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a b s t r a c t 

The motion of a forced vibro-impacting inclined energy harvester is investigated in param- 

eter regimes with asymmetry in the number of impacts on the bottom and top of the de- 

vice. This motion occurs beyond a grazing bifurcation, at which alternating top and bottom 

impacts are supplemented by a zero velocity impact with the bottom of the device. For 

periodic forcing, we obtain semi-analytical expressions for the asymmetric periodic mo- 

tion with a ratio of 2:1 for the impacts on the device bottom and top, respectively. These 

expressions are derived via a set of nonlinear maps between different pairs of impacts, 

combined with impact conditions that provide jump discontinuities in the velocity. Bifur- 

cation diagrams for the analytical solutions are complemented by a linear stability analysis 

around the 2:1 asymmetric periodic solutions, and are validated numerically. For smaller 

incline angles, a second grazing bifurcation is numerically detected, leading to a 3:1 asym- 

metry. For larger incline angles, period doubling bifurcations precede grazing bifurcations. 

The converted electrical energy per impact is reduced for the asymmetric motions, and 

therefore less desirable under this metric. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

Energy Harvesting (EH) from ambient vibrations was proposed almost two decades ago as an attractive alternative to 

power supplies or as renewable sources of energy for rechargeable batteries. Since then the gaps in the linear theory of EH

have been filled with different methods of energy conversion, based on single-degree-of freedom, multi-degree-of freedom 

and/or continuous (rods and beams) linear systems on the nano [1] , micro [2] and macro scales [3–5] . The excitement re-

garding the potential of linear EH systems has significantly decreased since then, due to low energy densities of the linear

devices, narrow bandwidth and high natural frequency in nano- and micro-scale systems, which are difficult to match in 

many practical applications. These and other adverse factors lead to insufficient output necessary to power or recharge a 

battery. The deficiencies in the development of linear EH devices has slowed the proliferation of wireless sensors, particu- 

larly critical in the Internet of Things paradigm. 

The above limitations in the linear theory of EH have motivated wide-spread effort s on parametrically excited [6–8] ,

nonlinear [9–11] and non-smooth systems. The idea behind parametrically excited systems is the use of large system re- 

sponses near instabilities, e.g. see [12–15] , among others. Within the huge range of nonlinear EH systems [16–18] , there

are some particular themes of note; natural single-potential nonlinearities (classical continuous nonlinear systems like the 
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Van-der-Pol oscillator, Lingala et al. [19] , Duffing oscillator, Ghouli et al. [20] , Zhu [21] , Sebald et al. [22] , the pendulum,

etc.), natural or imposed geometrical nonlinearities (systems with double [23–25] , triple [26–28] or multiple stable equi- 

libriums [29,30] ), systems with a nonlinear interaction such as flow-induced vibration systems (see [31–36] and references 

therein), and systems with strongly nonlinear or discontinuous nonlinearities like dry friction, piecewise discontinuity or 

vibroimpacts [37,38] . It has been shown that the nonlinear mechanisms for EH are far more beneficial than linear ones. This

observation follows from the typical structure of the response amplitude vs. forcing frequency or backbone curve, show- 

ing a wider bandwidth with higher response amplitude away from a main resonance frequency. However, the design and 

optimization of a nonlinear energy harvester is far more complex, with limited explicit analytical results, thus requiring ex- 

tensive complementary experiments or numerics. The available approximation techniques can estimate the response within 

only a narrow range of parameters imposed by the mathematical assumptions necessary for the applied averaging proce- 

dure, typically based on a weakly nonlinear model with small forcing. 

Vibro-impact systems have rich phenomenological behaviors, manifesting a variety of routes to nonlinear phenomena like 

bifurcations, grazing and chaos [39–42] . These effects have been studied in deterministic [43–46] and stochastic vibro-impact 

systems [47–49] . The models of vibro-impact systems include piecewise linear stiffness [50,51] as well as rigid barriers for

instantaneous impacts leading to a velocity jump for inelastic impacts. EH devices that utilize vibro-impact dynamics as 

a main energy absorption mechanism were developed and studied in a number of publications [52–55] . Other interesting 

applications of vibro-impact systems include propulsion mechanisms, where the internal impacts are designed to drive the 

entire system forward or backward. Such systems can be used for autonomous robots and medical devices [56] . While often

the study of such systems is limited to computational results only, certain settings allow an analytical or semi-analytical 

treatment when the motion is composed of a sequence of trajectories described (semi-)analytically. Such an approach trans- 

lates the piece-wise continuous behavior into a sequence of maps, amenable to analytical treatment [57] that provides 

explicit parametric expressions for a simple periodic motion. This methodology has certain benefits since it allows bifurca- 

tion and stability analyses of various periodic regimes that may occur in the system. Of course, for more complex motions

a larger series of maps is necessary, making this particular derivation more tedious and cumbersome. 

Recently, Yurchenko et al. [58] proposed a novel vibro-impact energy harvesting (VI-EH) device utilizing dielectric elas- 

tomeric (DE) membranes. There it was shown that the performance of such VI-EH depends strongly on the relationship 

between the excitation and device parameters, leading to various vibro-impact regimes with a low or high power output. 

The device consists of a forced cylinder with a ball moving freely inside of it, impacting DE membranes covering both ends

of the cylinder. Each membrane is composed of the DE material sandwiched between two compliant electrodes, acting as a 

variable capacitance capacitor. The impacts of the DE membrane by the ball influence its motion while deforming the mem- 

brane, leading to energy harvesting via the properties of variable capacitance. The analytical results of [59] gave parametric 

conditions for a simple periodic motion, consisting of two alternating bottom and top impacts per forcing period. Building 

on the method of [57] , these results considered the asymmetric case of the inclined VI-EH device, providing explicit ex-

pressions for impact velocity, phase shift of impact relative to the oscillatory forcing, and time between impacts, in terms 

of parameters such as the length of the cylinder, excitation parameters, and incline angle. Furthermore, the linear stability 

of this periodic motion demonstrates the range of parameters where it influences the corresponding VI-EH power output. 

However, this study did not consider adjacent parameter regimes where more complex periodic motions, period doubling 

bifurcations, and chaotic motion were observed numerically. 

Here we consider a broader class of periodic motions of the VI-EH, referred to here as n : m / pT , where n and m are the

number of impacts on the bottom and top membrane, respectively, per period T of the excitation, and p is the ratio of the

period of the motion of the VI-EH to T . Then, the motion studied in Serdukova et al. [59] is 1:1/1 T motion. Throughout this

paper we mainly focus on motions where p = 1 , as these types of solutions appear over significant parameter ranges when

the cylinder is inclined. For convenience of notation, throughout we do not include pT when p = 1 , and include pT only if

p > 1 . 

The goal of this paper is to address a number of problems that have received limited attention for impacting systems of

this type. We develop a generalized semi-analytical approach for analysis of n :1 periodic behavior, applied explicitly to the 

2:1 case. This approach is particularly valuable in cases when the transition to n :1 motion follows more complex solutions

appearing from period doubling or chaotic behavior. By using the maps to develop a series of expressions for a single

impact velocity within the periodic solution, it is straightforward to generalize to other types of periodic solutions.This 

result moves beyond previous results in Luo and Guo [57] and [59] , as the generalized approach avoids the cumbersome

calculations used to get explicit expressions in those studies. These analytical results provide the basis for our stability 

analyses of 2:1 solutions and for the comparison of the energy output for 1:1 and 2:1 motions. The comparisons with

computations reveal additional unexplored phenomena, not previously documented in the dynamics of such a system: bi- 

stability of 2:1 motion and 3:1 motion, with two different types of transitions between these behaviors. While we postpone 

a full analytical treatment of this bi-stability to future work, the results of this paper illustrate the importance of different

types of bifurcations on the energy efficiency of the VI-EH. Thus our analysis here provides a necessary foundation for 

parametric comparisons between these different types of bifurcations, and for their impact on the energy output. 

The paper is organized as follows. A mechanical model and equations of motion of the VI-EH are described in Section 2 ,

together with a review of results from [59] for 1:1 behavior, presented within the larger context of new results from this

paper. In Section 3 we outline a semi-analytical method for obtaining parametric conditions for general n :1 periodic solu- 

tions, illustrating this method for 2:1 periodic motion. Specifically the results are derived through three nonlinear maps, 
2 
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corresponding to the three impacts per period, combined with the impact conditions. A linear stability analysis for this mo- 

tion is given in Section 4 , and contrasted with additional routes to grazing behavior. The voltage output of the 2:1 periodic

motion is shown in Section 5 and compared with that for the 1:1 periodic motion, together with comparisons of different

metrics for the average energy available for harvesting. Finally, conclusions are drawn together with recommendations for 

the device design. 

2. Dynamical model of the vibro-impacting energy harvester 

The focus of this paper is a nonlinear vibro-impact energy harvesting device comprised of an externally forced capsule 

with a freely moving ball inside. Each end of the capsule is closed by a membrane of DE material with compliant electrodes.

The friction between the ball and the capsule is neglected, so that the motion of the ball is driven purely through impacts

with one of the DE membranes and by gravity. The impact of the ball with the DE membrane not only excites the ball

but also causes the DE membrane deformation. Since the DE membrane works as a variable capacitance capacitor, under 

the deformation its capacitance increases and at the maximum deformation a bias voltage is applied. After the impact, the 

membrane goes back to its undeformed state and at that point the gained voltage is harvested. The equations of motion for

the inclined VI-EH with two DE membranes for harvesting energy from ambient vibrations as developed in Yurchenko et al. 

[58] , as shown in the schematic of Fig. 1 . 

The cylinder of mass M and length s is subject to a harmonic excitation ˆ F (ωτ + ϕ) with period 2 π/ω. Then the position

of its center X(τ ) satisfies 

d 2 X 

dτ 2 
= 

ˆ F (ωτ + ϕ) 

M 

. (1) 

Between impacts, the ball of mass m ( M � m ) rolls freely inside of the cylinder driven only by gravity ( g = 9 . 8 m / s 2 is the

gravitational constant), with position x given by 

d 2 x 

dτ 2 
= −G = −g sin β, (2) 

until it collides with one of the membranes causing its deformation. Since the impact time is negligible with respect to all

other time constants in the system, we use an instantaneous impact model in terms of the restitution coefficient r of the

membrane. The velocity of the ball changes in sign and magnitude according to [58] (
dx 

dτ

)+ 
= 

m − rM 

m + M 

(
dx 

dτ

)−
+ 

M + rM 

m + M 

(
dX 

dτ

)
. (3) 

Superscripts − and + indicate the velocities of the ball just before and after each impact, respectively. We assume that the 

velocity of the cylinder ˙ X does not change with an impact for m negligible relative to M, so that we drop m in (3) leading to

(
dx 

dτ

)+ 
= −r 

(
dx 

dτ

)−
+ (1 + r) 

(
dX 

dτ

)
. (4) 

In this paper an inelastic impact is considered ( r < 1 ), with most results given for r = 0 . 5 . 

To track the dependence of periodic behavior in terms of the parameters, it is valuable to use dimensionless equations 

of motion in terms of the relative variables. For this purpose we non-dimensionalize the original system (1), (2) with the

substitutions 

X (τ ) = 

‖ 
ˆ F ‖ π2 

2 
· X ∗(t) , dX = 

‖ 
ˆ F ‖ π · ˙ X ∗(t) , τ = 

π · t , (5) 

Mω dτ Mω ω 

Fig. 1. A mechanical model of a vibro-impact energy harvester adapted from [58] . 

3 
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where ‖ ˆ F ‖ is an appropriately defined norm of the strength of the forcing ˆ F and ” ˙ “ indicates the derivative with respect

to t . Then the dimensionless equations of motion in terms of the relative position Z(t) and velocity ˙ Z (t) are 

Z = X ∗ − x ∗, ˙ Z = 
˙ X ∗ − ˙ x ∗

Z̈ = Ẍ ∗ − ẍ ∗ = F (πt + ϕ) + 

Mg sin β

‖ 
ˆ F ‖ 

= f (t) + ḡ , (6) 

where the non-dimensional forcing F has the unit norm, i.e. ‖ F ‖ = 1 , and period 2. Then the impact condition (3) in terms

of the non-dimensional relative variables for the j-th impact at time t = t j is 

Z j = X ∗(t j ) − x ∗(t j ) = ±d 

2 
, for x ∈ ∂B (∂T ) the sign is + (−) 

˙ Z + 
j 

= −r ̇ Z −
j 

, d = 

sMω 
2 

‖ 
ˆ F ‖ π2 

, (7) 

where ∂B and ∂T are the bottom and top membranes of the energy harvesting system. Since the dimensionless length of

the cylinder d includes a set of four dimensional parameters of the system s,M,ωand ‖ ˆ F ‖ , we focus our analysis primarily

on different combinations of two parameters β and d in order to capture the influence of device length, forcing strength, 

and angle of incline. 

2.1. Representation of periodic motion with maps 

By integrating (6) for t ∈ (t j , t j+1 ) and applying (7) , we obtain the expressions for the relative velocity and displacement

between two impacts 

˙ Z (t) = −r ̇ Z −
j 

+ ḡ (t − t j ) + F 1 (t) − F 1 (t j ) , (8) 

Z(t) = Z −
j 

− r ̇ Z −
j 
(t − t j ) + 

ḡ 

2 
(t − t j ) 

2 + F 2 (t) − F 2 (t j ) − F 1 (t j )(t − t j ) , (9)

where F 1 (t) = 

∫ 
f (t ) dt and F 2 (t) = 

∫ 
F 1 (t ) dt . In the following expressions, the superscripts ” − “ are omitted, since (8) and

(9) are in terms Z − and ˙ Z − only. Evaluating (8) and (9) at impact times t = t j+1 , we obtain equations defining the four basic

nonlinear maps P l , l = 1 , 2 , 3 , 4 for the corresponding transitions between impacts, 

P 1 : (Z j ∈ ∂B, ˙ Z j , t j ) �→ (Z j+1 ∈ ∂B, ˙ Z j+1 , t j+1 ) , 

P 2 : (Z j ∈ ∂B, ˙ Z j , t j ) �→ (Z j+1 ∈ ∂T , ˙ Z j+1 , t j+1 ) , 

P 3 : (Z j ∈ ∂T , ˙ Z j , t j ) �→ (Z j+1 ∈ ∂B, ˙ Z j+1 , t j+1 ) , (10) 

and similarly, for P 4 for the ∂ T �→ ∂ T transition. Here we restrict our attention to P 1 ,P 2 and P 3 transitions, since only these

play a role in the attracting 2:1 motion, as considered in Section 3 . The mathematical expressions for these maps take

different forms depending on whether Z j and Z j+1 are located on either ∂B or ∂T . Specifically, for t = t j+1 , (8) and (9) are

given by 

˙ Z j+1 = −r ̇ Z j + ḡ (t j+1 − t j ) + F 1 (t j+1 ) − F 1 (t j ) , (11) 

D � = −r ̇ Z j (t j+1 − t j ) + 

ḡ 

2 
(t j+1 − t j ) 

2 + F 2 (t j+1 ) − F 2 (t j ) − F 1 (t j )(t j+1 − t j ) , (12)

where D 1 = D 4 = 0 ,D 2 = −d and D 3 = d. 

In [59] , the expressions (11) and (12) for the maps P 2 and P 3 over the time intervals (t k −1 , t k ) and (t k , t k +1 ) are combined

with periodic and impact conditions to derive equations for the triples ( ̇ Z k , ϕ k , 	t k ) corresponding to 1:1 periodic solutions.

Throughout this paper 	t k = t k − t k −1 for any k, and ϕ k = mod (πt k + ϕ, 2 π) is the phase shift of the k th impact relative to

that of the forcing f (t) . The explicit expressions for the triples ( ̇ Z k , ϕ k , 	t k ) provide the dependence of 1:1 motion on the

combination of the parameters d,r, ̄g and ˆ F . 

In Fig. 2 (a) and (c) we show the analytical and numerical results for the relative velocity at impact ˙ Z k vs. d for the 1:1 pe-

riodic motion based on the results from [59] . The analytical results shown for the 2:1 motion are obtained in Sections 3 and

4 below, where we restrict our analysis to the derivation of the 2:1 solutions and their linear stability. Numerical results are

compared to these analytical results for the 2:1 periodic motion, and they also provide branches corresponding to period 

doubled solutions and chaotic behavior. For decreasing values of d, the 1:1 motion loses stability via a sequence of period

doubling bifurcations to 1:1/2T, 1:1/4T, etc. Eventually, for some parameter combinations, an apparently chaotic motion is 

observed for a window of values of d. For smaller values of d these 1:1/ pT with p > 1 or chaotic motions are displaced by

asymmetric motions with multiple impacts of ∂B per period T . Specifically, there is a transition to 2:1 motion at the value

d = d graz , discussed further in the context of Fig. 4 below. From Fig. 2 we see that 2:1 and other n :1 solutions persist for

d < d graz , with n increasing with decreasing d. The additional bifurcations to n :1 periodic solutions for n > 2 are discussed

further at the end of Section 4 . In the top row, the decreasing values of d follow from decreasing s, while in the bottom
4 
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Fig. 2. Numerical (open circles o’s, stars ∗’s, diamonds ♦’s) and analytical stable/unstable (solid, dash-dotted/dashed lines) values for impact velocities 

and output voltages for β = π/ 3 and r = 0 . 5 . (a) Impact velocities (blue solid/green dash-dotted lines for bottom/top) for 0 . 19 < s < 0 . 72 m, ‖ ˆ F ‖ = 5 N. 

The branches for the 2:1 solutions give, from top to bottom, ˙ Z following the P 3 , P 1 , P 2 transitions. (b) Output voltage U k −U in and average value of output 

voltage per impact U I (red stars) and per unit time U T (cyan diamonds) corresponding to ˙ Z in (a). The branches for the 2:1 solutions give, from top to 

bottom, U k following the P 3 , P 2 , P 1 transitions; (c) and (d) Impact velocity and output voltage for s = 0 . 85 m with varying ‖ ˆ F ‖ between 6 N and 22 N. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Time series of the period- T ( T = 2 ) absolute displacement of the capsule top and bottom X ∗(t) ± d/ 2 (blue dashed lines) and the absolute ball 

displacement x ∗(t) (red solid line) for t 0 = 0 and Z(t 0 ) = d/ 2 . (a) 1:1 motion for d = 0 . 38 ,s = 0 . 61 m, ˙ Z (t 0 ) = 0 . 8673 ,ϕ = 0 . 4217 ; (b) 2:1 motion for d = 

0 . 184 ,s = 0 . 30 m, ˙ Z (t 0 ) = 0 . 2164 ,ϕ = 1 . 21 ; (c) 3:1 motion for d = 0 . 137 ,s = 0 . 22 m, ˙ Z (t 0 ) = 0 . 2059 ,ϕ = 0 . 6503 . For all figures M = 124 . 5 g, r = 0 . 5 and ω = 

5 π Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

row the decreasing d follows from increasing ˆ F . To compare the 1:1, 2:1 and 3:1 motions, Fig. 3 shows the absolute dis-

placements X ∗(t) ± d/ 2 of the top and bottom of the cylinder under an external force and the motion of the ball x ∗(t) in
the cylinder, illustrating the number of impacts per period for each case. 

In Fig. 2 (b) and (d) we show the analytical and numerical results for the output voltage U k −U in vs. d for the same

range of d as in (a) and (c), respectively. A calculation of the energy output follows directly from ( ̇ Z k , ϕ k , 	t k ) , based on the

deformation of the membrane that depends explicitly on ˙ Z 2 
k 
. Given a constant input voltage, U in , applied to the membranes,

the change in charge Q across the capacitor is given by 	Q = U	C, where C is its capacitance. The charge Q increases as

the membrane’s shape is restored, producing a higher voltage U k at the k th impact, with resulting energy to be harvested

in terms of the difference, U k −U in , which we refer to as the output voltage. 

Two different averaged output voltages are also shown, average per impact U I and average per time unit U T , based on

30 (non-dimensionalized) time units in t ( τ = 6 s) for 1:1 motion and 20 time units in t ( τ = 4 s) for 2:1 motion. Note
5 
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Fig. 4. Phase portrait for initial relative position Z(t 0 ) = d/ 2 ,M = 124 . 5 g, r = 0 . 3 ,β = π/ 18 , ‖ ˆ F ‖ = 5 N, ω = 5 π Hz. (a) 1:1 motion with d = 0 . 24 ,s = 

0 . 3855 m, ˙ Z (t 0 ) = 0 . 6349 ,ϕ = 0 . 4579 ; (b) Grazing bifurcation point with d = 0 . 2025 ,s = 0 . 3253 m, ˙ Z (t 0 ) = 0 . 5899 ,ϕ = 0 . 3040 ; (c) 2:1 motion with d = 

0 . 2008 ,s = 0 . 3226 m, ˙ Z (t 0 ) = 0 . 5644 ,ϕ = 0 . 2986 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the transition to different n :1 solutions corresponds to jumps in U I and U T , given the change in the nature of the

periodic solution. The additional impacts have low velocity, following naturally from the fact that they are born via grazing 

bifurcations, at which ˙ Z j = 0 and Z j = d/ 2 . For example, at d = d graz , ̇ Z j = 0 and Z j = ±d/ 2 , and there is a transition to 2:1

motion for d < d graz . Then the averaged per impact output voltage U I drops for increasing n . The averaged output per unit

time U T is more complex, since the impact velocities following P l for l = 2 , 3 change with the addition of a low impact

velocity from P 1 . The increase in output voltage is achieved through increased cylinder length s, with other parameters fixed,

or by increasing the forcing strength keeping s constant, up to values of dwhere there are transitions to n :1 periodic motions.

The impact velocity and output voltage in Fig. 2 (c) and (d) are obtained for fixed s = 0 . 85 and the variable strength of the

forcing 6 < ‖ ˆ F ‖ < 22 , in contrast to (a) and (b) for which ‖ ˆ F ‖ = 5 is fixed and s varies for 0 . 118 < d < 0 . 448 . The nonlinear

increase for U k −U in , U I and U T in (d) as d decreases is due to the inverse dependency of d = 
sMω 2 

‖ ̂ F ‖ π2 
on the strength of the

forcing. Note that the forcing ḡ = 
Mg sin β

‖ ̂ F ‖ from the gravitational term in (6) is also inversely proportional to ‖ ˆ F ‖ . 
Fig. 4 illustrates the possible transition from 1:1 to 2:1 families of solutions in the phase plane, via a grazing bifurcation

at a value of d = d graz where ˙ Z k = 0 and Z k = d/ 2 , shown in Fig. 4 (b). Note that the grazing transition from 1:1 to 2:1

motions is shown for r = 0 . 3 in Fig. 4 , in contrast to the transition to 2:1 solutions shown in Fig. 2 (a), (c) for r = 0 . 5 ,

where a series of period doubling bifurcations precedes grazing as d decreases. Preliminary observations suggest that, as 

d decreases, period doubling bifurcations tend to precede grazing for larger values of r. However, such observations also 

depend on the angle β . Our focus in this paper is on 2:1 periodic behavior, and the influence of β and d on its appearance.

In particular, the complex transition from 1:1 to 2:1 behavior for larger values of r motivates the need for an analytical

prediction for the onset of 2:1 solutions, as given in Section 3 . There it is shown how the direct calculation of 2:1 solutions

from the maps P j is clearly preferable to determining grazing conditions from the 1:1/ pT or chaotic solutions. The interplay

of a range of values of r with the angle β is left for future investigations of period doubling bifurcations, chaotic behavior,

and grazing. 

3. Analytical expressions for periodic 2:1 motion 

In this section we obtain analytical expressions for the parametric dependence of the 2:1 motion, using the maps P 1 ,P 2 
and P 3 for the sequence of impacts over the intervals 	t j for j = k, k + 1 , k + 2 . 

Note that this calculation is a particular application of the general approach for deriving n :1 periodic solutions for (6) and

(7) . An n :1 periodic solution is composed of n − 1 applications of P 1 , followed by P 2 and P 3 . The unknowns needed to define

the motion are n + 1 values of the impact velocity ˙ Z k + � ,� = 0 . . . , n, the time intervals T � for the n + 1 maps, and the phase

difference at im pact ϕ k = mod (πt k + ϕ, 2 π) . Then these 2 n + 3 unknowns are obtained from the Eq. (9) for ˙ Z k + � and Z k + � for
each of the 2(n + 1) maps P j , and the periodic condition 

∑ n +1 
� =1 T � = T . The values ( ̇ Z k , ϕ k , 	t k , . . . , 	t k + n −1 ) are determined

from n + 2 equations for ˙ Z k that can be obtained from a generalizable sequence of steps. These steps are: 

• summing the equations for the impact velocities from all the maps P j , 
• summing the equations for the relative position at impact from all the maps P j , 

• n − 1 combinations of successive pairs of equations for impact velocity ˙ Z k + j and impact position Z k + j+1 , for j = 1 , . . . , n −
1 , and 

• the expression for ˙ Z k given by the equation for the relative position Z k +1 in the initial map P 1 . 

Using ˙ Z k + n +1 = ˙ Z k together with these steps, we get n + 2 equations of the form ˙ Z k = h � (ϕ k , 	t k , . . . , 	t k + n −1 ) , which can

then be solved simultaneously with a numerical algebraic equation solving package. In addition, the remaining ˙ Z k + m 
for 
6 
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m = 1 , . . . , n can be obtained from a successive application of the equations for the impact velocities from the successive

maps. 

Demonstrating this approach for the 2:1 periodic motion, we derive the equations for the quadruples ( ̇ Z k , ϕ k , 	t k , 	t k +1 )

corresponding to the 2:1 periodic solutions of (6) and (7) , in terms of the parameters d,r and ḡ , with 	t k and ϕ k =
mod (πt k + ϕ, 2 π) as defined in Section 2 . We focus on a 2:1 motion with three impacts per period T of the forcing f (t) ,

so that 

t k +3 = T + t k , Z k = Z k +3 , and ˙ Z k +3 = 
˙ Z k . (13) 

The times for the transitions P 1 ,P 2 and P 3 are defined as T 1 ,T 2 and T 3 , with 

T 1 = 	t k = t k +1 − t k , T 2 = 	t k +1 = t k +2 − t k +1 , 

T 3 = 	t k +2 = t k +3 − t k +2 , T = T 1 + T 2 + T 3 . (14) 

The 2:1 motion is then described by the three maps P 1 ,P 2 and P 3 from (11) and (12) 

P 1 : (Z k ∈ ∂B, ˙ Z k , t k ) �→ (Z k +1 ∈ ∂B, ˙ Z k +1 , t k +1 ) , 

˙ Z k +1 = −r ̇ Z k + ḡ T 1 + F 1 (t k +1 ) − F 1 (t k ) , (15) 

0 = −r ̇ Z k T 1 + 

ḡ 

2 
T 2 1 + F 2 (t k +1 ) − F 2 (t k ) − F 1 (t k ) T 1 . (16)

P 2 : (Z k +1 ∈ ∂B, ˙ Z k +1 , t k +1 ) �→ (Z k +2 ∈ ∂T , ˙ Z k +2 , t k +2 ) , 

˙ Z k +2 = −r ̇ Z k +1 + ḡ T 2 + F 1 (t k +2 ) − F 1 (t k +1 ) , (17) 

−d = −r ̇ Z k +1 T 2 + 

ḡ 

2 
T 2 2 + F 2 (t k +2 ) − F 2 (t k +1 ) − F 1 (t k +1 ) T 2 . (18)

P 3 : (Z k +2 ∈ ∂T , ˙ Z k +2 , t k +2 ) �→ (Z k +3 ∈ ∂B, ˙ Z k +3 , t k +3 ) , 

˙ Z k +3 = −r ̇ Z k +2 + ḡ T 3 + F 1 (t k +3 ) − F 1 (t k +2 ) , (19) 

d = −r ̇ Z k +2 T 3 + 

ḡ 

2 
T 2 3 + F 2 (t k +3 ) − F 2 (t k +2 ) − F 1 (t k +2 ) T 3 . (20)

We first use a number of substitutions to eliminate ˙ Z k +1 , ̇
 Z k +2 from (15) –(20) and obtain four equations in terms of ˙ Z k , from

which we obtain ( ̇ Z k , ϕ k , 	t k , 	t k +1 ) . 

By adding (15), (17), (19) and using the relationships T = T 1 + T 2 + T 3 , and F 1 (t k +3 ) = F 1 (T + t k ) = F 1 (t k ) , we obtain 

˙ Z k = 

1 

1 − r + r 2 

[
(r − 1) ̄g T 1 − ḡ T 2 + (1 − r) F 1 (t k ) + rF 1 (t k +1 ) − F 1 (t k +2 ) + 

T ḡ 

r + 1 

]
. (21) 

A second equation for ˙ Z k is obtained from (16) 

˙ Z k = 

1 

rT 1 
[ F 2 (t k +1 ) − F 2 (t k ) ] + 

1 

2 r 
[ ̄g T 1 − 2 F 1 (t k ) ] . (22) 

Substituting (15) into (18) yields a third expression for ˙ Z k 

˙ Z k = 

1 

r 
[ ̄g T 1 + F 1 (t k +1 ) − F 1 (t k ) ] −

1 

r 2 T 2 
[ d + F 2 (t k +2 ) − F 2 (t k +1 ) ] −

1 

2 r 2 
[ ̄g T 2 − 2 F 1 (t k +1 ) ] . (23) 

Finally, adding (16), (18), (20) and using relationship F 2 (t k +3 ) = F 2 (T + t k ) = F 2 (t k ) gives a fourth equation for ˙ Z k 

˙ Z k = 

1 

r 3 T 3 − r 2 T 2 + rT 1 

[
ḡ 

2 
(T 2 1 + T 2 2 + T 2 3 ) + F 1 (t k )(−r 2 T 3 + rT 2 − T 1 ) 

]
+ 

+ 

1 

r 3 T 3 − r 2 T 2 + rT 1 

[
F 1 (t k +1 )(r 

2 T 3 − rT 2 + rT 3 − T 2 ) + r 2 ḡ T 1 T 3 − r ̄g T 1 T 2 
]
+ 

+ 

1 

r 3 T 3 − r 2 T 2 + rT 1 
[ −r ̄g T 2 T 3 − (1 + r) T 3 F 1 (t k +2 ) ] . (24) 

Then we solve (21) –(24) to obtain ( ̇ Z k , ϕ k , 	t k , 	t k +1 ) , using the Matlab function vpasolve . A specific choice of f (t) =
cos (πt + ϕ) for which 

F 1 (t) = 

1 
sin (πt + ϕ) and F 2 (t) = − 1 

2 
cos (πt + ϕ) , (25) 
π π
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provides specifics for the equations for ( ̇ Z k , ϕ k , 	t k , 	t k +1 ) . It is convenient to write the time intervals between impacts in

terms of the parameters q and p, that capture the fractions of the period of forcing corresponding to each of the three

impacts as follows, 

T 1 = 2 nq, T 2 = 2 np, T 3 = 2 n (1 − q − p) , and T = 2 n . (26) 

We take n = 1 for which the period is T = 2 . Without loss of generality, we take t k = 0 , so ϕ k = mod (ϕ, 2 π) . Then the four

Eqs. (21) –(24) take the form of ˙ Z k as functions of ϕ,q, and p

˙ Z k = 

1 

1 − r + r 2 

[ 
2 nq (r − 1) ̄g − 2 np ̄g + 

1 − r 

π
sin (πt k + ϕ) + 

r 

π
sin (π [ t k + 2 nq ] + ϕ) 

] 

+ 

1 

1 − r + r 2 

[
− 1 

π
sin (π [ t k + 2 nq + 2 np] + ϕ) + 

2 n ̄g 

r + 1 

]
, (27) 

˙ Z k = 

1 

π r 

[ 
nπq ̄g − sin (πt k + ϕ) − 1 

2 nπq 
cos (π [ t k + 2 nq ] + ϕ) + 

1 

2 nπq 
cos (πt k + ϕ) 

] 
, (28) 

˙ Z k = 

1 

π r 2 
[ sin (π [ t k + 2 nq ] + ϕ) + 2 nπqr ̄g + r sin (π [ t k + 2 nq ] + ϕ) − r sin (πt k + ϕ) ] 

+ 

1 

π r 2 

[
1 

2 nπ p 
cos (π [ t k + 2 nq + 2 np] + ϕ) − 1 

2 nπ p 
cos (π [ t k + 2 nq ] + ϕ) − nπ p ̄g − πd 

2 np 

]
, (29) 

˙ Z k = 

sin (πt k + ϕ)(−2 nr 2 (1 − p − q ) + 2 npr − 2 nq ) 

2 nr 3 (1 − p − q ) − 2 npr 2 + 2 nqr 

−2 n sin (π [ t k + 2 nq + 2 np] + ϕ)(1 − p − q )(1 + r) 

2 nπ r 3 (1 − p − q ) − 2 nπ pr 2 + 2 nπqr 

+ 

sin (π [ t k + 2 nq ] + ϕ)(2 nr 2 (1 − p − q ) − 2 npr + 2 nr(1 − p − q ) − 2 np) 

2 nr 3 (1 − p − q ) − 2 npr 2 + 2 nqr 
+ 

+ 

4 n 2 r 2 ḡ q (1 − p − q ) − 4 n 2 ḡ rpq − 4 n 2 ḡ rp(1 − p − q ) + ḡ (2 n 2 q 2 + 2 n 2 p 2 + 2 n 2 (1 − p − q ) 2 ) 

2 nr 3 (1 − p − q ) − 2 npr 2 + 2 nqr 
. (30) 

Solving (27) –(30) for varying d, one gets the quadruples ( ̇ Z k , ϕ k , 	t k , 	t k +1 ) for 2:1 solutions. Then ˙ Z k +1 is obtained from

(15) and substitution of (15) into (17) gives the equation for ˙ Z k +2 , 

˙ Z k +2 = r 2 ˙ Z k − r ̄g T 1 + ḡ T 2 + rF 1 (t k ) − (1 + r) F 1 (t k +1 ) + F 1 (t k +2 ) . (31)

Fig. 5 shows the analytical solutions for these quadruples for different angles of incline β and compares them to the 

values obtained from numerical simulations of Eqs. (6) and (7) . The analytical results provide the existence of these 2:1

solutions over a range of d, with the largest value of d corresponding to the transition from 1:1/ pT or chaotic solutions for

decreasing values of d. The stability analysis, provided in the next section, also demonstrates that the 2:1 solutions are stable

at these transitions. The stable 2:1 solutions, represented by the solid blue lines (impacts on ∂B ) and green lines (impacts

on ∂T ), agree with the numerical solutions represented by black open circles. The unstable 2:1 solutions represented by 

dashed lines are also found analytically. The points A 1 , A 2 , A 3 , B are the critical points that indicate a change in the type or

stability or instability of the 2:1 solutions, based on the linear stability analysis. For larger values of β, as shown for the top

three rows in Fig. 5 , the solutions lose stability to a period doubling bifurcation as d decreases; specifically, the 2:1 solution

is stable in the ranges of 0 . 169 < d < 0 . 22 for β = π/ 2 in (a)–(c), 0 . 159 < d < 0 . 22 for β = π/ 3 in (d)–(f), 0 . 146 < d < 0 . 213

for β = π/ 4 in (g)–(i). Note that the value of d for the period doubling bifurcation B decreases with decreasing β . A similar

trend was observed for 1:1 solutions in Serdukova et al. [59] . 

For the case of β = π/ 6 in the bottom row of Fig. 5 , vertical lines indicate the numerically detected grazing bifurcations

at d = G 1 and d = G 2 , corresponding to Z j = d/ 2 and ˙ Z j = 0 . There are two different values, since the bifurcation value

differs depending on whether it is obtained from decreasing the parameter d, yielding a transition from a 2:1 solution to a

3:1 solution at d = G 1 , or by increasing d, yielding a transition from 3:1 to 2:1 solutions at d = G 2 . These results indicate a

region of bi-stability for the 2:1 and 3:1 solutions, which we discuss briefly in Section 4.2 . Here the 2:1 solution is stable

in the ranges of 0 . 1373 < d < 0 . 206 (j)–(l). Note the lower value on this range corresponds to the grazing bifurcation at

G 1 , while the period doubling bifurcation from the linear analysis of the 2:1 solution occurs at d = 0 . 133 (below G 1 ). The

implications of the location of these bifurcations is discussed further in Section 4.2 below. 

4. Stability and bifurcation of 2:1 motion 

4.1. Linear stability analysis 

The critical points A j ,B as shown in Fig. 5 are obtained from a linear stability analysis around the quadruples

( ̇ Z k , ϕ k , 	t k , 	t k +1 ) corresponding to the asymmetric period- T solutions. A complete review of this method can be found

in Shaw and Holmes [50] , Luo and Guo [57] , Luo [60] . 
8 
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Fig. 5. Blue solid and green dash-dotted lines show the analytical results for the 2:1 periodic solutions for 0 . 2088 < s < 0 . 3855 m, with numerical results 

indicated by open circles. Solid and dash-dotted (dashed) lines correspond to stable (unstable) analytical solutions. Red circles labeled as Aj, or B indicate 

critical points from the linear stability analysis, described in Table 1 . (a)–(c) Asymmetric branches of the period- T solutions for β = π/ 2 ; (d)–(f) Asymmetric 

branches of the period- T solutions for β = π/ 3 ; (g)–(i) Asymmetric branches of the period- T solutions for β = π/ 4 ; (j)–(l) Asymmetric branches of the 

period- T solutions for β = π/ 6 . The vertical lines correspond to grazing bifurcations; d = G 1 (black) ( d = G 2 (red)) for the transition from 3:1 to 2:1 (2:1 to 

3:1) solutions with increasing (decreasing) d. In panels (a), (d), (g), (j) the branches for the 2:1 solutions give, from top to bottom, ˙ Z k at impacts following 

the P 3 , P 1 , P 2 transitions; in panels (b), (e), (h), (k) the branches for the 2:1 solutions give, from top to bottom, 	t j / 2 for the P 2 , P 3 , P 1 transitions ; in panels 

(c), (f), (i), (l) the branches for the 2:1 solutions give, from top to bottom, the phase difference ϕ k before the P 1 , P 3 , P 2 transitions. For all figures M = 124 . 5 

g, r = 0 . 5 , ‖ ˆ F ‖ = 5 N and ω = 5 π Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

Considering a small perturbation δH k to the fixed point H 
∗
k 

= (t k , ˙ Z k ) , we obtain the equation for δH k +3 linearized about

δH k = 0 , 

δH k +3 = D P (H 
∗
k ) δH k = D P 3 (H 

∗
k +2 ) · D P 2 (H 

∗
k +1 ) · D P 1 (H 

∗
k ) δH k , (32)

with 

D P = D P 3 · D P 2 · D P 1 

= 

⎡ 

⎢ ⎣ 

∂t k +3 

∂t k +2 

∂t k +3 

∂ ̇ Z k +2 

∂ ̇ Z k +3 

∂t k +2 

∂ ̇ Z k +3 

∂ ̇ Z k +2 

⎤ 

⎥ ⎦ 

H k +2 = H ∗k +2 

·

⎡ 

⎢ ⎣ 

∂t k +2 

∂t k +1 

∂t k +2 

∂ ̇ Z k +1 

∂ ̇ Z k +2 

∂t k +1 

∂ ̇ Z k +2 

∂ ̇ Z k +1 

⎤ 

⎥ ⎦ 

H k +1 = H ∗k +1 

·

⎡ 

⎢ ⎣ 

∂t k +1 

∂t k 

∂t k +1 

∂ ̇ Z k 
∂ ̇ Z k +1 

∂t k 

∂ ̇ Z k +1 

∂ ̇ Z k 

⎤ 

⎥ ⎦ 

H k = H ∗k 

. (33) 

The entries 
∂t l+1 

∂t l 
, 
∂t l+1 

∂ ̇ Z l 
, 
∂ ̇ Z l+1 

∂t l 
, 
∂ ̇ Z l+1 

∂ ̇ Z l 
for l = k, k + 1 , k + 2 are given in Appendix A. 

Using the trace Tr (DP ) (A.4) and determinant Det (DP ) , the eigenvalues of the matrix DP in (33) are computed by 
9 
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Fig. 6. Graphs of 	 (left column), and eigenvalues from the linear stability analysis (right column), showing real eigenvalues λ1 , 2 (blue solid and green 

dash-dotted thin lines) and real part of complex eigenvalues Re λ1 , 2 (green thick line) to confirm types and stability of solutions. Red circles labeled as 

Aj, or B indicate critical points from the linear stability analysis, described in Table 1 . In (a) and (b) for β = π/ 2 , 0 . 2088 < s < 0 . 3534 m; in (c) and (d) 

for β = π/ 3 and 0 . 2088 < s < 0 . 3534 m; in (e) and (f) for β = π/ 4 and 0 . 2088 < s < 0 . 3373 m; in (g) and (h) for β = π/ 6 and 0 . 2088 < s < 0 . 3373 m. 

The red dot-dashed lines for 	 = 0 and λ1 , 2 = −1 represent boundaries of the stability criteria. The left-most red circle in (h) corresponds to λ j = −1 from 

the stability analysis. For all figures M = 124 . 5 g, r = 0 . 5 , ‖ ˆ F ‖ = 5 N and ω = 5 π Hz. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

λ1 , 2 = 

Tr (DP ) ±
√ 

	

2 
, 

	 = [ Tr (DP )] 2 − 4 Det (DP ) , (34) 

and shown in Fig. 6 . The corresponding stability and analytical bifurcation conditions as obtained from the linear stability 

analysis are described in Table 1 below. 

If 	 < 0 , as shown for d A 1 < d < d A 2 ,d > d A 3 and in Fig. 6 (a), (c), (e), (g), the eigenvalues of the matrix DP are two

complex conjugates. Their corresponding real parts Re(λi ) = Tr(DP) / 2 are shown in Fig. 6 (b), (d), (f), (h), depicted by the

thick green line. In these intervals the 2:1 solution is a stable focus since the eigenvalues also satisfy the condition | λi | =√ 

Det(DP) < 1 . 

If 	 > 0 and min i =1 , 2 (λi ) < −1 , as in d < d B ranges in Fig. 6 (b), (d), (f), the period- T solution is an unstable node. The

corresponding critical point B is a period doubling bifurcation. For the angles of incline β = π/ 2 and β = π/ 3 the stabil-

ity behavior of the periodic motion is very similar revealing the predominance of node stability in the observed range of

d and having critical points of the same type: B period doubling bifurcation, A node/focus inflection and A focus/node 
1 2 

10 
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Table 1 

Conditions for stability as obtained from the linear stability analysis and 

shown in Fig. 2 , with, for example, d A j corresponding to the value of d

at A j . 

Interval Criteria Stability 

d < d B 	 > 0 and | λi | > 1 unstable node 

d B < d < d A 1 ,d A 2 < d < d A 3 , 	 > 0 and | λi | < 1 stable node 

d A 1 < d < d A 2 ,d > d A 3 	 < 0 and | λi | < 1 stable focus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inflection. For smaller β, the qualitative behavior of the 2:1 solutions changes; specifically, grazing bifurcations drive the 

transition to 3:1 solutions for larger values of d as compared with period doubling. We note that grazing bifurcations of the

2:1/ pT solutions are observed for larger values of β as well. They are not shown here since they occur for values of d < d B 
in those cases. 

4.2. The grazing transition and bistability 

In addition to the conditions given in Table 1 above, recall that for smaller β the location of the period doubling bi-

furcation occurs at smaller d. Specifically, for β = π/ 6 in the last row of Fig. 6 , the linear stability analysis indicates an

eigenvalue λ1 < −1 for d < 0 . 133 . This stability result is represented by a change from solid to dashed line for the analytical

solutions shown in Fig. 5 (j)–(l). However, the linear stability analysis does not capture the grazing bifurcations indicated by 

the dash-dotted vertical lines in Fig. 5 , which occurs for d > 0 . 133 . Then, in practice, the grazing bifurcation for d > 0 . 133 ,

rather than the local linearized behavior, drives the transition from 2:1 to 3:1 solutions. The values of d corresponding to 

grazing bifurcations are not included in Table 1 , but instead discussed here. 

For β = π/ 6 we numerically detect a different type of critical point for the 2:1 solutions, namely, grazing bifurcations

at which ˙ Z j = 0 and Z j = d/ 2 on the map P 2 [46,47,49] . These are indicated by the vertical lines at d = G 1 and d = G 2 in

Fig. 5 (j)–(l), at which ˙ Z j = 0 and Z j = d/ 2 [46,47,49] . Fig. 8 zooms in on the bifurcation branches near these values. At these

values of d there are transitions between 2:1 and 3:1 motions. The transition from 2:1 to 3:1 behavior at d = G 1 is illustrated

by the phase portrait and time series in Fig. 7 . The initial conditions for these numerical simulations are obtained from the

analytical expressions (27) –(30) . In Fig. 7 (d) the transition P 2 takes the form of a loop in the ˙ Z vs. Z phase plane. As d

decreases, the loop intersects with Z = d/ 2 , corresponding to an impact on ∂B with ˙ Z j = 0 . For decreasing d this additional

impact persists as shown in Fig. 7 (d), yielding 3:1 solutions with an additional P 1 transition prior to P 2 . 

Fig. 8 compares the grazing bifurcation at d = G 1 with the grazing bifurcation that occurs as d increases, leading to a

transition from 3:1 to 2:1 solutions at d = G 2 . Fig. 8 (a)–(c) shows the branches for only one 3:1 solution: for increasing d,

it exhibits grazing at G 2 , at which ˙ Z k = 0 and Z k = d/ 2 on the second P 1 map. Fig. 8 does not show the branches for the

3:1 solution that we might expect to observe, born from grazing behavior at G 1 ( ̇ Z k = 0 and Z k = d/ 2 on the map P 2 at G 1 ).

Numerical explorations for values of dbelow G 1 indicate that this 3:1 solution is unstable: initial conditions near the grazing

behavior at G 1 result in growth away from the corresponding 3:1 solutions. Instead, we observe transients to the attracting 

3:1 solutions shown in Fig. 8 . 

The phase plane behavior for d = G 1 and d = G 2 are in panels (d) and (g), respectively. In addition, the bi-stability of 3:1

and 2:1 solutions for G 1 < d < G 2 is shown via the bifurcation branches of ˙ Z k ,ϕ k and 	t k , as well as via the different phase

plane behaviors at the value d = . 14 in this bistable region. While [57] in chapter 6 explores some conditions for grazing and

sticking and asymmetric behavior in the case with β = 0 , in general this bi-stability of different n :1 solutions via grazing

has not been explored there or in other contexts. 

While not the focus of this paper, these results illustrate the importance of grazing bifurcations in driving different 

types of transitions in the VI-EH, as well as for the potential for hysteresis between bistable behaviors. The analysis of

grazing bifurcations for the VI-EH, as well as studying parameteric influence on the relative location of different types of 

bifurcations, is left for future investigation. 

5. Energy output 

Here we investigate the output voltage of the 2:1 behavior and compare these results with the 1:1 motion published

in Serdukova et al. [59] . Three variables corresponding to output voltage are shown, output voltage U k −U in at the k 
th im-

pact, average output per impact U I , and averaged output per unit of time U T . The derivation of U k −U in is summarized in

Yurchenko et al. [58] and U I , U T are defined as 

U I = 

∑ N 
k =1 (U k −U in ) 

N 

, U T = 

∑ N 
k =1 (U k −U in ) 

t f − t 0 
, (35) 

where N is the sample size of impacts and t f − t 0 = 
ω 
π (τ f − τ0 ) is the corresponding non-dimensionalized time interval. We 

average over this time interval, since it is just a constant rescaling of the dimensionalized time interval, and then it is easy

to compare U and U on the same plot. 
I T 

11 



L. Serdukova, R. Kuske and D. Yurchenko Journal of Sound and Vibration 492 (2021) 115811 

Fig. 7. Phase portrait and time series of period- T motion, with Z(t 0 ) = d/ 2 . (a)–(c) 2:1 motion for d = 0 . 16 ,s = 0 . 27 m, ˙ Z (t 0 ) = 0 . 1924 ,ϕ = 1 . 015 ; (d)–(f) 

Grazing behavior of 2:1 motion for d = 0 . 1373 ,s = 0 . 2206 m, ˙ Z (t 0 ) = 0 . 4149 ,ϕ = 5 . 840 ; (g)–(i) (3:1) motion for d = 0 . 138 ,s = 0 . 23 m, ˙ Z (t 0 ) = 0 . 1845 ,ϕ = 

0 . 7342 . For all figures β = π/ 6 ,M = 124 . 5 g, r = 0 . 5 , ‖ ˆ F ‖ = 5 N and ω = 5 π Hz. 
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Fig. 9 shows the output voltage for the 1:1 and 2:1 regimes, together with period doubled and chaotic regimes between

these behaviors, for four different incline angles β . Panels (a)–(d) show variation due to cylinder length s with fixed strength

of forcing ‖ ˆ F ‖ and panels (e) and (f) show variations in ‖ ˆ F ‖ with fixed s . One obvious difference is the trend in output

voltage, as observed previously in Fig. 2 . Away from bifurcations, the output voltage increases with both increasing ‖ F ‖
and increasing s . Then in (a)–(d) U k decreases with d since d is proportional to s, while in (e) and (f) U k shows a nonlinear

increasing trend with decreasing d, due to the inverse relationship d = 
sMω 2 

‖ ̂ F ‖ π2 
to ‖ ˆ F ‖ , as well as in the gravitational term

ḡ = 
Mg sin β

‖ ̂ F ‖ . 

The bifurcations in the motion also result in changes in the output voltage, which we discuss in terms of the different

measures of averaged output voltage. For 1:1 periodic motion, the average energy per impact U I is equal to the average

energy per unit of time U T , given that there are exactly two impacts for the 1:1 solutions. For the 1:1/ pT ,p > 1 solutions, as

well as for more complex and chaotic behavior as shown for smaller values of d > d graz , we see a slight increase in the rate

of decrease with d of the average output voltage in (a)-(d), due primarily to the combination of values of impact velocities

in the period doubled and more complex solutions that include some low velocity impacts. Following the transition to 2:1 

motion for d < d graz the average energy outputs U I and U T show jumps in the output value. Averaged output per impact

 I decreases due to the additional low velocity impact on ∂B in the period T = 2 for 2:1 solution. For the same reason,

 T increases due to this additional impact per period of the forcing. Similarly, for the transition from 2:1 solutions to 3:1

solutions, the additional low velocity impact results in jumps both in U I , which decreases across this critical value of d, and

in U T , which increases across this critical transition. Note that here we show the grazing transition only at d = G 1 for 2:1 to

3:1 solutions, corresponding to decreasing d in producing the bifurcation branches. 

We also observe differences in the output voltages for different angles β in terms of the location in d and sequence of

period doubling bifurcations and complex or chaotic behavior, and for the value of d at which the transition to 2:1 solutions
12 
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Fig. 8. Bi-stable behavior of periodic 2:1 (black open circles o’s) and 3:1 (blue thin lines) solutions in the vicinity of the grazing bifurcation 0 . 1378 < d < 

0 . 1419 for a) ˙ Z k , b) ϕ k , c) 	t k . Phase portraits with Z(t 0 ) = d/ 2 for d) Grazing point G 1 for β = π/ 6 ,d = 0 . 1373 ,s = 0 . 2206 m, ˙ Z (t 0 ) = 0 . 4149 ,ϕ = 5 . 840 ; 

e) 2:1 motion for β = π/ 6 ,d = 0 . 14 ,s = 0 . 224 m, ˙ Z (t 0 ) = 0 . 4185 ,ϕ = 5 . 855 ; f) 3:1 motion for β = π/ 6 ,d = 0 . 14 ,s = 0 . 224 m, ˙ Z (t 0 ) = 0 . 3967 ,ϕ = 5 . 88 ; g) 

Grazing point G 2 for β = π/ 6 ,d = 0 . 1414 ,s = 0 . 2271 m, ˙ Z (t 0 ) = 0 . 4085 ,ϕ = 5 . 864 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 9. Analytical results (solid, dash-dotted and dashed lines) and numerical simulations (open circles o’s, stars ∗’s and diamonds ♦’s) for output voltage 

U I (red) and U T (cyan) and U k −U in for (a) β = π/ 2 , 0 . 19 < s < 0 . 72 m; (b) β = π/ 3 , 0 . 19 < s < 0 . 72 m; (c) β = π/ 4 , 0 . 19 < s < 0 . 72 m; (d) β = π/ 6 , 0 . 19 < 

s < 0 . 72 m. For 2:1 solutions, in (a)–(c) the transitions P 3 , P 2 , P 1 are located from top to bottom, while in (d), P 2 , P 3 , P 1 are located from top to bottom. (e) 

For β = π/ 2 ,s = 0 . 85 m with varying ‖ ˆ F ‖ between 6 N and 22 N. (f) For β = π/ 6 ,s = 0 . 85 m with varying ‖ ˆ F ‖ between 6 N and 22 N. For all figures 

M = 124 . 5 g, r = 0 . 5 ,ω = 5 π Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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occurs. In general, as β increases, so do both the value of d at which period doubling of the 1:1 solution occurs, and the

value of d graz , the maximum value for 2:1 solutions. Comparing Panels (a)-(d), for which d decreases with s, and Panels (e)-

(f), for which d decreases with increasing ‖ ˆ F ‖ , we observe a larger range of d in (a)-(d) for period doubled and complex

or chaotic behavior. This is partly due to the fact that even though d decreases with increasing ‖ ˆ F ‖ , the coefficient ḡ

also decreases with increasing ‖ ˆ F ‖ . Then for (e)-(f) as d decreases there is a reduced influence of gravity, which would

otherwise generate period doubled and complex behavior. For the transition from 2:1 solutions to 2:1/ pT behavior, we 

observe different trends, namely, that period doubling occurs for larger d for decreasing s, while it occurs for smaller d for 

increasing ‖ ˆ F ‖ . For the 1:1 motion there is a small variation (less than 1%) with β of the output voltage, for the maximum

over the range of d shown in panels (a)-(d), and similarly if we compare maximum output voltages over 2:1 motions for

different angles. However, the parameter values at which these maxima occur differ with the incline angle β . 

The result of this investigation suggests that the choice of the most efficient dynamical regime/device design in terms 

of the harvested electrical energy depends on the choice of measure for average output voltage and the changes in the pa-

rameter values of the system and the forcing. Our results illustrate some parametric dependencies connected to the relative 

location of period doubling, chaotic and grazing bifurcations. 

6. Conclusions 

In this paper we determine semi-analytical solutions and stability conditions for the 2:1 motion of an inclined vibro- 

impacting energy harvester. These results also provide insight into the VI-EH’s energy harvesting potential. The device is 

composed of a ball moving in a cylinder with dielectric elastomer material at the cylinder ends. It is driven by a harmonic

forcing with period T , and positioned with an incline angle β . Energy is generated through impacts of the ball with the DE

material characterized by a restitution coefficient r. The device exhibits pT -periodic motions, denoted as n : m / pT , where n ( m )

indicates the number of impacts of the ball, per period T , with the DE material on the bottom of the cylinder ∂B (top of the
cylinder ∂T ). We develop a new generalized semi-analytical approach for analysis of n :1 periodic behavior, demonstrated for 

the 2:1 case, which provides parametric conditions for this behavior. Semi-analytical expressions for the generic period- T 

motion are derived through the three nonlinear maps that map the motion between the 3 impacts in the 2:1 motion per

period. These maps, together with conditions that capture jump discontinuities in the velocity at impact, yield quadruples 

for the impact velocity, phase shift at impact, and time intervals between the impacts. This approach is particularly valuable 

given the nature of the transitions to 2:1 motion from 1:1/ pT motion (or nearby chaotic behavior), since these behaviors

are too complex to provide a basis for practical analytical representations that describe the onset of 2:1 motion. We show

that the semi-analytical results for the 2:1 motion provide conditions for this onset, which we illustrate over ranges of 

parameters related to device length, forcing strength, and angle of incline. 

Similar to [57] and [59] , our derivation of this approach is based on a series of maps for a sequence of impacts, but we

move beyond these earlier methods with a new generalizable approach that avoids the cumbersome calculations previously 

used to get explicit expressions. The analytical solutions are in excellent agreement with the numerical ones. Bifurcation 

points are obtained from a linear stability analysis around the asymmetric 2:1 periodic solutions, from which we conclude: 

1. For larger values of the incline angle β, the stability behavior of the 2:1 periodic motion exhibits predominance of 

node stability in the observed range of d. These solutions lose stability through period doubling bifurcation for smaller 

values of d. This behavior is illustrated for β = π/ 2 ,β = π/ 3 and β = π/ 4 . 

2. For smaller values of incline β, the transition from 2:1 periodic behavior to 3:1 periodic behavior was observed as d

decreases. This transition occurs via a grazing bifurcation that is numerically detected. It occurs for larger values of 

d as compared with the values for period doubling predicted by the linear analysis. These results are illustrated for 

β = π/ 6 . 

We also obtain analytical results for the energy output for 1:1 and 2:1 motions, based on the existence and stability

results. We can then compare and identify the most energetically efficient operating mode of the harvester, comparing 

analytical results with numerical simulations for additional motions, including 1:1/ pT and 3:1. We observe that: 

3. The n :1 periodic asymmetric motions for n > 1 are less efficient compared to the motion with 1:1 alternating top and

bottom impacts per period of the forcing, when measured in terms of converted electrical energy per impact. 

4. The 2:1 periodic motion results in significant differences between the two measures of the harvested energy, averaged 

per impact, U I , and averaged over time interval, U T , giving greater value for U T . Similar observations for 3:1 behavior

are also shown. 

The comparisons with computations reveal additional unexplored phenomena, particularly in the case of smaller β, 

not previously documented in the dynamics of such a system. 

5. In the case of β = π/ 6 , we observe bi-stability of 2:1 motion and 3:1 motion, with two different grazing transitions

between these behaviors. Our preliminary results (comparing Figs. 2 and 4 ) also suggest that for smaller r, we expect

to see an increased prevalence of grazing bifurcations, transitions from n :1 to (n + 1) :1, in contrast to period doubling

bifurcations, transitions from n :1 to n :1/ pT ,p > 1 solutions. 

The analytical results presented here for transitions to 2:1 behavior show important differences in the change of energy 

output associated with different types of bifurcations - e.g. period doubling vs. grazing bifurcations. While we focus here on 

the influence of the parameters β and d on energy output, the preliminary results shown for bi-stability and the influence of 
14 
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r indicate important areas for further exploration. The analysis developed here provides a necessary foundation for further 

exploration in these directions. 
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Appendix A. 

Here we give the details for the calculations of the eigenvalues λ1 , 2 . The entries in the matrices in (33) are 

∂t k +1 

∂t k 
= 

r ̇ Z k − ḡ T 1 − f (t k ) T 1 

r ̇ Z k − ḡ T 1 − F 1 (t k +1 ) + F 1 (t k ) 
, 

∂t k +1 

∂ ˙ Z k 
= 

−rT 1 

r ̇ Z k − ḡ T 1 − F 1 (t k +1 ) + F 1 (t k ) 
, 

∂ ˙ Z k +1 

∂t k 
= 

∂t k +1 

∂t k 
[ f (t k +1 ) + ḡ ] − [ f (t k ) + ḡ ] , 

∂ ˙ Z k +1 

∂ ˙ Z k 
= −r + 

∂t k +1 

∂ ˙ Z k 
[ f (t k +1 ) + ḡ ] , (A.1) 

∂t k +2 

∂t k +1 

= 

r ̇ Z k +1 − ḡ T 2 − f (t k +1 ) T 2 

r ̇ Z k +1 − ḡ T 2 − F 1 (t k +2 ) + F 1 (t k +1 ) 
, 

∂t k +2 

∂ ˙ Z k +1 

= 

−rT 2 

r ̇ Z k +1 − ḡ T 2 − F 1 (t k +2 ) + F 1 (t k +1 ) 
, 

∂ ˙ Z k +2 

∂t k +1 

= 

∂t k +2 

∂t k +1 

[ f (t k +2 ) + ḡ ] − [ f (t k +1 ) + ḡ ] , 

∂ ˙ Z k +2 

∂ ˙ Z k +1 

= −r + 

∂t k +2 

∂ ˙ Z k +1 

[ f (t k +2 ) + ḡ ] , (A.2) 

and 

∂t k +3 

∂t k +2 

= 

r ̇ Z k +2 − ḡ T 3 − f (t k +2 ) T 3 

r ̇ Z k +2 − ḡ T 3 − F 1 (t k +3 ) + F 1 (t k +2 ) 
, 

∂t k +3 

∂ ˙ Z k +2 

= 

−rT 3 

r ̇ Z k +2 − ḡ T 3 − F 1 (t k +3 ) + F 1 (t k +2 ) 
, 

∂ ˙ Z k +3 

∂t k +2 

= 

∂t k +3 

∂t k +2 

[ f (t k +3 ) + ḡ ] − [ f (t k +2 ) + ḡ ] , 

∂ ˙ Z k +3 

∂ ˙ Z k +2 

= −r + 

∂t k +3 

∂ ˙ Z k +2 

[ f (t k +3 ) + ḡ ] . (A.3) 

For the period- T motion the trace of the linearized matrix DP is 

T r(DP ) = − r 6 ̇ Z (t k ) 

F 1 (t k +2 ) − F 1 (t k +3 ) − rF 1 (t k +1 ) + rF 1 (t k +2 ) + r 2 F 1 (t k ) − r 2 F 1 (t k +1 ) + σ1 

, (A.4) 

where σ1 = r 3 ̇ Z (t k ) − ḡ T 3 + r ̄g T 2 − r 2 ḡ T 1 . The determinant of the linearized matrix DP is a nonlinear function of

r, ̄g , ̇ Z (t k ) ,T 1 ,T 2 ,T 3 , f (t k ) , f (t k +1 ) , f (t k +2 ) , f (t k +3 ) ,F 1 (t k ) ,F 1 (t k +1 ) ,F 1 (t k +2 ) and F 1 (t k +3 ) . 
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[41] F. Peterka, T. Kotera, S. Čipera, Explanation of appearance and characteristics of intermittency chaos of the impact oscillator, Chaos Solitons Fractals 19

(5) (2004) 1251–1259, doi: 10.1016/S0960- 0779(03)00327- 8 . 
16 

http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0001
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0001
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0001
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0001
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0001
https://doi.org/10.1016/j.jsv.2005.10.003
https://doi.org/10.1007/978-3-319-29143-7
https://doi.org/10.1002/9783527672943
https://doi.org/10.1007/978-1-4614-5705-3
https://doi.org/10.1088/0964-1726/23/6/065011
https://doi.org/10.1016/j.probengmech.2015.10.007
https://doi.org/10.1016/j.ymssp.2017.06.026
https://doi.org/10.1007/978-94-007-2069-5_4
https://doi.org/10.1088/1361-665X/aa7710
https://doi.org/10.1063/1.5097552
https://doi.org/10.1140/epjst/e2013-01948-2
https://doi.org/10.1016/j.jsv.2015.11.033
https://doi.org/10.1016/j.taml.2019.03.005
https://doi.org/10.1590/1679-78255013
https://doi.org/10.1115/1.4002787
https://doi.org/10.1016/j.jsv.2012.04.035
https://doi.org/10.1115/1.4026278
https://doi.org/10.1016/j.jsv.2017.07.005
https://doi.org/10.1115/1.4029143
https://doi.org/10.1088/0964-1726/20/10/102001
https://doi.org/10.1177/1045389X12444940
https://doi.org/10.1088/0964-1726/25/11/115032
https://doi.org/10.1016/j.ymssp.2018.04.043
https://doi.org/10.1016/j.jsv.2017.03.036
https://doi.org/10.1016/j.cnsns.2018.02.017
https://doi.org/10.1007/s11071-019-05005-6
https://doi.org/10.1038/s42005-019-0117-9
https://doi.org/10.1088/1742-5468/ab0c15
https://doi.org/10.1007/s11071-011-0035-1
https://doi.org/10.1016/j.apenergy.2017.03.016
https://doi.org/10.3390/app9050998
https://doi.org/10.1016/j.enconman.2018.12.034
https://doi.org/10.1155/2019/1670284
https://doi.org/10.1016/j.apenergy.2020.114902
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0037
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0037
https://doi.org/10.1023/B:NODY.0000045510.93602.ca
https://doi.org/10.1103/PhysRevE.55.266
https://doi.org/10.1016/S0960-0779(03)00335-7
https://doi.org/10.1016/S0960-0779(03)00327-8


L. Serdukova, R. Kuske and D. Yurchenko Journal of Sound and Vibration 492 (2021) 115811 

 

 

 

 

 

 

 

 

 

 

[42] A. Rounak , S. Gupta , Bifurcations in a pre-stressed, harmonically excited, vibro-impact oscillator at subharmonic resonances, Int. J. Bifurc. Chaos 30 
(08) (2020) . 

[43] D.R.J. Chillingworth, Discontinuity geometry for an impact oscillator, Dyn. Syst. 17 (4) (2002) 389–420, doi: 10.1080/1468936021000041654 . 
[44] D.J. Wagg, S.R. Bishop, Dynamics of a two degree of freedom vibro-impact system with multiple motion limiting constraints, Int. J. Bifurc. Chaos 14

(01) (2004) 119–140, doi: 10.1142/S0218127404009223 . 
[45] D. Wagg, Periodic sticking motion in a two-degree-of-freedom impact oscillator, Int. J. Non Linear Mech. 40 (8) (2005) 1076–1087, doi: 10.1016/j.

ijnonlinmec.20 05.03.0 02 . 

[46] M. Di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, 163, Springer London, 
London, 2008, doi: 10.1007/978- 1- 84628- 708- 4 . 

[47] D.J.W. Simpson, S.J. Hogan, R. Kuske, Stochastic regular grazing bifurcations, SIAM J. Appl. Dyn. Syst. 12 (2) (2013) 533–559, doi: 10.1137/120884286 . 
[48] P. Kumar, S. Narayanan, S. Gupta, Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator, Nonlinear Dyn. 85 (1) (2016) 439–452,

doi: 10.1007/s11071- 016- 2697- 1 . 
[49] D.J.W. Simpson, R. Kuske, The influence of localized randomness on regular grazing bifurcations with applications to impacting dynamics, J. Vib.

Control 24 (2) (2018) 407–426, doi: 10.1177/1077546316642054 . 
[50] S. Shaw, P. Holmes, A periodically forced piecewise linear oscillator, J. Sound Vib. 90 (1) (1983) 129–155, doi: 10.1016/0022- 460X(83)90407- 8 . 

[51] A. El Aroudi, H. Ouakad, L. Benadero, M. Younis, Analysis of bifurcation behavior of a piecewise linear vibrator with electromagnetic coupling for

energy harvesting applications, Int. J. Bifurc. Chaos 24 (05) (2014) 1450066, doi: 10.1142/S0218127414500667 . 
[52] M. Borowiec, G. Litak, S. Lenci, Noise effected ener gy harvesting in a beam with stopper, Int. J. Struct. Stab. Dyn. 14 (08) (2014) 1440020, doi: 10.1142/

S0219455414400203 . 
[53] O. Gendelman, A. Alloni, Dynamics of forced system with vibro-impact energy sink, J. Sound Vib. 358 (2015) 301–314, doi: 10.1016/j.jsv.2015.08.020 . 

[54] B.D. Truong, C. Phu Le, E. Halvorsen, Power optimization and effective stiffness for a vibration energy harvester with displacement constraints, J.
Micromech. Microeng. 26 (12) (2016) 124006, doi: 10.1088/0960-1317/26/12/124006 . 

[55] M. Bendame, E. Abdel-Rahman, M. Soliman, Wideband, low-frequency springless vibration energy harvesters: part I, J. Micromech. Microeng. 26 (11) 

(2016) 115021, doi: 10.1088/0960-1317/26/11/115021 . 
[56] B. Guo, Y. Liu, R. Birler, S. Prasad, Self-propelled capsule endoscopy for small-bowel examination: proof-of-concept and model verification, Int. J. Mech. 

Sci. 174 (2020) 105506, doi: 10.1016/j.ijmecsci.2020.105506 . 
[57] A.C.J. Luo, Y. Guo, Vibro-Impact Dynamics, John Wiley & Sons Ltd, Oxford, UK, 2013, doi: 10.1002/9781118402924 . 

[58] D. Yurchenko, Z. Lai, G. Thomson, D. Val, R. Bobryk, Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer, Appl.
Energy 208 (2017) 456–470, doi: 10.1016/j.apenergy.2017.10.006 . 

[59] L. Serdukova, R. Kuske, D. Yurchenko, Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester, Nonlinear Dyn. 98

(3) (2019) 1807–1819, doi: 10.1007/s11071- 019- 05289- 8 . 
[60] A.C. Luo, Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator, Chaos Solitons Fractals 19 (4) (2004) 823–839,

doi: 10.1016/S0960-0779(03)00195-4 . 
17 

http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0042
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0042
http://refhub.elsevier.com/S0022-460X(20)30640-4/sbref0042
https://doi.org/10.1080/1468936021000041654
https://doi.org/10.1142/S0218127404009223
https://doi.org/10.1016/j.ijnonlinmec.2005.03.002
https://doi.org/10.1007/978-1-84628-708-4
https://doi.org/10.1137/120884286
https://doi.org/10.1007/s11071-016-2697-1
https://doi.org/10.1177/1077546316642054
https://doi.org/10.1016/0022-460X(83)90407-8
https://doi.org/10.1142/S0218127414500667
https://doi.org/10.1142/S0219455414400203
https://doi.org/10.1016/j.jsv.2015.08.020
https://doi.org/10.1088/0960-1317/26/12/124006
https://doi.org/10.1088/0960-1317/26/11/115021
https://doi.org/10.1016/j.ijmecsci.2020.105506
https://doi.org/10.1002/9781118402924
https://doi.org/10.1016/j.apenergy.2017.10.006
https://doi.org/10.1007/s11071-019-05289-8
https://doi.org/10.1016/S0960-0779(03)00195-4

	Post-grazing dynamics of a vibro-impacting energy generator
	1 Introduction
	2 Dynamical model of the vibro-impacting energy harvester
	2.1 Representation of periodic motion with maps

	3 Analytical expressions for periodic 2:1 motion
	4 Stability and bifurcation of 2:1 motion
	4.1 Linear stability analysis
	4.2 The grazing transition and bistability

	5 Energy output
	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A  
	References


