tipping
for the full system (2.1) for different values of λ, for the same
values of A as in Fig. 9 (UPPER). The solutions with A = 2 and
different λ shown in red, green and magenta illustrate the effect
of different forcing frequencies. In contrast, to illustrate the effect
of different A, the red and blue solutions have the same λ but
different amplitudes, A = 2 and A = 5 respectively. The analytical
approximations for the tipping points µmixed and µsv are also
shown for comparison.

We summarize the expressions for the tipping points of the
NSF and SNB models in Table 1.

4.3. The Stommel model

To begin our analysis of the Stommel model in this case, we

take our standard approach of tracking the solution near F for
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Fig. 9. For all panels, ϵ = 0.03. UPPER LEFT: For A = 2, comparison of the critical value µmixed (4.11) (black solid line), valid for λ < 1 and λ ≈ 1, and the limiting
critical value for λ > 1, µsv (2.11) (blue dotted line). Red stars indicate tipping in the numerical solution to (2.1), corresponding to the value of µ at which x reaches
1. The red dash-dotted line is the analogous result for the SNB (asmooth in Table 1) analyzed in [6], shown for comparison. UPPER RIGHT: Similar to LEFT panel, but
A = 5. LOWER: Simulations of the full system (2.1) for different combinations of frequency (in terms of λ) and amplitude superimposed on the static bifurcation
curve (black lines), illustrating advanced tipping for larger A/Ω and delayed tipping for smaller A/Ω . Diamonds indicate analytical predictions µmixed for the tipping
point in the three cases where λ ≤ 1 (simulations of x in red and green for A = 2 and λ = 0.7, 1.0, respectively, and in blue for A = 5 and λ = 0.7), and the circle
indicates the analytical prediction µsv , (simulation of x in magenta for A = 2, λ = 2). The solutions with A = 2 and different λ shown in red, green and magenta

llustrate the effect of different forcing frequencies, in contrast to the effect of different A, illustrated by the red and blue solutions with the same frequency (λ = .7).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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< 0 in (2.12) with both ϵ ≪ 1 and A, B ∼ O(1), that is,

V̇ = η1 − η2 − T + η3(T − V)+ V2
+ A sin(Ωt),

Ṫ = η1 − T (1− V)+ B sin(Ωt), η̇2 = −ϵ.
(4.16)

As in Section 4.2, we take Ω = ϵ−λ, for λ > 0 for high
frequency. Using a standard multiple scales expansion with the
slow time τ = ϵt and fast time T = ϵ−λt , we construct an outer
expansion,

V ∼V0 +
ϵ(V0τ (1− V0)+ (1− η3)T0τ )

(1− η3)T0 + (2V0 − η3)(1− V0)
− ϵλA cos(Ωt),

T ∼T0 +
ϵT0τ

1− V0
−

ϵT0(V0τ (1− V0)+ (1− η3)T0τ )
(1− η3)T0(1− V0)+ (2V0 − η3)(1− V0)2

− ϵλB cos(Ωt),

(4.17)

where V0 and T0 are the quasi-equilibria identified for the slowly
varying Stommel model in (2.16). As in (4.2), we see that the
xpansion (4.17) fails for (η2 − η2c) ≪ 1, for which all three
erms with coefficient ϵ0, ϵ1, and ϵλ may be of the same order.
 w

12
or example, taking η2 = η2c + ϵζ , we observe this failure for

= O
(
ϵ1−λ

)
, B = O

(
ϵ1−λ

)
. (4.18)

his condition suggests that two cases are of interest: for λ ≤ 1
nd λ > 1, which correspond respectively to the cases with small
r larger values of A/Ω, B/Ω . For the inner expansion near the
ritical value η2c = η1η3 we use a multiple scale approach with
low t and fast T = Ωt in (4.16), to get

T + ϵλVt = −ϵλ+1ζ

+ ϵλ (η1 − T + η3(T − V)+ V|V| + A sin(T )) ,

TT + ϵλTt = ϵλ (η1 − T (1− |V|)+ B sin(T )) ,

ζt = −1, η2(t) = η2c + ϵζ (t) . (4.19)

nalogous to (4.5), the form of (4.19) implies that V and T must
e scaled with a power of ϵ near the critical value (V, T ) =

0, η1) to obtain non-trivial results, and must include a term
ith coefficient ϵλ. We then use (4.19) together with the inner
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Table 1
The value of the tipping point in the different cases for the single DoF models with NSF and smooth SNB for Ω ≫ 1.
Tipping points for single DoF models: µ in (2.1) (NSF) and a in (1.6) (SNB)

(NSF) Slowly varying µ only: ϵ ≪ 1, A = 0 µsv = ϵ ln(ϵ)/2 + corrections (2.11)

(NSF) High frequency oscillation only:
ϵ = 0, A ̸= 0, Ω ≫ 1 : µosc =

4|A|
πΩ

(3.10)

(NSF) Slowly varying µ and high frequency oscillations:
ϵ ≪ 1, A ̸= 0, Ω = ϵ−λ (4.11)

1/2 < λ ≤ 1: µmixed =

(
ϵ2πA
2Ω

)1/3
ξr + µosc

λ > 1: µsv = ϵ ln(ϵ)/2 + corrections (2.11)

SNB: Slowly varying µ and high frequency
oscillations: ϵ ≪ 1, A ̸= 0, Ω = ϵ−λ asmooth = ϵ2/3ξr +

A2

2Ω2 [6]
i
f

A

T

expansions,

V(t, T ) ∼ϵλXλ(t, T )+ ϵq1X1(t, T )+ ϵq2X2(t, T )+ · · · ,

T (t, T ) ∼η1 + ϵλYλ(t, T )+ ϵq1Y1(t, T )+ ϵq2Y2(t, T )+ · · · ,

(4.20)

in the system for V and T (4.16). With this form it follows that

Xλ = −A cos(T )+ X0(t), Yλ = −B cos(T )+ Y0(t) (4.21)

for both cases λ ≤ 1 and λ > 1 considered below. As in
Section 4.2, it is straightforward to show that X0 and Y0 have the
same form as X1 and Y1, respectively, so without loss of generality
we drop X0 and Y0.

4.3.1. The Stommel model with Ω = ϵ−λ, λ ≤ 1
For q1 = λ, q2 = 2λ, and substituting (4.20) into (4.16) we

obtain X1T = 0 and Y1T = 0 at O(ϵλ), with the notation XjT =
∂Xj
∂T .

hen at the next order,

O
(
ϵ2λ)

:

{
X2T = −X1t − ϵ1−λζ (t)− η3X1 − (1− η3)Y1,

Y2T = −Y1t − η1|X1 − A cos(T )| − Y1.

(4.22)

ssuming that we follow the branch F where X < 0 (V < 0). Note
hat the result for (4.22) assumes that λ > 1

2 , so that quadratic
erms appear in higher order corrections. Similar to Section 3.3
e apply the solvability condition as in (A.5) to (4.22) to get

X1t =− ϵ1−λζ (t)− η3X1 − (1− η3)Y1,

Y1t =−
η1

2π

∫ 2π

0
|X1(t)− A cos(T )| dT − Y1,

ζt =− 1.

(4.23)

For |X1(t)| > A we recover the behavior of the outer solution,
as in (4.20) . For |X1(t)| ≤ A, the term X1(t) − A cos(T ) in (4.23)
hanges sign. Then we evaluate the integral in (4.23) as in (3.20),

X1t =− ϵ1−λζ (t)− η3X1(s)− (1− η3)Y1

Y1t =−
2η1

π

(
arcsin(X1/A)X1 +

√
A2 − X 2

1

)
− Y1 .

(4.24)

o identify the tipping point, we get an analytically explicit form
rom which we identify rapid growth in X . Using a Taylor expan-
ion for X1/A ≪ 1 as in (4.8)–(4.9), and using ζt = −1 to replace
1t with −X1ζ , we get

X1ζ =ϵ1−λζ + η3X1 + (1− η3)Y1

Y1ζ =
2η1A

+
η1 X 2

+ Y1 .
(4.25)
π πA 1 f

13
As in Section 3.3, growth is driven primarily by shifts in X1,
with Y1 following accordingly. Then we neglect Y1t in (4.24)–
(4.25), which yields the quasi-steady approximation,

Y1 = −
2η1

π

(
arcsin(X1/A)X1 +

√
A2 − X 2

1

)
≈ −

2η1A
π

−
η1

πA
X 2

1 .

(4.26)

Substituting (4.26) in (4.25) then yields the non-autonomous
equation for X1

X1ζ =ϵ1−λζ −
2η1(1− η3)A

π
+ η3X1 −

η1(1− η3)
πA

X 2
1 . (4.27)

Now (4.27) is in the form of (B.2), from which we identify the
tipping point, as we did in (4.10)–(4.11),

ζmixed =

(
ϵ(λ−1)πA

η1(1− η3)

)1/3

ξr

+ ϵλ−1 η1(1− η3)A
π

(
2−

(
πη3

2η1(1− η3)

)2
)

H⇒ (4.28)

η2mixed ≈

(
ϵ2πA

η1(1− η3)Ω

)1/3

ξr + η2osc , (4.29)

for ξr given in (4.11). Note that the second term in ζmixed is the
Taylor expansion of ζosc (3.24) for η3/[η1(1 − η3)] ≪ 1, leading
to (4.29). The form of η2mixed is similar to that of µmixed in (4.11),
that is, having a term corresponding to an advance of tipping in
η2osc and another term corresponding to a lag in tipping, which
nvolves the root of an Airy function. Recall that this result is valid
or λ > 1/2, for which we have neglected quadratic terms in the
equation for the corrections (4.22).

4.3.2. The Stommel model with Ω = ϵ−λ, λ > 1
Similar to the single DoF case, we start with the expansions

V(t, T ) ∼− ϵλA cos(T )+ ϵX1(t, T )+ ϵq2X2(t, T )+ · · ·

T (t, T ) ∼− ϵλB cos(T )+ ϵX1(t, T )+ ϵq2Y2(t, T )+ · · ·
(4.30)

As in Section 4.2.1, here we take q1 = 1 and q2 = λ + 1.
Substituting (4.30) into (4.16) and collecting coefficients at each
order of ϵ, we find at O(ϵ) that X1T = 0,Y1T = 0 and

O(ϵλ+1) :
{
X2T + X1t = −ζ (t)− η3X1 − (1− η3)Y1,

Y2T + Y1t = −η1|X1 − ϵλ−1A cos(T )| − Y1 .
(4.31)

pplying the solvability condition (A.5) to (4.31) then gives

X1t =− ζ (t)− η3X1 − (1− η3)Y1,

Y1t =−
η1

2π

∫ 2π

0
|X1(t)− ϵλ−1A cos(T )| dT − Y1 .

ζt =− 1.

(4.32)

his equation has the same form as (4.23) with a factor of ϵλ−1 in
ront of A, due to the different choice for q . Once again, for larger
1
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Table 2
The asymptotic approximations for tipping values and critical values of η2 for different cases.
Tipping for the Stommel model with Ω ≫ 1 and η2 slowly varying

Slowly varying η2 only: η2sv ∼ η2c −
ϵ
λ1

log ϵ + corrections (2.25)
ϵ ≪ 1, A = B = 0

High frequency oscillation only: η2osc = η1η3+

ϵ = 0, A ̸= 0, Ω ≫ 1 : 2(1−η3)η1
Ωπ

A cos
(

η3π

2(1−η3)η1

)
(3.24)

Slowly varying η2 and Ω ≫ 1
ϵ ≪ 1, A ̸= 0, Ω = ϵ−λ

1/2 < λ ≤ 1: η2mixed ≈

(
ϵ2πA

η1(1−η3)Ω

)1/3
ξr + η2osc (4.28)

λ > 1: η2sv ∼ η2c −
ϵ
λ1

log ϵ + corrections (2.25)
a
t
d
v
q
t
(

a
m
η

w
η

f
i
o
i
a

λ, Ω is larger and the influence of the oscillations is reduced.
Evaluating the integral, and using the same approach as for λ < 1
yields (4.24) with A replaced with ϵλ−1A. Recall that the results
such as those obtained in (4.23)–(4.25) are valid only for ϵλA =

/Ω > ϵX1, so that, for A = O(1), the use of (4.32) is limited to
alues of λ ≳ 1. This is consistent with the behavior of η2mixed
n (4.28), which decreases and crosses η2c for A/Ω → O(ϵ). Then
or λ > 1, we must use a different approximation, recognizing
hat the critical value satisfies η2 < η2c (ζ < 0), for which the
ynamics of X and Y change.
For λ > 1, the contribution from the oscillations is pro-

ortional to A/Ω , and thus a small perturbation. Therefore the
ipping point is not advanced by the oscillations, as in the ex-
ression for η2osc, and we expect the tipping point to correspond
o ζ < 0. Eq. (4.32) then takes the form of (2.20). Then there is
xponentially fast growth of the solution for η2 < η2c as observed
n Section 2.3, yielding the approximation to the tipping point as
2sv from (2.25).
Fig. 10 compares the results for η2mixed and η2sv to the tipping

oint obtained from (2.12). This illustrates the different behavior
f the tipping point for the two cases of λ ≤ 1, corresponding to
maller Ω or larger AΩ−1, and λ > 1 corresponding to Ω ≫ 1.
able 2 summarizes the different values of the tipping points and
ritical values of η2 for the three different cases.

. Summary and future work

Using a combination of local and multiple-scale analyses, we
rovide expressions for the tipping points near a NSF bifurcation
n three settings. For the slowly varying bifurcation parameter of
‘rate’’ ϵ only, there is a lag for the dynamic bifurcation relative to
he static NSF. The functional dependence on the rate parameter
is O(ϵ log ϵ), in contrast to ϵ2/3 in the case of the smooth

NB as (1.6). For high frequency oscillatory forcing without the
lowly varying bifurcation, there is an advance in the transi-
ion away from the branch of equilibria that terminates in the
SF, where that advance depends linearly on the amplitude-to-
requency ratio (A/Ω) of the oscillations. With high frequency
orcing, an averaging approach based on multiple scales is ap-
lied. The nonlinearities then generate additional contributions to
he averaged behavior, shifting the tipping point. For combined
lowly varying bifurcation parameter and high frequency oscil-
atory forcing, there is a more complex functional dependence
n all parameters involved, capturing a competition between lag
nd advance of the tipping point. The competition is observed
irectly in the analytical expressions for the tipping points, where
here is a change in the leading order term that gives the location
f the tipping. We relate this change to the magnitude of the
mplitude-to-frequency ratio, A/Ω , which characterizes the size
f the oscillations in the solution. Writing Ω in terms of the rate
arameter Ω = ϵ−λ, the dominant parameter dependence of
he tipping point is different for the two ranges 1/2 < λ ≤ 1
14
Fig. 10. Comparison of the critical value η2mixed (black solid line) valid for λ ≲ 1
and the limiting critical value η2slow for large λ (blue dotted line). Red stars
indicate tipping in the numerical solution to (2.12), corresponding to the value
of η2 − η2c at which V reaches the cut-off, v = 0.3. Upper: ϵ = 0.005. Lower
ϵ = 0.05. Other parameters: η1 = 4, η3 = 3/8, A = 1.

nd λ > 1, assuming A = O(1). Expressing this difference in
erms of A/Ω , for large values the oscillation-driven advance
ominates the tipping behavior, while for small A/Ω , the tipping
alue asymptotes to the lag of the dynamic bifurcation. Detailed
uantitative comparisons are provided in Section 4.2 for the
ipping point behavior near the NSF vs. the results for a SNB as in
1.6).

The methods for a NSF are developed in a single DoF model,
nd the approaches are then adapted for the two DoF Stommel
odel in (1.5) with slowly varying fresh water forcing parameter
2 and oscillatory forcing. In the case of high frequency forcing,
e show that the tipping behavior for the Stommel model near
2c is remarkably similar to that of the single DoF model, again
or three cases: (i) η2 is slowly varying only, without oscillations
n η1 or η2 (A = B = 0), (ii) η1 and η2 have high frequency
scillations Ω ≫ 1, without slow variation ϵ = 0; and (iii) there
s both slow variation and high frequency oscillation, with A, B,
nd ϵ all non-zero in (1.5). The direct application of the method

used in the single DoF case follows from a linear analysis near
η2c , indicating that when forced by high frequency oscillations,
the transition is primarily driven by fluctuations in V , with T
essentially slaved to V . Then we approximate T with a quasi-
static approximation, leaving the calculation of the tipping point
in terms of a reduced problem similar to that given in the single
DoF system. This approximation allows us to avoid the construc-
tion of piecewise-smooth continuous solutions for V and T near
η2c in the high frequency case. Such constructions are necessary
for frequencies that are O(1) and smaller. However the analysis
in the high frequency case is simplified by the observation that
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s the focus and the saddle in the Stommel model approach the
SF, the linearization of the system about them changes very
ittle (in stark contrast to the SNB case). Thus the whole system
an be studied locally by looking at the coalescence of two linear
ystems separated by Σ . We leave this calculation for O(1) forcing
frequency for future work. The linear analysis that provides the
basis for this reduction is discussed in Section 3.4. Understanding
the limitations of the approximation for the high frequency cases
used in this study, we can also track the validity of the approxi-
mations for the tipping point over relevant frequency ranges and
indicate parameter ranges for which a fully 2D approximation is
needed.
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Appendix A. Appendices

A.1. Dynamic bifurcation for the Stommel model

To complete the expression for V in (2.23), we find the con-
stant K11, using a quasi-steady approximation for V ∼ V0 + ϵV1
for V < 0. First, V0 and T0 are given by (2.16), and the correction
V1 follows from solving (2.15), with V0τ and T0τ obtained by
differentiating (2.16) and using η2τ = −1. Then

V1 = −
1+ η3η1 − η1

[(η3 − 1)η1/(1− V2
0 )2 − η3 + 2V0]

2
. (A.1)

imilar to (2.8)–(2.9), the expression for V < 0 provides the value
f η2 at which V(η2) = 0, and thus also the initial condition for
> 0 from which to determine K11 in (2.23).

.2. High frequency oscillatory forcing: outer solutions

.2.1. The single DoF model
As noted in Section 3.2 we provide steps to obtain a formal

ultiple scales approximation of the outer solution of the non-
inear equation (3.1) for x < 0. While not critical for the results
or this case, these steps illustrate the approach used also in later
ections. The expansion is based on a slow time t and fast time
= Ωt for Ω ≫ 1,

(t, T ) ∼ x (t, T )+ Ω−1x (t, T )+ Ω−2x (t, T )+ O(Ω−3). (A.2)
0 1 2

15
Substituting (A.2) in (2.1), together with the multiple scales treat-
ment of the time derivative, ẋ → xt+Ω−1xT , yields a sequence of
equations by collecting terms with like coefficients Ω−j. The O(1)
equation x0T = 0 indicates that x0 = x0(t). Then the next order
equations are

O(Ω−1) : x1T = −x0t − µ − 2x0 + x20 + A sin(T ) ≡ R1(t, T ) .
(A.3)

O(Ω−2) : x2T + x1t = −2x1 + 2x0x1 ≡ R2(t, T ) . (A.4)

To ensure that x1 and x2 do not include secular terms that grow in
time, the right hand sides of (A.3)–(A.4) must satisfy a solvability
condition [19],

1
2π

∫ 2π

0
Ri(t, T ) dT = 0 . (A.5)

pplying (A.5) in the multiple scales context, the O(1) time scale t
s treated as a constant relative to the fast time T . Then we obtain
he following equations for x0(t) and x1(T , t), for x0 < 0,

x0t = −µ − 2x0 + x20 H⇒ x0 = 1−
√
1+ µ

x1T = A sin(T ) H⇒ x1(t, T ) = v1(t)− A cos(T ).
(A.6)

Substituting (A.6) and applying (A.5) to R2 in (A.4), yields

1t = −2
√
1+ µv1 (A.7)

Noting that v1 → 0 as t → ∞ for µ > 0, we then obtain (3.1) as
the attracting solution near x−eq.

A.2.2. The Stommel model
Following the approach in Appendix A.2.1, we substitute into

(1.5) the multiple scales expansions for V and T analogous to
(A.2). We seek the attracting solution for V < 0 near the lower
branch F away from η2c . Collecting coefficients of powers of Ω−1,
the O(1) terms are V0T = T0T = 0, and

O(Ω−1) :

⎧⎨⎩
V1T = −V0t + η1 − η2 + η3(T0 − V0)

−T0 + V2
0 + A sin(T ),

T1T = −T0t + η1 − T0(1− V0)+ B sin(T ) .
(A.8)

Applying a solvability condition similar to (A.5) to (A.8), we find
that the equations for V0 and T0 are (2.12) with fixed η2 and
A = B = 0. Then for large t , V0 and T0 approach the stable
equilibrium on the lower branch F. Then solving (A.8) yields(

V1
T1

)
= −

(
A
B

)
cos(T )+

(
V11(t)
T11(t)

)
, (A.9)

where one can show that V11(t) → 0, T11(t) → 0 for large t .
Then the behavior near F away from η2c is given by (3.14).

A.3. Slow variation and oscillatory forcing: the single DoF model

The form of (4.1) suggests a multiple scales expansion that
includes both integer powers of ϵ and ϵλ

x(τ , T ) ∼ x0(τ , T )+ ϵλx1(τ , T )+max(ϵ1+λ, ϵ2λ)x2 + · · · . (A.10)

Depending on whether λ is less than or greater than 1, the higher
order correction may be O(ϵλ+1) or O(ϵ2λ). For concreteness we
take λ < 1 in the steps below, noting that λ > 1 yields the
same results for x0 and x1. Note that here we take λ > 1/2 as
discussed in the main text. Substituting (A.10) into (4.1) gives a
sequence of equations at each order of ϵ, with x0T = 0 implying
that x0 = x0(τ ), and

O(ϵλ) : x1T = −µ(τ )− 2x0 + x20 + A sin(T ), (A.11)

O(ϵ2λ) : x2T = −ϵ1−λx0τ − 2x1 + 2x0x1. (A.12)



C. Budd, C. Griffith and R. Kuske Physica D 432 (2022) 132948

A
f

u
(

A
q

w
s

w

D

R

pplying the solvability condition (A.5) to (A.11) and (A.12) we
ind x0 and x1 as follows,

0 =− µ(τ )− 2x0(τ )+ x20(τ ), H⇒

x0(τ ) =1−
√
1+ µ(τ ), then

x1T =A sin(T ) H⇒ x1 = v1(τ )− A cos(T ), and

0 =− ϵ1−λx0τ − 2v1 + 2
(
1−

√
1+ µ(τ )

)
v1 H⇒

v1(τ ) = −ϵ1−λ x0τ

2
√
1+ µ(τ )

(A.13)

sing µτ = −1. Combining results yields the outer expansion
4.2).

ppendix B. General results for non-autonomous ODEs with
uadratic nonlinearity

We use results from [17] for the general single DoF ODE
ith a quadratic nonlinearity and a dynamic bifurcation near a
addle–node bifurcation,

ẋ =Da+ k0 + k1x+ k2x2,
ȧ =− ϵ,

(B.1)

here ϵ ≪ 1. Systems of this form appear in many physical
problems like Erneux [20] and [6]. Following the approach of [17],
where x and a are rescaled with ϵ1/3 and ϵ2/3, and xt is rewritten
in terms of xa, the tipping point for x is obtained in terms of a
singularity corresponding to the first zero of the Airy function,
Ai(ξr ) = 0. Specifically, the tipping point is then

atip =
(

ϵ2

D|k2|

)1/3

ξr −
as
D

for as = k0 +
k21

4|k2|
, (B.2)

etailed calculations are provided in [6].
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