
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PrGEMM: A Parallel Reduction SpGEMM Accelerator

ABSTRACT
Due to increasing data sparsity in scientific data sets and pruned
neural networks, it becomes more challenging to compute with
these kinds of sparse data sets efficiently. Several works discuss effi-
cient sparsematrix-vectormultiplication (SpMV). However, because
of index irregularity in compact stored matrices, sparse matrix-
vector multiplication (SpGEMM) still suffers from the trade-off
between space and efficiency of computation.

In this work, we propose PrGEMM, a multiple reduction scheme
which (1) computes SpGEMM under compact storage format with-
out expansion of the operands, (2) by using index lookahead, com-
putes and compares multiple index-data pairs at the same time
with no order violation of indices. We evaluate our work with the
matrices with different sizes in the SuiteSparse data set. Our work
can achieve 3.3x of execution cycle improvement compared to the
state-of-the-art SpGEMM scheme.

CCS CONCEPTS
• Hardware → Hardware accelerators.

KEYWORDS
Accelerator, SpGEMM, Hardware
ACM Reference Format:
. 2022. PrGEMM: A Parallel Reduction SpGEMM Accelerator. In Proceedings
of June 6–8, 2022 (GLSVLSI 2022). ACM, New York, NY, USA, 6 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Sparse data structures have emerged in many different applications,
and computation using these structures is also widely discussed.
These applications include the computation and analysis of scien-
tific and graph data ([4],[2],[18]), which contains plenty of data
nodes and sparse links between nodes; recommendation systems
[10] and natural language processing (NLP), which require large
product or word embeddings while the operands are relatively
small, like purchase history or a sentence; the pruned weights and
activations in sparse deep neural networks ([5], [13]. In this work,
we focus on the acceleration of sparse matrix-matrix multiplication
(SpGEMM), which is one of the crucial components in the above
applications.

To reduce the storage cost of sparse matrices, most sparse matri-
ces are stored in some kind of compressed format, which only stores
the non-zero values (nnz) and the address information according to
that nnz, resulting in compact storage of sparse matrices. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI 2022, Orange County, CA, USA,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

the indices stored in memory are irregular, and this irregularity
of the sparse matrices makes efficient computation of SpGEMM
challenging. First, the memory access pattern related to the indirect
access of the compact stored matrix is usually irregular. Thus, when
trying to compute the SpGEMM in parallel, the memory requests
between different computation units could have little spatial lo-
cality, which increases memory traffic. Also, the cache miss rate
induced by the irregular access pattern is significant. Second, the
index irregularity inside the vector makes the index matching pro-
cess of two compact stored vectors difficult to parallelize or requires
more memory to expand the operands. Besides index irregularity,
the vector length irregularity is also an issue in SpGEMM. One
of the issues is the load balancing induced by the different vector
lengths in each computation unit, which results in each unit’s dif-
ferent finishing time. Furthermore, the result of SpGEMM needs to
be stored in compressed format; without prior information of the
result matrix shape, the irregular vector length of the result matrix
prevents the out-of-order storage of the result matrix. To accelerate
the SpGEMM operation, we focus on parallelizing the matching
process in the computation of two vectors to increase computation
efficiency.

In this work, we use the following methods to achieve parallel in-
dex matching in the SpGEMM operation and increase computation
efficiency:

• WeuseGustavson’s algorithm-based [9] computationmodel
to compute the SpGEMM, where both vectors are stored in
CSR format. Each computation unit computes a row of the
result matrix by computing the scalar to vector multiplica-
tion, buffering the results as the partial row, and reducing
the vector into the complete row of the result matrix. In
each reduction operation, 2 partial vectors are merged into
a new vector.

• In the reduction network, we compute the index compari-
son and value reduction in parallel with width 4. We con-
struct a reduction network to achieve this computation. To
avoid the out-of-order values and indices appearing in the
result matrix, we applied an additional “lookahead index”
to block out the invalid output and keep the comparison
results correct.

• An accelerator is constructed to compute the SpGEMM.
Then, we insert a scheduler between the accelerator and
the memory to schedule each computation unit’s load/store
requests and pack the result matrix into CSR format.

Section II discusses the background of the sparse matrix storage
format and the computation method of SpGEMM. Section III ex-
plains the challenge of intra-row level parallelization of SpGEMM
computation. Section IV discusses the design of PrGEMM, including
the parallel reduction network and the peripherals in the acceler-
ator. Section V discusses the experiment setting and results, and
Section VI explains the related works. Finally, section VII is the
conclusion.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

GLSVLSI 2022, Orange County, CA, USA,

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Summary of the Previous works

Work Algorithm Storage format Transpose Reduction method Storage
Matraptor[17] Gustavson’s Algorithm C2SR N/A Serial Reduction C2SR

OuterSPACE[12] Outer Product CSR Matrix A Sorting first entries CSR/CSC
SIGMA[15] Inner Product + bitmap Run-length compression N/A Tree topology N/A
Gamma[19] Gustavson’s Algorithm CSR N/A Tree reduction N/A

TensorDash[11] Inner Product + load balance Compact N/A Inner Product N/A
PrGEMM Gustavson’s Algorithm CSR N/A 4-wide parallel CSR

Figure 1: A matrix in the (a) dense matrix (b) Coordinate list
(COO) (c) Compress Sparse Row (CSR) representation

2 BACKGROUND
2.1 Sparse Matrix Representation
When storing sparse matrices, the critical point is to hold only the
nnzs of the matrix to eliminate the storage cost of 0-storage and
encode the address information of the corresponding nnzs. The
most straightforward way to encode the address information is by
storing the cartesian address of the nnz, called coordinate list (COO)
(Fig.1(b)). COO uses 3 vectors to encode the x-address, y-address,
and the value; the information in the same index of these three vec-
tors corresponds to the same nnz in the matrix. Compressed Sparse
Row/Column (CSR/CSC) is a method to further compress the matrix
by only storing the accumulation count of nnzs in the first vector,
and the number in the first vector is the pointer to the first element
of each row/column. Fig.1(c) shows an example of CSR format, here
1 and 3 in the count vector indicate the accumulated element count
of row 0 and row 1, which is equivalent to the start element of row
1 and row 2, respectively. If 2 adjacent numbers of the count vector
are the same, there is no element in the corresponding row. The
y-indices and value of the elements on a non-empty row are stored
in the Y_idx and value vector, respectively. For a sparse matrix,
the storage cost of COO representation is 3*nnz, and CSR/CSC is
number of rows + 2*nnz. This comparison shows that the CSR and
CSC gain more storage efficiency than COO when the number of
nnz is greater than the matrix dimension. Moreover, CSR has more
benefits from a computation perspective because it is more difficult
to find a specific element in the COO than CSR. In COO, randomly
accessing an element in the matrix requires the traversal of the
matrix; however, in CSR representation, this kind of accessing only
needs to traverse the specific row, which increases the flexibility of
the computation. In this work, considering the decoding cost of the
matrix, the SpGEMM algorithm, and the consistency of the input

and output matrices, we choose CSR to be the representation in
this work.

Figure 2: Matrix multiplication using Gustavson’s Algorithm

2.2 Sparse matrix multiplication
Sparsematrix-matrixmultiplication (SpGEMM) computes𝐶 = 𝐴×𝐵,
which A and B are both sparse matrices. Based on the computation
method, there are two different types of operation: The inner prod-
uct method and the outer product method. In this work, we use an
alternative outer product method, called Gustavson’s algorithm [9],
to only compute on nnzs without needing to transpose either input
matrix.

Gustavson [9] proposed a row-based algorithm to compute the
SpGEMM. This method is a rearrangement of the outer product
method, and has several variation [1] to meet the requirements of
different applications. In this algorithm (Fig.2(c)), to compute a row
i of output matrix C, we traverse the row i of A, each nnz in row
A[i] is multiplied with the corresponding rows of B and generates
partial product vectors. Finally, these vectors are merged to the
result matrix row C[i]. The equation can be written as:

𝐶 [𝑖, :] =
𝑛∑︁

𝑘=0
𝐴[𝑖, 𝑘] ∗ 𝐵 [𝑘, :] (1)

There are 3 main benefits compared to the original outer product
method: (1) Because both matrices are accessed in row orientation,
both matrices can directly compute under CSR format without
transpose. (2) the partial result is a vector, which reduces the storage
cost of the partial result. (3) We know a single row of result matrix
C is computed from the row with the same row index of A, which
can be highly flexible with the applications that might only need a
row of the result matrix.

However, similar to the outer product-based method, with the
multiplication only happening on the nnzs and the vectors of B
stored in compact form, the partial result vectors are also stored in

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PrGEMM: A Parallel Reduction SpGEMM Accelerator
GLSVLSI 2022, Orange County, CA, USA,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

compact form. The merge of these partial result vectors is called
sparse vector (SV) reduction. Because of the index irregularity of
compact stored vectors, the index matching problem is a challenge
discussed in the next section.

3 CHALLENGE OF THE SV REDUCTION

Figure 3: Sparse vector reduction by (a)expending the com-
putation space (b) index matching over time

Due to the index irregularity in the compact stored sparse vector,
it is challenging to compute sparse vector reduction on compactly
stored vectors efficiently. Currently, there are two approaches for
sparse vector reduction. The first is preparing a space according to
the size of the vector as the computation space[14] (Fig.3(a)). While
operating, the values are passed to the location matching to their
indices in the computation space. If multiple values are passed to
the same location, they coalesce into a single output value. After the
operation, the vector is re-compressed back to the compact format.
This method is highly efficient because each value can be correctly
applied to the corresponding index without any index comparison
or index matching operation. Also, a single computation space can
handle all the partial vectors, so there is no need to store each
partial vector separately. However, if the matrix or vector is sparse
in the output, the space overhead on creating the computation
space is still quite significant. To re-compress the vector, it must
traverse the computation space to collect all the nnzs, which adds
to computation overhead.

Another method is merging both vectors under the compact
format with index matching, which has been widely used in many
previous works [17]. Fig.3(b) shows an example of the process of in-
dex matching. Because CSR stores all the vectors in ascending order,
the merged vector’s ordering is maintained by continuously com-
paring the index of the first value of both vectors. In this method,
the value with a smaller index is popped out first; if there is a match-
ing index between 2 vectors, the values of these 2 vectors coalesce
and both popped out. This method can use the least computation
space to achieve the merger of the sparse vectors; however, because
of the irregularity of the index, this method is computed in serial
method, which results in low computation efficiency.

Parallel SV reduction in compact format?
Multiple index matching has an opportunity to generate more re-
sults in a single operation, which can improve the efficiency of
sparse vector reduction. However, the main issue that prevents
multiple sparse vector reduction is the irregularity of the vector
indices. This issue makes the computation more complex within
the selected granularity for computation. Furthermore, due to the
correctness issue, the indices outside the selected granularity also
need to be considered. For example, Fig.4 shows a parallel reduction

with granularity = 4. Even though the result between 2 pieces of
the vector is correct, it violates the ascending order of the result
vector because the last index is greater than an index outside the
selected granularity, which has to be reduced in the subsequent
reduction step.

Figure 4: Parallel reduction of 2 SVs with granularity = 4
To solve this issue, wemust look ahead at the following indices of

each vector to act as the mask index to block out those indices that
violate the ascending order of the result vector. With the property of
ascending order of the compact sparse vector, it only needs to look
ahead to 1 more index to guarantee the correctness of the result
vector. Compared to the serial method of sparse vector reduction,
which compares 1 index from each vector and generates 1 result, the
parallel reduction with granularity = 4 can produce up to 8 results
if there is no matching index in both vectors. At a minimum, unless
the case that only one side has the input vector (unbalance vector
length), or both vectors cannot fill in the input of the reduction
engine (usually happen at the tail of the vector), the reduction can
produce at least 4 results if both input vectors are full.

Based on these observations, we design an accelerator for com-
puting SpGEMM with a lookahead parallel reduction network to
achieve high-efficiency SpGEMM computation.

4 SPGEMM ACCELERATOR DESIGN
In this work, we use the algorithm proposed by Gustavson [9] to
compute SpGEMM to utilize better the storage efficiency obtained
from the CSR format. To deal with the inefficiency within the index
matching problem, we propose a parallel reduction network to
merge two in-ordered but irregular indexed vectors in a coarse-
grain operation (size = 4). A lookahead index in both vectors is
invoked to block out the invalid result generated from the reduction
network and output the correct result vector.

4.1 Parallel Reduction network
The parallel reduction network (Fig.5(b)) contains 4 components:
The reduction signal generator, reduction adder array, output mul-
tiplexers, and the output mask. The reduction signal generator has
a comparator array and a set of reduction logic to generate 3 differ-
ent control signals to control the other 3 blocks in the reduction
network. The reduction adder array contains a reduction shifter to
redirect the input values from both vectors to the corresponding
place, depending on the index matching or not. The output mul-
tiplexer is a mux array that sorts the result vector based on the
comparison result generated from the reduction signal generator.
Finally, the output mask is responsible for blocking out the output
values with the indices greater than one of the lookahead indices
to generate the output vector correctly.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

GLSVLSI 2022, Orange County, CA, USA,

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 5: (a) Block diagram of the reduction operation of PrGEMM (b) The structure of the reduction network (c) Example of
the reduction operation with block out and reduction happen

In each operation, the reduction network takes 4 values and
up to 5 indices (4 reduction indices according to the loaded value,
and 1 additional index acts as the lookahead index) from both
vectors. Here, a and b denote the reduction network’s input vectors,
and idx𝑎 , idx𝑏 are the column indices of the input vectors. The
comparison result between 2 sets of reduction indices generates
two sets of 16 bits comparison signals, and these signals are sent to
the reduction logic to create the mux control signals. Also, These
comparisons generate the shift signals to redirect the values that
need to be reduced in the corresponding adder. The shift signals
are only used to shift the values in vector b to make the logic
of the reduction shifter simple. Finally, the lookahead indices are
compared to those in another vector and generate two 4-bits pre-
merged masks separately. These 2 masks are merged into a single
8-bits output mask and adjusted by the index matching information
to keep the output mask’s correctness. These mask bits are not
only for generating the output mask but also for updating the
input pointer to correctly fetch the following operands from each
vector. The computed result vector is stored in the output buffer
and waiting to be merged to the result matrix. Based on the input
pattern, several cases are possible in the reduction network:

No reduction and no block out: In this case , only the out-
put mux control signals are generated to merge two input vectors.
Because no matching signals are generated from the index com-
parison, the values from vector n do not need to redirect to the
adder array, and all the input values are passed to the mux array.
This case can generate the reduction network’s maximum output
(8 outputs).

Block out: The comparison results from the lookahead index
and reduction indices generate 2 sets of 4-bits signals. These signals
coalesce into an output mask, and each bit in the mask decides the
result from the output mux needs to be blocked out or not. In this
case, no reduction happens, and the result length only depends on
how many indices been blocked out by both lookahead indices.

Both reduction and block out: In this case, the index matching
signals pass to the reduction shifter in the reduction adder, and
each value from vector b is redirected to the corresponding line of
operation. Fig.5(c) shows the operation of 2 vectors with a matched
index. the shifter shift VB[2] to the adder to compute with VA[1]
and shift VB[3] to the original location of VB[2], to preserve the
format of both vector.Because of the property of CSR format, the
lookahead index cannot block out the reduced value (The index
of reduced value must be smaller than both lookahead indices),
which makes all the reduction operations valid and no conflict
exists between the reduction operation and the output mask. The
index matching signals also modifies the output mask to guarantee
the correctness of output length. In Fig.5(c) case, the output length
is 6 with 1 block out index and 1 index been reduced.

Input indices size smaller than 5: This case usually happens
when both vectors almost reach the end of the input vector, the size
of the input vector is too small, or the imbalance length between 2
input vectors. In this case, the input mask, a 5-bit mask to point out
how many inputs are involved in the reduction, is considered to
generate the correct reduction signals and output mask. Therefore,
the 0 in the input mask is treated as an “always greater index” to
be used to obtain the correct reduction signals and output masks.

After the reduction, the 4-bits pre-merged masks are used to
update the pointer of the input vectors, and the merged mask is
used to update the tail pointer of the result buffer. Fig.5(a) shows
the block diagram of the reduction process and the update of the
pointers. Once both pointers of the input vectors reach the end of
the vector, the reduction is finished. This process continues until
there is only one result vector in the buffer, which means the result
vector is ready to be merged into the result matrix.

4.2 Accelerator design
Outside the reduction network, each processing element (PE) con-
tains 2 data loaders used to load and buffer the cache line with the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PrGEMM: A Parallel Reduction SpGEMM Accelerator
GLSVLSI 2022, Orange County, CA, USA,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: Gustavson’s Algorithm based load unit and multi-
plication array

data part of matrix A and matrix B and a set of buffer arrays to
buffer the partially completed row of the output matrix. Each PE
operates 1 row of the result matrix at the same time. When the
request for matrix multiplication arrives, the scheduler outside the
PE can distribute the requested row to each PE. Once the matrix A
loader receives the row index i of matrix A, it accesses the count
vector to get the pointer information of the index and value vectors.
After applying pointer to the metadata encodes in the physical
address of these two vectors, matrix A loader directly accesses the
memory to load the corresponding cache line. While receiving the
cache line, matrix A loader sends out a pair of column index j and
value A[i,j] to matrix B loader and the multiplier array, respectively.
The matrix B loader does the same thing as matrix loader A to fetch
the indices and values according to j. One thing different from the
matrix A loader is that the matrix B loader needs to send out at
most 4 pairs of indices and values. Fig.6 shows the block diagram
of the loader and the multiplier array, here k to k+3 does not mean
the continuous indices in matrix B. Because of the irregular length
of each sparse vector and the cache line alignment, the matrix B
loader might need to pre-load an additional cache line to generate
4 pairs of indices and values correctly. After the matrix B loader
sends its data to the multiplier array, the results are computed and
sent to the temporary buffer to be reduced.

The buffer setting is similar to the design in Matraptor [17],
which maintains n+1 buffer arrays with n partial vector arrays
and 1 destination array. If one of the buffer arrays is empty, the
partial vector after multiplication is directly sent to one of the empty
buffers. Once all n buffers are filled, the following partial vector
will compute sparse vector reduction with the vector in one of the
buffers. The result is sent to the destination array, and the buffer
which participates in the operation will become the new destination
buffer. To simplify the logic, we use a round-robin policy to decide
which buffer will participate in the reduction process. When no
result is sent from the multiplier, the partial vectors will merge
into a single result vector and send the signal to the scheduler. The
scheduler keeps tracking the finished row to guarantee the output
matrix can be tightly packed to the CSR format. Because we can’t
know the exact size of the result matrix, 3 tightly stored CSR vectors
are not packed tightly, however, the header line is responsible to
keep the overall structure correct by storing the address of each
vector in CSR format.

Table 2: Data Set for Experiment

Matrix Dimension NNZs
raefsky3 21.2k 1.49M

p2p-Gnutella31 62.6k 147.9k
2cubes-sphere 101.5k 1.65M

m133-b3 200.2k 800.8k
offshore 259.8k 4.24M
mario002 389.9k 2.1M

roadNet-CA 1.97M 5.53M

5 EXPERIMENT
Environment: To evaluate our work, we use intel OPAE [8]

and the hardware abstraction layer (HAL) introduced by [16][7] to
simulate the behavior of the communication between the acceler-
ator and the main memory. The setting of PrGEMM uses 4-wide
(4 entries + 1 lookahead index), same as the example used in the
previous sections. The interface between the main memory and the
accelerator is 1 cache line size (512-bit wide). The area analysis is
based on Synopsys Design Compiler with 32nm technology node,
and the double-precision multiplier/adder in the area analysis uses
open-source circuits.

DataSet: The data set used in the simulation and implementation
is a subset of the dataset in [17] and [12], which are selected from
the SuiteSparse data set [3]. The table 2 shows the matrices used in
the experiment. All the operations are computed with 𝐶 = 𝐴 ×𝐴.
Before the operation, all the matrices are converted to CSR format
with a header cache line that stores the matrix’s size and the offsets
of each CSR vector. The counts and indices are stored in INT-32
format (16 entries/ cache line), and values are stored in FLOAT-64
format (8 entries/ cache line).

Baseline: In this work, we implement serial reduction as our
baseline. This implementation mimics the reduction method in
MatRaptor [17]. To simplify the comparison and focus on matrix
multiplication, the peripheral circuits and buffer settings are almost
identical.

5.1 Performance and Area
Performance: Figure 7 shows the performance comparison of

SpGEMM between 4-wide PrGEMM and the serial reduction of
sparse vectors. The experiment use 1 PE for both PrGEMM and
the serial SpGEMM unit. Due to the limitation of the simulation
platform (150 cycle for each cache line request) and the irregular
access of the sparse matrices, the load operation dominates the
total execution cycle of the SpGEMM operation. Therefore, the
improvement of the total cycle is about 10%. In the computationally
intense case (ex. raefsky3), the improvement on the total time can
reach 30%.

If we only consider the cycles spent on the SpGEMM execution,
including the time spent on scalar-to-vector multiplication and the
sparse vector reduction, the overall improvement can reach 3.3x
compared to the serial reduction. Across different cases, the im-
provement varied from 2.7x to 4.4x. This difference is generated by
(1) The utilization of the multiplier (if the vector length is smaller
than 4, the performance gain in the multiplication part is lower than
4) and (2) The reduction rate in the reduction stage. Because the
floating-point adder in the reduction network only activates when

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

GLSVLSI 2022, Orange County, CA, USA,

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 7: Ratio of execution cycle between 4-wide PrGEMM
and serial reduction of SpGEMM

the indices match, the improvement is varied in different matching
cases. For example, suppose there is only one matching index in
both input chunks of the vector. In that case, the time consumption
on the floating-point adder is dominated, and the improvement
of these specific chunks of vector might decrease to 2x. On the
other hand, if there are no matching indices, the improvement is
only dominated by the lookahead indices, which can reach above
4x improvement. In the case of roadNet-CA, because most of the
vectors are short, both the multiplier and the reduction network
cannot be fully utilized, so the improvement is only 2.7x. In con-
trast, m133-b3 is a regular matrix with all the vector sizes =4, and
the match indices in operation are relevantly small; therefore, the
improvement can be 4.4x.

Area penalty: The primary source of the area penalty is from
the floating-point multiplier, adder, and the additional comparison
unit in the reduction network. We do not take the on-PE buffer
into account to fairly compare the area. Using 32nm standard cell
synthesis, the area increase between 4-wide PrGEMM and serial
SpGEMM units is about 25%. Compared to the performance gain,
this area penalty is reasonable.

6 RELATEDWORKS
Several previousworks proposed hardware acceleration for SpGEMM
computation. ExTensor [6] and TensorDash use the inner product
to compute SpGEMM. For ExTensor, it used the skip method to
speed up the index matching in the inner product operation. For
TensorDash, it uses index look-aside and look-ahead for early de-
tection of multiply to zero. OuterSPACE[12] uses the outer product
algorithm to compute SpGEMM, and keeps a list of the first ele-
ment of each partial vector to enable a tree- or tournament-style
reduction operation. However, these methods have fundamental
issues, like 0-outputs (inner product), storage of partial matrices
(outer product) and transpose of one of the operands, which make
these method inefficient in space or in time.

MatRaptor[17] and Gamma[19] are the prior works that also
used Gustavson’s algorithm to build the accelerator. To the best
of our knowledge, MatRaptor might be the first hardware accel-
erator which exploit the Gustavson’s algorithm, and it is also the
baseline of PrGEMM. MatRaptor proposed C2SR to better utilize
the memory bandwidth. In vector reduction, Matraptor computes 2
partial vector in a single operation with serial reduction. The main

difference of MatRaptor and PrGEMM is the granularity of vector
reduction, which MatRaptor is 1 and PrGEMM is 4. Also, PrGEMM
does not need the preprocessing of the input matrix. Gamma uses a
64 wide tree type reduction network to compute the sparse vector
reduction. Even though the output of this network is 1 element per
reduction operation, the tree structure avoids computing similar
partial vectors many times, which is suitable for denser matrices
with higher nnz per row.

7 CONCLUSION
In this work, we construct an accelerator for sparse matrix-matrix
multiplication, where the inputs and output remain in compact
(CSR) format. To avoid incorrect ordering of indices and values in
the result matrix, which prevents the parallel reduction of the sparse
vectors, we used lookahead indices to block out the out-of-order
indices and keep the result matrix in the correct format with parallel
reduction. By using the reduction network with the granularity =
4, we can reach about 3.3x improvement in the SpGEMM operation
with only 25% area penalty in the computation datapath.

REFERENCES
[1] Aydin Buluc and John Gilbert. 2012. Parallel sparse matrix-matrix multiplication

and indexing: Implementation and experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[2] Paolo D’Alberto and Alexandru Nicolau. 2007. R-Kleene: A High-Performance
Divide-and-Conquer Algorithm for the All-Pair Shortest Path for Densely Con-
nected Networks. Algorithmica 47, 2 (feb 2007), 203–213.

[3] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages.

[4] John R. Gilbert et al. 2008. A Unified Framework for Numerical and Combinatorial
Computing. Computing in Science Engineering 10, 2 (2008), 20–25.

[5] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. arXiv: Computer Vision and Pattern Recognition (2016).

[6] Kartik Hegde et al. 2019. ExTensor: An Accelerator for Sparse Tensor Algebra. In
MICRO-52. Association for Computing Machinery, New York, NY, USA, 319–333.

[7] intel. 2015. intel Hardware Abstraction Layer. Technical Report. in-
tel. https://www.intel.com/content/www/us/en/docs/programmable/683282/
current/hardware-abstraction-layer.html

[8] intel OPAE. 2017. intel OPAE. Technical Report. intel. https://github.com/OPAE
[9] Shiyu Li et al. 2021. ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator

with Kernel Decomposition. Association for Computing Machinery, 992–1004.
[10] Ke Liu et al. 2020. RecNMP: Accelerating Personalized Recommendation with

near-Memory Processing. In ISCA-20. IEEE Press, 790–803.
[11] Mostafa Mahmoud et al. 2020. TensorDash: Exploiting Sparsity to Accelerate

Deep Neural Network Training. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 781–795.

[12] Subhankar Pal et al. 2018. OuterSPACE: An Outer Product Based Sparse Matrix
Multiplication Accelerator. In HPCA-2018. 724–736.

[13] Angshuman Parashar et al. 2017. Scnn: An accelerator for compressed-sparse
convolutional neural networks. ACM SIGARCH Computer Architecture News 45,
2 (2017), 27–40.

[14] Md. Mostofa Ali Patwary et al. 2015. Parallel Efficient Sparse Matrix-Matrix
Multiplication on Multicore Platforms. In High Performance Computing. Springer
International Publishing, 48–57.

[15] Eric Qin et al. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with
Flexible Interconnects for DNN Training. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 58–70.

[16] ARC Research. 2020. intel-training-modules. Technical Report. University of
Florida. https://github.com/ARC-Lab-UF/intel-training-modules

[17] Nitish Srivastava et al. 2020. MatRaptor: A Sparse-Sparse Matrix Multiplication
Accelerator Based on Row-Wise Product. In MICRO-53. 766–780.

[18] Raphael Yuster and Uri Zwick. 2004. Detecting Short Directed Cycles Using
Rectangular Matrix Multiplication and Dynamic Programming. In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’04).
Society for Industrial and Applied Mathematics, USA, 254–260.

[19] Guowei Zhang et al. 2021. Gamma: Leveraging Gustavson’s Algorithm to Accel-
erate Sparse Matrix Multiplication. In ASPLOS 2021. Association for Computing
Machinery, New York, NY, USA, 687–701.

6

https://www.intel.com/content/www/us/en/docs/programmable/683282/current/hardware-abstraction-layer.html
https://www.intel.com/content/www/us/en/docs/programmable/683282/current/hardware-abstraction-layer.html
https://github.com/OPAE
https://github.com/ARC-Lab-UF/intel-training-modules

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Matrix Representation
	2.2 Sparse matrix multiplication

	3 Challenge of the SV reduction
	4 SpGEMM accelerator design
	4.1 Parallel Reduction network
	4.2 Accelerator design

	5 Experiment
	5.1 Performance and Area

	6 Related Works
	7 Conclusion
	References

