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Multicriticality and quantum fluctuation in a generalized Dicke model
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Quantum many-body systems that support high-order quantum phase transitions are quite rare. Here we
consider an important generalization of the Dicke model in which an ensemble of multilevel atoms, instead
of two-level atoms as in the conventional Dicke model, interact with a single photonic mode, and show that
this generalized Dicke model can become multicritical. For a subclass of experimentally realizable schemes,
multicritical conditions of arbitrary order can be expressed analytically in compact forms. As such, experiments
can be readily designed to achieve quantum phase transition of desired order. We also calculate the atom-photon
entanglement entropy for both critical and noncritical cases and find that the order of the criticality strongly
affects the critical entanglement entropy: higher order yields stronger entanglement. Our work provides deep
insight into quantum phase transitions and multicriticality.
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I. INTRODUCTION

The Dicke model [1] is one of the most iconic models in
quantum optics and quantum many-body physics. It describes
an ensemble of two-level atoms interacting with a single pho-
tonic mode. When the atom-photon coupling strength exceeds
a threshold, the system enters the superradiance phase via
a second-order phase transition where the Z2 symmetry of
the model is spontaneously broken, and the photonic mode
is macroscopically populated. The Dicke model has been
realized in various experimental settings, including quantum
gases of neutral atoms [2–5], trapped ion systems [6], super-
conducting circuits [7–9], and solid-state systems [10]. Some
of these experiments have probed the superradiant quantum
phase transition (SQPT).

Real atoms, of course, possess complicated level struc-
tures. Even if we restrict ourselves to the ground-state
manifold, a typical atom often features more than two levels.
This motivates our current work to investigate an important
generalization of the Dicke model where the two-level atoms
are replaced by multilevel atoms. As we will show, the extra
levels can be utilized to realize multicriticality in the SQPT.
While multilevel generalizations of the Dicke model have
been studied previously for various purposes [11–13], the
possibility of multicriticality has not been investigated so far.

Theoretical studies [14–19] of multicriticality have been
made after the first tricritical point, or third-order critical
point, was discovered by Griffiths [20]. The results, to sum
up, indicate that the phase diagram around the multicritical
point possesses special geometry as several phase boundaries
meet here, and more importantly, multicriticality modifies
the scaling hypothesis and different order of criticality is
associated with different universality class. However, despite
the tricritical point being discovered in experiment from the
very beginning, high-order criticality is rarely found in lab-
oratories, making theoretical predictions difficult to verify.

It is therefore of crucial importance to provide a convenient
experimental platform to achieve high-order criticality.

The difficulty in realizing high-order criticality lies in the
fact that higher-order critical manifolds have lower dimen-
sion. According to the definition in Ref. [14], an nth-order
critical manifold is the intersection of the (n − 1)th-order
critical manifolds, and the ordinary critical points are defined
to be second order. Therefore the dimension of an nth-order
critical manifold is (n − 1) less than the dimension of the
phase diagram. We will show that the generalized Dicke
model we consider here exhibits remarkable features: (1)
it provides plenty of experimentally tunable parameters to
achieve high-order criticality and (2) the condition of the
emergence of multicritical points of arbitrary order can be
derived analytically. Quantum criticality features large quan-
tum fluctuation which is usually characterized by a divergent
correlation length. As our multicritical Dicke model describes
a dimensionless system, we characterize the quantum fluctua-
tion by the atom-photon entanglement entropy. We show that
higher-order multicritical points are associated with a higher
degree of entanglement, which provides insight into quantum
phase transitions. Furthermore, the entanglement entropy can
be extracted from the fluctuations of the photon quadrature
operator.

II. MODEL

Our multicritical Dicke model describes N l-level atoms
coupled with a single photonic mode of frequency ω. The
Hamiltonian can be written as (h̄ = 1)

H = ωa†a + g(a + a†)

2
√

N

N∑
k=1

d (k) + ε

N∑
k=1

h(k), (1)

where a is the photon annihilation operator, dimensionless
single-atom Hamiltonian h and dipole operator d act on the
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l inner states of the atoms, and g and ε set the energy scales
of the atom-photon interaction and the internal energy of the
atoms, respectively. The conventional Dicke model is recov-
ered if d and h are replaced by the two-level Pauli operators σx

and σz, respectively. Note that we do not include the A2 term,
which can lead to the no-go theorem for superradiance phase
transition, in the Hamiltonian since we will consider Raman
coupling between atomic levels, for which the A2 term is not
relevant [21–24].

III. MEAN-FIELD PHASE DIAGRAM

We first discuss the multicritical Dicke model within the
mean-field framework. The single-atom mean-field Hamilto-
nian HMF is obtained by replacing the bosonic operator a in H
with a real number ε

√
Nφ/g:

HMF/ε = κφ2 + φd + h, (2)

where κ := ωε/g2. We denote the eigenstates of HMF as |k〉’s
with eigenvalues εk (k = 1, 2, . . . , l). We assume that |1〉 is
the nondegenerate ground state of HMF. In the Landau theory
of phase transition, the φ that minimizes ε1, denoted as φmin, is
defined to be the order parameter. For our system, if φmin = 0,
the system is in the so-called normal phase; otherwise, it is in
the superradiant phase.

The Z2 symmetry of Hamiltonian (1), which is sponta-
neously broken by the SQPT, manifests itself as H is invariant
under the transformation a → −a, d → −d , h → h. Given
this symmetry, the mean-field ground-state energy can be
written as a Taylor series in terms of φ2: ε1 = ∑∞

k=0 ckφ
2k .

An ordinary critical point is met when c1 = 0 and c2 > 0.
Generally, the nth-order critical manifold satisfies the condi-
tion c1 = c2 = · · · = cn−1 = 0 and cn > 0 (see Appendix A).
These multicritical conditions can be expressed as equations
in terms of pertinent parameters in d and h using perturbation
theory. Treating h as the unperturbed Hamiltonian and φd as
the perturbation, we obtain ck by carrying out the perturba-
tion expansion to (2k)th order. For example, the second-order
perturbation expansion recasts c1 = 0 as

l∑
k=2

|d1k|2
hkk

= κ, (3)

and the fourth-order perturbation recasts c2 = 0 as

l∑
k1k2k3=2

d1k1 dk1k2 dk2k3 dk31

hk1k1 hk2k2 hk3k3

=
l∑

k1k2=2

|d1k1 |2|d1k2 |2
h2

k1k1
hk2k2

, (4)

and so on. Here the matrix elements are taken with respect
to the eigenvectors of h. As we can arbitrarily pick an energy
reference, we set h11 = 0 and hkk > 0 for k = 2, 3, . . . , l .

In general, the existence of the nth-order critical points
requires at least n − 1 tunable parameters spanning the phase
diagram. For the multicritical Dicke model, the number of
internal atomic levels l and the Z2 symmetry put constraints
on the number of the tunable parameters. The Z2 symmetry
requires the presence of a parity operator P which makes
PdP = −d and PhP = h. Suppose the number of ±1 in the
eigenvalues of P is l±δ

2 . If we represent d and h as matrices
using a set of common eigenvectors of h and P as the basis,

then h is diagonal and contains l tunable parameters, which
are just the eigenvalues of h, whereas d must be in the form
d = ( 0 M

M† 0 ), where M is a l−δ
2 × l+δ

2 matrix. Now we have
l2−δ2

2 + l parameters. Besides, we have to fix the l − 1 relative
phases between the common eigenvectors; also the physics
would not change if we rescale φ or H , or shift the zero-point
energy. In the end, we have at most a (D = (l2 − δ2)/2 − 1)-
dimensional phase diagram. For example, for two-level atoms
with l = 2 as in the conventional Dicke model, we have δ = 0
and D = 1, which means only ordinary second-order critical
points are allowed. In order to find multicriticality, we must
have at least l = 3. In the experimental work reported in
Ref. [25], a tricritical point is identified in a spin-1 Bose gas
subjected to spin-orbit coupling. This system can be recast
into the form of the generalized Dicke model with l = 3 in
the classical oscillator limit. In our previous work [26] (see
also Ref. [27]), by introducing a staggered magnetic field
to the two-level atoms, we show that this modified Dicke
model exhibits tricriticality. This model can be regarded as
a special case of the multicritical Dicke model under current
consideration with l = 4.

Although the procedure of finding the multicritical con-
dition of any order is straightforward under the perturbation
approach outlined above, Eqs. (3) and (4) indicate that these
equations quickly become very complicated as the order in-
creases. Even numerical solutions to these equations may
become impractical. However, we will show now that, for
a subclass of the multicritical Dicke model, we can write
down the multicritical conditions to arbitrary order in compact
analytic forms. For this subclass, still under the representation
where h is diagonal, only the super- and subdiagonal elements
of the d matrix are nonvanishing, i.e., di j = 0 if |i − j| �= 1.
As a result, HMF takes a tridiagonal form, and hence we
call this subclass the T class. For a T-class Hamiltonian, the
nth-order critical condition is given by the simple form

|dk,k−1|2 = κhkk for 2 � k � n. (5)

To prove it, we denote, for a given l , the determinant of HMF

as ζl , which can be expressed as a Taylor series of φ2. If
c1 = c2 = · · · = cn−1 = 0, then ζl ∝ φ2n. We will now prove
that ζl ∝ φ2n as long as Eq. (5) holds. To this end, we write
down the recurrence relation for ζk by exploiting the tridiago-
nal form of HMF:

ζk = (hkk + κφ2)ζk−1 − φ2|dk,k−1|2ζk−2. (6)

Under the condition of Eq. (5), we have ζ2 = κ2φ4, ζ3 =
κ3φ6. By induction, it is easy to prove ζk = κkφ2k for k =
2, 3, . . . , n. As a result, ζl must be proportional to φ2n for
n � l , which finishes the proof.

The experimental scheme for realizing a T-class Hamilto-
nian is illustrated in Fig. 1, using the F = 2 hyperfine ground
state of 85Rb with cavity-assisted Raman transitions as an
example. This scheme was proposed in Ref. [11] and realized
in Ref. [12]. With one pair of Raman lasers as proposed in
Ref. [11], the relative strength between dn,n−1(≡ dn−1,n)’s are
fixed as (d12, d23, d34, d45) = (

√
2,

√
3,

√
3,

√
2), which will

always be used in our numerical studies. With this d matrix,
the multicritical conditions can be met by tuning hkk’s, which
represent the bare energies of the atomic internal states and
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FIG. 1. The experimental scheme for realizing a T-class multi-
critical Dicke model. Using a pair of Raman beams with opposite
circular polarization, as marked by the dashed and the dotted lines,
respectively, and a linearly π -polarized cavity mode, as marked by
the solid line, it is possible to couple adjacent hyperfine states of
85Rb atoms through Raman coupling. By proper choice of the laser
parameters, the coupling between “next-nearest” states (i.e., states
with 
mF = ±2) through two Raman beams can be made to vanish
because of the sum rule of the Clebsch-Gordan coefficients.

which can be tuned with external magnetic fields via the
Zeeman shift or external microwave fields via the AC Stark
shift [28–34]. In this scheme, up to fifth-order criticality can
be realized. We set κ = 1 in our numerical calculation; then
the fifth-order critical point is located at (h22, h33, h44, h55) =
(2, 3, 3, 2).

In Fig. 2, we plot the phase diagrams of this T-class
Hamiltonian. In Figs. 2(a) and 2(b), we show the change
of the order parameter with respect to h, which is tuned
around a tetracritical (i.e., fourth-order) point. This is done
by setting h55 to be very large; hence we have effectively a

FIG. 2. (a, b) The mean-field phase diagram of a four-level T-
class Hamiltonian around the fourth-order critical point. The color
bar represents the order parameter φ. The dashed line in (a) is an
ordinary critical line while the solid line in (b) is a tricritical line.
(c) The boundary that separates the normal phase (above) from the
superradiant phase (below). The h22 = 2 plane is the critical mani-
fold, with a tricritical line marked by a solid line. The curved surface
is the first-order phase transition boundary. In all panels, we use a
white dot to mark the fourth-order critical point.

four-level atomic system. The tetracritical point is located at
(h22, h33, h44) = (2, 3, 3) and is marked by the white dot in
the graphs. In Fig. 2(a), we fix h44 = 3 and vary h22 and h33.
The darker and lighter regions represent the normal and the
superradiant phases, respectively. The ordinary second-order
critical line is marked by the white dashed line which is a
straight line with h22 = 2 and h33 > 3. The phase boundary to
the left of the tetracritical point is of first order. In Fig. 2(b),
we fix h33 = 3 and vary h22 and h44. Here the straight solid
line with h22 = 2 and h44 > 3 is a tricritical line, which joins
the first-order boundary at the tetracritical point. In Fig. 2(c),
we show the boundary surface between the normal (above
the surface) and the superradiant phase (below the surface)
in the full three-dimensional parameter space. This boundary
surface contains two parts: a flat part at plane representing the
second-order critical manifold and a curved part representing
the first-order surface. The tricritical line and the tetracritical
point are marked by the white solid line and the white dot,
respectively.

IV. QUANTUM FLUCTUATION AND ENTANGLEMENT

Having discussed the mean-field phase diagram, we now
turn our attention to the quantum fluctuation and the entangle-
ment properties of the model. By shifting the bosonic operator
by the mean-field order parameter, b := a − ε

√
Nφmin/g,

Eq. (1) is rewritten as

H = ωb†b + g(b† + b)

2
√

N

N∑
k=1

D(k) +
N∑

k=1

H (k)
MF, (7)

where the shifted dipole operator is D := d + 2κφmin. With-
out loss of generality, the atomic states can be expressed
in terms of an orthonormal basis consisting of completely
symmetrized Fock states |χ〉, where χ is a vector whose
components χi denote the number of atoms occupying |i〉, the
ith eigenstate of HMF. Consequently, the last term in Eq. (7)
is diagonal in this basis, 〈χ |∑N

k=1 H (k)
MF|χ〉 = ∑l

i=1 εiχi . The
nonzero matrix elements of

∑N
k=1 D(k) under the basis |χ〉’s

are

〈χ |
N∑

k=1

D(k)|χ〉 =
N∑

k=1

χkDk,k , (8)

〈χ i, j |
N∑

k=1

D(k)|χ〉 = √
χ j (χi + 1)Di, j , (9)

where |χ i, j〉 is the very state containing one more atom in
|i〉 and one less atom in | j〉 than |χ〉. As long as we are
interested in the low-energy states, we can assume that most
atoms occupy the mean-field ground state |1〉, i.e., χ1 ∼ N
and χk = o(N ) for k = 2, 3, . . . , l . In the limit N → ∞, we
can then express H = Heff + Nε1 + o(1), and the low-energy
effective Hamiltonian Heff is quadratic in b and new bosonic
operators b2, b3, . . . , bl :

Heff = ωb†b +
l∑

i=2

[
ωib

†
i bi + g|D1,i|

2
(b + b†)(bi + b†

i )

]
,

(10)
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where bi is defined by bi|χ1,i〉 = √
χi|χ〉, and ωi = εi − ε1. In

deriving Eq. (10), we have used D1,1 = 0, which results from
the stationarity of the mean-field energy ∂φε1 = 0. Because
the leading term in the asymptotic series of H is the mean-field
energy Nε1, it confirms that the mean-field theory determines
the exact phase diagram in the thermodynamic limit as long as
the asymptotic expansion is valid. The validity of the expan-
sion can be verified self-consistently; i.e., it is valid as long as∑l

i=2〈b†
i bi〉 � N , where the expectation value is taken with

respect to the low-energy states.
To find the ground state of Heff , which describes the low-

energy quantum fluctuations above the mean field, we can
transform Heff into a Hamiltonian describing an l-dimensional
harmonic oscillator,

Heff = 1

2

l∑
j,k=1

(
Pjδ jkPk + Xj


2
jkXk

) − 1

2

l∑
k=1

ωk , (11)

where Pk = √
ωk
2 (bk − b†

k ) and Xk = 1√
2ωk

(bk + b†
k ) are

canonical momentum and position operators as linear
combinations of bk and b†

k . Here we have denoted b1 ≡ b and
ω1 ≡ ω. The squared eigenfrequencies λ2 of the harmonic
oscillator are given by the eigenvalues of the matrix 
2,
whose nonzero matrix elements are given by


2
kk = ω2

k for k = 1, 2, . . . , l, (12)


2
1k = |D1,k|√ωωk for k > 1. (13)

We calculate the spectrum of Heff (for details, see Ap-
pendix B). We note that only the lowest eigenvalue of 
2,
denoted as λ2

1, can be zero. The asymptotic expansion is valid
when λ2

1 > 0; otherwise, the fluctuation blows up. So the
equation λ2

1 = 0 indicates the quantum criticality, which coin-
cides with the mean-field critical condition Eq. (3) as required
by self-consistency. The ground-state wave function of Heff

is an l-dimensional Gaussian, from which the atom-photon
entanglement entropy can be calculated straightforwardly:

S = γ

eγ − 1
− ln (1 − e−γ ), (14)

γ ≡ cosh−1

(

11M11/ det 
 + 1


11M11/ det 
 − 1

)
, (15)

where M11 is the (1, 1)-minor of the matrix 
. Here S is the
von Neumann entropy of the reduced density matrix for either
the atomic or the photonic modes. At the critical points, the
gap closes (λ1 = 0), so det 
 = 0, γ = 0, and S diverges.
Near the critical points, γ is small, so approximately we
have S = 1 − ln γ , which indicates a logarithmic divergence
approaching the critical point. Furthermore, one can readily
show (see Appendix A) that


11M11/ det 
 = −〈(b + b†)2〉〈(b − b†)2〉, (16)

where (b ± b†) are cavity photon quadrature operators. As
a result, we draw a remarkable conclusion that the atom-
photon von Neumann entanglement entropy of this system
can be extracted from the measurement of photon quadra-
ture fluctuations. This conclusion extends the previous results
on quantifying the entanglement between two-mode systems
[35,36] as multiple modes are involved in the current model.

FIG. 3. (a) The gap 
 between the ground state and the first
excited state, and (b) the ground-state entropy S, of the two-level
Dicke model with d12 = √

2 for different atom number N . 
 expo-
nentially decreases when h22 moves deep into the superradiant phase.
(c) Critical atom-photon entanglement entropy Scri plotted against
the atom number N for T-class Hamiltonians with different orders of
criticality. Different orders of criticality are achieved by first setting
(h33, h44, h55) = (3, 3, 2), and then tuning some hkk to very large
values. For example, to achieve the tricriticality, we set h44 and h55 to
be large.

Finally, we examine the entanglement entropy at the criti-
cal points away from the thermodynamic limit with finite N .
A similar calculation for the conventional Dicke model and
more general two-mode Hamiltonian is carried out by Vidal
et al. [37,38]. We numerically calculate the finite-N critical
entropy for the T-class Hamiltonians. In the thermodynamic
limit, the ground state is nondegenerate in the normal phase
while it is doubly degenerate in the superradiant phase, and
the excitation gap closes at the phase boundary and remains
closed in the superradiance region. For finite N , however, the
gap 
 does not close, but rather decreases exponentially when
we move deeper into the superradiant region [see Fig. 3(a)].
Therefore, the phase boundaries and the critical manifolds in a
finite system cannot be determined unambiguously by the gap.
Instead, we define the critical point for finite N as the point
at which the atom-photon entanglement entropy S reaches a
local maximum [see Fig. 3(b)], and the corresponding entropy
is identified as the critical entropy Scri. In Fig. 3(c), we plot Scri

against N at critical points with different order of criticality
for the T-class Hamiltonians. Asymptotically, we have Scri ∼
s0 + s1 ln N . Figure 3(c) shows that higher-order criticality is
associated with greater critical entanglement entropy.

V. CONCLUSION

We replace the two-level atoms in the conventional Dicke
model with l-level atoms and study the superradiance phase
transition in the modified model. The increased number of
tuning parameters for l > 2 leads to the emergence of mul-
ticriticality whose order can be controlled. The phase diagram
and the multicritical conditions can be obtained from the
mean-field theory. For a subclass of this multicritical Dicke
model, which can be readily realized experimentally, we show
that the multicritical conditions of arbitrary order can be ex-
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pressed analytically in compact forms, which facilitates the
realization of phase transition of desired orders. The noncrit-
ical atom-photon entanglement entropy of the multicritical
Dicke models in the thermodynamic limit can be calculated
analytically through an asymptotic expansion of the Hamilto-
nian, and can be measured in experiments from cavity field
quadrature fluctuations. The entropy diverges logarithmically
when approaching the critical point. The entropy at the critical
points for finite number of atoms is calculated numerically
and is found to have a ln N scaling. We found that the criti-
cal entropy increases when the order of criticality increases.
Our work provides deep insights into the physics of quantum
phase transition and multicritical points, whose realization
is typically very challenging in other contexts. In this work,
we have neglected dissipation, which in practice is inevitable
and can play important roles in determining the critical and
multicritical behaviors of the system. The study of the effects
of dissipation is currently under way.
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APPENDIX A: MULTICRITICAL CONDITIONS IN
SINGLE-PARAMETER LANDAU THEORY OF PHASE

TRANSITIONS

Landau theory of phase transitions is the basic theoretical
framework to describe phase transitions involving sponta-
neous symmetry breaking. For phase transitions breaking a Z2

symmetry with a single order parameter φ, the free energy F
is an even function of the order parameter, analytic at φ = 0,
expressed by a Taylor series containing only the even power
terms:

F (φ) =
∞∑

n=0

cnφ
2n. (A1)

The phase is determined by the global minimums F (φmin) of
F (φ). When φmin �= 0, the system is in the phase where the Z2

symmetry is spontaneously broken, because at least there are
two φmin’s with opposite signs. When φmin = 0, the system
is in the phase where the symmetry is preserved. There is a
phase boundary between the two phases. In particular, the part
of phase boundary crossing which φmin changes continuously
is the critical manifolds. At least two global minimums merge
into one at a critical point. The intersection between several
critical manifolds is defined to be the multicritical manifold.
In general, An nth-order critical manifold is the intersection
of (n − 1)th critical manifolds, and the ordinary critical man-
ifolds are defined to have order 2. We are going to analyze the
multicritical manifolds induced by F (φ).

First, let us discuss the simplest case frequently met in
textbooks where all cn’s are zero except c1 and c2. In order
that F has a global minimum and the system is stable, we
must have c2 > 0. Now, F can be written as

F = c2

(
φ2 + c1

2c2

)2
− c2

1

4c2
, (A2)

which has two global minimums at φ = ±
√

− c1
2c2

if c1 < 0,

and has one global minimum at φ = 0 if c1 > 0. Therefore,
the equation for the critical manifold, where two global mini-
mums merge into one, is given by c1 = 0.

In the case that F is quadratic in φ2, there are at most
two global minimums. There is no more critical manifold that
can intersect with the one specified by c1 = 0, so there is no
critical manifold whose order is greater than 2. To have two
or more critical manifolds that intersect, we must have at least
three minimums. The simplest F that supports three local min-
imums is a cubic function in φ2. To guarantee the stability, the
coefficient c3 must be positive. F may have a local minimum
at φ = 0 due to the symmetry. When dF

dφ2 |φ=0 > 0, φ = 0 must
be a local minimum. We know

dF

dφ2
= c1 + 2c2φ

2 + 3c3φ
4, (A3)

so when c1 > 0, φ = 0 is a local minimum. F may also have
two local minimums at φ = ±φ0, where φ2

0 > 0 is the larger
solution of the equation dF

dφ2 |φ2=φ2
0
= 0. Thus,

φ2
0 =

√
c2

2 − 3c1c3 − c2

3c3
, (A4)

with the condition c3 > 0. To make φ2
0 > 0, it is required that

either c1 < 0, or c2 < 0 and c2
2 � 3c1c3. In addition, when

c1 = 0 and c2 � 0, φ = 0 is a minimum. In conclusion, the
free energy F has (1) a single local minimum at φ = 0, which
is also the global minimum, if c1 > 0 and c2

2 < 3c1c3, or
c1 � 0 and c2 � 0; (2) double local minimums at φ = ±φ0,
which are also the global minimums, if c1 < 0, or c1 = 0 and
c2 < 0; and (3) three local minimums at φ = 0,±φ0, if c1 > 0
and c2 < 0 and c2

2 � 3c1c3.
In the third case above, to determine where the global

minimum is, we need to evaluate F at φ = 0 and φ2 = φ2
0 ,

respectively. The calculation can be simplified by noticing that
when F gets three global minimums, it must take the form

F = c0 + c3φ
2
(
φ2 − φ2

0

)2
. (A5)

By identifying this formula with the Taylor expansion of F ,
we get

−2φ2
0c3 = c2, (A6)

0 = c2
2 − 4c1c3

or

c2 + 2
√

c1c3 = 0. (A7)

In the phase diagram, this equation specifies the triple line,
where three phases coexist. When c2 + 2

√
c1c3 > 0, the

single global minimum locates at φ = 0, and when c2 +
2
√

c1c3 < 0, the double global minimums locate at φ = ±φ0.
With all of the discussion above, we can establish the phase

diagram (Fig. 4) for the free energy as a cubic polynomial.
First of all, it is a two-dimensional phase diagram with pa-
rameters c1 and c2. There is a continuous phase transition
boundary, which is also the critical line, whose shape is de-
termined by the equation c1 = 0 and c2 � 0, and there is a

043708-5



XU, FALLAS PADILLA, AND PU PHYSICAL REVIEW A 104, 043708 (2021)

FIG. 4. (a) The phase diagram associated with a free energy
F that is a cubic polynomial in φ2. The solid lines are the phase
boundaries. The region to the left of the boundary marked by A and
C is the symmetry-breaking phase and the right marked by B and D
is the symmetry-preserving phase. The red solid line in the region
c2 > 0 is the critical line. The green solid line in the region c2 < 0
is the triple line where three phases coexist. Regions C and D within
the blue dashed line have three local minimums in the free energy.
The black dot in the center is the tricritical point. (b) Typical plots of
F against φ for different regions shown in (a).

discontinuous phase transition boundary, which is also the
triple line, whose equation is c2 + 2

√
c1c3 = 0 and c2 < 0.

The two boundaries smoothly join together at the point c1 =
c2 = 0, in the sense that the derivative dc1

dc2
approaches zero

when we approach the point c1 = c2 = 0 along either line.
The boundary divides the phase diagram into two half planes.
The half plane contains the region c1 < 0 and represents the
symmetry-breaking phase and the other half plane represents
the symmetry-preserving phase.

The intersection of the continuous and discontinuous phase
boundaries, located at c1 = c2 = 0, is the tricritical point.
It can be understood by modifying the free energy with an
additional term c1/2φ which breaks the Z2 symmetry. With
such a linear term in the free energy, it becomes difficult to
write down the analytical expressions for the minimums of F ,
but we can still analyze the geometry of the phase diagram.
First, the maximum number of the local minimums of F is
still three, because a linear term would only shift the function
dF
dφ

by a constant. Then, let us mark the locations of the
three local minimums by α, β, and γ , if they exist, with the
condition α < β < γ . Now, without the Z2 symmetry, β is
not necessarily zero, and α may be different from −γ . By
properly adjusting c1/2, it is possible to make α and β the
global minimums that merge into one minimum at a critical
line, or to make β and γ the global minimums that merge at
another. These two new critical lines will join the critical line
on the Z2-symmetric surface at the point c1 = c2 = 0, where
the three global minimums merge simultaneously. Thus, in
the extended phase diagram including the additional variable
c1/2, it is manifested that the point c1 = c2 = 0 is indeed the
tricritical point.

Next, we consider the case where F is a polynomial of
φ2 whose degree is ξ . Again, to ensure the stability, the
coefficient cξ > 0. In general, it is impossible to write down
the analytical expressions for the minimums of F ; however,
it is possible to gain insight into the topology of the min-
imums, that is, how the minimums merge and split, which

remarks the criticality and multicriticality. In the cubic case,
the third-order critical point is the point where three global
minimums merge, then in general, the nth-order critical point
should be the point where n global minimums merge, if we
allow the broken Z2 symmetry. This definition is consistent
with the previous one, because when we have n global mini-
mums, we can select n groups of n − 1 minimums to merge
into (n − 1)th-order critical manifolds, and the intersection of
these n lower-order critical manifolds is the point where all of
the n minimums merge, and thus is the nth-order critical point.
F has at most ξ global minimums, so it can support at most a
ξ th-order critical point. When a general polynomial F ′ (where
the prime is for the broken Z2 symmetry) of φ with degree 2ξ

has n � ξ global minimums, it can always take the form

F ′ =
n∏

k=1

(φ − ak )2
ξ−n∏
l=1

(φ − bl )(φ − b∗
l ) + F ′

0 , (A8)

where ak’s are the locations of the n minimums, n + n′ is the
degree of F ′ in terms of φ, bl ’s are some complex numbers
with nonvanishing imaginary part, and F ′

0 is the value F ′ takes
at the minimums. When the n minimums in Eq. (A8) merge,
the ak’s approach the same value A simultaneously, and now
F ′ takes the form

F ′ = (φ − A)2n
ξ−n∏
l=1

(φ − bl )(φ − b∗
l ) + F ′

0 . (A9)

Therefore, we derive another criterion for the multicriticality,
that is, around an nth-order critical point φ = A, the free
energy should be a power function of φ − A to the (2n)th,
or F ′ − F ′

0 ∝ (φ − A)2n. In the case A = 0, we have

F = φ2n
ξ−n∏
l=1

(
φ2 + ∣∣b2

l

∣∣) + F ′
0 . (A10)

Accordingly, the equation to determine the nth-order critical
manifold in the phase diagram is

c1 = c2 = · · · = cn−1 = 0, (A11)

with

cn, cn+1, . . . , cξ > 0. (A12)

In this case, the nth-order critical manifold is the boundary of
the (n − 1)th-order critical manifold.

In general, F is not a polynomial but contains arbitrar-
ily high-order terms. The previous argument which leads to
Eq. (A11) still holds, however, because now we have infinite
parameters cn, cn+1, . . . that need to satisfy inequality (A12),
which seems impractical. The problem can be circumvented
by considering only very small values of φ. Now, as long
as cn > 0, the higher-order terms can be neglected without
changing the behavior of F in a sufficiently small neigh-
borhood of φ = 0, which is implied by a continuous phase
transition. Therefore, we can say the nth-order critical condi-
tion for a free energy F taking the form of Eq. (A1) is given
by Eq. (A11) together with

cn > 0. (A13)
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Equation (A11) indicates that an nth-order critical mani-
fold has the dimension D − n + 1 where D is the dimension
of the phase diagram.

APPENDIX B: SOLVING THE LOW-ENERGY EFFECTIVE
HAMILTONIAN OF THE GENERALIZED DICKE MODEL

We start from Eq. (10):

Heff = 1

2

⎛
⎝ l∑

j,k=1

Pjδ jkPk + Xj

2
jkXk

⎞
⎠ − 1

2

l∑
k=1

ωk , (B1)

where 
2 is an l × l matrix whose diagonal elements are
given by


2
kk = ω2

k , k = 1, 2, . . . , l, (B2)

and the nonzero off-diagonal elements are


2
1k = g|D1,k|√ωωk, (B3)


2
k1 = 
2

1k, (B4)

where k = 2, 3, . . . , l . The spectrum of Heff is solely deter-
mined by 
2. By diagonalizing 
2, Heff can be represented as
a sum of l independent one-dimensional harmonic oscillators,
whose eigenfrequencies are equal to the eigenvalues λi of 
,

i = 1, 2, . . . , l . So the eigenvalues Eeff of Heff are given by

Eeff (n1, n2, . . . , nl ) =
l∑

i=1

niλi + 1

2
(λi − ωi ), (B5)

where the non-negative integers ni are the excitation number
for each of the l independent one-dimensional harmonic os-
cillators. And the ground-state wave function of Heff is given
by

�(X) =
(

det 


π l

)1/4

exp

(
−

∑l
j,k=1 
 jkXjXk

2

)
, (B6)

which is the product of the ground-state wave function of the
l independent one-dimensional harmonic oscillators.

Information on the eigenvalues λ2
i of the matrix 
2 can

be obtained by writing down the characteristic polynomial
p(λ2) ≡ det(
2 − λ2) of 
2. Denoting the determinant of the
k × k upper-left submatrix of 
2 − λ2 as pk , then pk’s have
the recurrence relation

pk = αk pk−1 − βk,

αk ≡ (

2

kk − λ2
)
,

βk ≡ 
2
1k


2
k1

k−1∏
i=2

(

2

ii − λ2), (B7)

which has the solution

pk =
k∏

i=2

αi p1 −
k∑

i=2

(
βi

k∏
j=i+1

α j

)

=
k∏

i=1

(

2

ii − λ2
) −

k∑
i=2


2
1i


2
i1

[
i−1∏
j=2

(

2

j j − λ2
)][

k∏
j=i+1

(

2

j j − λ2
)]

=
(

k∏
i=1

(

2

ii − λ2))(
1 −

k∑
j=2


2
1 j


2
j1

(
2
11 − λ2)

(

2

j j − λ2
)
)

=
(

k∏
i=1

(
ω2

i − λ2))(
1 − g2

k∑
j=2

|D1, j |2ωω j

(ω2 − λ2)
(
ω2

j − λ2
)
)

. (B8)

In particular,

p(λ2) ≡ pl =
(

l∏
i=1

(
ω2

i − λ2
))(

1 − g2
l∑

j=2

|D1, j |2ωω j

(ω2 − λ2)
(
ω2

j − λ2
)
)

. (B9)

The eigenvalues λ2
i are the roots of the equation p(λ2) = 0.

First, consider the case where some of the mean-field eigenen-
ergies are ( f + 1)-fold degenerate, for example, ωk = ωk+1 =
· · · = ωk+ f , then λ2 = ω2

k is a root of p(λ2) with multiplicity
f , because now the first factor of p(λ2),

∏l
i=1(ω2

i − λ2), con-

tains (ω2
k − λ) f +1 and (ω2

k − λ)(1 − g2 ∑l
j=2

|D1, j |2ωω j

(ω2−λ2 )(ω2
j −λ2 )

) is

analytic at λ2 = ω2
k . The components vi of an eigenvector

v ≡ (v1, v2, . . . , vl ) corresponding to this root are determined
by the following equations:

vi = 0 if i < k or i > k + f , (B10)

and
k+ f∑
i=k

|D1,i|vi = 0. (B11)

The f solutions of the equations above involve only atom
degrees of freedom because v1 = 0. They are “dark states”
not interacting with the photons. The only atom state v′ with
mean-field energy εk that interacts with the photons has the
vector components

v′
i =

{
0 if i < k or i > k + f

|D1,i|√∑k+ f
i=k |D1,i|2

if k � i � k + f . (B12)
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And the coupling strength between this state and the photons

is g
√

ωωk
∑k+ f

i=k |D1,i|2. Therefore, when we encounter dark
states that we are not interested in, we can always reduce
the dimension of 
2 to a smaller l by removing degenerate
mean-field states and renormalizing the atom-photon coupling
strength such that the resulting 
2 does not possess eigen-
values equaling certain ω2

k . In this case, the characteristic
equation p(λ2) = 0 is equivalent to

q(λ2) := ω2 − λ2 − g2
l∑

j=2

|D1, j |2ωω j

ω2
j − λ2

= 0. (B13)

The function q(λ2) has simple poles at λ2 = ω2
k ,

k = 2, 3, . . . , l and q(ω2
j ± 0) → ±∞. Also, q(±∞) →

∓∞. q(λ2) is monotonically decreasing within each
interval (−∞, ω2

2 ), (ω2
2, ω

2
3 ), · · · , (ω2

l−1, ω
2
l ), (ω2

l ,+∞),
supposing ω2

2 < ω2
3 < · · · < ω2

l . Therefore λ2
1 ∈ (−∞, ω2

2 ),

λ2
2 ∈ (ω2

2, ω
2
3 ), . . . , λ2

l−1 ∈ (ω2
l−1, ω

2
l ), λ2

l ∈ (ω2
l ,+∞).

Note that if ω < ω2, q(ω2) = −g2 ∑l
j=2

|D1, j |2ωω j

ω2
j −ω2 < 0, so

λ2
1 ∈ (−∞, min(ω2, ω2

2 )).
Because it is meaningless if Heff has imaginary eigenval-

ues, it is required that λ2
1 � 0, while the positivity of the other

eigenvalues of 
2 is automatically guaranteed because they
are greater than ω2

2 as we discussed. λ2
1 � 0 is equivalent to

q(0) � 0, that is,

g2
l∑

j=2

|D1, j |2
ω j

� ω. (B14)

By taking the equal sign, we encounter the critical condition
derived by the mean-field theory given in Eq. (3). Thus the
effective Hamiltonian is consistent with the mean-field theory.

Then, we will calculate the von Neumann entanglement
entropy between the atoms and photons in the ground state
�(X) in Eq. (B6). To this purpose, first we calculate the
reduced density matrix for the photons:

ρ(x1, x′
1) ≡

∫
dx2 · · · dxl �(x1, x2, . . . , xl )�

∗(x′
1, x2, . . . , xl )

=
(

det 


π l

)1/2 ∫
dx2 · · · dxl exp

⎛
⎝−

l∑
j,k=2


 jkx jxk − x1 + x′
1

2

l∑
j=2

(
 j1 + 
1 j )x j − 
11
(
x2

1 + x′2
1

)
2

⎞
⎠

=
(

det 


π det 
′

)1/2

exp

⎛
⎝1

4
(x1 + x′

1)2
l∑

j,k=2


1 j

′−1
j−1,k−1
k1 − 
11

(
x2

1 + x′2
1

)
2

⎞
⎠, (B15)

where 
′ is the (l − 1) × (l − 1) lower-right submatrix of 
.
Note that

det 
 =
l∑

j=1

(−1)1+ j
1 jM1 j

= det 
′

⎛
⎝
11 −

l∑
j,k=2


1 j

′−1
j−1,k−1
k1

⎞
⎠, (B16)

where Mi j is the (i, j)-minor of 
, the determinant of the
submatrix of 
 that is obtained by removing the ith row and

jth column from 
, M ′
i j is the (i, j)-minor of 
′, and C′

i j is the
(i, j)-cofactor of 
′, C′

i j ≡ (−1)i+ jM ′
i j . We have used the fact

that the inverse of 
′ can be expressed through its cofactor:


′−1
i j = C′

ji/ det 
′. (B17)

Then using Eq. (B16), the reduced density matrix can be
written as

ρ(x1, x′
1) =

(
det 


π det 
′

)1/2

exp

(
1

4
(x1 + x′

1)2
(


11 − det 


det 
′

)
− 
11

(
x2

1 + x′2
1

)
2

)

=
(

det 


π det 
′

)1/2

exp

(
−1

2
A+(

x2
1 + x′2

1

) + A−x1x′
1

)
, (B18)

where A± ≡ 1
2 (
11 ± det 


det 
′ ). The von Neumann entropy S is defined as

S = −Tr(ρ ln ρ). (B19)

To calculate the entanglement entropy, we need to know the eigenvalues of ρ. To this purpose, comparing ρ with the propagator
of a one-dimensional harmonic oscillator

〈x1| exp

(
−P2

1 + γ 2X 2
1

2

)
|x′

1〉 =
√

γ

2π sinh γ
exp

(
γ
( − cosh γ

(
x2

1 + x′2
1

) + 2x1x′
1

)
2 sinh γ

)
, (B20)
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we can identify

cosh γ = A+

A− , (B21)

such that the eigenvalues of ρ is given by
2 sinh( γ

2 ) exp(−γ (k + 1
2 )), γ > 0, k = 0, 1, 2, . . . . Now

the atom-photon entanglement entropy can be obtained as
follows:

S = γ

eγ − 1
− ln (1 − e−γ ). (B22)

So the entanglement entropy is determined by a single pa-
rameter γ . The parameter γ can be extracted from the
measurement of photon quadrature fluctuations. Note that

〈
X 2

1

〉 =
∫

x2ρ(x, x)dx

=
(

det 


π det 
′

)1/2 ∫
x2 exp

(
− det 


det 
′ x
2

)
dx

= M11

2 det 

, (B23)

and 〈
P2

1

〉 = −
∫

∂2ρ(x, x′)
∂x2

∣∣∣∣
x′=x

dx

= −
∫ [(

det 


det 
′

)2

x2 − A+
]
ρ(x, x)dx

= A+ − det 


2 det 
′ = 
11

2
. (B24)

We also have

〈
X 2

1

〉 = 〈(b1 + b†
1)2〉

2ω
, (B25)

and 〈
P2

1

〉 = −ω

2
〈(b†

1 − b1)2〉. (B26)

So

γ = cosh−1

(
ζ + 1

ζ − 1

)
, (B27)

ζ ≡ 
11M11

det 

= −〈(b1 + b†

1)2〉〈(b†
1 − b1)2〉, (B28)

where b1 + b†
1 and b†

1 − b1 are so-called quadrature operators.

[1] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[2] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,

Phys. Rev. A 75, 013804 (2007).
[3] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Phys. Rev.

Lett. 104, 130401 (2010).
[4] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature

(London) 464, 1301 (2010).
[5] Z. Zhang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,

A. L. Grimsmo, A. S. Parkins, and M. D. Barrett, Phys. Rev. A
97, 043858 (2018).

[6] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner,
K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey,
and J. J. Bollinger, Phys. Rev. Lett. 121, 040503 (2018).

[7] L. Lamata, Sci. Rep. 7, 43768 (2017).
[8] A. Mezzacapo, U. Las Heras, J. Pedernales, L. DiCarlo, E.

Solano, and L. Lamata, Sci. Rep. 4, 7482 (2014).
[9] N. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A.

Bruno, F. Luthi, D. Thoen, A. Endo, and L. DiCarlo, Nat.
Commun. 8, 1715 (2017).

[10] X. Li, M. Bamba, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K.
Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich, and J.
Kono, Science 361, 794 (2018).

[11] S. J. Masson, M. D. Barrett, and S. Parkins, Phys. Rev. Lett.
119, 213601 (2017).

[12] Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,
A. S. Parkins, and M. D. Barrett, Optica 4, 424 (2017).

[13] Y.-Q. Zou, L.-N. Wu, Q. Liu, X.-Y. Luo, S.-F. Guo, J.-H. Cao,
M. K. Tey, and L. You, Proc. Natl. Acad. Sci. USA 115, 6381
(2018).

[14] T. S. Chang, A. Hankey, and H. E. Stanley, Phys. Rev. B 8, 346
(1973).

[15] A. Hankey, H. E. Stanley, and T. S. Chang, Phys. Rev. Lett. 29,
278 (1972).

[16] R. B. Griffiths, Phys. Rev. B 12, 345 (1975).
[17] G. F. Tuthill, J. F. Nicoll, and H. E. Stanley, Phys. Rev. B 11,

4579 (1975).
[18] E. K. Riedel, Phys. Rev. Lett. 28, 675 (1972).
[19] T. Chang, D. Vvedensky, and J. Nicoll, Phys. Rep. 217, 279

(1992).
[20] R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).
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