ALGEBRAIC GEOMETRY AND REPRESENTATION THEORY IN THE
STUDY OF MATRIX MULTIPLICATION COMPLEXITY AND OTHER
PROBLEMS IN THEORETICAL COMPUTER SCIENCE

J. M. LANDSBERG

ABSTRACT. Many fundamental questions in theoretical computer science are naturally ex-
pressed as special cases of the following problem: Let G be a complex reductive group, let
V be a G-module, and let v, w be elements of V. Determine if w is in the G-orbit closure of v.
I explain the computer science problems, the questions in representation theory and algebraic
geometry that they give rise to, and the new perspectives on old areas such as invariant the-
ory that have arisen in light of these questions. I focus primarily on the complexity of matrix
multiplication.

1. INTRODUCTION

1.1. Goals of this article. To give an overview of uses of algebraic geometry and representation
theory in algebraic complexity theory, with an emphasis on areas that are ripe for further
contributions from geometers.

To give a history of, and discussion of recent breakthroughs in, the use of geometry in the study
of the complexity of matrix multiplication, which is one of the most important problems in
algebraic complexity theory.

To convince the reader of the utility of a geometric perspective by explaining how the funda-
mental theorem of linear algebra is a pathology via secant varieties.

1.2. The complexity of matrix multiplication.

1.2.1. Strassen’s magnificent failure. In 1968, while attempting to prove the standard row-
column way of multiplying matrices is optimal (at least for 2 x 2 matrices over Fg), Strassen
instead discovered that n x n matrices over any field could be multiplied using O(n%*®!) arith-
metic operations instead of the usual O(n?®) in the standard algorithm [102], see §11 for his
algorithm. Ever since then it has been a fundamental question to determine just how efficiently
matrices can be multiplied. There is an astounding conjecture that as the size of the matrices
grows, it becomes almost as easy to multiply matrices as it is to add them.
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2 J. M. LANDSBERG

1.2.2. The complexity of matrix multiplication as a problem in geometry. The above-mentioned
astounding conjecture may be made precise as follows: let

w := inf-{n x n matrices may be multiplied using O(n") arithmetic operations}

Classically one has w < 3 and Strassen showed w < 2.81. The astounding conjecture is that
w = 2. The quantity w is called the exponent of matriz multiplication and it is a fundamental
constant of nature. As I explain below, Bini [15], building on work of Strassen, showed w can
be expressed in terms of familiar notions in algebraic geometry.

Matrix multiplication is a bilinear map My, : C"’ x C"° - (C”Z, taking a pair of n x n matrices
to their product: (X,Y)— XY. In general, one may view a bilinear map §: A* x B* - C as a
trilinear form, or tensor, Ty € A B®C'. In the case of matrix multiplication, the trilinear form
is (X,Y,Z) ~ trace(XY Z). A basic measure of the complexity of a tensor T' € A9 BQC' is its
rank, the smallest r such that T'= }77_ e;® f;®g; for some e; € A, fj € B, gj € C. This is because
rank one tensors correspond to bilinear maps that can be computed by performing one scalar
multiplication. Let R(7) denote the rank of the tensor T'. Strassen showed R(My)) = O(n®),
so one could determine w by determining the growth of the rank of the matrix multiplication
tensor.

1.2.3. Bini’s sleepless nights. Shortly after Strassen’s discovery about multiplying 2 x 2 matrices
with 7 multiplications instead of 8, Bini wondered if 2x2 matrices, where the first matrix had one
entry zero, could be multiplied with five multiplications instead of the usual six. (His motivation
was that such an algorithm would lead to efficient usual matrix multiplication algorithms for
larger matrices.) With his collaborators Lotti and Romani [16] they performed a computer
search for a better algorithm, using numerical methods. There seemed to be a problem with
their code, as each time the program appeared to start to converge to a rank five decomposition,
the coefficients in the terms would blow up.

I had the priviledge of meeting Bini, who told me the story of how he could not sleep at night
because no matter how hard he checked, he could not find an error in the code and would lie
awake trying to figure out what was going wrong. Then one evening, he finally realized there
was no problem with the code! 1 explain the geometry of his discovery in §2.

1.3. Things computer scientists think about. Computer scientists are not usually inter-
ested in a single polynomial or fixed size matrix, but rather sequences {P,} of polynomials
(or matrices) where the number of variables and the degree grow with n. In what follows I
sometimes suppress reference to the sequence.

1.3.1. Efficient algorithms. This is probably the first thing that comes to mind to a person
on the street, however even here there is a twist: while computer scientists are interested in,
and very good at, constructing efficient algorithms, they are also often content just to prove
the existence of efficient algorithms. As we will see in §10, this is very much the case for the
complexity of matrix multiplication.

1.3.2. Hay in a haystack. * Much of theoretical computer science deals with the problem of
finding explicit examples of objects. A generic (or random) sequence of polynomials will be
difficult to evaluate, but it is a fundamental problem to find an explicit sequence of polynomials
that is difficult to evaluate. (This uses the computer scientist’s definition of “explicit”, which

Phrase due to H. Karloff
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may not be the first thing that comes to a mathematician’s mind.) Several instances of this
problem are discussed in this article: §3.1, §3.2, and §3.4.

1.3.3. “Lower bounds: Complexity Theory’s Waterloo”. > Computer scientists are perhaps most
interested in proving there are no efficient algorithms for certain tasks such as the traveling sales-
person problem. More precisely, they are interested in distinguishing tasks admitting efficient
algorithms from those that do not. They have not been so successful in this, but at least they
can often show that if task X is difficult, then so is task Y, e.g., the abundance of NP-complete
problems.

1.4. Overview. In §2 I explain how the fundamental theorem of linear algebra is a pathology via
the geometry of secant varieties, which also explains the geometry underlying Bini’s discovery.
In §3 I discuss several problems in complexity theory that are strongly tied to algebraic geometry
and representation theory. Sections §4, §5, §7, §8, §9 and §10 all discuss aspects of the complexity
of matrix multiplication, with the first five discussing lower bounds and the last discussing
geometric aspects of upper bounds. I also include a section, §6, which discuses other open
questions about tensors, many of which are also related to complexity theory. For readers not
familiar with Strassen’s algorithm, I include it in an appendix §11. The background required
for the sections varies considerably, with almost nothing assumed in §2, where for some of the
problems in §3, I assume basic terminology from invariant theory.

1.5. Notation and Conventions. Let A, B,C,V denote complex vector spaces of dimensions
a,b,c,v. Let a1, -, aa be a basis of 4, and a',--, o its dual basis of A*. Similarly by, -, by, and
c1,-+, e are bases of B and C respectively, with dual bases 81, -, 8® and ~!,---,7°.

The tensor product A B®C' denotes the space of trilinear maps A* x B* x C* - C, which
may also be thought of as the space of linear maps A* —» B®C etc... A tensor T € A®B®C
is A-concise, if the linear map T4 : A* - B®C is injective and it is concise if it is A, B, and
C-concise. Informally this means that 7" may not be put in a smaller space.

The group of invertible linear maps A — A is denoted GL(A) and the set of all linear maps is
denoted End(A4) = A*®A.

Informally, the symmetry group of a tensor T' ¢ A ® B ® C is its stabilizer under the natural
action of GL(A) x GL(B) x GL(C'). For a tensor T ¢ A® B® C, let Gy denote its symmetry
group. One says T is isomorphic to T if they are in the same GL(A) x GL(B) x GL(C)-orbit.
I identify isomorphic tensors.

The transpose of a matrix M is denoted M?.

For a set S c V, define the ideal of S, Ig := {polys P | P(s) = 0Vs € S} and define the Zariski
closureof S, S := {v eV | P(v) = 0YP € Is}. In our situation the Zariski closure will coincide with
the Euclidean closure. (This happens whenever S is irreducible and S contains a Zariski-open
subset of S, see, e.g., [91, Thm 2.33] or [71, §3.1.6]).

Projective space is PV = V\{0}/C*. For the purposes of this article, a projective variety is the
common zero set of a collection of homogeneous polynomials on V' considered as a subset of PV.

Let Seg(PA xPB xPC) c P(A®B®C') denote the variety of rank one tensors, called the Segre
variety.

2Title of Chapter 14 of [11]
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For a subset Y c CV, let (V') c CV denote its linear span and I use the same notation for Y c PV.
For a group G, a G-module V', and v € V, G-v denotes the orbit of v, so G - v is its orbit closure.

The space of d-way symmetric tensors is denoted SV, which may be identified with the ho-
mogeneous degree d polynomials on V*. The variety of rank one symmetric tensors is denoted
vg(PV) c PSYV and is called the Veronese variety.

The space of d-way skew-symmetric tensors is denoted A%V, and the Grassmannian is the
variety G(d, V) :=P{X e A2V | X = v; A Avy | some v, -, vg € V}. It admits the geometric
interpretation of the set of d-planes through the origin in V.

1.6. Acknowledgements. I thank D. Alexeev for inviting me to contribute this article, and J.
Grochow, A. Shpilka, and M. Forbes for suggestions how to improve the exposition.

2. THE FUNDAMENTAL THEOREM OF LINEAR ALGEBRA IS AN EXTREME PATHOLOGY

When researchers first encounter tensors they are often surprised how their intuition from linear
algebra fails and they view tensors as strange objects. The goal of this section is to convince
the reader that it is not tensors, but matrices that are strange.

2.1. The fundamental theorem of linear algebra.

Theorem 2.1 (Fundamental theorem of linear algebra). Fix bases {a;}, {b;} of A, B and for
r <min{a, b}, set I, = ¥} ax®by. The following quantities all equal the rank of T € A®B:

(R) The smallest r such that T' is a sum of r rank one elements. i.e., such that T € End(A) x
End(B) - I,.

(R) The smallest r such that T is a limit of a sum of r rank one elements, i.e., such that
TeGL(A)xGL(B)-I,.

(mly) dim A —dimker(74 : A* - B).

(mlg) dim B -dimker(75: B* - A).
(Q) The largest r such that I, e GL(A) x GL(B)-T.
(Q) The largest r such that I, € End(A) x End(B) -T.

2.2. The fundamental theorem fails miserably for tensors. Now consider a tensor T ¢
A®BQC. Recall that T e A B®C' has rank one if there exists a € A, b€ B, and ¢ € C such that
T = a®b®c. For r <min{a, b, c}, write I, = ¥j_; a,®b,®cy.

Definition 2.2.

(R(T)) The rank of T is the smallest r such that T is a sum of r rank one tensors i.e., such that
T € End(C") x End(C") x End(C") - I, allowing re-embeddings of T' to C"®C"®C".

(R(T')) The border rank of T is the smallest r such that 7" is a limit of rank r tensors, i.e. such
that T'e GL(C") x GL(C") x GL(C") - I,., allowing re-embeddings.

(ml) The multi-linear ranks of T are (mls (7)), mlp(T"),mlc(T)) := (rankTs, rankTp, rank 7).
(Q(T)) The border subrank of T'is the largest r such that I, e GL(A) x GL(B) x GL(C) - T.
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(Q(T)) The subrank of T is the largest r such that I, €e End(A) x End(B) x End(C) - T.

Proposition 2.3. One has
Q(T) < Q(T') < min{mlx(T), mlp(T), mlc(T)}
<max{mly(7T),mlp(T),mlo(T)} <R(T) <R(T)
and all inequalities may be strict, even when a=b = c.

Say a = b = ¢ =m, then it has been known for some time that if 7" is generic then R(7") = R(T) ~
%2, and this is largest possible R. However the precise generic values were not determined until
Lickteig determined them in 1985 [82]. The symmetric case was studied by Terracini in 1916,
who mostly solved it but it was not finished (for polynomials of arbitrary degree) until 1995
when it was solved by Alexander and Hirschowitz [3].
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2.3. Geometry of Bini’s insight. Consider the following three pictures:

N

F1GURE 1. Imagine this curve represents the 3m — 2 dimensional set of tensors
of rank one sitting in the m? dimensional space of tensors.

FIGURE 2. Tensors of rank two correspond to points on a secant line to the set
of tensors of rank one

o

N

F1GURE 3. The limit of secant lines is a tangent line!
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Given a curve or other variety with large codimension, most points that lie on a secant line lie
on just one secant line and points that lie on a secant line do not in general lie on a tangent line.
Contrast this with the case of a plane curve, where all points lie on a family of secant lines.

Bini’s (re)discovery was that tensor rank is not semi-continuous precisely because secant lines
may limit to tangent lines, and he coined the term border rank to include the limits. (The
classical Italian algebraic geometers knew of the lack of semi-contiuity 100 years ago.) Bini
then went on to prove that border rank is also a legitimate measure of the complexity of matrix
multiplication, namely R(My)) = O(n*) [15].

Now we see that Strassen’s result R(My,)) = O(n*) is not immediately useful for algebraic
geometry: if P is a polynomial, P(T;) = 0 for ¢ > 0 implies P(Tp) = 0, but the limit of tensors
of rank at most r need not have rank at most r. L.e., one cannot describe rank via zero sets of
polynomials. In contrast, for matrices matrix rank equals matrix border rank and is given by
polynomials. For this reason, we will be primarily concerned with border rank of tensors, which
by definition is closed under taking limits.

As I explain below, essentially all known examples of smooth geometric objects with large
codimension with the property that any time a point is on a secant line to the object, it is
on a family of secant lines, comes from “minimal rank” matrices in some (restricted) space of
matrices.

2.4. Geometric context: secant varieties. Let X c PV be a projective variety. Define

0 (X):={2ePV |3xy, 2, e X |z € (1, 2)}

the variety of secant P""!’s to X. A naive dimension count shows that we expect dim(c, (X))
to be min{rdim X +r - 1,dim PV}, because we get to pick r points on X and a point in their
span. If this count fails one says the variety is defective. Defectivity is a pathology.

The fact that the fundamental lemma of linear algebra is a pathology may be rephrased as saying
the Segre variety Seg(PA x PB) c P(A®B) of rank one matrices has defective secant varieties.
The secant varieties of three and higher order tensors are generally not defective, the (m,m,m)
case mentioned above proved by Lickteig has only one exception, m = 3 and r = 4. See [1] for
the state of the art in the general tensor case.

To my knowledge, essentially all known smooth varieties with degenerate r = 2 secant varieties
come from matrices: the rank one matrices Seg(PA x PB) c P(A®B), the rank one symmetric
matrices vo(A) c P(S?A), the rank two skew-symmetric matrices (i.e., minimal rank skew-
symmetric matrices) G(2, A) c P(A? A), the Cayley plane discussed below, and the closed orbit
in the adjoint representation of a complex simple Lie algebra G/P5 c Pg [63] (which consists of
v2(PA), the two planes isotropic for a quadratic form on A, denoted G(2, A), the traceless rank
one matrices when g = sl,, and five exceptional cases of “minimal rank” matrices in some space
of matrices with extra structure). When the dimension of the secant variety differs from the
expected dimension by more than one, one can take hyperplane sections to get further examples.

Secant varieties of projective varieties have been studied for a long time, dating back at least to
the Italian school in the 1800’s. They show up in numerous geometric situations. For example,
Zak (see [106]) proved a linear approximation to Hartshorne’s famous conjecture on complete
intersections [54] that was also conjectured by Hartshorne, which amounts to proving that if X
is smooth of dimension n, not contained in a hyperplane, and the codimension of X is less than

5, then 02(X) = PV. Moreover, Zak classified the exceptional cases with codimension %, now
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called Severi varieties. They turn out to be the projective planes over the composition algebras
AP? c PJ5(A), where A is one of R® = C, C® = C e C, H®, or OF, the last two cases are the
complexified quaternions and octonions, and J3(A) denotes the (complex) vector space of 3 x 3
A-Hermitian matrices. It is an open problem to determine if a gap larger than 8 (which occurs
for O°P?) between the expected and actual dimension occurs for a smooth variety, see [80].
Moreover, using the geometry of secant and tangential varieties, one can obtain a proof of the
Killing-Cartan classification of complex simple Lie algebras via a constructive procedure starting
with P!, see [72].

3. PROBLEMS IN COMPLEXITY WITH INTERESTING GEOMETRY

The bulk of this article discusses the history and recent developments using geometry in the
study of matrix multiplication. Here I discuss several other questions with interesting geometry.
I ignore numerous fundamental developments that have not yet been cast in geometric language.
I briefly mention two such developments now: Hardness v. randomness (see, e.g., [60]), shows
that if certain conjecturally hard problems are truly hard, then many other problems, for which
only a randomized efficient algorithm is known, admit deterministic efficient algorithms, and
conversely, if these problems cannot be derandomized, then the conjectured hard problem is not
hard after all. The PCP theorem [12] says that any putative proof may be rewritten in such a
way that its correctness is checkable by looking at only a few probabilistically chosen symbols,
See [11] for excellent discussions of these and other omissions.

3.1. P v. NP and variants. The famous P # NP conjecture of Cook, Karp, and Levin has
origins in the 1950’s work of John Nash (see [92, Chap. 1]), researchers in the Soviet Union (see,
e.g, [104]), and, most poetically, Godel, who asked if one could quantify the idea of intuition
(see [99, Appendix]). One of L. Valiant’s algebraic versions of the problem [105] is as follows:
Valiant showed that any polynomial p(z1,---,xx) may be realized as the determinant of some
n x n matrix of affine linear forms in the x;, where the size n depends on p. He showed the size
is a good measure of the complexity of a polynomial. The “permanent v. determinant” version
of the P + NP conjecture is that the size n(m) of the matrix needed to compute the permanent
perm,, € S™C™* of an m x m matrix® grows faster than any polynomial in m. For those
familiar with the traveling salesman version of P # NP, the “easy to verify” proposed answer is
replaced by an “easy to write down” polynomial sequence, and the conjecture amounts to saying
a polynomial sequence that is easy to write down in general will not be easy to compute. Here
I discuss the permanent v. determinant version of the problem.

In algebraic geometry one generally prefers to work with homogeneous polynomials, so instead of
asking to write the permanent as a determinant of affine linear functions, following K. Mulmuley
and M. Sohoni, one adds a variable to homogenize the problem:

Conjecture 3.1. [Rephrasing of Valiant’s conjecture as in [89]] Let ¢ be a linear coordinate on
C! and consider any linear inclusion C' & c™ - (C"Q, so in particular "~ perm,, € SC. Let
n(m) be a polynomial. Then for all sufficiently large m,

[6""™ perm,,] ¢ End(C™) - [det,,(m)]-

Remark 3.2. The best known n(m) is n = 2" -1 due to B. Grenet [49]. His expression has
interesting geometry. Note that given an expression for the permanent as a determinant, one

3The permanent is the polynomial that is the same as the determinant, only without the minus signs.
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gets a family of such by the action of Gperm,, XGget,, 01 (Ct aC™ )*®C”2, and we can consider the
stabilizer I' ¢ Gperm,,, X Get,, Of a decomposition. One has Gperm,, = [(C*)? M2 xS, x G,y | % Zo
and this is the largest possible stabilizer. One has I'grenet = (C*)*™ x &,,, [77] and moreover,
if one insists on a stabilizer this size, N. Ressayre and I also showed Grenet’s n(m) =2 -1 is
the smallest possible [77]. In particular, one could prove Valiant’s conjecture by proving that
for any determinantal expression for the permanent, that there exists a slightly larger one with
symmetry I'Grenet. Similarly, one can also have I' = Gperm,, for a similar (but larger) cost in size.

To further geometrize the problem, Mulmuley and Sohoni proposed a stronger conjecture: Let
Det,, := GL,32 - [det, ],
and let

Perm,’ := GL,2 - [{""™ perm,,, |.

Conjecture 3.3. [89] Let n(m) be a polynomial. Then for all sufficiently large m,
Perm?(m) ¢ Detp(m)-

This is stronger as in general, for a polynomial P € S?C¥, the inclusion End(C")-Pc GLy - P
is strict.

Both Perm,' and Det,, are invariant under GL,2 so their ideals are GL,,2-modules. The original
idea of [89,90] was to solve the problem by finding a sequence, depending on n, of GL,2-modules
M, such that M,, c I[Det, | and M,, ¢ I[Perm,']. The initial idea in [89] was to look for not any
module, but an invariant to separate the orbit closures. The mathematical issues raised by this
program were analyzed in [30]. Work of Ikenmeyer and Panova [59] and Biirgisser, Ikenmeyer
and Panova [29] shows this is not possible but other paths using representation theory are still
open, see [83-88].

This program has inspired a tremendous amount of work and breathed new life into invariant
theory. I will loosely refer to the inspired work as geometric complezity theory (GCT) even for
problems not directly related to Valiant’s conjecture.

3.2. Explicit Noether Normalization. The classical Noether normalization lemma may be
stated geometrically as follows: given an affine variety X" c A™® = V| there exists a W = A c
A™? such that the projection of X to V/W = A™ will be a finite to one surjection. In fact a
general or “random” A® will do. The problem of explicit Noether normalization is to find an
explicit A® that has this property. In [86], Mulmuley proposes this problem as a possible path
to resolve Valiant’s conjecture.

Algebraically, given a ring R, one is interested in finding an explicitly generated (in the sense
of computer science, in particular, efficiently describable, and I remind the reader that one is
really dealing with sequences of rings) subring S such that R is integral over S. Of particular
interest is the case R is the ring of invariants in the coordinate ring of some G-variety Z (i.e.,
the X in question is the GIT quotient of Z). M. Forbes and A. Shpilka [44] give an effective
solution to this in the case R is the ring of invariants of the set of r-tuples of n x n matrices
under the action of GL,, by simultaneous conjugation. This ring is generated by traces of words
in the matrices [93,95]. A key ingredient here is the use of pseudo-randomness: deterministic
processes that are not too expensive yet are able to imitate randomness sufficiently to resolve
the problem.
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There is work still to be done here. One wants to find a smallest subring S that works. One
way to measure smallness is the number of separating invariants that are used to generate it.
Ideally one would get a set of generators whose size matches the dimension of the variety in
question, and generically this is possible. Here the dimension is polynomial in (n,r), one writes
“poly(n,r)”. The articles [93,95] give an exponential in n,r size S and [44] gives an explicit set
of size poly(n,r)o(log(m)) and the open problem is to reduce it to polynomial size.

3.3. Algorithms in invariant theory. Thanks to the GCT program, computer scientists have
recognized that the orbit closure containment problem, and the related orbit closure intersec-
tion and orbit equality problems provide a natural framework for many questions in computer
science. One insight of [28], by P. Burgisser, C. Franks, A. Garg, R. Oliveira, M. Walter, and
A. Wigderson, is that many problems in complexity and other applications may be phrased
as follows: Let G be a complex reductive algebraic group, let K ¢ G be a maximal compact
subgroup with Lie algebra €, so g is a complex Lie algebra and ¢ is a real Lie algebra. Then
g = t @ it, and G-modules V' come equipped with a K-invariant inner product, in particular a
norm. Then given v € V', the problem is to compute its capacity

cap(v) := min g [[wl].

Readers familiar with the Kempf-Ness theorem [64] will recognize w as a vector satisfying u(w) =
0, where u: PV — (g/€)* is the moment map, the normalized derivative of the norm map G - R,
g+ |lg-v|]* at the identity.

They point out that already when G is abelian, this encompasses all linear programming prob-
lems. Incidences of the general problem have been known for some time in the community
of geometers, e.g., the famous Horn problem, see, e.g., [46]. A very special case is null cone
membership: determine if v has capacity zero.

The problem with just checking the boundary of the moment polytope is that in general, the
moment polytope is defined by too many inequalities to make such a check efficient.

Their new ingredient to this well-studied problem is the introduction of algorithms to solve, or
approximately solve the problem. They use gradient descent methods. In essence, given € > 0,
the algorithms, after some specified amount of computation, either take one within € of a w
achieving the minimum, or stay a specified distance from it. A variant that they also study is
an algorithm to compute an element of G that takes one close to w.

3.4. Elusive functions. R. Raz defines the following “hay in a haystack” approach to Valiant’s
conjecture. Consider a linear projection of a Veronese variety v,(P*') c PS"C® via proj :
PS"C?® -> P, and let I';. 5 := proj o v, : P51 -> P™ be the composition of the projection with the
Veronese map. A map f:P" - P™ is said to be (r,s)-elusive if f(IP") is not contained in the
image of any such I'; ;.

Theorem 3.4. [94] Let m be super-polynomial in n, and s > mio. If there exists an explicit
(s,2)-elusive f:P" — P™, then Valiant’s conjecture is true.

Theorem 3.5. [94] Let r(n) = log(log(n)), s(n) = nlosoeoe(m)) "y = p7and let C be a
constant. If there exists an explicit (s,r)-elusive f:P" — P™ then Valiant’s conjecture is true.

By a dimension count, a general polynomial in either range will be elusive. The problem of
finding explicit elusive functions seems to be worth further study with the tools of algebraic
geometry. See [50] for recent work in this direction.
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3.5. Shallow circuits. The usual model of computation in algebraic complexity theory is the
arithmetic circuit, which is a directed graph used to encode a polynomial allowing additions
and multiplications and the size of the circuit (essentially the number of additions and multipli-
cations) measures its complexity. There have been results regarding restricted circuits, where,
e.g., one is just allowed a round of sums, then a round of products then a third round of sums,
called “XII¥ circuits”. Then if one can prove a strong lower bound for computing the permanent

perm,,, in such a restricted model (roughly exponential in \/mlogg m), one can prove Valiant’s
conjecture. See, e.g., [2,21,51,65,103].

The essential point here for geometry is that the Zariski closure of the set of polynomials that
YIIX circuits of fixed size and “fainin” can produce corresponds to a well-studied, albeit little
understood, object in representation theory and algebraic geometry: secant varieties of the
(simplest) Chow variety.

The Chow variety Ch, (W) c PS"W is the set of polynomials that are products of linear forms.
When w = dimW > n, it is the orbit closure GL(W) - [x1--z,,]. It is a longstanding open
problem to understand its ideal dating back to Brill, Gordan, Hermite and especially Hadamard
[52]. See [22,23,57,68] for its connections to interesting questions in algebraic geometry and
representation theory. See [71, Chap. 9] for an exposition of the state of the art.

Other models of shallow circuits give rise to other interesting secant varieties.

3.6. Identifiability. While the following problem in applications initially comes from engineer-
ing, it is similar enough in spirit that I include it here. A basic geometric fact is that under a
Veronese re-embedding points become more independent. A collection of r points is in general
linear position if for all k, no subset of k of them lies on a P2, More generally, a collection
of r points is in d-general position if for all k, no subset of k them lies on a higher dimensional
space of hypersurfaces of degree d than holds for a generic set of k points. Under the d-th
Veronese re-embedding vy : PV — PSV | given by [2] = [2?], collections of points become in
(d - 1)-general position. P. Comon [36] exploited this in signal processing. See [70, Chap. 12]
for a geometric discussion of how this was exploited.

The general question that arises in applications is as follows: given a tensor of rank r with
a rank r decomposition, determine if the decomposition is unique (up to trivialities). The
first, and still most important, result in this regard is Kruskal’s theorem [66], which assures
uniqueness in a certain range if the points giving rise to the decomposition are in general linear
position. In [42] it was shown that Kruskal’s theorem is sharp. On the other hand, tensors
are known to be generally identifiable well beyond the Kruskal range [32,33]. In a series of
papers, generalizations of Kruskal’s theorem that exploit more subtle geometric information
have extended identifiability. For example, a first step beyond Kruskal’s bound is obtained
in [10] by exploiting Castenuovo’s theorem that if a set of 2n+ 3 points lies on a (g)—dimensional
space of quadrics, then the points all lie on a rational normal curve. The current state of the
art is [9], where further advanced tools (minimal free resolution, liason, Hilbert functions) are
used.
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4. REPRESENTATION THEORY AND BORDER RANK

When I was first introduced to the problem of matrix multiplication, P_{(M<n)) was not known
in any case except the trivial n = 1, and it was an often stated open problem just to determine
R(M, (2)). I now explain why I thought this would be easy to resolve using representation theory.

Definition 4.1. Given a variety X c PV, one says X is a G-variety if it is invariant under the
action of some group G c GL(V), i.e., Vge G, Ve e X, g-x e X.

For example, o,(Seg(PAxPB xPC)) :={[T]|R(T) <r},isa G=GL(A)x GL(B) x GL(C) c
GL(A®B®C(C) variety.

As mentioned above, a fundamental observation about (G-varieties is that their ideals are G-
modules.

In particular, if G is reductive, one could in principle determine the ideal I(X) in any given
degree d by decomposing S¢V* as a G-module and then testing highest weight vectors on random
points of X. If the polynomial vanishes at a general point, then the module is in the ideal and
otherwise it is not.

In the special case where X = G/P c PV, is homogeneous (as with the Segre variety), Kostant
showed that the ideal is generated in degree two by V3§ c S2V*, where \ is the highest weight of
the irreducible G-module V' (Kostant’s proof appeared in an appendix to the unpublished [47].
See [70, §16.2] for a proof or [67] for a proof with an extension to the infinite dimensional case).

For example, S?(A*®B*) = S2A*®S*B* @ \> A*® A2 B*, and I(Seg(PA xPB)) is generated in
degree two by A2 A*® A% B* which spans the two by two minors. More generally (o, (Seg(PA x
PB))) is generated in degree r + 1 by the size r + 1 minors A”*' A*® A"*! B*.

Tensors of border rank at most two are the zero set of degree three polynomials [73], so I was
optimistic. After all, to decide the border rank of M,), one just needs to determine polynomials
in the ideal of o(Seg(P? x P2 xP?)) and to test them on Mgy. (Strassen had previously proved
the border rank was at least six and o7(Seg(P? x P? x P?)) = P(C*®C*®C*).) With L. Manivel,
we carried out a systematic search. Unfortunately we found:

Theorem 4.2. [73] The ideal of o6(Seg(P3 x P x P3)) is empty in degrees less than 12.

It was probably this proposition that ended Manivel’s activity in the area. Later, J. Hauenstein
and C. Ikenmeyer extended the result:

Theorem 4.3. [55] The ideal of o6(Seg(P3 x P x P3)) is empty in degrees less than 19.

Fortunately, at the same time we showed:

Theorem 4.4. [55] A copy of the degree 19 module S5554A*®S5554B*®S5554C™ is in the ideal
of ag(Seg(P? x P3 x P3)).

Here I use partition notation to describe modules for the general linear group. Unfortunately,
the polynomials were too complicated to test symbolically on matrix multiplication, so it was
only useful to get a numerical proof. However there is an invariant in degree 20 that was easier
to work with which provided the first algebraic proof of

Theorem 4.5. [55,69] R(M ) =T.

The original proof in [69] was obtained using differential-geometric methods.
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Clearly to deal with larger My, different methods were needed.

5. RETREAT TO LINEAR ALGEBRA

A concise tensor T' € C"@C™®C™ must have border rank at least m, and if equality holds, one
says T has minimal border rank. As explained in §10 below, minimal border rank tensors are
important for Strassen’s laser method.

Strassen’s proof that R(My) > 6 was obtained by taking advantage of the following cor-
respondence: given a concise T € AQB®C, one obtains an a-dimensional space of matrices
T(A*) c BeC, and T may be recovered up to isomorphism from this subspace. L.e., we have a
correspondence

A-concise tensors T € AQB®C up to GL(A) x GL(B) x GL(C)-isomorphism < a-dimensional
subspaces U ¢ B®C' up to GL(B) x GL(C')-isomorphism.

While spaces of linear maps are nice, even better are spaces of endomorphsims: let b =c =m and
assume there exists o € A* with T'(a) : B* - C of full rank m. Then T(A*)T(a)™! c End(C),
and one can recover 1 up to isomorphism from this space as well.

Now if a = m and R(T") = m, then T(A*)T(a)~! is an m-dimensional space of simultaneously
diagonalizable endomorphisms, which, in a good basis is {(y'®c1,,-,7"®cp). So if T is of
minimal border rank, then T(A*)T(a)™! is a limit (in the Grassmannian G(m,End(C))) of
spaces of simultaneously diagonalizable endomorphisms. So the problem to determine if 7" has
minimal border rank is reduced to determining if T'(A*)T ()™t is such a limit. Good news: this
problem was studied classically in the linear algebra literature (e.g., [48]). Bad news: it is still
open!

Nonetheless, it is easy to obtain necessary conditions: simultaneously diagonalizable matrices
commute, and commutivaty is a Zariski closed condition. Call the vanishing of the commutators
Strassen’s equations for minimal border rank. Moreover, Strassen showed that the failure of
commutativity (i.e., the rank of the commutator) lower bounds the border rank, which enabled
the first lower bound on R(My)):

Theorem 5.1. [101] R(My)) > 3n?.

Lickteig [81] was able to improve the error term to obtain R(My)) > 3n?+ 2 - 1. Then from
1985 to 2012 there was no further progress on the general case.

Taking a more abstract view of Strassen’s theorem, he found equations by embedding AQ B&C
into a space of matrices and then took minors. This is a longstanding trick in algebraic ge-
ometry: obtain determinantal equations of varieties by looking at rank loci of maps between
vector bundles on projective space. In the situation of G-varieties, one can give an elementary
description of the most useful embeddings:

Observation 5.2. [76] Given a G-variety X c PV), say V) occurs as a submodule of V,,®V,,.
Then if a general point of X maps to a rank t element (as a matrix) of V,®V,,, then the size
rt + 1 minors restricted to V) are in the ideal of o,(X).

Call such an inclusion V) — V,®V, a Young flattening. Several such were useful for the case
X is a Veronese variety [76]. For three way tensors, the most useful inclusions have been, for
values of p < a/2, A®B®C — (AP A*®B)®(A\P™ A®C), which we call Koszul flattenings. To
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implement them one generally restricts 7" to a 2p + 1 dimensional subspace of A, and it is often
an art to find an explicit useful such subspace. Using a judiciously chosen SLy c SL 4 to define
a good restriction, G. Ottaviani and I were able to show:

Theorem 5.3. [79] R(My,)) > 2n” - n.

6. DETOUR: ADDITIONAL OPEN QUESTIONS REGARDING TENSORS

Unlike the case of linear maps, we are rather ignorant of tensor rank:

Question 6.1. For T'e C"®C™®C™, what is the largest possible R(T")?

For the state of art, see [26] and [20].

Problem 6.2. [27, Problem 15.2] Classify concise tensors of minimal border rank.

We are rather ignorant here as well: the state of the art is m = 4 (Friedland [45]).

As innocent as Problem 6.2 may sound, even a special case of it amounts to characterizing when
a zero dimensional scheme is smoothable, a notoriously difficult problem that is known only for
very small values of m: when m < 7 all are, and when m = 8 the problem is solved in [31]. For
larger m little is known, see [61] for the state of the art as of this writing. I now explain this
connection.

Let A= B =C =C™. Call a tensor 14-generic if T(A*) ¢ B®C contains an element of full
rank m. Call a tensor 1,-generic if it is at least one of 14, 15 or 1¢-generic, and binding if the
property holds in at least two directions, and 1-generic if it holds in all three.

M. Bléser and V. Lysikov [18] showed that if a tensor is binding, then it is the structure tensor
of some (not necessarily commutative) algebra with unit. Strassen’s commutivity equations for
minimal border rank described above are a necessary condition for minimal border rank and
satisfying them implies that the algebra is commutative, which implies the algebra is of the
form C[xz1, -+, 2, ]/Z, where T is some ideal and C[x1, -+, x,]/Z is an m-dimensional vector space
over C. This leads to the Hilbert scheme for zero dimensional schemes of length m, which
parametrizes such objects, see §9.1 for more details. Then the question becomes whether the
given algebra lies in the same component as the algebra (C[z]/(2?))®™ corresponding to a
concise rank m tensor.

If b = ¢ = m and the tensor is only 1 4-generic, there is still a geometric object one can utilize, the
Quot scheme parametrizing modules: the Atiyah-Hitchin-Drinfeld-Manin (ADHM) correspon-
dence associates to the tuple (x1,--,za) of commuting m x m matrices one gets from Strassen’s
commutivity equations, a C[yy, -, ya]-module structure on V' = C™ defined by y;(v) = z;(v).
The Quot scheme of points is a moduli space for such modules. (The special case where the
module has one generator is the Hilbert scheme of points.) Jelisiejew and Sivic [62] use this
correspondence to prove new results about each. In particular, they classify all components
when m < 7. In recent work with A. Pal and J. Jelisiejew, we use this to solve problem 6.2 under
the assumption of 1,-genericity up to m < 6.

If a tensor fails to be 1,-generic, one is led to the problem of characterizing spaces of matrices
of bounded rank - a classical but difficult topic that has only be solved for ranks up to 3 [13].
Here one is in a slightly better situation, as there are three such spaces to be considered.
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7. BAD NEWS FOR MATRIX MULTIPLICATION LOWER BOUNDS

Theorem 7.1. [14,43] It is essentially game over for rank methods. More precisely, one cannot
prove bounds stronger than R(T) > 6m for T' e C"@C™®C™ using rank methods.

Remarkably this result was discovered essentially simultaneously by computer scientists and
algebraic geometers with two completely different proofs.

I briefly explain the algebraic geometry proof as articulated by J. Buczyriski (personal commu-
nication, see [71, §10.2] for more detail): a collection of r distinct points on a variety X defines
a zero dimensional smooth scheme of length 7, and a point on ¢, (X) defines a zero dimensional
smoothable scheme of length r (more precisely a point in the span of such). Determinantal
methods detect zero dimensional schemes of length r. Moreover, zero dimensional schemes of
length 7, even those supported at just one point, quickly fill the ambient projective space. To
rephrase (in what follows, R is a zero dimensional scheme): The secant variety is

or(X) = J{(R) | length(R) = r, support(R) c X, R:smoothable}.
Define the cactus variety [25]:
kr(X) := (J{(R) | length(R) = r, support(R) c X'}

Determinantal equations are equations for the cactus variety and the cactus variety fills the
ambient space when r is small (6m for tensors).

8. How TO CONTINUE? USE MORE SYMMETRY!

So far, lower bounds were obtained by exploiting symmetry of the variety o, (Seg(PAxPBxPC)).
But the point M) also has symmetry. Write A =U"®V, B =V*®W, C'= W*®U. Then My
is Idy ® Idy ® Idyy re-ordered. Here Idy : U — U is the identity map. Recall that the GL(U)-
module U*®U decomposes as sl(U) @ (Idy). Thus

Gy 2 GL(U) x GL(V) x GL(W) = GL}’ ¢ GL}3.
How to exploit this symmetry?

Given T € A®B®C, one has R(T') < r if and only if there exists a curve E; ¢ G(r, A BQC')
such that

i) For ¢t #+ 0, E; is spanned by r rank one elements, and

i) T e Ey.

Notice that if E; is such a curve, for all g € G, gF; also works. This led to the following
observation with M. Michalek:

Proposition 8.1. [75] One can insist that Ey be fixed by a Borel subgroup of Gr. In particular,
for M yy, one may insist that Ey is fixed by the action of triples of upper triangular nxn matrices

on /\T((CHQ)®3)-

This, combined with a border rank version of the classical substitution method (see, e.g., [4]),
led to what at the time I viewed as a Phyrric victory:
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Theorem 8.2. [78] R(My,,) > 2n® - logyn - 1.

I write Phyrric because it was clear this was the limit of the method. Little did I realize that
soon after, W. Buczynska and J. Buczynski would generalize Proposition 8.1 in a way that not
only allowed further progress but also gave a potential path to overcoming the cactus barrier.

9. BORDER APOLARITY

Buczyniska-Buczynski had the following idea to use more information [24]: Instead of considering
limits of r planes (T1(t),-, T;(t)), where T = lim¢,o . Tj(t), consider limits of ideals I*, where
I' is the ideal of [Ty (¢)]u--- U [T(t)].

This leads to the problem: How to take limits? A natural first idea is in the the Hilbert scheme.

9.1. The Hilbert Scheme of points. One insists on saturated (with respect to the maximal
ideal) ideals I ¢ Sym(V*). Then, in a sufficiently high degree D, Ip c SPV* determines I in all
degrees, and “sufficiently high” can be made precise. Thus one is reduced to to taking limits in
one fixed Grassmannian. The Hilbert scheme parametrizes saturated ideals with same Hilbert
polynomial.

Let I c Sym(V*) be any ideal. Let rqy = dim(S?V*/I;), so the Hilbert function is hz(d) := rq.
Castelnuovo-Mumford regularity implies that if one fixes the Hilbert function, there exists an
explicit D = D(hy) such that Ip determines I/ for all D’ > D. Moreover hy(x) is a polynomial
when x > D, called the Hilbert polynomial.

Bad news: The Hilbert scheme doesn’t work. Consider a toy case of 3 points in P?: [1,0,0],[0,1,0],[1,-1,¢]
t+0, (I'); =0 and (I')y = (22 + 22129, 23 - tz123, T173 + T273) But (1)1 = (23), (1°)2 =

(23,7123 + 2923). The problem is that the ideal of the limiting scheme in a fixed degree is not

the limit of spans and one loses information important for border rank decomposition.

9.2. The multigraded Hilbert scheme. The solution is to use the Haiman-Sturmfels multi-
graded Hilbert scheme [53]: Consider the product of Grasmannians

G(r1,V*) x G(ra, S?V*) x - x G(rp, SPV™)

and map I — ([[1] x [I2] x --- x [Ip]). For each Zsp-valued function h, get a (possibly empty)
subscheme parametrizing all ideals I with Hilbert function hy = h. This is rigged such that limit
I of ideals has same Hilbert function as ideals I°.

Buczynska-Buczynski show that in border rank decompositions, for ¢ > 0 one may assume the
points are in general position which leads to a constant Hilbert function as soon as is possible.

In the tensor case, one has more information because one has curves of points on Seg(PA x
PB x PC). One obtains ideals in Sym(A ® B ® C)* = @, S*A*®S'B*®S5"C*, which is
7Z23-graded. This leads to a Hilbert function that depends on three arguments: hr(s,t,u) :=
dim(S*A*®S'B*®S"C* [I54,). By the general position assumption, hy(s,t,u) = min{r,dim S*A*®S'B*®S“C*}.

Instead of single curve E; c G(r, A@ B®C') limiting to a Borel fixed point, for each (4, j, k) one
gets a curve in G(r,S°A*®S? B*®S*C*), and Buczynska-Buczyriski show that one may assume
that each curve limits to a Borel fixed point.
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9.3. Consequences. The upshot is an algorithm that either produces all normalized candidate
I”s or proves border rank > r as follows:

If R(T) < r, there exists a multi-graded ideal I = IV satisfying:

(1) I is contained in the annihilator of 7. This condition says I119 ¢ T(C*)*, I101 ¢ T(B*)*,
1011 C T(A*)J‘ and I111 c T c A*@B*eC*.

(2) For all (ijk) with i+ j + k> 1, codiml;j;, = 7.
(3) each I;;;, is Borel-fixed.

(4) Iisanideal, so the multiplication maps I;_1 j ) ® A*®1; j_1 x®B* &I, j ,-10C* — S'A*®SIB*®SFC*
have image contained in I;j;. (These are rank conditions.)

9.4. Results. Recall that Strassen proved R(Ms)) > 14, Ottaviani and I showed R(M3)) > 15,
and Michatek and I showed R(Msy) > 16. Using border apolarity, with A. Conner and A.
Harper, we showed:

Theorem 9.1. [39] R(M3)) > 17.

The known upper bound is 20 [100]. Interestingly, we are able to construct candidate ideals for
border rank 17 and we are currently attempting to determine if these ideals actually come from
border rank decompositions using deformation theory.

Recall that so far only R(Ms)) was known among nontrivial matrix multiplication tensors. Let

Mapbey € C2PeCPe®@C® denote the rectangular matrix multiplication tensor. Using border
apolarity, we show

Theorem 9.2. [39] R(M293)) = 10 and R(My33y) = 14.

I also remark that the method gives a very short, computer free algebraic proof that R(M, <2)) =17.

All previous techniques for border rank lower bounds were useless when one of the three vector

spaces has dimension much larger than the other. We also showed:

Theorem 9.3. [39] For all n > 25, R(M2nn)) > n?+1.32n + 1 and for all n > 14, R(M3nn)) 2
2

n°+2n.

Previously, only R(Mnn)) 2 n? +1 and R(M3nn)) > n? + 2 were known. Notice that this also
shows that border apolarity may be used for sequences of tensors, not just fixed small tensors.

Currently we are working to strengthen the border apolarity algorithm, to implement it more
efficiently, to take into account more geometric information, and to use deformation theory to
overcome the cactus barrier.

10. STRASSEN’S LASER METHOD AND GEOMETRY

In this last section I describe a program to utilize geometry to obtain upper bounds.

10.1. Strassen’s laser method and its barriers. There was steady progress upper bounding
w from 1969 to 1988 culminating in w < 2.3755 [41]. All progress since 1984 has been obtained
using methods from probability, statistical mechanics and information theory. Given a tensor
T ¢ A® B®C, define its k-th Kronecker power T%F := T®% ¢ (A®%)o(B®*)o(C®*), that is one
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takes its k-th tensor power and considers it as a 3-way tensor instead of a 3k-way tensor. Since
we are unable to upper bound the border rank of the matrix multiplication tensor directly, the
idea of Strassen’s laser method is to start with a tensor where we can upper bound its border
rank (e.g., a tensor of minimal border rank), take a large Kronecker power of it, and then
show the Kronecker power degenerates to a large matrix multiplication tensor to get an upper
bound on the border rank of the large matrix multiplication tensor (namely the bound R(T)").
Here one says T degenerates to T" if T € GL(A) x GL(B) x GL(C)-T. Thus if the original
tensor is of low cost (border rank) and it produces a large matrix multiplication tensor (high
value), it gives a good upper bound on w. I emphasize that this is not done explicitly, just the
existence of such a degeneration is proved using methods from information theory pioneered by
Shannon [98]. All the bounds since 1988 have been obtained by using a single tensor, the “big”
Coppersmith-Winograd tensor, which I'll denote CW, € (C7*2)®3 (there is one such for each q).
Previous to that, the champion was the “little” Coppersmith-Winograd tensor, which I’ll denote
cw, € (CI™1)®3. T will not describe the method here, see e.g., [17,27,41] for expositions.

From 1988 until 2011 there was no progress whatsoever and starting 2011 there was incremental
progress leading up to the current record in [6].

In 2014, [8] gave explanations for the halting progress, and showed there was a limit to what one
could prove with CW, (the limit is around w < 2.3). Further explorations of limits were made
in [5,7,34].

Remark 10.1. An approach to upper bounds using the discrete Fourier transform for finite groups
was proposed in [35]. This approach yields similar bounds to Strassen’s laser method and faces
similar barriers [19,96].

A geometric explanation of the limits is given in [34]:

Define the asymptotic rank of T

R(T) = lim (R(T™"))¥,
and the asymptotic subrank of T

Q(7) = lim (Q(T®"))¥.

For a given tensor T', a limit to its utility for the laser method is given by the ratio of these two
quantities, and the tensor could potentially be used to prove w is two only if the ratio is one,
i.e., the tensor is of minimal asymptotic rank and maximal asymptotic subrank. (In [34] they
take the ratio of the logs, which they call irreversibility.) The barriers say nothing about just
how useful the tensor can be, only what one cannot do with it.

The only tensors we know the asymptotic rank of are those of minimal border rank.

The tensors cwy for ¢ < 10 could potentially be used to prove w < 2.3, the main obstruction to
doing so is that they are not of minimal border rank ¢+ 1 but instead R(cw,) = ¢ +2. Moreover,
the case cwsy could potentially be used to prove w is two. What counts is the asymptotic rank,
SO were E(ch) < R(cwy)?, one could get a better upper bound on w than the one found by
Coppersmith-Winograd using the tensor.

Unfortunately for upper bounds, in [37] A. Conner, F. Gesmundo, E. Ventura and I showed

R(cw??) = R(cwq)? for ¢ > 2. At the time we were unable to determine the behaviour of cw§?
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as existing techniques did not yield any meaningful bound. With the advent of border apolarity,
recently in [40], A. Conner, H. Huang and I showed R(cw¥?) = R(cws)?.

I bring all this up in an article on representation theory and geometry because of recent work in
the search for tensors useful for the laser method. Although the recent work has yet to improve
upon the exponent with geometric methods, it shows promise for the future. I emphasize that in
the computer science literature, the tensors used in the laser method were found and exploited
because of their combinatorial properties when expressed in a good basis. M. Michatek and I
had the idea [74,75] to analyze the geometry of the tensors that have been successful in proving
upper bounds on w via the laser method, and then to find other tensors with similar geometry
in the hope they might be better for the laser method. We found they had remarkable geometric
properties. Among them, perhaps the most interesting property is that their symmetry groups
have large dimension.

10.2. Tensors with symmetry. There is a slight subtlety when discussing symmetry. The map
GL(A)xGL(B)xGL(C) - GL(A®B®C) has a two dimensional kernel, namely {(AId4, pIdp,v1d¢) |
Apv =1} and sometimes it is more convenient to express the symmetry group (resp. algebra) in
GL(A) x GL(B) x GL(C) including this kernel (resp. gl(A) ® gl(B) @ gl(C)). When I do this I

will decorate it with a tilde.

First note that any minimal border rank tensor in ((Cm)®3 has symmetry group of dimension at
least 2m — 2 as that is true for Mg’)n 1= a1®b1®C] + -+ + U, @by ®Cy, and oy, (Seg(P™ ! x P71 x
P 1)) =GL3 - [M 8’)"] A rank one tensor will have the largest symmetry group (of dimension

3m?—-3m+1) but tensors useful for the laser method have tended to be 1-generic, so one expects
a much smaller symmetry group.

As T illustrate below, the tensor CW,,_o has a symmetry group of dimension mTQ + %, which

is quite large, so it is natural to look among 1-generic tensors with large symmetry groups to
find ones useful for the laser method. This was the starting point of [38] with A. Conner, F.
Gesmundo, and E. Ventura.

Let B e (ag, - am_1)®{bz, -, by_1) c A®B be a nondegenerate bilinear form on C"™2 x C™2,

Theorem 10.2. [38] Let m > 7 and let dim A =dim B=dim C =m. Let T e A9 B®C be a
1-generic tensor. Then

m2 m
1 dim Gp < —+ — -2
(1) ' =7 2

except when T' is isomorphic to
(2) Sp:=a1®b1®cy+a1 ®by, @y +am®b1®cl+221_21a1®bp®cp+221_21ap®b1®cp+l3®cl,

where B € AQB is one of the four following rank m — 2 bilinear forms

(3) 2):21% ® beip — Ggsp ® b m = 2p even (Tskewew,m-2)

(4) Yota, @b, allm (Tewm-2)

() -1 ® b1 + Z?:z(aé ® besp-1 — Agip-1 ® bn) m=2p even (Tsiskewcw,m-2)
(6) -1 ® b1 + Zé_’:?(ag ®beip-1 — grp-1®by) m=2p+10dd (Tseskewcw,m-2)
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2 2
. . 3
All these except Tspewcw,m—2 have dim G = %5~ + %5 — 2, and dim GToewcw.ms = B+t -4

In particular: when m is even, there is a unique up to isomorphism, 1-generic tensor I' with

maximal dimensional symmetry group, namely Tsgewcw,m-2, and there are exactly two, up to

2
m m
_+_

isomorphism, additional 1-generic tensors T' such that dim G > - +

and T, skewcw,m—2, Where equality holds.

-2, which are Tew,m-2

When m is odd, there are exactly two l-generic tensors T up to isomorphism with maximal
2
dimensional symmetry group “5- + %5 — 2, which are Tow,m-2 and TsgskewCw,m-2-

Remark 10.3. In [97] T. Seyannaeve decomposed Sgl,, and noticed that several of the highest
weight vectors that appeared were Coppersmith-Winograd tensors. This gave rise to the idea
that one might look among the highest weight vectors in S3gl,, to find ones useful for the laser
method. This was carried out in [56]. This is a variant on having a large symmetry group, as
highest weight vectors are preserved by a parabolic subgroup.

Call a tensor skeletal if it may be written in the form (2) for some nondegenerate bilinear form
B.

Proposition 10.4. [38]

)®3

(1) Any 1-generic tensor in (C™)®> may be degenerated to a skeletal tensor.

(2) The only skeletal tensor of minimal border rank is the Coppersmith-Winograd tensor,
which is the case of B e S?C™ 2,

(3) In particular any 1-generic minimal border rank tensor (C™)®3 degenerates to CW,,_1.
The result (3) originally appeared in [58], although the proof (but not the statement) was already

in an early preprint version of [38].

In some sense (3) could be interpreted as saying that CWj is the worst minimal border rank
1-generic tensor for the laser method. The question is now, whether all others are equally bad,
or just that the laser method as currently practiced is not refined enough.

I exhibit the symmetry Lie algebras of the above tensors: Let gr denote the Lie subalgebra of
gl(A) @ gl(B) @ gl(C) annihilating T

gr={Legl(A)agl(B)ogl(C)|L.T=0}.
Here L.T denotes the Lie algebra action.

If L =(UV,W)egl(A)egl(B)@gl(C), and we have bases {u;},{v;},{w;} respectively for
U,V,W the condition L.T" =0 is equivalent to the following system of linear equations:

. . . .. Ly L.
(7) Zu;,T’ L ng,T” ko Zw’,z,T”k =0, for every 1, 7, k.
7;/ jl k’

For a skeletal 1-generic tensor:

(8) Fss
u% ut u,ln u% vt v}n u% zt —uin - U,ln
0 X-iujld Bu-z|,| 0 X-3uld Bu-z|,| 0 -X'-Zuild —(D+7)
0 0 —2ul 0 0 ~4ul 0 0 —4ul
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The small Coppersmith-Winograd tensor is
CWyp—2 = +ZZ§‘21a1 ®b,®cp+ Z;Z_Qlap ®b1®c,+B®cie ((Cm_l)®3

with B symmetric, and for other B, write the tensors as Tp_cy,m-2. Then

~ _ —U-v 0 -A-v 0 “A— U 0
gTB—cw,q_{(( 0 )\Id+X)7( 0 ,U/Id‘f‘X)7( 0 VId+X ’)\,,LL,VE(CXG[)B .

In particular dimgr,, , = (%) + 1.

All these tensors could potentially be used to prove w < 2.3 for ¢ < 10 and the case ¢ = 2 could
again potentially be used to prove w is two. Notice that if we take B to be completely skew,
we get a tensor with a larger symmetry group. This tensor Tsiewew,2 unfortunately has larger
initial cost than cws, namely R(Tskewew,2) = 5 > 4 = R(cws), (with the same value), however
in [39], using border apolarity, we proved

Theorem 10.5. R(T%? )=17<<25

skewcw,2
which provides hope for the laser method.

Remark 10.6. The Kronecker squares of Tewew,2, cw2 are familiar tensors, respectively dets and
permy considered as tensors, so these results are of interest well beyond the laser method.

11. APPENDIX: STRASSEN’S ALOGORITHM

Here is Strassen’s algorithm for multiplying 2 x 2 matrices using 7 scalar multiplications [102]:
Set

(9) I=(ay+a3)(by +3),
IT = (af + a3)by,
IIT = aj(b) - b3)
IV = a3(=b} +b?)
V = (a1 +a3)bj
VI = (-ai +ai)(bi +b3),
VII = (aj - a3)(bi +b3),
Exercise 11.1: (1) Show that if C' = AB, then

el=I+1V-V+VII,
A =II+1V,
cy=IIT+V,
cs=I+I1II-1I+VI.

Now notice the the entries of A, B themselves could be matrices, so this also gives, by iterating,
an algorithm for multiplying 2¥ x 2¥ matrices.
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