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Abstract: The resonant profile of the rate coefficient for three-body recombination into a shallow
dimer is investigated for mass-imbalanced systems. In the low-energy limit, three atoms collide
with zero-range interactions, in a regime where the scattering lengths of the heavy–heavy and the
heavy–light subsystems are positive and negative, respectively. For this physical system, the adiabatic
hyperspherical representation is combined with a fully semi-classical method and we show that
the shallow dimer recombination spectra display an asymmetric lineshape that originates from
the coexistence of Efimov resonances with Stückelberg interference minima. These asymmetric
lineshapes are quantified utilizing the Fano profile formula. In particular, a closed-form expression is
derived that describes the width of the corresponding Efimov resonances and the Fano lineshape
asymmetry parameter q. The profile of Efimov resonances exhibits a q−reversal effect as the inter- and
intra-species scattering lengths vary. In the case of a diverging asymmetry parameter, i.e., ∣q∣ → ∞,
we show that the Efimov resonances possess zero width and are fully decoupled from the three-body
and atom–dimer continua, and the corresponding Efimov metastable states behave as bound levels.

Keywords: few-body collisions; Efimov effect; mass-imbalanced systems; recombination

1. Introduction

The Efimov effect is one of the most counter-intuitive phenomena in few-body physics,
where an infinity of three-body bound states is formed even when the scattering length of
the two-body subsystems is negative [1–4]. This phenomenon was theoretically predicted
by V. Efimov to occur for three equal-mass particles that interact via zero-range potentials,
with trimer binding energies that scale geometrically [5]. The existence of these exotic trimer
states was experimentally confirmed by Kraemer et al. in an ultracold gas of Cs atoms [6].
This suggested new possibilities for theoretical and experimental investigations [1–3,7–12]
to address various physical aspects of the Efimov states, such as the discrete-scale invariance
of the trimer binding energies [13] or the sensitivity of the ground-state energy on the short-
range physics. In particular, the latter stems from the fact that, within the zero-range model,
the trimer spectrum is unbound from below due to Thomas collapse [14] and an auxiliary
parameter, i.e., three-body parameter, was introduced in order to specify the ground-state
energy rendering the entire spectrum system dependent [5]. However, experimental and
theoretical advances demonstrated that, for ultracold atoms, the Efimov spectrum exhibits
a certain class of universality, i.e., van der Waals universality [15–25]. Namely, it was shown
that the lowest Efimov state appears at scattering lengths a(1)

−
≈ −10`vdW, with `vdW being

the length scale of van der Waals interactions between two neutral atoms.
Mass-imbalanced ultracold gases are an ideal platform to explore more deeply the

idiosyncrasies of Efimov spectra. In particular, three-body collisions of ultracold atoms
with unequal masses offer more favorable experimental conditions that enable observation
of multiple successive trimer states and measurement of their geometrical energy scaling,
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i.e., the smoking gun of Efimov physics [26–28]. Apart from this, mass-imbalanced ensem-
bles offer a large parameter space, such as the particles’ mass ratio, the sign and magnitude
of the inter- and intra-species scattering lengths, which provide fertile ground to investi-
gate the pristine attributes of the Efimov states. Specifically, theoretical and experimental
efforts have mapped out a large portion of the parameter space, addressing the underlying
physics of recombination processes in heavy–heavy–light (HHL) systems [26,27,29–32].
The particular case that stands out corresponds to HHL systems that possess inter- and
intra-species scattering lengths of opposite sign, i.e., aHL < 0 and aHH > 0, respectively. For
example, in the experimental works of Refs. [29,33], it was demonstrated in the regime of
broad Fano–Feshbach resonances [34] that the lowest Efimov state is in good agreement
with the predictions of the universal zero-range and van der Waals theory. However,
subsequent experimental investigations show that deviations from the universal theory
are more pronounced for narrow Fano–Feshbach resonances [35]. Furthermore, within the
zero-range theory, Ref. [36] illustrated that the diabaticity of the three-body collisions
imposes additional limitations on the universal properties of the Efimov spectrum, where
mostly adiabatic collisions yield trimer states independent of the three-body parameter,
as was pointed out in the case of Refs. [29,33].

Additionally, Ref. [36] showed that three-body recombination into a shallow heavy–
heavy dimer possesses a unique property that only mass-imbalanced systems exhibit,
namely the co-existence of Efimov resonances with Stückelberg suppression effects in the
same range of scattering lengths. In this work, we further study this particular attribute of
HHL systems and demonstrate that the corresponding Efimov resonances in the recombi-
nation rate coefficient plotted versus scattering length can display an asymmetric profile,
which can be quantified by the Fano profile formula. In particular, our analysis employs
the adiabatic hyperspherical framework for zero-range two-body interactions, which is
combined with a fully semi-classical theory [36]. Moreover, a simplified version of the
semi-classical approach is shown, where the lowest hyperspherical curves are approxi-
mated by universal potential tails at large hyperradii, as in Ref. [37]. This permits us to
derive closed-form relations for the S-matrix elements, which are expressed in terms of
the width of the Efimov resonance and Fano’s lineshape asymmetry parameter q. As an
example, the asymmetric profiles of the Efimov resonances in the recombination coefficient
of 6Li-133Cs-133Cs and 6Li-87Rb-87Rb are analyzed, both of which showcase a q-reversal
phenomenon as a function of the inter- and intra-species scattering length ratio. Further-
more, we observe that, for a diverging q parameter, the Efimov resonances behave as
bound states that are embedded in the continuum [38]. This occurs since the decay width
of the resonances vanishes as ∣q∣ → ∞ and the corresponding Efimovian quasi-bound states
decouple from the three-body and atom–dimer continua.

The structure of this work is as follows: in Section 2, the Hamiltonian of the three-body
system and the parameters of interest are given. Sections 2.1 and 2.2 provide a detailed
review of the methods that are employed in our analysis. More specifically, Section 2.1
discusses the adiabatic hyperspherical representation and the fully semi-classical treatment
of the coupled hyperradial equations. In Section 2.2, a simplified version of the semi-
classical theory is given that permits us to express the S-matrix elements of recombination
processes into shallow dimers in terms of the inter- and intra-species scattering lengths.
Finally, Section 3 focuses on the asymmetric profile of Efimov resonances in the spectrum
of the three-body recombination coefficient for HHL systems.

2. General Considerations and Methods

Consider a three-body system that consists of two heavy (H) alkali atoms and a light (L)
one at low energies. The particles mutually interact through s-wave pairwise interactions
that are modeled via Fermi–Huang’s zero-range pseudopotential. Our greatest interest here
is in the regime where the mass-imbalanced system can recombine into a shallow heavy–
heavy dimer with a recoiling light atom. This scenario arises for inter- and intra-species
interactions of opposite sign, meaning that the scattering length between a heavy–light or
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heavy–heavy pair of particles is aHL < 0 or aHH > 0, respectively. Furthermore, relaxation
and recombination processes into deep dimer channels are neglected, and we focus on the
physics that arises due to energies near the break-up threshold, i.e., the zero-energy limit.
For this purpose, we focus on the two lowest potential curves of HHL systems, which
suffice to describe three-body recombination processes into shallow dimers, as was shown
in Ref. [36], permitting the derivation of closed-form expressions for the S-matrix.

2.1. The Adiabatic Hyperspherical Representation and the Semi-Classical Approach

The total three-body Hamiltonian for the HHL system of interest is given by the
following expression:

Htot =
3
∑
i=1
− h̄2

2mi
∇2

i +∑
i>j

Vij(rij), with

Vij(rij) =
4π h̄2aij

2µij
δ(rij)∂rij[rij×],

(1)

where Vij represents the Fermi–Huang pseudopotential. aij and µij refer to the scattering
length and two-body reduced mass of the ij-pair of particles, respectively. ∇2

i denotes the
Laplacian for ri, and mi indicates the mass of the i-th particle. Note that the scattering
lengths aij between the atoms are chosen to be larger than any other length scale of the
system, permitting us to focus on the universal characteristics of the three-body system
under consideration.

Utilizing the Jacobi vector choice of Ref. [39], Equation (1) can be separated into
the Hamiltonians of center of mass and relative degrees of freedom. Since the s-wave
interactions involve only the relative distance between a pair of particles, the center-of-
mass Hamiltonian is fully decoupled, meaning that the relative one retains all the relevant
information of the three-body system. Therefore, we focus only on the relative Hamiltonian,
which gives, after transforming it into hyperspherical coordinates (for details, see [2]),
the following expression:

Hrel = −
h̄2

2µR5/2
∂2

∂R2 R5/2 +Had(R; Ω), (2)

where µ =
√

m1m2m3/(m1 +m2 +m3) ≡ mH/
√

1+ 2mH/mL indicates the three-body re-
duced mass, R is the hyperradius, and Ω is a collective coordinate denoting the five
hyperangles [40,41]. Had(R; Ω) represents the part of the Hamiltonian that contains the
hyperangular centrifugal potential as well as the two-body interactions expressed in the
hyperspherical coordinates.

Had(R; Ω) = h̄2

2µ
Λ̂2 + 15h̄2

8µR2 +∑
i>j

Vij(R; Ω), (3)

where Λ̂ denotes the grand angular momentum operator.
In the spirit of the adiabatic hyperspherical representation, the properly symmetrized

three-body wave function is provided by the following ansatz:

Ψ(R, Ω) = 1
R5/2 ∑

ν
φν(R; Ω)Fν(R), (4)

where Fν(R) and φν(R; Ω) indicate the ν-th hyperradial and hyperangular part of the wave
function, respectively. In particular, φν(R; Ω) components of Ψ(R, Ω) are obtained by
diagonalizing Equation (3) at a fixed hyperradius R.

Had(R; Ω)φν(R; Ω) = Uν(R)φν(R; Ω), (5)
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where the eigenvalues Uν(R) are the so-called adiabatic hyperspherical potential curves .
Substitution of Equations (4) and (5) into the Schrödinger equation of the Hamiltonian

Hrel and integration over all the hyperangles Ω yields a set of coupled ordinary second-
order differential equations that solely depend on the hyperradius R.

[ − d2

dR2 +
2µ

h̄2 (Uν(R) − E)]Fν(R) = ∑
ν′

Vνν′(R)Fν′(R), (6)

where Vνν′(R) indicate the non-adiabatic coupling matrix elements/operators that are
given by the following expressions:

Vνν′(R) = 2Pνν′(R) d
dR
+Qνν′(R) with (7)

Pνν′(R) = ⟨φν(R; Ω)∣ ∂

∂R
φν′(R; Ω)⟩

Ω
(8)

Qνν′(R) = ⟨φν(R; Ω)∣ ∂2

∂R2 φν′(R; Ω)⟩
Ω

, (9)

where ⟨. . .⟩Ω denotes the integration over the hyperangles only.
Owing to the zero-range interactions, the non-adiabatic coupling matrix elements,

Pνν′(R) and Qνν′(R), as well as the hyperspherical potential curves, Uν(R), can be calcu-
lated semi-analytically [1,39,42,43]. However, the resulting hyperspherical potential curves
Uν(R), especially the lowest one, possess attractive singularities at the origin, i.e., the
Thomas collapse. Therefore, an auxiliary parameter is introduced in order to truncate the
attractive singularity in the potential curves, which, in its simplest form, consists of a hard
wall placed at a small hyperradius, R ≈ r3b. The three-body parameter r3b is arbitrary (from
the point of view of zero-range theory) and is usually fixed via experimental observations.
In addition, the zero-range approximation greatly simplifies the computational cost since
only hyperradial equations in Equation (6) require a numerical solution using standardized
R-matrix methods [44–46].

Figure 1 depicts the two lowest hyperspherical potential curves U1/3
ν (R/aHH) as

obtained from zero-range approximation: the upper (blue) potential that vanishes at large
hyperradii R in the break-up threshold and the lower (red) potential, which, in the limit of
large R, approaches the energy of the HH dimer. The light blue region denotes the hard wall
boundary condition at r3b/aHH that removes the attractive singularity of the lower curve.
The potential curves of Figure 1 suffice in order to intuitively understand the recombination
of three free particles into a universal pair of atoms with a recoiling one. Consider the

three-body system at a collisional energy Ē (in units of h̄2

mH a2
HH

) indicated by the dotted line

in Figure 1. In particular, we are interested in the low-energy limit in order to validate the
two-channel approximation and highlight the threshold behavior of three-body collisions in
HHL settings. Viewing this three-body system heuristically as a time-dependent collision,
starting from infinite long distances, the three particles propagate inwards in the upper
potential curve and tunnel with some probability under the repulsive barrier and then
probe the corresponding classical allowed region at short hyperradii. In this region, the non-
adiabatic P-matrix element P12 between the upper and lower potential curve plays a key
role in inducing transitions. More specifically, at distances RLZ/aHH (vertical dashed line),
the corresponding P-matrix maximizes, indicating the strong coupling regime. This means
that the particles transition with a certain probability from the upper to the lower curve and
subsequently propagate outwards, fragmenting into a two-body molecule plus a spectator
atom. This recombination process is quantified mainly by evaluating the ∣S12∣2 element of
the scattering S-matrix.

As was shown in Ref. [36], the ∣S12∣2 matrix element can be obtained analytically
within the two-channel approximation by combining the Landau–Zener physics with
the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approach. The main constituents of this
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semi-classical approach are depicted in Figure 1. More specifically, we assume that the
P-matrix element of the potential curves in Figure 1 possesses a Lorentzian lineshape in the
vicinity or R ≈ RLZ, and we include the Langer correction in JWKB integrals [47]. Under
these considerations, the ∣S12∣2 matrix element for the hyperspherical potential curves in
Figure 1 reads:

∣S12∣2 =e−2τ p(1− p) cos2(ΦU
L −ΦL

L −
π

4
+ λ){(1− e−4τ

16
)[p cos2(ΦL

L +ΦU
R −

π

4
) (10)

+ (1− p) cos2(ΦU
L +ΦU

R + λ)] − (1− e−2τ

4
)2 p(1− p) cos2(ΦU

L −ΦL
L −

π

4
+ λ)

+ e−4τ

16
}
−1

,

where e−2τ indicates the tunneling probability in a single collision with the repulsive barrier
of the upper potential curve in Figure 1.

Figure 1. An illustration of the lowest hyperspherical potential curves U1/3
ν (R/aHH) with aHH > 0

and aHL < 0. The red (blue) line saturates at large hyperradii in the atom–dimer (three-body break-up)
threshold. The quantities ΦU

L and ΦU
L indicate the JWKB phase accumulation in the upper potential

curve. For the lower potential, the corresponding phase is denoted by ΦL
L. The vertical dashed

line represents the hyperradius where the non-adiabatic coupling P-matrix element P12 maximizes.
The horizontal dotted line refers to the three-body collisional energy Ē in units of h̄2

mH a2
HH

, and the

three-body parameter, r3b
aHH

, depicted by the blue region.

The JWKB phases in the upper curve are indicated by the terms ΦU
L and ΦU

R . More
specifically, ΦU

L is the phase accumulation from the far-left classical turning point up to
R ≈ RLZ, whereas ΦU

R is the JWKB integral from R ≈ RLZ up to the inner classical turning
point of the repulsive barrier. Similarly, in the lower potential curve, ΦL

L corresponds to
the phase accumulation between the hard wall (blue shaded region) located at r3b

aHH
and

R ≈ RLZ. Furthermore, p corresponds to the Landau–Zener non-adiabatic probability to
transition from the upper to the lower hyperspherical potential curve in a single pass
through the avoided crossing region. The non-adiabatic probability p is evaluated from the
P-matrix elements, which, as we mentioned above, are approximated to have a Lorentzian
lineshape versus the hyperradius and a maximum at R ≈ RLZ [48]. λ is the Stokes phase
and it is a correction added to the components of the hyperradial wave function, i.e., Fν(R)
with ν = 1, 2, as they propagate through the non-adiabatic transition region [49,50]. The
Stokes correction phase depends on the non-adiabatic probability p and it obeys the relation

λ = argΓ(i
δ

π
)− δ

π
ln

δ

π
+ δ

π
+ π

4
, (11)

where δ = − ln p
2 . Figure 2 shows the Stokes phase versus p, where, in the diabatic (adiabatic)

limit, i.e., p = 1 (0), the Stokes phase tends to λ = −π/4 (0). Equation (10) captures the two
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main effects that occur in HHL systems. More specifically, the roots of the numerator of
Equation (10) indicate the Stückelberg suppression effects minimizing the probability of
the HHL system to recombine into a shallow dimer. On the other hand, the roots of the
denominator in Equation (10) denote the Efimov resonance phenomenon that enhances
the recombination into a shallow dimer. An additional insight obtained by Equation (10)
is that the Stückelberg suppression effects depend on the three-body parameter due to
the phase ΦL

L accumulation in the lower potential curve. In principle, also the Efimov
resonances depend on r3b; however, as Equation (10) suggests, in the limit of adiabatic
collisions, i.e., p ≪ 1, only the phase accumulation in the upper potential curve survives,
which is independent of the three-body parameter, meaning that such collisions possess a
universal character.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 2. The Stokes correction phase as a function of the non-adiabatic probability p.

The degree of diabaticity p is depicted in Figure 3, in the zero-energy limit, as a function
of aHH/∣aHL∣ for different mass ratios mH/mL, covering, in this manner, the regime from
strong-to-weak mass-imbalanced atomic ensembles. Note that we consider values of the
ratio aHH/∣aHL∣ that correspond to ∣aHL∣ and aHH , both being larger than the van der Waals
length scales of the HL and HH pairs of atoms, respectively, ensuring the validity of the
zero-range theory. In particular, we observe in Figure 3 that, for a large mass ratio, i.e.,
mH/mL = 21, the corresponding three-body collision is more diabatic than in the case of
weak mass imbalance, i.e., mH/mL = 6.3. This means that HHL systems with strong mass
imbalance, i.e., mH/mL > 21, can easily transition from the three-body continuum to the
shallow dimer–atom channel, implying that the corresponding recombination process is
strongly affected by the three-body parameter r3b. This behavior of the non-adiabatic prob-
ability p on mH/mL can be understood in terms of the ratio of the P-matrix elements and
the energy difference of the hyperspherical potential curves, i.e., ∆, at R = RLZ. According
to Ref. [48], the probability p is given by the relation p = e−π∆/[4vP12(RLZ)], where v refers to
the semi-classical velocity of the particles at R = RLZ. Thus, for aHL → −∞, the ratio of the
energy gap ∆ and P12(RLZ) increases as mH/mL decreases, yielding, in return, a decreasing
probability p and vice versa.

As an example, Figure 4 illustrates the scaled S-matrix element ∣S12∣
2

(kaHL)
4 for the 6Li-

87Rb-87Rb three-body system at low energies E = h̄2k2

2µ . Figure 4a corresponds to the semi-
classical model using Equation (10), and Figure 4b refers to the case where the hyperradial
equations are solved numerically within the R-matrix approach. Both panels are in excellent

agreement and the qualitative features, i.e., the enhancement and suppression of ∣S12∣
2

(kaHL)
4 , are

similar to those shown in Ref. [36]. In particular, as discussed in Ref. [36], the enhancement

of ∣S12∣
2

(kaHL)
4 is associated with an Efimov resonance. Namely, the upper potential curve in

Figure 1 can support a quasi-bound state behind the repulsive barrier at specific values of
the ratios ∣aHL ∣

aHH
and r3b

aHH
. Therefore, for colliding energies E that match the energy of the
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quasi-bound three-body state, the atoms can easily tunnel under the barrier, where they
can probe the non-adiabatic transition region and eventually hop with some probability to
the Rb2 +Li channel. Therefore, the presence of a quasi-bound state in the upper potential

curve in Figure 1 causes ∣S12∣
2

(kaHL)
4 to be more pronounced. On the other hand, the suppression

of ∣S12∣
2

(kaHL)
4 is a manifestation of Stückelberg physics due to the destructive interference of

the alternative pathways, which prevents the three particles from exiting to infinity along
the Rb2 +Li channel. However, in Ref. [36], the 6Li-133Cs-133Cs system was investigated

and the corresponding ∣S12∣
2

(kaHL)4 possesses one main qualitative difference from 6Li-87Rb-
87Rb. Specifically, the 6Li-133Cs-133Cs system exhibits narrower Efimov resonances (see
Figure 2b,c in Ref. [36]) than those shown Figure 4 for 6Li-87Rb-87Rb. This difference mainly
arises from the fact that the collisions in 6Li-133Cs-133Cs are more diabatic than in 6Li-87Rb-
87Rb. As Figure 3 suggests, the non-adiabatic probability p for 6Li-133Cs-133Cs is much
closer to the unit than for the case of 6Li-87Rb-87Rb. The lower values of p for 6Li-87Rb-87Rb
indicate the weak coupling of the quasi-bound Efimov state to the atom–dimer continuum,

which, in return, is manifested as a broad resonance in the ∣S12∣
2

(kaHL)
4 matrix element.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

Figure 3. The degree of diabaticity p as a function of the scattering length ratio aHH/∣aHL∣ for different
mass ratios mH/mL, covering the regime of strong-to-weak mass-imbalanced three-body systems.

(a) (b)

Figure 4. The scaled ∣S12∣
2

(kaHL)4 matrix element versus the ratios ∣aHL ∣

aHH
and r3b

aHH
for the 6Li-87Rb-87Rb system at low energy

E =
h̄2k2

2µ . (a) Semi-classical approach and (b) R-matrix numerical calculations.
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2.2. A Simplified Semi-Classical Model

In the following, we focus on the derivation of a simplified semi-classical model based
on the prescription given in Ref. [37]. Our goal is to unveil the scaling behavior of the S12
matrix element with respect to the length scales and the degree of diabaticity p that govern
HHL systems by incorporating only the necessary approximations. Therefore, for our
purposes, from this point on, we assume that the colliding energy of the three atoms tends
to zero, i.e., E = h̄2k2/2µ → 0.

As in Figure 1, Figure 5 illustrates the two lowest hyperspherical potential curves,
which are properly parameterized using only the limiting tails of the curves of Figure 1
in a piecewise manner. Namely, for the upper potential curve (blue line) in Figure 5,

the universal tail U1(R) = − h̄2

2µR2 (s2
0 + 1/4) is shown for hyperradii ranging from the non-

adiabatic transition region, i.e., RLZ, up to R ∼ γ∣aHL∣. Moreover, for R > γ∣aHL∣, we
consider only the tail of the repulsive barrier of the potential curve shown in Figure 1,

which falls off as U1(R) ∼ h̄2

2µR2 (15/4), with the outer classical turning point being located
at R ∼ 2/k. In addition, the effects of motion along the upper potential curve for R < RLZ
are mapped to an arbitrary phase Φ. For the lower curve, at small hyperadii, we employ

the universal tail U2(R) = − h̄2

2µR2 [(s∗0 )2 + 1/4], whereas, for R > RLZ, we assume that the
potential curve is constant, with energy equal to the heavy–heavy dimer. Note that the
parameters s0 and s∗0 correspond to the universal Efimov scaling coefficients for two and
three resonant two-body interactions, respectively, and they are tabulated in Ref. [51] for
several HHL systems.

Based on the piecewise potential curves of Figure 5 and considering the low-energy
limit, i.e., k → 0, the tunneling amplitude e−τ and the semi-classical phases ΦU

L , ΦU
R and ΦL

L
are given by the following expressions:

e−τ ≈ ∫
2/k

γ∣aHL ∣

√
4/R2 ≈ (γkaHL/2)2, ΦU

L = Φ, (12)

ΦU
R ≈ ∫

γ∣aHL ∣

β∣aHL ∣

√
s2

0/R2 ≈ s0 ln
γ∣aHL∣
βaHH

(13)

and ΦL
L ≈ ∫

β∣aHL ∣

r3b

√
(s∗0 )2/R2 ≈ s∗0 ln

βaHH

r3b
. (14)

where the dimensionless parameters β and γ define the interval of hyperradius R such that

the upper potential curve has the form U1(R) = − h̄2

2µR2 (s2
0 + 1/4). In general, β and γ are

considered free parameters and they can be fixed by a fitting procedure to experimental
or numerical data. Moreover, recall that the above JWKB integrals include the Langer cor-
rections. After substitution of Equation (12)–(14) into Equation (10), the S-matrix element
S12 reads

∣S12∣2
(kaHL)4 = γ4

16
p cos2 (s∗0 ln

r3b

aHH
+ψ1 + λ){ p

1− p

× sin2[s0 ln
∣aHL∣
aHH

+ψ2 − (s∗0 ln
r3b

aHH
+ψ1)]

+ cos2(s0 ln
∣aHL∣
aHH

+ψ2 + λ)

− p cos2(s∗0 ln
r3b

aHH
+ψ1 + λ)}

−1

, (15)

where the terms (1 − (γkaHL/2)8/16) ≈ 1 and (1 − (γkaHL/2)4/4) ≈ 1 since we focus on
the low-energy regime, i.e., k → 0. The phases ψ1 and ψ2 obey the expressions ψ1 =
Φ − s∗0 ln β −π/4 and ψ2 = Φ + s0 ln(γ/β), respectively.
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Equation (15) captures the main properties of the S-matrix element S12 shown in
Figure 4. The numerator of Equation (15) describes the positions of the Stückelberg inter-
ference minima, which, as shown in Figure 4, scale logarithmically with respect to the ratio
r3b/aHH . Moreover, the spacing between successive minima is constant on a logarithmic
scale and related to the universal Efimov scaling coefficient s∗0 . On the other hand, the roots

of the denominator of Equation (15) trace out the maxima of ∣S12∣
2

(kaHL)
4 in Figure 4, i.e., the

Efimov resonances, where the position of the successive resonances is defined by the s0
universal factor. We note that Equation (15), due to its simple structure, can be used as a
fitting formula for experimental measurements by treating the (ψ1, ψ2, γ) or (Φ, β, γ) as
fitting parameters.

Figure 5. An illustration of the approximate hyperspherical potential curves shown in Figure 1,
where s0 and s∗0 are the universal Efimov scaling coefficients. These piecewise curves are used in
Equations (12), (13) and (15).

3. Asymmetric Lineshapes in Three-Body Recombination Coefficients

Figure 4 demonstrates that recombination resonant features are intertwined with
Stückelberg interference minima. This constitutes a unique feature of mass-imbalanced
systems since, for homonuclear three-body collisions, the corresponding S-matrix element
exhibits either Efimov resonances or Stückeleberg suppression effects for negative or
positive scattering lengths, respectively. Therefore, this section focuses on the lineshape of
the ∣S12∣2 squared matrix element plotted as a function of the ratio r3b

aHH
at fixed values of

∣aHL ∣
aHH

. In order to demonstrate the asymmetric lineshape of the Efimov resonances in HHL
systems, it suffices to consider a range of r3b

aHH
values in the neighborhood of a Stückelberg

minimum, assuming a total colliding energy E ≈ 0.
Under these considerations, utilizing the Fano profile formula, Equation (15) can be

expressed in terms of the width of the resonance, Γ, and the Fano q-parameter, which
describes the asymmetry of the profile of the ∣S12∣2.

∣S12∣2
(kaHL)4 = A

(x + q)2

x2 + 1
, with (16)

A = γ4(1− p)
16

sin2(s∗0 xr +ψ1 + λ){ cos [2(s0 ln
∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)] + (1− p) cos [2(s∗0 xr +ψ1 + λ)]}
−1

,

where x = 2(ln r3b
aHH

− xr)/Γ, with xr referring to the values of the ratio ln r3b
aHH

that minimize

the denominator of Equation (15) at fixed ∣aHL ∣
aHH

. Note that Equation (16) has the same
functional form as the conventional Fano formula, i.e., σ = σ0(ε + q)2/(ε2 + 1) [52], where
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the ratio ln r3b
aHH

is the independent variable instead of the energy. For Equation (16),
the Fano lineshape asymmetry parameter q and the width Γ are given by the following
expressions:

q = − 2
s∗0 Γ

cot(s∗0 xr +ψ1 + λ) and (17)

(Γ
2
)

2

= 1− p
(s∗0 )2 p

[ cos2(s0 ln
∣aHL∣
aHH

+ψ2 + λ) − p cos2(s∗0 xr

+ψ1 + λ) + p
1− p

sin2(s0 ln
∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)]

× { cos[2(s0 ln
∣aHL∣
aHH

− s∗0 xr +ψ2 −ψ1)]

+ (1− p) cos[2(s∗0 xr +ψ1 + λ)]}
−1

. (18)

Note that Γ is dimensionless here, in contrast to the usual Fano lineshape, where Γ
has units of energy (or frequency).

The three-body recombination coefficient of HHL systems can be expressed in terms
of the S12 matrix element, yielding the relation

K3 =
64h̄π2

µk4 ∣S12∣2, (19)

where k =
√

2µE/h̄2, with E being the total colliding energy of the three-body system.
For a total colliding energy E ≈ 0, Figure 6a,b depict the scaled recombination co-

efficient mHK3
h̄a4

HL
versus the ratio ln r3b

aHH
in the vicinity of a Stückelberg minimum for two

three-body systems, i.e., 6Li−133 Cs−133 Cs and 6Li−87 Rb−87 Rb, respectively. More specif-
ically, the symbols in both panels correspond to the full semi-classical calculations, whereas
the solid lines are obtained by Equation (15), i.e., the simplified semi-classical model, using
γ, ψ1 and ψ2 as fitting parameters.

Note that Table 1 summarizes the values of these parameters for both HHL systems
exhibiting universal characteristics, since they are independent of scattering length ratio
∣aHL ∣
aHH

. Therefore, in order to extract the values of the γ, ψ1 and ψ2 parameters, it suffices
to fit only the semi-classical calculations for ∣aHL∣/aHH = 47.4 and ∣aHL∣/aHH = 101.1 in
panels (a) and (b), respectively. However, the phases ψ1 and ψ2 and the amplitude γ
depend on the mass ratio of the HHL system since the corresponding hyperspherical
potential curves are strongly influenced by variations in mH/mL. Evidently, both panels
showcase the asymmetric profile of the Efimov resonance as a distinctive feature of HHL
systems, where Equation (15) is in excellent agreement with the corresponding semi-
classical calculations. In particular, in Figure 6a, we observe that, for scattering length
ratios in the range 55 < ∣aHL ∣

aHH
< 69, the Efimov resonance occurs to the left of the Stückelberg

minimum and its width decreases towards ∣aHL ∣
aHH

→ 70. For ∣aHL ∣
aHH

> 70, the Efimov resonance
emerges to the right of the Stückelberg minimum with an increasing width. This behavior
of the resonant structure as a function of the ratio ∣aHL ∣

aHH
is known as the q-reversal effect,

where the asymmetry parameter q changes sign at ∣aHL ∣
aHH

∼ 70. For 6Li-87Rb-87Rb shown in
Figure 6b, a similar behavior is observed, demonstrating that the occurrence of q-reversal
is independent of the particles’ mass ratio. The q-reversal phenomenon is a manifestation
of quantum interference, and, in HHL systems, it occurs when s∗0 xr +ψ1 + λ = nπ/2, with n
being an integer.
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Table 1. A summary of the universal parameters used in Equations (16)–(18) for the systems of
6Li−133 Cs−133 Cs and 6Li−87 Rb−87 Rb. Note that the values of s0 and s∗0 are calculated in Ref. [51].

HHL System s0 s∗0 γ ψ1 ψ2

6Li-133Cs-133Cs 1.983 2.003 4.42 0.46 0.13

6Li-87Rb-87Rb 1.633 1.682 3.13 0.8 0.4
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Figure 6. In the limit of E → 0, the scaled recombination coefficient mH K3
h̄a4

HL
is shown as a function

of ln r3b
aHH

for (a) 6Li-133Cs-133Cs and (b) 6Li-87Rb-87Rb. The symbols refer to the corresponding
calculations in the semi-classical approach. The solid lines indicate the fitting of Equation (15) using
the universal parameters shown in Table 1.

Additionally, Figure 7 demonstrates the validity of the Fano lineshape formula given
in Equation (16). More specifically, Figure 7 illustrates a comparison of the scaled recombi-
nation coefficient between the fitting of Equation (15) (red and black dots) and the Fano
lineshape formula from Equation (16) (red and black solid lines) at low collisional energies.
In particular, the red (black) symbols and lines refer to the 6Li-133Cs-133Cs (6Li-87Rb-87Rb)
for a scattering length ratio ∣aCsLi∣

aCsCs
= 67.8 ( ∣aRbLi∣

aRbRb
= 126.2). We observe that the Fano lineshape

formula from Equation (16) is in good agreement with the corresponding semi-classical
calculations of Equation (15).
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Figure 7. A comparison of the scaled recombination coefficient obtained via the fitting of Equation (15)
(points) and the Fano lineshape formula (solid lines) from Equation (16) for two HHL systems. The red
points and lines correspond to 6Li-133Cs-133Cs for a scattering length ratio ∣aCsLi∣

aCsCs
= 67.8. The black

points and lines denote the 6Li-87Rb-87Rb system at ∣aRbLi∣

aRbRb
= 126.2. Note that the total colliding energy

is set to zero.

The width Γ of the Efimov resonances and the lineshape asymmetry q are shown in
Figure 8 for 6Li−133 Cs−133 Cs (see panels (a) and (b)) and 6Li−87 Rb−87 Rb (see panels (c)
and (d)). Γ and q are obtained via Equations (17) and (18) using the universal parameters
of Table 1. In panels (b) and (d), we observe the q-reversal effect, where, at ∣aHL ∣

aHH
= 70 and

∣aHL ∣
aHH

= 140, the lineshape asymmetry q diverges. This implies that, for large q parame-
ters, the recombination coefficient approaches a symmetric lineshape that is centered at
xr. Furthermore, we observe that, at ∣q∣ → ∞, the corresponding widths of the Efimov
resonances tend to zero, i.e., Γ → 0, as is illustrated in Figure 8a for 6Li-133Cs-133Cs and
Figure 8c for 6Li-87Rb-87Rb. This means that, in this range of parameters, the Efimovian
quasi-bound state stabilizes into a bound one that is fully decoupled from the three-body
and the atom–dimer continua. This counter-intuitive phenomenon is known as a bound
state in the continuum and such states have been observed in various fields of physics [38].
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Figure 8. Panels (a–d) show the width of the Efimov resonance Γ and the asymmetry parameter q
versus the scattering length ratio ∣aHL ∣

aHH
for the 6Li-133Cs-133Cs (6Li-87Rb-87Rb) system, respectively.

Note that the total colliding energy is set to zero. Moreover, Γ and q are obtained via Equations (17)
and (18), respectively, using the universal parameters shown in Table 1.
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4. Summary

In summary, the properties of three-body recombination processes into shallow dimers
for HHL systems are investigated. Focusing on the low-energy regime, we consider
inter- and intra-species interactions that possess negative and positive scattering lengths,
respectively, thereby highlighting the threshold behavior of such HHL systems. For this
three-body system, we have reviewed the theoretical methods used in Ref. [36] and, in
particular, the semi-classical approach, providing additional details on the Stokes phase
and the degree of diabaticity p. Furthermore, a simplified version of the semi-classical
method is derived by approximating the hyperspherical curves with piecewise potential
tails, as in Ref. [37]. The simplified semi-classical model provides closed-form expressions
of the S-matrix elements that describe the process of three free particles recombining into
the shallow dimer–atom channel. Namely, we show that Equation (15) captures all the
main attributes of the recombination spectra for HHL systems, such as the asymmetric
lineshape in the three-body recombination coefficient, the logarithmic scaling of the Efimov
resonances and Stückelberg interference minima. In particular, Figure 6 demonstrates
that Equation (15) can be used as a fitting formula for the recombination spectra in HHL
systems since the parameters ψ1, ψ2 and γ are insensitive to the scattering length ratio
∣aHL ∣
aHH

. Focusing on the resonant profile of the recombination coefficient, Equation (15) is
parameterized in terms of the width of the resonance Γ and the lineshape asymmetry q.
This parameterization enables us to identify two emergent phenomena that occur only in
heteronuclear three-body collisions: (i) the q-reversal effect, which describes the change
in the asymmetry of the profile of the three-body recombination coefficient as a function
of the scattering length ratio ∣aHL ∣

aHH
, and (ii) the modification of an Efimov resonance into a

bound state embedded in the three-body and atom–dimer continua for ∣q∣ → ∞.
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