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ABSTRACT

Implicit-feedback Recommenders (ImplicitRec) leverage positive

only user–item interactions, such as clicks, to learn personalized

user preferences. Recommenders are often evaluated and compared

offline using datasets collected from online platforms. These plat-

forms are subject to popularity bias (i.e., popular items are more

likely to be presented and interacted with), and therefore logged

ground truth data are Missing-Not-At-Random (MNAR). As a re-

sult, the widely used Average-Over-All (AOA) evaluator is biased

toward accurately recommending trendy items. In this paper, we

(a) investigate evaluation bias of AOA and (b) develop an unbiased

and practical offline evaluator for implicit MNAR datasets using

the Inverse-Propensity-Scoring (IPS) technique. Through extensive

experiments using four real–world datasets and four widely used

algorithms, we show that (a) popularity bias is widely manifested in

item presentation and interaction; (b) evaluation bias due to MNAR

data pervasively exists in most cases where AOA is used to evaluate

ImplicitRec; and (c) the unbiased estimator significantly reduces

the AOA evaluation bias by more than 30% in the Yahoo! music

dataset in terms of the Mean Absolute Error (MAE).
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1 INTRODUCTION

Researchers often evaluate recommendation algorithms using of-

fline datasets because online A/B testing can be very expensive,
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inefficient, and irreproducible. Unlike other machine learning appli-

cations, unbiased evaluation of recommendation performance of-

fline is notoriously challenging because of the biased user feedback

collected from online platforms that selectively recommend items.

Prior work on Explicit-rating Recommenders (ExplicitRec) [12,

30] revealed that users give subjective ratings to items, which re-

sults in Missing-Not-At-Random (MNAR) ground truth data. It

has been widely recognized in the literature [12, 16, 18–20] that

MNAR rating data can lead to biased conclusions. Therefore, many

mechanisms are proposed to debias offline recommender evaluation

of rating data [16, 18–20].

However, existing approaches are not directly applicable to im-

plicit user–item interactions (e.g., click, watch, and listen) [6], which

are much more prevalent and have been widely used by many state-

of-the-art recommendation solutions [3, 5, 29]. Different from ex-

plicit ratings (e.g., those based on a Likert scale), implicit feedback

signals are one-sided and positive only. In other words, an ideal

recommender would never observe user interactions with irrele-

vant1 items, whereas in ExplicitRec, complete observations assume

that each user has a latent preference score for every item. As a

result, for Implicit-feedback Recommenders (ImplicitRec), it is

unclear whether a missing item in a user’s history is not favored

by the user or has simply not yet been observed.

Existing work simplifies the evaluation of ImplicitRec by assum-

ing that positive signals are Missing-At-Random (MAR) [4, 5, 11],

that is, each favored item is equal-likely to be clicked or viewed

by an user. This assumption does not hold in real-world settings

because online recommenders manifest popularity bias [2] (popular

items are much more likely to be recommended and presented to

users). Such a bias leads to the phenomenon that relevant and trendy

items are more likely to be interacted with by users. Eventually,

the Average-Over-All (AOA) evaluator implicitly places greater

weights on the accuracy of serving popular items than on serving

long-tail ones. This may overlook key limitations of recommenda-

tion algorithms, such as under-serving cold start groups [25], being

dominated [2], and exacerbating unhealthful user behavior [24]

In this paper, we develop an unbiased offline recommendation

evaluator for MNAR implicit feedback. Our framework is based on

the Inverse-Propensity-Scoring (IPS) technique used in causal in-

ference [7], which was recently applied to evaluate ExplicitRec [16].

Specifically, we (a) qualitatively and theoretically demonstrate that

1An item is relevant to a user if the user is interested in interacting with it (e.g., clicking
or viewing it). Otherwise, the item is regarded as irrelevant.
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the existing evaluation protocol for ImplicitRec is biased; (b) de-

rive unbiased performance estimators for major evaluation metrics,

including AUC, DCG, DCG@K, and Recall@K; and (c) conduct ex-

tensive experiments using four real-world datasets (citeulike [26],

Tradesy [4], Amazon book [13, 28], and Yahoo! music [1]) and

four widely used algorithms (BPR [15], PMF [14], U-CML [5], and

A-CML [5]). Our experimental results highlight three key contribu-

tions and implications of this work:

• The analysis of datasets and trained models (Section 4.2) reveals

that popularity bias is widely manifested in item presentation

(i.e., popular items are more likely to be presented than long-

tail ones) and interaction (i.e., users tend to interact more with

popular items). This implies that more attention is needed in

considering the potentially negative social and economic impacts

of the bias [2, 24].

• The comparisons of the classical AOA evaluator to the unbiased

evaluator proposed herein (Sections 4.3 and 4.4) demonstrate

that AOA is biased in evaluating most ImplicitRec. The bias may

lead to inaccurate judgments of algorithmic improvements and

sub-optimal decisions when it comes to model selection.

• The unbiased evaluator significantly reduces AOA evaluation

error by more than 30% in the Yahoo! music dataset in terms of

the mean absolute error (MAE) (Section 5).

Our code is available at https://github.com/ylongqi/unbiased-

offline-recommender-evaluation.

2 RELATEDWORK

Our work is inspired by three lines of research: (a) debiasing the

evaluation of ExplicitRec; (b) ImplicitRec algorithms and evalua-

tions; and (c) counterfactual evaluation. In this section, we discuss

how our work builds upon existing ideas and contributes new

knowledge to the field.

2.1 Debiasing the evaluation of ExplicitRec

Previous research has shown that for explicit-feedback recom-

menders, users’ ratings are MNAR [12, 16, 18–20]. This is because

people tend to subjectively choose the items they rate, and the

selection reflects biases of personal preferences [16] and opin-

ions [12, 20]. To handle MNAR data and conduct unbiased evalua-

tion, previous work assumed that users have latent ratings for every

item, and then use popularity [19] or other predictive models [16] to

estimate the probability that any given rating is observed. However,

such a paradigm is not applicable to implicit feedback because of

two fundamental differences: Implicit feedback (a) is available only

for the subset of items preferred by users, and (b) is often recorded

passively and thus is unlikely to be intentionally controlled.

Our work addresses the unique missing patterns of implicit feed-

back by extending the IPS framework [16].

2.2 ImplicitRec and evaluation

Recently, there has been a trend toward development of recom-

menders using implicit feedback signals [6], such as click [5, 26],

watch [3], and view [29]. These signals are much richer than ratings.

Classical offline evaluation approaches [4, 5, 11, 26, 29] randomly

hold out one interacted item per user as a testing set and then

report the average performance. Such a paradigm has been shown

to be unbiased under MAR feedback [11]. However, MAR signals

rarely exist in the real world, because it is very unlikely that a con-

tent platform would present items completely at random. In fact,

item presentation is usually mediated by recommendation engines,

which are subject to popularity bias [2].

Our work points out that under MNAR user feedback, the ex-

isting evaluation paradigm is biased. In light of this, we develop a

practical and effective technique to address the bias.

2.3 Counterfactual evaluation

Our unbiased evaluator is based on the techniques developed for

counterfactual evaluation [7, 21, 23], which aim to evaluate ranking

policies offline based on the logs collected from online interactive

systems. It has been successfully applied to interactive search [8]

and recommendation [10, 23]. Our debiasing framework is built on

the Self-Normalized Inverse-Propensity-Scoring (SNIPS) estimator

proposed by Swaminathan et al. [22].

However, classical counterfactual reasoning operates on interac-

tive logs, for example, (user1, article1, reward1), ..., (usern , articlen ,

rewardn ), which are different from the implicit feedback-based ma-

trix completion task that we consider. To the best of our knowledge,

there has been little research on applying counterfactual estimators

to debias ImplicitRec evaluations.

3 UNBIASED RECOMMENDER EVALUATION
FOR IMPLICIT FEEDBACK

Recommenders built on implicit feedback receive only users’ one-

sided (positive) preference signals, such as clicks and watches. Un-

der complete observations, user u has a set of preferred items Su
among the entire set of items, I (i.e., Su ⊆ I). An ideal recom-

mendation evaluator calculates the following reward R(Ẑ ) for the
predicted item ranking Ẑ .

R(Ẑ ) =
1

|U|

∑
u ∈U

1

|Su |

∑
i ∈Su

c(Ẑu,i ), (1)

where Ẑu,i is the predicted ranking of item i (among all the items

in I) for user u, and the function c denotes any top-N scoring

metric, such as Area Under Curve (AUC), Discounted Cumulative

Gain (DCG), DCG@K, or Recall@K. These functions are defined as

follows:

AUC: c(Ẑu,i ) = 1 −
Ẑu,i
|I |

(2)

DCG: c(Ẑu,i ) =
1

log2(Ẑu,i + 1)
(3)

DCG@K: c(Ẑu,i ) =
1{Ẑu,i ≤ K}

log2(Ẑu,i + 1)
(4)

Recall@K: c(Ẑu,i ) = 1{Ẑu,i ≤ K} (5)

Eqn. 1 measures idealistic recommendation performance, which

assumes that users would go through all items in the system and

interact with every one that appeals to them. From a practical

standpoint, it is impossible to browse and judge millions or billions

of items. As a result, recommenders have access to only a partial

view of Su , denoted by S∗
u . For each positive signal (u, i), i ∈ Su ,

we useOu,i to indicate whether (u, i) is observed (Ou,i = 1 if (u, i) is
observed, andOu,i = 0 otherwise). In addition, inspired by [16], we
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popular items:

long-tail items:

1 2 3 4 5 6 7 8 9 10 11 12 ranking

Figure 1: A hypothetical example to illustrate the evalua-

tion bias that results from use of the AOA evaluator. Three

recommenders generated distinct lists of recommendations,

Z 1, Z 2 and Z 3, for the same user. Among the shaded items

that were preferred by the user, the ones with a solid bor-

der were observed by recommenders. The performance was

measured by DCG, and the results are presented in Table 1.

Table 1: The true and estimated DCG values for three rec-

ommenders in Fig. 1. R(Ẑ ) denotes the ground truth, and

R̂AOA(Ẑ ) denotes the AOA estimations. The AOA estimator

outputs larger valueswhenpopular items are rankedhigher.

Estimator Z 1 Z 2 Z 3

R(Ẑ ) 0.463 0.463 0.494

R̂AOA(Ẑ ) 0.585 0.340 0.390

assume the observations of every signal to be Bernoulli distributed,

that is, Ou,i ∼ B(1, Pu,i ), where with probability Pu,i = P(Ou,i =

1), (u, i) is observed by a recommender.

In reality, the partial view S∗
u is mostly biased and the implicit

feedback is MNAR. In Section 3.1, we show that the AOA evaluator,

which is widely used in the existing literature, is biased, and in

Section 3.2 we propose an unbiased evaluator based on the inverse-

propensity-scoring (IPS) technique [16].

3.1 Average-over-all (AOA) evaluator

In prior literature, R(Ẑ ) was estimated by taking the average over

all observed user feedback S∗
u :

R̂AOA(Ẑ ) =
1

|U|

∑
u ∈U

1

|S∗
u |

∑
i ∈S∗

u

c(Ẑu,i )

=
1

|U|

∑
u ∈U

1∑
i ∈Su Ou,i

∑
i ∈Su

c(Ẑu,i ) ·Ou,i

(6)

To intuitively illustrate the bias of the AOA evaluator, we consid-

ered a hypothetical platform that served 12 items, as shown in Fig. 1.

We divided the items into two groups based on the number of inter-

actions they received: popular items (a1, ...,a5) and long-tail items

(b1, ...,b7). For a specific user, three different recommenders gen-

erated distinct ranked lists, Z 1,Z 2, and Z 3, based on the predicted

user preferences. Each item on the platform was either relevant

(shaded) or irrelevant (blank) to the user. Among all the relevant

items, only feedback for a partial set was observed (solid border).

To encode the popularity bias manifested in ImplicitRec (i.e., user

interactions with popular items are more likely to be observed),

we assumed that among the relevant items, 75% of the popular

items and 25% of the long-tail items were interacted with. In addi-

tion, three ranked lists were strategically designed: The Z 1 and Z 2

ranked lists had the same true performance on the ranking of rele-

vant items but differed on the serving of the popular and long-tail

groups. The Z 3 ranked list achieved the best true performance.

We calculated the DCG scores (eqn. 3) for three recommenders

using the AOA evaluator (eqn. 6) and compared the scores to the

true performances (eqn. 1). According to the results presented in

Table 1, Z 1 was evaluated as much more accurate than Z 2 and Z 3,

despite the fact that, in reality, Z 2 had the same performance as Z 1,

and Z 3 performed much better. This demonstrates that the AOA

evaluator is significantly biased toward the accuracy of serving

trendy items; that is, the estimated R̂AOA(Ẑ ) is larger if popular
items are ranked higher. The conclusions made based on such

empirical evidence result in incorrect and even opposite judgments

of the relative utilities of recommenders.

Basically, the expected outcome of the AOA evaluator does not

conform to the true performance, that is, EO
[
R̂AOA(Ẑ )

]
� R(Ẑ ).

We prove this inequivalence by a counterexample. Suppose that

for any user u, among all relevant items (Su ), only one item ku ∈

Su has an observation probability close to 1, so that P(Ou,ku ) =

1 − ϵ ; whereas for the other items, P(Ou,i ) = ϵ, i ∈ Su\{k
u }. In

this case, EO
[
R̂AOA(Ẑ )

]
≈ϵ�1

1
|U |

∑
u ∈U c(Ẑu,ku ) � R(Ẑ ). Next,

we present our proposed unbiased performance evaluator as an

alternative to the existing AOA evaluator.

3.2 Unbiased evaluator

To conduct unbiased evaluation of biased observations, we leverage

the IPS framework [16, 22] that weights each observation with the

inverse of its propensity, where the term propensity refers to the

tendency or the likelihood of an event happening. The intuition

is to down-weight the commonly observed interactions, while up-

weighting the rare ones. In the context of this paper, the probability

Pu,i is treated as the pointwise propensity score. Therefore, the IPS

unbiased evaluator is defined as follows:

R̂IPS(Ẑ |P) =
1

|U|

∑
u ∈U

1

|Su |

∑
i ∈S∗

u

c(Ẑu,i )

Pu,i

=
1

|U|

∑
u ∈U

1

|Su |

∑
i ∈Su

c(Ẑu,i )

Pu,i
·Ou,i

(7)

We prove that given any propensity assignment P , R̂IPS(Ẑ |P) is
an unbiased estimator.

EO

[
R̂IPS(Ẑ |P)

]
=

1

|U|

∑
u ∈U

1

|Su |

∑
i ∈Su

c(Ẑu,i )

Pu,i
· EO

[
Ou,i

]

=
1

|U|

∑
u ∈U

1

|Su |

∑
i ∈Su

c(Ẑu,i ) = R(Ẑ )

(8)

Furthermore, to estimate |Su | and control the variability of the

IPS evaluator, we leverage the control variates [16, 22] to derive
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a Self-Normalized Inverse-Propensity-Scoring (SNIPS) evaluator.

According to the theory of Monte Carlo approximation [22], the

estimation Ŵ of the expectation EX [W (X )] has a lower variance

if a multiplicative control variate V (X ) with known expectation

EX [V (X )] = v � 0 is introduced, that is, if Ŵ is calculated as:

Ŵ =

∑n
j=1W (X j )∑n
j=1 V (X j )

v . While Ŵ is not a completely unbiased estimator,

it strongly converges to the true expectation for large n [22].

In the context of the IPS evaluator, because EO

[∑
i ∈S∗

u

1
Pu,i

]
=

EO

[∑
i ∈Su

1
Pu,i

·Ou,i

]
= |Su |, we can write the SNIPS evaluation

as follows:

R̂SNIPS(Ẑ |P) =
1

|U|

∑
u ∈U

1

|Su |

EO

[∑
i ∈S∗

u

1
Pu,i

]
∑
i ∈S∗

u

1
Pu,i

∑
i ∈S∗

u

c(Ẑu,i )

Pu,i

=
1

|U|

∑
u ∈U

1∑
i ∈S∗

u

1
Pu,i

∑
i ∈S∗

u

c(Ẑu,i )

Pu,i

(9)

A key challenge in computing R̂SNIPS(Ẑ |P) is to predict the

propensity scores Pu,i . Next, we demonstrate our method, which

estimates the propensity scores based solely on raw observations,

without requiring any auxiliary user or item information.

3.3 Estimating propensity scores

We assume that the propensity score Pu,i is user independent, that
is, Pu,i = P(Ou,i = 1) = P(O∗,i = 1) = P∗,i . This simplified

assumption is made to address the lack of auxiliary user informa-

tion in many user–item interaction records.2 We derive P∗,i by
constructing a two-step generative process of user–item interac-

tions: (1) Select, where a recommender system selects a set of items

to present to a user; and (2) Interact, where the user browses the

recommended items and interacts with the ones she likes. Therefore,

P∗,i can be calculated as follows:

P∗,i = Pselect∗,i · P
interact |select
∗,i , (10)

where P select∗,i is the probability that item i is recommended and

P
interact |select
∗,i is the conditional probability that the user interacts

with item i given that it is recommended.

Since implicit feedback is passively recorded and is less likely

to be subjectively manipulated, we assume that P
interact |select
∗,i =

P interact∗,i , that is, the user interacts with all the items she likes in the

recommended set, and the user’s preferences are not affected by

recommendations.3 Also, because P interact∗,i is user independent, it

is proportional to only the item’s true popularity ni (the number of

occurrences in the complete observation):

P̂ interact∗,i ∝ ni (11)

Because items that are frequently interacted with are more likely

to be recommended in ImplicitRec [2], the probability P select∗,i is

modeled using n∗i (the number of times item i is interacted with)

2This assumption may be relaxed in cases where auxiliary user information is available.
We discuss this issue in Section 6.
3In reality, user–item interactions may be affected by the order of presentation of the
items, and users’ preferences may be shaped by recommendations in the long term.
Modeling these effects may further improve the evaluator’s performance (as discussed
in Section 6).

as a covariate. Specifically, we follow a common template that

accurately captures the popularity bias [19], which assumes that

P select∗,i conforms to a power-law distribution parameterized by γ :

P̂ select∗,i ∝ (n∗i )
γ (12)

Therefore, according to the constructed generation process, P̂∗,i
depends on only two variates, n∗i and ni :

P̂∗,i ∝ (n∗i )
γ · ni , (13)

where ni =
∑
u ∈U 1 [i ∈ Su ] and n

∗
i =

∑
u ∈U,i ∈S∗

u
O∗,i .

However, empirically, ni is not directly observable. To address

this problem, we observe that n∗i is sampled from a binomial distri-

bution4 parameterized by ni , that is, n
∗
i ∼ B(ni , P∗,i ). Therefore, a

relationship between ni and n
∗
i can be built by bridging the genera-

tive model (eqn. 13) with the following unbiased estimator:

P̂∗,i =
n∗i
ni

∝ (n∗i )
γ · ni (14)

Therefore, ni ∝ (n∗i )
1−γ
2 . We use this as a replacement for the

unobservedni in eqn. 13, which results in an unbiased P̂∗,i estimator

that is determined by only the empirical counts of items:

P̂∗,i ∝
(
n∗i

) ( γ +1
2

)
(15)

Different values of the power-law exponent γ affect the propen-

sity distributions over items with different observed popularity

levels. A larger γ leads to lower propensity scores for long-tail

items and higher scores for popular ones. In deployed systems, the

exponent can be empirically predicted (as shown in Section 4.3).

4 EXPERIMENTS WITH BIASED FEEDBACK
AND THE UNBIASED EVALUATOR

To more thoroughly understand the nature of MNAR implicit feed-

back and the proposed unbiased evaluator, we studied three large-

scale real-world datasets and four recommendation algorithms. Our

experiments are comprised of three parts: (a) investigating how

popularity bias is manifested in real-world platforms, (b) explor-

ing properties of the power-law exponent, and (c) understanding

debiasing effects of the unbiased evaluator.

4.1 Experimental setup

To describe the stup of the experiments, we review the datasets and

algorithms, describe the recommendation model implementations

with OpenRec [28], and present the details of model training.

4.1.1 Datasets. We used three datasets of varied size and spar-

sity ( # interactions
# users×# items ). For each dataset, we randomly and indepen-

dently hold out 15% of user–item interactions for validation and 15%

for testing, and we used the remaining 70% of records for training.

During testing, we excluded cold-start users and items that have

no record in the training set.

• citeulike [26]. citeulike is a referencemanagement service, where

scholars curate article collections based on their preferences and

professional needs. We used the dataset collected by Wang et

4O∗,i satisfies the Bernoulli distribution.
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al. [26] and treated “saving an article” as a positive implicit feed-

back signal. The dataset contains 204,986 interactions between

5,551 users and 16,980 items (sparsity: 2e-3).

• Tradesy [4]. Tradesy is a large second-hand retail market for

clothing and fashion. We used the dataset released by He et al. [4],

and treated “want an item” and “bought an item” as positive

signals. The final dataset includes 19,243 users, 165,906 wanted

or bought items, and 394,421 interactions (sparsity: 1e-4).

• Amazon book [13, 28]. The Amazon book dataset was derived

from the original Amazon review dataset [13] by Yang et al. [28].

The dataset records users’ purchasing history under the Amazon

book category. The dataset covers 99,473 users, 450,166 books,

and 996,938 transactions (sparsity: 2e-5).

4.1.2 Algorithms. We considered recommendation models with

different training procedures (pairwise and pointwise) and archi-

tectures (matrix-factorization based and metric-learning based).

• Bayesian Personalized Ranking (BPR) [15]. BPR is based on

the general framework of matrix factorization that learns vector

representations for users and items. Specifically, user u’s pref-
erence toward item i is modeled as x̂u,i = v

T
uvi + βi , where v∗

denote representations, and βi denotes the item-specific bias.

Built upon the scoring function x̂u,i , BPR trains the model pa-

rameters on (u, i, j) triplets (i and j represent interacted item and

non-interacted item respectively) using a pairwise ranking based

optimization framework that minimizes the following loss.

min
Θ

∑
(u,i, j)∈D

− ln (x̂u,i − x̂u, j ) + λΘ‖Θ‖ (16)

where D is the set of triplets that are randomly sampled from the

training dataset and Θ is the set of model parameters.

• Collaborative Metric Learning with Uniform Weights (U-

CML) [5]. U-CML is trained on the same (u, i, j) triplets as BPR,
but instead of modeling user–item scores using dot products,

U-CML leverages the Euclidean distance metric to regularize

the embedding space, that is, x̂u,i = βi − ‖vu − vi ‖
2, where

all representations are bounded within a unit sphere. Another

difference between U-CML and BPR is that U-CML minimizes

the pairwise hinge loss:

min
Θ

∑
(u,i, j)∈D

[
m + x̂u,i − x̂u, j

]
+
+ λΘ‖Θ‖2 (17)

• CML with Approximate-Rank Weights (A-CML). U-CML

model randomly samples the triplets from the training set, mak-

ing most of them become trivial samples as the training proceeds.

Therefore, as suggested by Hsieh et al. [5], we leveraged the

approximate-rank weighting technique [27] to adjust the weight

of each training instance:

min
Θ

∑
(u,i, j)∈D

wu, j
[
m + x̂u,i − x̂u, j

]
+
+ λΘ‖Θ‖2, (18)

wherewu, j = log(rank(u, j)+1) and rank(u, j) is the rank of item
j in user u’s recommendation list. The rank can be estimated by

sequential [27] or parallel [5] sampling. To speed up the training,

we sampled 10 negative items in parallel for each observed user–

item interaction, as suggested by Hsieh et al. [5].

• ProbabilisticMatrix Factorization (PMF) [14]. PMF is a point-

wise trained recommendation model, that is, it is built upon pairs

(u, i). The model is optimized to minimize the following regular-

ized square error:

min
Θ

∑
u,i

cu,i (ru,i − x̂u,i )
2 + λΘ‖Θ‖2, (19)

where ru,i = 1 if user u interacted with item i , and ru,i = 0

otherwise. Because of the sparsity of the interactions, cu,i is set
to a higher value for ru,i = 1 than for ru,i = 0. In our experiments,

cu,i was set to 1 and 0.25, respectively, for those two cases.

4.1.3 Implementations and training. We implemented the algo-

rithms based on the OpenRec framework [28]. The dimensionality

of user and item representations was set to 50 for citeulike and to

100 for the other datasets. Each model was trained using the Adam

optimizer [9] with a batch size of 8K. Because of differences in the

sizes of the datasets, the models were trained for 50K, 120K, and

200K iterations5 under citeulike, tradesy, and Amazon book, respec-

tively. We conductedmodel selection [16] for each algorithm–metric

pair by training recommenders with different regularization pa-

rameters, that is, λΘ ∈ {0.1, 0.01, 0.001, 1e − 4, 1e − 5}. The optimal

training iteration and λΘ value are determined by the evaluation on

the validation set. The recommendation performances are finally re-

ported on the held-out testing sets. Because of the large item space,

it is computationally infeasible to compute rankings over all items.

Therefore, for each user, we randomly and independently sample

200 items with which users have not interacted before and compute

rankings over the sampled sets. This is a common approach adopted

by recent literature [28].

4.2 Investigating popularity bias

We initially conducted an experiment to understand to what extent

popularity bias is manifested in real-world recommendation systems.

Specifically, we investigated two kinds of bias related to popularity:

(a) interaction bias (i.e., that users tend to interact more often with

popular items), and (b) presentation bias (i.e., that recommenders

unfairly present more popular items than long-tail ones).

However, in existing datasets, interaction bias is barely separable

from presentation bias [17], since a user can interact with an item

only if it is presented. Therefore, we resorted to the joint effects of

the two kinds of bias, which are manifested in the distribution of n∗i ,
that is, the number of times users interact with each item. Intuitively,

an unbiased platform should expect users to interact broadly. As

a result, user attentions are likely to be evenly distributed. On the

contrary, if a platform is highly biased, then user interactions tend

to be more concentrated, which leads to dominance by a small set of

items. We show the n∗i distribution for all i ∈ I in Fig. 2. Given that

the horizontal axis is log scaled, the n∗i distribution is significantly

skewed: Most of the items received very few user interactions. For

example, on Amazon book, more than 99.9% of items received fewer

than 100 interactions. In addition, the degree of bias varies across

datasets: The Amazon book dataset is the most popularity biased,

while the tradesy dataset is the least popularity biased.

For the presentation bias, we measured the average number of

times that an item with the observed popularity n∗ ∈ [1,max(n∗i )]
was recommended, denoted by f (n∗). An unbiased system should

5An iteration is defined as a feed forward and a backward propagation using a batch
(size=8K) of randomly sampled training data.
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Figure 2: The distribution of n∗i (the observed number of interactions with item i) in the three datasets. The items are presented

in descending order of n∗i . The horizontal axis is log scaled for better visualization. In all datasets, the n∗i distribution is skewed

and the user interactions are significantly biased.
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Figure 3: Empirically estimated f (n∗) on the three datasets and the four recommendation algorithms. f (n∗) denotes the average
number of times that an itemwith observed popularity n∗ was recommended. Both axes are log scaled. Therefore, exponential

growth is linear in the figure. All settings manifest significant presentation bias.

expect a relatively flat f (n∗) with a small slope, whereas a biased

recommendermay produce linearly or exponentially growing f (n∗).
We treated the top 50 recommendations that the trained recom-

menders made for every user as recommended items, and f (n∗)
was computed as follows:

f (n∗) =

∑
i ∈I 1(n∗i = n

∗) · Ni∑
i ∈I 1(n∗i = n

∗)
, (20)

where Ni is the frequency of item i in all users’ top 50 recommen-

dations. For each user, the recommendation list was computed over

the complete item set I, excluding items that the user had already

interacted with in the training set. In Fig. 3, we show the empiri-

cally estimated f (n∗). All three f (n∗) curves appear to be mostly

monotonic, with small variations, which suggests that an item with

small n∗i is much less likely to be presented, compared to the ones

with larger n∗i . Also, different algorithms tend to manifest diverse

patterns. For example, in Amazon book, BPR and A-CML are more

likely to present long-tail items than PMF and U-CML.

To sum up the findings, we demonstrated that both forms of pop-

ularity bias pervasively exist on platforms that use the mainstream

recommendation algorithms. Although the amount of bias varies

across platforms and algorithms, it appears to be highly significant.

In addition, the estimation of presentation bias provides a mecha-

nism for gaining an empirical understanding of the properties of

the power-law exponent (eqn. 15), which is discussed next.

Table 2: Estimated γ value for every dataset-algorithm pair.

The algorithm that achieves the lowest γ in each dataset is

bolded. The γ estimation is more sensitive to the choice of

datasets than algorithms.

Dataset BPR U-CML A-CML PMF Average

citeulike 1.67 1.64 1.55 1.89 1.69

Tradesy 2.96 2.40 2.25 3.07 2.67

Amazon book 1.85 2.11 1.70 1.80 1.87

4.3 Exploring the power-law exponent

To understand the properties ofγ , we estimated its value by running

simulations on offline datasets. The shape of the probability distri-

bution P̂ select∗,i , parameterized by γ , was most likely to be affected by

two factors: the recommendation algorithm (which controls what

to select) and the content platform (which determines what is avail-

able). Therefore, we predict a γ for each algorithm–platform pair.

Due to the fact that P̂ select∗,i is only determined by an item’s observed

popularityn∗i , the probability satisfies: P̂
select
∗,i ∝ (n∗i )

γ ∝ f (n∗ = n∗i ).

Estimating the value of γ is equivalent to minimizing the following

square error:

min
γ

∑
(x,y)∈T

(
log

(
f (y)

f (x)

)
− γ · log

(y
x

))2
(21)

where T denotes all possible combinations of (x ,y) where x ,y ∈

[1,max(n∗i )] and x � y. Because this is a quadratic optimization
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problem, γ can be analytically solved as:

γ =

∑
(x,y)∈T log

(
f (y)
f (x )

)
· log

(
y
x

)
∑
(x,y)∈T

(
log

(
y
x

))2 (22)

We fit γ using the calculated f (u∗) from Section 4.2. To make

the estimation numerically more stable and robust to outliers, we

exclude the top 0.5% of items that have the highest n∗. The final esti-
mated γ values are presented in Table 2. We find that the power-law

curve accurately fits f (n∗) with small average square error (within

the range (0.001, 0.02)). Also, among all algorithms, A-CML stands

out (bolded in Table 2) as having the lowest estimated γ value in all

datasets, which suggests that it manifests the least presentation bias.

However, overall, the estimated γ value is relatively stable given

a dataset (the value range is 0.34, 0.82, and 0.41 for the citeulike,

Tradesy, and Amazon book datasets, respectively).

These experimental results suggest that in practice, if the past

recommendation algorithm is known, using the power-law func-

tion can accurately fit and reconstruct P̂ select∗,i . Even if the accurate

recommender is unknown, it is still plausible to roughly predict

the γ value by experimenting classical algorithms in the given

dataset. In the next experiment, we leverage the estimated γ value

to understand debiasing effects of the unbiased evaluator.

4.4 Understanding the unbiased evaluator

We compare the outputs from the AOA and the unbiased evaluator

under the same algorithm–platform settings. Specifically, for each

dataset, we experiment on the minimum, average and maximum γ
values from Table 2. We evaluate models against four metrics: AUC,

DCG, DCG@5 and Recall@5, as defined from eqn. 2 to eqn. 5. The

experimental results are presented in Fig. 4. Our main findings are

discussed below.

• Theunbiased evaluator reports lower performance, regard-

less of the algorithm, dataset or evaluationmetric. As shown

in Fig. 4, after applying the unbiased evaluation, the estimated rec-

ommendation performance significantly drops. This is because

recommenders usually perform worse on long tail items than

popular ones, and the unbiased evaluator corrects and reduces the

biased weights that AOA places on popular items. This finding

reveals that the traditional evaluation method may over-estimate

the performance of recommendation algorithms.

• The unbiased evaluator may amplify, diminish, or flip the

relative differences reported by AOA. In many cases, the un-

biased estimator does not change the absolute performance dif-

ference between algorithms but amplifies the relative difference,

e.g., BPR outperforms PMF by 22% and 26% in terms of the Recall

reported by AOA and γ (min), respectively. Also, the unbiased

evaluator may diminish (e.g., U-CML vs. BPR under Amazon

book-DCG) or flip (e.g., PMF vs. U-CML under Tradesy-DCG) the

relative differences. These observations highlight a caveat that

traditional evaluation may lead to inaccurate or mis-judgments of

algorithms’ relative utilities.

• The outputs of the unbiased estimator are stable for dif-

ferent γ values from the estimated range. In all conditions,

the outputs of the unbiased evaluator are stable for differnt γ
values (min, avg., or max). In other words, as long as the γ value

is from the estimated range, the unbiased evaluator is expected

to produce robust evaluation results.

In summary, these results demonstrate that the unbiased evalua-

tor is robust and has the potential to more objectively evaluate and

compare different recommenders. Next, we empirically measure its

debiasing performance.

5 EVALUATING DEBIASING PERFORMANCE

We leverage the Yahoo! music ratings dataset [1] to quantify debi-

asing performance of the unbiased evaluator. The dataset contains

users’ ratings towards a uniform-randomly selected sets of music,

which can be used to measure recommenders’ true performances.

5.1 Experimental setup

The original dataset includes a training set and a testing set. The

training set contains 300K ratings given by 15.4K users against 1K

songs through natural interactions, and the testing set is collected

by asking a subset of 5.4K users to rate 10 randomly selected songs.

To tailor this dataset for experimenting implicit feedback, we treat

items rated greater than or equal to 4 as relevant, and others as

irrelevant, as suggested by prior literature [5]. We filter the testing

set by retaining users who have at least a relevant and an irrele-

vant song in the testing set and two relevant songs in the training

set (2,296 users satisfy these requirements). We additionally held

out a biased testing set (biased-testing) from the training set by

randomly sampling 300 songs for each user.

We train models discussed in Section 4.1 using the same protocol

but with fixed hyperparameters (λΘ = 0.001, training iterations:

10K, latent factors: 50). For each model, different evaluators are

used to evaluate its performance against the biased-testing set in

terms of AUC and Recall.6 The models’ true performances were

calculated by AOA over the unbiased testing set.

5.2 Results

Table 3 shows the mean absolute error (MAE) between different

evaluators’ outputs on the biased-testing set and the recommenders’

true performances. For both AUC and Recall, the unbiased evalu-

ator (UB) reduced more than 30% of the errors in AOA, and UB’s

debiasing performance was insensitive to the hyperparameter se-

lections. Within the range of [1.5, 3.0], UB consistently produced

significantly lower errors than AOA. However, these results also

demonstrate that UB is still imperfect, and that there is ample room

for future improvements.

6 CONCLUSION AND DISCUSSION

We studied the problem of evaluating ImplicitRec using offline

datasets and showed that the widely adopted AOA evaluation is

biased toward popularity. Built upon the IPS technique from causal

inference, we developed a theoretically grounded unbiased evalua-

tor and empirically demonstrated its ability to significantly reduce

recommender evaluation biases. However, the developed unbiased

evaluator is limited in its two simplified assumptions, which points

out promising future research directions:

6Recall@30 (biased-testing set) and Recall@1 (testing set) were compared since the
biased-testing set is 10 times as large as the testing set.
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Figure 4: Comparison of the traditional and unbiased evaluators in measuring the performance of four recommendation algo-

rithms. The evaluations were conducted over three datasets using four metrics. Each sub-figure represents a specific dataset–

metric pair. For the unbiased evaluator, three estimated γ values from Section 4.3 were used in the experiments. The unbiased

evaluator significantly reduces the biased weights that the AOAmethod places on the popular items and produces robust and

consistent results for any γ from the estimated range.

Table 3: Mean absolute error (MAE) between evaluators’ out-

puts on the biased-testing set and recommenders’ true per-

formances. Performancewasmeasured against AUC andRe-

call. For the unbiased evaluator (UB), fourγ valueswere used

in the experiments (γ = 1.5, 2.0, 2.5, 3.0).

(a) Mean absolute error (MAE) on AUC

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)

U-CML 0.151 0.102 0.099 0.096 0.094

A-CML 0.152 0.103 0.099 0.097 0.094

BPR 0.147 0.109 0.106 0.104 0.103

PMF 0.148 0.103 0.100 0.097 0.095

(b) Mean absolute error (MAE) on Recall

Model AOA UB(1.5) UB(2.0) UB(2.5) UB(3.0)

U-CML 0.401 0.270 0.260 0.253 0.248

A-CML 0.399 0.274 0.264 0.258 0.253

BPR 0.380 0.275 0.268 0.262 0.258

PMF 0.386 0.267 0.259 0.252 0.248

• User-independent propensity. In the absence of detailed meta-

information about users, we assumed that the propensity was

user independent and that the probability of an item being pre-

sented was determined by its observed popularity. In reality, the

propensity may be affected by user-specific traits and preferences.

Future research could investigate more sophisticated propensity

estimation methods, such as building predictive models to take

auxiliary user features into consideration.

• Selection-independent interaction.Weassumed that the prob-

ability that a user interacts with an item is independent of the

probability that the item is recommended. This does not capture

the potential impact of recommendations and item presentation

order on users’ preferences. Future research could conduct con-

trolled user testing to model these nuanced effects.

In addition, our work has implications for the development of

recommendation algorithms that are robust to popularity bias. This

work shows that a recommender’s accuracy on popular items usu-

ally overestimates that recommender’s true performance. Algo-

rithms that intend to be robust to popularity bias should explore

ways to improve long-tail recommendations, not only through

popularity under-weighting, but also via other techniques such as

stratified sampling, data augmentation, and low-shot learning.
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