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Abstract—Robustness and fairness are two equally impor-
tant issues for machine learning systems. Despite the active
research on robustness and fairness of ML recently, these
efforts focus on either fairness or robustness, but not both.
To bridge this gap, in this paper, we design Fair and Robust
Classification (FRoC) models that equip the classification
models with both fairness and robustness. Meeting both
fairness and robustness constraints is not trivial due to
the tension between them. The trade-off between fairness,
robustness, and model accuracy also introduces additional
challenge. To address these challenges, we design two FRoC
methods, namely FROC-PRE that modifies the input data
before model training, and FROC-IN that modifies the
model with an adversarial objective function to address
both fairness and robustness during training. FROC-IN is
suitable to the settings where the users (e.g., ML service
providers) only have the access to the model but not the
original data, while FROC-PRE works for the settings where
the users (e.g., data owners) have the access to both data
and a surrogate model that may have similar architecture
as the target model. Our extensive experiments on real-world
datasets demonstrate that both FROC-IN and FROC-PRE
can achieve both fairness and robustness with insignificant
accuracy loss of the target model.

Index Terms—Algorithmic fairness, adversarial robustness,
classification, trustworthy machine learning.

1. Introduction
Machine learning (ML) techniques are increasingly

providing decision making and operational support across
multiple domains and applications. One important concern
for the adoption of ML techniques into operational deci-
sion processes is the trustworthiness of these techniques.
Recent years have seen a proliferation of research in
trustworthy ML. Two important issues of trustworthy ML
are fairness and robustness. On one hand, ML models
have been criticized for systemic biases that result in
unintentional “unfair” decisions that favor particular in-
dividuals or groups of individuals while discriminating
against others [1], [2]. On the other hand, ML models are
vulnerable to those carefully crafted adversarial examples
[3], [4] and thus can be easily misled and manipulated.
The discovery that ML models are neither fair nor robust
hinders significantly their practical deployment in the
security-critical applications such as healthcare, finance,
and transportation. Therefore, ensuring both fairness and

robustness of ML models is paramount to the widespread
adoption of ML in our society.

The goal of this paper is to equip the ML model with
both fairness and robustness simultaneously. We consider
classification models on tabular data as our target model.
In terms of fairness, we consider statistical parity [5],
a widely-used notion in the fairness literature, as our
fairness definition. Intuitively, statistical parity specifies a
protected group (e.g., females) and an un-protected group
(e.g., males) by using a protected attribute (e.g., gender),
and requires that both protected and un-protected groups
should receive the positive outcome at equal rates. In terms
of robustness, we consider the robustness against two pop-
ular evasion attacks, namely Fast Gradient Sign Method
(FGSM) [6] and Projected Gradient Descent (PGD) attack
[7]. The adversary of these two attacks aims to perturb test
inputs to ML classifiers to cause misclassification.

There has been a considerable body of studies (e.g.,
[3], [5], [6], [8], [9]) that realize either fairness or robust-
ness with classification models. Some recent works [10]–
[12] have considered the interaction between robustness
and fairness, but mainly focus on the image domain.
Realizing both fairness and robustness on classification
over tabular data has not been investigated yet. As a
motivating example, consider the criminal justice sce-
nario and a widely used criminal risk assessment tool
named Correctional Offender Management Profiling for
Alternative Sanctions (COMPAS) in this scenario [13].
COMPAS predicts a defendant’s risk of committing a
misdemeanor or felony within two years of assessment
from the information about the defendant and his/her prior
criminal history (in tabular format). In this setting, the
fairness concern is whether the classification model has
discrimination towards a particular demographic group by
overpredicting/underpredicting the recidivism risk of the
members in the group [13], while the robustness issue is
whether the attacker can help some particular defendants
to escape from receiving the proper justice treatment by
misleading the model to predict low recidivism risk for
these defendants.

A straightforward solution to equip the target model
with both fairness and robustness is to realize the two
requirements on the target model in a sequential fashion,
i.e., ensuring the classifiers satisfy one requirement first
before handling the other. Although the solution is seemly
sound, it is indeed incorrect due to the tension between
fairness and robustness. For example, recent works [10],
[11] have observed that equipping the ML models with
fairness can make these models to be more susceptible
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to data poisoning attacks. Our study (will be presented
later in this paper) also shows that deploying the defense
mechanisms against adversarial examples on fair ML clas-
sifiers can indeed bring bias and make the fair models to
be unfair.

To address the tension between fairness and robust-
ness, in this paper, we present the design of Fair and
Robust classification (FROC) models that satisfy both
fairness and robustness constraints jointly. We define two
measurements, namely bias score and robustness score.
The bias score measures model fairness in terms of sta-
tistical parity [5], while the robustness score measures
model robustness against two types of evasion attacks
(FGSM and PGD). Based on the two measurements, we
formalize the definition of δF -fairness and δR-robustness
as our fairness and robustness goals, which require that
the bias score and the robustness score should meet the
user-specified thresholds δF and δR respectively. Then
we formalize our problem as an optimization problem
that maximizes model accuracy while satisfying both δF -
fairness and δR-robustness.

We design two different FROC solutions which are
deployed at different phases of the ML pipeline to satisfy
both δF -fairness and δR-robustness requirements: (1) A
pre-processing method (FROC-PRE) that is deployed be-
fore training - it modifies the training data so that the mod-
els trained on that data will be fair and robust; and (2) An
in-processing method (FROC-IN) that is deployed during
training - it modifies the objective function of the target
model to address both fairness and robustness constraints.
Figure 1 illustrates both methods at high level. While
these two methods can be applied at different phases of
the ML pipeline in a centralized setting, they also can
be applied to different parties in the distributed Machine-
Learning-as-a-Service (MLaaS) setting [14], [15] where
a third-party service provider (server) provides a cloud-
based platform and machine learning tools as services
to the end users. In particular, FROC-IN is suitable to
the MLaaS service provider who has the access to the
model but not to the training data. On the other hand,
FROC-PRE is suitable to the data owner (client) who has
the access to the training data but does not have access
to the target model. However, the client may have the
access to a surrogate model which approximates the target
model’s behaviors and output. To ensure that the server
will generate a fair and robust model as the service, the
client is willing to process her training data by utilizing the
surrogate model before outsourcing the data to the server.
The surrogate model can have the same loss function as
the target model but of different architecture or the same
architecture type but different architectural complexity.
For example, consider a neural network (NN) model as
the target model for binary classification, the data owner
can construct either a logistic regression classifier or an
NN whose architecture is much simpler than that of the
target model (e.g., fewer layers and/or neurons).

For the FROC-IN method, we design two regularizers:
(1) the fairness regularizer for statistical parity, and (2)
the robustness regularizer for the evasion attacks (FGSM
and PGD). We add both regularizers to the target model
so that it is trained with an adversarial objective function.
We address the trade-off between fairness, robustness, and
accuracy by controlling the weights of both regularizers.

Figure 1: An illustration of FROC-PRE and FROC-IN

For the FROC-PRE method, we design an iterative
approach that applies two different operations to modify
the training data in several rounds, where a small portion
of training data is modified in each round. These two data
modification operations are: (1) flipping the binary labels
of a set of original training samples (for fairness); and
(2) augmenting the training data with a set of adversarial
examples (for robustness). Since the users may not have
the access to the target model, FROC-PRE considers a
surrogate model that has either identical or similar archi-
tecture as the target model. In terms of fairness, FROC-
PRE quantifies the fairness influence score of a training
sample as the estimated change in fairness and accuracy
of the surrogate model if the sample’s label is flipped.
Similarly, FROC-PRE quantifies the accuracy influence
score of any adversarial example as the estimated change
in the accuracy of the surrogate model if the adversarial
example is inserted into the training data. Based on both
influence scores, FROC-PRE iteratively selects a set of
training samples that have the highest fairness influence
scores for label flipping, as well as a set of adversarial
examples that have the highest accuracy influence scores
for insertion, until the model achieves both δF -fairness
and δR-robustness. We design new influence functions
that estimate both fairness and accuracy influence scores
efficiently without model re-training.

We extensively evaluate the performance of both
FROC-IN and FROC-PRE on multiple real-world
datasets, and made the following observations from our
experimental results.
• Imposing robustness and fairness constraints sequen-
tially fails to meet both constraints, as the enforcement
of one constraint can counteract the effect of the other.
Therefore, both constraints should be dealt with simul-
taneously.
• Due to the correlation between attributes, simply ex-
cluding the protected attribute from training of the
target model can eliminate neither the disparate impact
on the target model nor the tension between fairness
and robustness.
• Both FROC-IN and FROC-PRE address the trade-off
between fairness, robustness, and model accuracy. In
particular, both methods deliver small accuracy loss
while ensuring the model satisfying δF -fairness and
δR-robustness.
Our main contributions include the follows:
• We design the first influence functions that estimate

the influence of both label flipping and insertion of
adversarial examples on model fairness and accuracy.

• Based on the influence functions, we design two
new algorithms named FROC-PRE and FROC-IN
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that realize both fairness and robustness on classifiers
simultaneously.

• We provide new insights into the interaction between
fairness and robustness through extensive empirical
study.

2. Related Work

Algorithmic fairness. Algorithmic fairness in ML has
caught increasing attention from the ML community [16].
Several competing notions of algorithmic fairness have
been recently proposed. These definitions can be catego-
rized into two categories: (1) Group fairness that is con-
cerned with the protected groups and requires that some
statistic of interest be approximately equalized across
groups [5], [9], [17]; and (2) Individual fairness [18] that
prevents discrimination against individuals and requires
similar individuals are treated similarly. In this paper, we
focus on group fairness.

Techniques to design bias mitigation algorithms typi-
cally identify a fairness notion of interest first and modify
a particular point of the ML pipeline to satisfy it. Method-
ologically, they fall broadly into three categories: (1) pre-
processing: the bias in the training data is mitigated [5],
[8], [19]; (2) in-processing: the ML model is modified
by adding fairness as additional constraint [9], [20], [21];
and (3) post-processing: the results of a previously trained
classifier are modified to achieve the desired results on
different groups [17]. In this paper, we consider both pre-
processing and in-processing methods for bias mitigation.
We follow the general idea of using regularization in
the literature for in-processing mitigation. Various fairness
regularization terms have been designed for different fair-
ness definitions. For example, the fairness regularization
term in [22] penalizes the mutual information between the
protected attribute and the outcome feature, while the fair-
ness regularization in [20], [23] penalizes the difference
in false positive rate and false negative rates between two
groups. These approaches cannot be directly applied to
our problem setting, as we consider statistical parity [5],
[8] (i.e., matching of positive rate across different groups).

Robust machine learning. A considerably large
amounts of research on adversarial ML and defense strate-
gies have been performed recently. We refer the audience
to some excellent surveys [24]–[26] of recent develop-
ments in robust ML. In this paper, we focus on two
types of evasion attacks, namely proposed Fast Gradient
Sign Method (FGSM) [6] and Projected Gradient Descent
(PGD) attack [7]. We consider adversarial training as the
defense mechanism.

Tension between fairness and robustness. There is
very few study of the tension between robustness and
fairness. Chang et al. [10] show that fairness impacts
robustness - the fair models are noticeably less robust
than unconstrained models against the data poisoning
attacks during the training phase. They consider the data
poisoning attacks during the training phase as well as
equalized odds [17] as their fairness notion. Xu et al.
[11] observe that robustness can impact fairness - the
adversarial training algorithms tend to introduce disparity
of accuracy and robustness between different groups of
data. They also consider equalized odds [17] as their fair-
ness notion, and design a debiasing algorithm to mitigate

the accuracy/robustness disparity of adversarial training
across different groups. Unlike these works, we consider
the evasion attack during the inference phase, and use
statistical parity, another widely-used fairness notion, as
our fairness objective. While equalized odds [17] requires
the same true positive rate across different groups, statis-
tical parity requires the same positive rate across different
groups. Furthermore, both [10], [11] aim to realize robust
fairness (i.e., eliminating accuracy/robustness disparity in
adversarial training), but our goal is to realize fairness and
robustness simultaneously on the classification models.
Sharma et al. [27] investigate the fairness and robustness
issues of neural networks from the aspect of the data
points’ distance to boundaries. They give a new fair-
ness definition which requires that different groups have
equalized average distance to the boundaries. Their key
idea is two-fold: (1) adjust the average distance to the
decision boundary between groups so that the network is
more fair with respect to the ability to obtain resources,
and (2) increase the average distance of data points to
the boundary to promote adversarial robustness. Both of
their fairness definitions and robustness requirements are
fundamentally different from ours.

3. Preliminaries
3.1. Algorithmic Fairness

In this paper, we mainly focus on group fairness. In
general, the group fairness model is defined as following:
given a dataset of domain A×X × Y , where A denotes
the protected attributes (e.g., gender), X denotes the non-
protected attributes, and Y is an outcome feature, the
classifier model M learned from these samples should
not have discriminatory effects towards the protected
groups (e.g., female) defined by the values associated with
the protected attribute compared with the un-protected
groups (e.g., male). For simplicity, we only consider one
protected/un-protected group in this paper. In the follow-
ing discussions, we use a = 0 and a = 1 to indicate the
protected and un-protected groups respectively.

3.2. Adversarial Robustness

There has been active research on adversarial attacks
on ML in recent years. The main attacks can be cate-
gorized into two types [28]: (1) The evasion attacks by
which the adversary tries to evade the system by adjusting
malicious samples during testing phase; (2) The poisoning
attacks by which an adversary tries to poison the training
data by injecting carefully designed samples during train-
ing phase. In this paper, we only focus on the evasion
attacks because we focus on the performance of models
at inference time. Specifically, we consider two popular
evasion attacks: Fast Gradient Sign Method (FGSM) [6]
and Projected Gradient Descent (PGD) attack [7], which
are explained below. Although FGSM is a weak attack
[7], [29], we still consider it for the investigation of the
impact of different attack power on fairness as well as the
study of the trade-off between robustness and fairness.

Fast gradient sign method (FGSM) attack. FGSM
[6] uses linear perturbation on the features of the testing
samples. In particular, let θ be the parameter of the given
model M, and L() be the loss function. The perturbation
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is performed by adding a noise vector η on the sample x,
where the noise is calculated as η = ε·sign (∇xL(θ,x, y)).
The parameter ε controls the intensity of the attack. The
adversarial testing examples are generated as:

x̃ = x + η = x + ε · sign (∇xL(θ,x, y)) (1)

Projected gradient descent (PGD) attack. While
FGSM is considered as a simple one-step scheme, PGD
attack [7] is the multi-step variant of FGMS. Formally, the
adversarial examples at the (t+1)-th iteration is generated
as following:

x̃t+1 = Πx+S (x̃t + ξ · sign (∇xL (θ,xt, y))) (2)

where Π is the projection operator, S is a set of pertur-
bation candidates, and ξ is the parameter that controls the
intensity of the attack in every iteration.

Adversarial training as defense. There have been
significant efforts on designing defense techniques against
the evasion attacks. Adversarial training (AT) is one of the
most promising ways to obtain the adversarial robustness
of learning models. The key idea of AT is to generate
adversarial examples and augment these perturbed data
while training the target model. The augmentation can be
done either by feeding the model with both the original
data and the crafted data [30], [31] or by learning with a
modified objective function [6]. In this paper, we consider
the latter approach as the defense against adversarial ex-
amples. Specifically, when training a model M with the
utility loss function L on a training dataset {ai,xi, yi}ni=1,
the new loss L̃ is defined as:

L̃(M, {x}, {y}) = L(M, {x}, {y}) + λ · L(M, {x̃}, {y})
(3)

where {x̃}ni=1 are the adversarial examples generated by
either FGSM or PGD attack, and λ controls the trade-off
between robustness and model accuracy. Higher (lower)
λ indicates higher (lower) robustness but worse (better)
utility. λ = 0 indicates no robustness.

4. Problem Formulation
Consider a training dataset (A,X, Y ) with m samples,

where A, X , and Y are the protected attributes, non-
protected attributes, and labels respectively. We consider
a binary classifier M in this paper.

To prevent the impacts of the protected attribute on
prediction, we use a simple yet widely-used bias miti-
gation method [5] that excludes the protected attributes
from model training. Thus our analysis in the following
discussions of model training does not take the protected
attribute into consideration.

Model accuracy. Typically, the binary classification
can be performed from the prediction of a posterior
distribution (called posteriors) over the class labels. We
use Mc to denote a probability classifier that outputs
the posteriors in [0, 1]. Then M can be considered as
a binary classifier that binarizes the output of Mc. For-
mally, the model M makes the binary prediction as:
M(x) = 1(Mc(x) ≥ 0.5), ∀x ∈ X, where 1(·) is the
indicator function, which returns 1 if the condition holds,
otherwise 0. Intuitively, M predicts ŷ = 1 if the posterior
is no less than the threshold 0.5, otherwise ŷ = 0. Note
that the protected attribute A is not included in training
of M due to the disparate treatment.

There are various evaluation metrics to measure the ac-
curacy of classification models. In this paper, we consider
accuracy of the model M as the fraction of predictions
that are correct. Formally:

Acc(X,Y ;M) =
1

n

n∑
i=1

1(M(xi) = yi). (4)

We use binary cross entropy (BCE) as the loss func-
tion. BCE is commonly used to measure the performance
of a classification model whose output is a probability.
Formally, the BCE loss function LU is defined as follows:

LU(X,Y ) =
1

n

n∑
i=1

[yi logMc(xi) + (1− yi) log(1−Mc(xi))]

(5)
Note that LU(X,Y ) does not consider the protected at-
tribute due to the disparate treatment.

Fairness. As fairness is a complex and multi-faceted
concept which depends on many factors (e.g., context and
domains), many statistical definitions of fairness have been
introduced in the literature [32]. And yet none is univer-
sally applicable. Therefore, we only consider a fairness
definition, namely statistical parity, that is widely used
in the fairness community. Statistical parity [5], [8] (also
known as demographic parity) requires that the probability
of being classified with positive labels should be the same
across both protected and un-protected groups. Formally,

Pr(ŷ = 1|a = 1) = Pr(ŷ = 1|a = 0) (6)

Following the definition of statistical parity, we de-
fine fairness as the difference in the positive rates
of the protected and un-protected groups. Formally,
given a classification model M, a set of testing sam-
ples {(atest

i ,xtest
i , ytest

i )}ni=1 and their predictions Ŷ test =
{ŷtest
i }ni=1 made by M, the fairness of M is measured as

the bias score SB of Ŷ :

SB =

∣∣∣∣∑n
i=1[1(a

test
i =0∧ŷtest

i =1)]∑n
i=1 1(atest

i =0)
−

∑n
i=1[1(a

test
i =1∧ŷtest

i =1)]∑n
i=1 1(atest

i =1)

∣∣∣∣ (7)

Obviously, SB ∈ [0, 1]. The closer SB is to 0, the
more fair the model M is. We say a model M is δF -fair
if its bias score SB ≤ δF , where δF is a user-specified
threshold.

Robustness. Given a target model M, a set of test-
ing samples {(atest

i ,xtest
i , ytest

i )}ni=1 and their predictions
Ŷ test = {ŷtest

i }ni=1 made by M, we follow the metric
of adversarial accuracy [7], [33], [34] to measure the
robustness score M. Informally, adversarial accuracy mea-
sures the accuracy of M on the adversarial examples
{x̃test

i }. Accordingly, we define the robustness score SR
as following:

SR = Acc
(
{x̃test

i }, {ytest
i };M

)
(8)

Intuitively, SR measures the percentage of adversarial
examples that are correctly predicted by M (i.e., they
fail the evasion attack). Apparently, larger SR indicates
better robustness. We say a model M is δR-robust if its
robustness score SR ≥ δR, where δR is a user-specified
threshold.

Problem definition. The primary research question
that we study in this paper is how to make the model
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M δB-fair (in terms of statistical parity) and δR-robust
against both evasion attacks without much sacrifice on
model accuracy. Formally, the problem is defined by:

max
M

Acc(X test, Y test;M)

s.t. SB(Atest, X test;M) ≤ δF
SR(X test, Y test;M) ≥ δR

(9)

where δF and δR are the user-specified thresholds for bias
score and robustness score respectively.

A seemly straightforward solution is to realize δF
and δR sequentially. However, due to the tension be-
tween fairness and robustness [10], [11], the sequential
methods (either robustness-then-fairness or fairness-then-
robustness) fail, as the fair model will become unfair after
adversarial training. Similarly, the robust model can be-
come vulnerable after fairness enforcement. More details
of the sequential approach can be found in Section 7.
Therefore, we design the classification models that realize
both fairness and robustness constraints jointly. Next, we
present our two different solutions, namely FROC-IN and
FROC-PRE. FROC-IN is an in-processing method which
incorporates both fairness and robustness with the the
learning process, while FROC-PRE is a pre-processing
method that modifies the training data to improve the
fairness and robustness of the trained model.

5. FROC-IN: Our In-processing Method
The key idea of FROC-IN is to equip the objective

function of learning with both fairness and robustness.
Quite a few prior works [6], [10], [27], [35], [36] have
used adversarial regularization to realize either fairness or
robustness constraint with the objective function. Inspired
by these works, we design FROC-IN, which enforces
fairness and robustness as the regularizers to the objective
function of the target model. The new loss function of the
model is defined as:

L(A,X, Y ) = LU(X,Y ) + λF ·F(A,X) + λR ·R(X,Y )
(10)

where LU is the accuracy loss of the target model (Equa-
tion 5), F and R are the regularizer terms of fairness and
robustness respectively, and λF and λR are the parameters
that control the trade-off between fairness, robustness, and
accuracy. Larger λF (λR, resp.) indicates stronger fairness
(robustness, resp.) but worse accuracy. Next, we explain
how we design the two regularizers F and R.

Fairness regularizer. Intuitively, the bias score (Eqn.
7) can be used to impose a penalty on the loss function
as the fairness regularizer. However, it cannot be directly
used as the fairness regularizer as the indicator function
1(·) is not continuous and thus its gradient cannot be prop-
erly calculated during training. Indeed, since the fairness
condition of statistical parity (Eqn. 6) is non-convex, solv-
ing the constrained optimization problem defined by (9)
is difficult. To overcome this difficulty, we relax the (non-
convex) fairness condition (Eqn.7) into proxy conditions.
First, we apply the following transformation

1(a = z ∧ ŷ = 1)⇒ 1(a = z) · 1(ŷ = 1)(z ∈ {0, 1}).

As we only consider binary sensitive attributes, we can
further apply the following transformation:

1(a = z) =

{
1− a, z = 0

a, z = 1
(11)

Next, we apply approximate 1(ŷ = 1) to make it
outputs continuous values:

1(ŷ = 1) ≈Mc(x). (12)

where Mc outputs the posterior of x (defined in Section
4). In other words, the binary label output by M is
approximated as the continuous probability output by Mc.

Based on Equations (11) and (12), each component in
Equation (7) is transformed to the followings:

1(ai = 1) = ai,

1(ai = 0) = 1− ai,
1(ai = 1 ∧ ŷi = 1) ≈ aiMc(xi),

1(ai = 0 ∧ ŷi = 1) ≈ (1− ai)Mc(xi)

Thus the fairness regularizer term F can be written as:

F(A,X) =

∣∣∣∣∑n
i=1(1− ai)Mc(xi)∑n

i=1(1− ai)
−
∑n

i=1 aiMc(xi)∑n
i=1 ai

∣∣∣∣
(13)

We further simplify Equation (13). Let C0 =
1∑n

i=1(1−ai) and C1 = 1∑n
i=1 ai

. Apparently, both of them
are constants for a given dataset. Thus Equation (13) can
be rewritten as:

F(A,X) =

∣∣∣∣∣
n∑
i=1

C0(1− ai)Mc(xi)−
n∑
i=1

C1aiMc(xi)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(C0 − aiC0 − aiC1)Mc(x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

ciMc(x)

∣∣∣∣∣
(14)

where ci = C0−aiC0−aiC1. With a set of given training
samples, ci is a constant and thus can be calculated by one
traversal of the training samples.

Robustness regularizer. We follow [6] to define our
robustness regularizer. Intuitively, during adversarial train-
ing, a set of adversarial examples are generated dynam-
ically during training. These adversarial examples are
derived from the parameters of the model in the previous
epoch, and participate the current epoch as a penalty term.
We adapt this idea to our setting and define the robustness
regularizer as following:

R(X,Y ) = LU(X̃, Y ) (15)

where LU is the accuracy function (Equation (5)), and
X̃ = {x̃} are the adversarial examples.

Model training with both regularizers. The in-
processing model with both regularizers (Eqn. (10)) can be
trained by the stochastic gradient descent (SGD) method.
The gradient for each iteration is calculated as:

∇θL(A,X, Y ) = ∇θLU(X,Y ) + λF · ∇θF(A,X) + λR · ∇θR(X,Y )

First, as the accuracy loss LU(X,Y ) is defined as a binary
cross entropy function, its gradient is calculated as:

∇θLU(X,Y ) = 1
n

∑n
i=1 [yi∇θ logMc(xi) + (1− yi) log∇θ(1−Mc(xi))]

Next, the gradient of the fairness term in Eqn. (14) is
computed as:

∇θF(A,X) = sign

(∣∣∣∣∣
n∑
i=1

ciMc(x)

∣∣∣∣∣
)
· 1
n

n∑
i=1

ci∇θMc(x)
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Finally, the gradient of the robustness term in Eqn. (15)
is computed as:

∇θR(X,Y ) = 1
n

∑n
i=1 [yi∇θ logMc(x̃i) + (1− yi) log∇θ(1−Mc(x̃i))]

where x̃i is the adversarial example generated by either
FGSM or PGD attack.

6. FRoC-PRE: Our Pre-Processing Method
A possible weakness of FROC-IN is that it requires

the access to the target model, which may not be possible
when the target model is owned by a third-party (e.g.,
an MLaaS service provider) and is not accessible to the
users. Thus we design another method named FROC-
PRE, which assumes that the users have the access to the
training data and a surrogate model which have similar
architecture as the target model. We will discuss how to
choose the surrogate model in Section 8.

The key idea of FROC-PRE is to modify the training
data so that the model trained on the modified data is fair
and robust. We consider two types of data modification:
(1) flip the binary labels of a set of original training
samples DF ⊆ Dtrain; and (2) augment Dtrain with a
set of adversarial examples DR. Label flipping aims to
remove the bias from the training data, while augmenting
with adversarial examples is to enhance the robustness of
the model. Intuitively, we aim to find DF and DR that
make the model M trained on the pre-processed dataset
(A′, X ′, Y ′) satisfy both requirements of δF -fairness and
δR-robustness.

Although both δF -fairness and δR-robustness are re-
quired on the testing data (Eqn. (9)) which may not be
available during the pre-processing phase, a model that
is δF -fair and δR-robust on the training data should be
δF -fair and δR-robust on the testing data too, due to the
assumption that both training and testing data have the
same distribution. Thus we formalize the pre-processing
problem as an optimization problem defined as following:

max
A,X,Y

Acc(X,Y ;M)

s.t. M = arg maxM′ Acc(X,Y ;M)
SB(A,X;M) ≤ δF
SR(X,Y ;M) ≥ δR

(16)

where the function ACC, SB and SR are the accuracy,
bias score and robustness score of the model M respec-
tively, and δF and δR are the user-specified thresholds for
bias score and robustness score. Our experimental results
show that, FROC-PRE ensures that the model is δF -fair
and δR-robust on the testing data. More details can be
found in Section 7.

Choosing both DF and DR in one shot may be too
rigid and lead to significant accuracy loss. Therefore, we
take a greedy, sequential approach to pick samples of
DF and DR in multiple trials. In each trial, we pick
and modify one small portion of training data, and ob-
serve the change of model fairness and robustness by the
modification. If the model achieves both requirements δF -
fairness and δR-robustness, we terminate the modification.
Otherwise, we continue with the next trial.

Following this idea, we design an iterative method
that picks the data samples for modification. Specifically,

consider the original training data D0
train. At the i-th

iteration, FROC-PRE applies the following two steps on
the current dataset Di

train and generates the dataset Di+1
train

for the next iteration:
• Step 1. If δF -fairness is not satisfied, select `1 samples
Di
F from D0

train. Flip the labels of each sample in Di
F .

• Step 2. If δR-robustness is not satisfied, select `2
samples Di

R from D0
train, generate `2 adversarial ex-

amples Di
R accordingly. Augment Di

train with Di
R

(i.e., |Di+1
train| = |Di

train|+ `2);
The algorithm repeats the two steps until either both
δF -fairness and δR-robustness are met or the number of
iterations has reached a pre-defined budget. Apparently,
DR = ∪Di

R
and DF = ∪Di

F
. Both `1 and `2 values

control the impacts of fairness and robustness on model.
To ensure equal impact of fairness and robustness, we
use `1 = `2 in the algorithm, and use ` = `1(`2) in the
following discussions.

A naive solution to the optimization problem in Eqn.
(16) is to enumerate all choices and pick the one that
returns the best accuracy. Given m samples in the training
data, there are

(
m
`

)
choices to pick ` samples. Apparently

this is unacceptable due to its high complexity. The main
challenge is thus to design an efficient solution that picks
the samples for label flipping and generation of adversarial
examples.

To address the computational challenge, we design
a greedy algorithm to solve the optimization problem.
Intuitively, first, for each training sample, we estimate the
“influence” of flipping its label on both model fairness and
accuracy, and pick ` samples of the largest influence by
label flipping. Next, we estimate the “influence” of each
adversarial example on model accuracy, and pick ` ones
that have the minimal influence for data augmentation.
We note that the model that FROC-PRE estimates the
influence on is not necessarily the same as the target
model M. We denote this model as the surrogate model
MS , which is also a binary classification model that may
have identical or similar architecture as M. Since both M
and MS are classification models, they use the same loss
function LU (Eqn. (5)). In the following discussion, we
first present how to estimate these two types of influence
on a particular classification model. Then we discuss the
FROC-PRE in details.

6.1. Estimating Influence of Label Flipping on
Model Fairness and Accuracy

To estimate the influence of flipping the label of a
particular training sample on model fairness and accuracy,
we first estimate the influence of label flipping on model
fairness alone. Then we estimate the “combined” influence
of a label flipping on model fairness and accuracy together.
Next, we present the details of these two steps.

Estimating fairness influence of label flipping.
Changing the label of a training sample can impact the
model’s bias score. Intuitively, the influence of a partic-
ular label flipping on model fairness can be measured
by asking the counterfactual: how would model fairness
change if the model sees a different label of this sample
during training? A simple solution of estimating a label’s
influence on model fairness is to flip the label, re-train
the model from scratch, and measure the bias score of the
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re-trained model. Apparently, this process is not accept-
able due to its high computation cost. Unfortunately, the
influence function in the literature [37] only estimates the
impact of a training sample on model accuracy. It cannot
estimate the influence of label flipping on model fairness.

In this paper, we design a new influence function that
estimates the influence of flipping a label y on model
fairness. The estimation is not straightforward, as the
bias score (Eqn. (7)) is computed from binary labels. To
facilitate our estimation, we consider the approximation of
the bias score in Eqn. (14). However, Eqn. (14) does not
involve Y , which makes difficult to estimate the influence
on model fairness. Therefore, we estimate the influence on
fairness in two steps: First, we estimate the change on the
model parameters θ by flipping a label. Then we estimate
the influence on bias score of the model by parameter
changes. We use ȳ to denote the flipped label of y.

Step 1: Estimate the change on model parameters.
The change in model parameters due to flipping a label
in the training set can be formalized as θȳ − θ. To
estimate this change efficiently, we adapt the basic idea
of the influence function [38] to our setting. The idea is
to compute the parameter change if considering flipping
label y as y being upweighted by some small τ , so that

θτ = argminθ
1

n

n∑
i=1

LU(zi, θ) + τLU(z, θ)

The influence of upweighting y on the parameters θ can
be computed as the following [38]:

Iup(z)|τ=0 = −H−1
θ ∇θLU(x, y),

where Hθ = 1
n

∑n
i=1∇2

θLU(X,Y ) is the Hessian and is
positive by assumption. Now, consider flipping the label
of a sample z = (x, y) to z = (x, 1− y). The change of
parameters θ is computed as:

Ifθ (z) = Iup(z)− Iup(z) = −H
−1
θ [∇θLU(x, 1− y)−∇θLU(x, y)]

(17)
Step 2: Estimate the change on bias score. We esti-

mate the influence of parameter changes (by Step 1) on
the approximate bias score (Eqn. (14)) as following:

If = −∇θF(A,X) (18)

Then, the fairness influence score of flipping the label
y of a particular training sample on model fairness is
estimated as:

IF (y) = I>f I
f
θ (z), (19)

where a negative (resp., positive) IF (y) value indicates
that flipping y will lower (resp., increase) the bias. The
absolute value |IF (y)| indicates the intensity of influence.

Estimating fairness-utility influence of label flip-
ping. As the optimization problem (Eqn. (16)) aims to
minimize the accuracy loss, we estimate the influence of
flipping a label y on model accuracy loss as:

IfU (y) = I>u I
f
θ (z) (20)

where Iu = −∇θLU(X,Y ). Intuitively, a positive (resp.,
negative) IU (y) indicates a demotion (resp., promotion)
of model accuracy by flipping y.

Next, we combine IF and IU into one influence score,
namely the fairness-accuracy influence score IFU (y) that

quantifies the influence of flipping a particular label y on
both model fairness and accuracy:

IFU (y) = IF (y) · exp
(
−
∣∣∣IfU (y)

∣∣∣) (21)

A negative (resp., positive) IFU indicates that flipping y
will lower (resp., increase) the bias. Furthermore, For a
negative IFU (y) value, the larger |IFU (y)| is, the more
improvement to fairness and the less impact on model
accuracy when the label y is flipped. Thus we pick the
labels of the negative IFU (y) that with the largest absolute
value for flip. We take an exponential term on IfU (y) to
amplify the effect of label flipping on utility.

6.2. Estimating Adversarial Example’s Influence
on Model Accuracy

Generating adversarial examples. For a given data
sample {a, x, y}, we generate its adversarial example as
{a, x̃, y}. In other words, the adversary example only
perturbs the non-protected attributes X , but keeps the
protected attributes A and labels Y unchanged. We do
not perturb the protected attribute A because it is not in-
cluded in training of the target model due to the disparate
treatment. Next, we explain how to generate x̃.

For any numerical value x, we utilize the PGD attack
to generate its perturbed value x̃. For any categorical
value x, we follow [39] to generate adversarial exam-
ples of categorical data in the discrete domain. Briefly
speaking, any given categorical feature X is approximated
as a Concrete random variable, which has the categorical
probability p1, p2, . . . , pd encoded as a one-hot vector in
a d-dimensional space Rd. Then x̃ is selected from the
one-hot vector as the one of the highest probability that
maximizes the likelihood of the attack success.

Estimating influence of adversarial examples on
model accuracy. Intuitively, adding adversarial examples
into the training data can either improve or downgrade
model accuracy. A naive method to measure the impact of
an adversarial sample on model accuracy is to add it into
the training data and retrain the model. Apparently this
method is computationally expensive. Therefore, given a
training sample (x, y) and its adversarial example (x̃, y),
we estimate the accuracy influence score of inserting
(x̃, y) into the training data as the following:

IU (x̃) = ‖∇θLU (x̃, y)‖2 (22)

where LU is the accuracy function (Eqn. (5)). Intuitively,
the adversarial examples that have lower accuracy should
have smaller influence on model accuracy if they are
added into the training dataset.

6.3. Algorithm Details
Applying the two steps in different orders can lead

to different samples to be picked for label flipping as
well as different adversarial examples to be generated.
However, our empirical results show that performance of
FROC-PRE under different orders of the two sub-steps
is very similar. Thus in the paper, we only focus on the
order that label flipping is performed before generation of
adversarial examples.

The pseudo-code is shown in Algorithm 1. We high-
light some details that were not covered in the previ-
ous discussions. First, when the algorithm picks training
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Algorithm 1: FROC-PRE algorithm
Input : Training data (A,X, Y ) with m samples;

Fairness threshold δF ; Robustness
threshold δR; # of iterations L; # of
samples to modify per iteration l;
Surrogate model MS

Output : Pre-processed training dataset (A
′
, X

′
, Y

′
)

1 (A(0), X(0), Y (0)) = (A,X, Y );
2 Initialize the set of flipped labels F = ∅;
3 Initialize the set of adversarial examples R = ∅;
4 for i = 1 to L do
5 Train model M(i)

S on dataset
(A(i−1), X(i−1), Y (i−1));

6 Calculate SB (Eqn. (7)) and SR (Eqn. (8)) of
M

(i)
S ;

7 if SR ≥ δR and SB ≤ δF then // Meet both
constraints

8 break;
9 (A(i), X(i), Y (i)) = (A(i−1), X(i−1), Y (i−1));

10 if SB > δF and |F| < m then // Fairness

11 ZF =
{
yj

∣∣∣yj ∈ Y (0) ∧ j 6∈ F
}

;
12 for yj ∈ ZF do
13 Calculate IFU (yi) (Eqn. (21));
14 Pick top-l labels P1 of the smallest negative

IFU (yi) (i.e., largest fairness-accuracy
influence score);

15 F = F ∪ {i|yi ∈ P1};
16 Flip{

yj ∈ Y (i)
∣∣∣yj ∈ P1 ∧

(
xj ∈ X(i) ∨ x̃j ∈ X(i)

)}
;

17 if SR < δR and |R| < n then // Robustness
18 Z̃R ={

Adv(xj , yj ;M
(i)
S )
∣∣∣xj ∈ X(0) ∧ j 6∈ R

}
;

19 for x̃j ∈ ZR do
20 Calculate IU (x̃j) (Eqn. (22));
21 Pick top-l adversarial examples P2 of the

smallest accuracy influence score ;
22 R = R∪ {i|x̃i ∈ P2};
23 Augment {(aj , x̃j , yi)|x̃j ∈ P2} with

(A(i), X(i), Y (i));
24 return (A(i), X(i), Y (i));

samples to flip, it does not pick any sample that has
been flipped in previous iterations. Second, when the
algorithm flips the labels of particular training samples,
it also flips the labels of the adversarial examples of these
training samples if there is any. Otherwise the generated
adversarial example will have the opposite labels and lose
its ability to enhance model robustness.

After the iterations, the algorithm picks `F labels in
total of the largest fairness-accuracy influence score (Eqn.
(21)) to flip, and `R adversarial examples of the smallest
accuracy influence score (Eqn. (22)) to be added into
the training data. The value of `F is not necessarily the
same as `R. Our empirical results show that both flipped
labels and adversarial examples take a small portion of
the training data (at most 17.1% flipped labels and at
most 13.3% as adversarial examples). More details can
be found in Section 7.

Since FROC-PRE executes a fixed number of itera-
tions, the output data may not allow the model to satisfy
both δF - fairness and δR-robustness constraints. However,

Dataset # of samples # of attributes Protected Attribute LabelRace Gender
Adult 45,222 14 non-white+

white−
F+

M− BinaryHospital 52,778 122
COMPAS 20,000 9 M+, F−

TABLE 1: Summary of the real-world datasets (+ and −
indicate the protected and un-protected groups, M and F
stands for male and female).

our experimental results show that this only happens when
either the fairness or the robustness requirement is too
strong. More details are included in Section 7.

7. Experiments
7.1. Experimental Setup

All the experiments are performed on a server with
Ubuntu 18.04.4, two Intel(R) Xeon(R) Silver 4214 CPU
@ 2.20GHz, 384GB memory, and four NVIDIA Quadro
RTX 6000 graphic cards. Codes are implemented and
executed in Python 3.7.9 with PyTorch 1.7.1 and Scikit-
learn 0.23.2. All the code and data for our experiments
can be found at Github1.

Datasets. We use three real-world datasets: Adult
dataset [40], COMPAS dataset [41] and Hospital dataset
[42]. We consider these three datasets because they are
widely used in the fairness literature [5], [20], [43]. The
statistics as well as the fairness setup of these datasets are
shown in Table 1. More details of these datasets can be
found in Appendix A. All categorical values in the datasets
are transformed to numerical ones by one-hot encoding.

Network capacity. We consider a simple neural net-
work that consists of a convolutional layer with two filters,
followed by another convolutional layer with four filters,
and a fully connected hidden layer with 64 units. The net-
work is trained with 500 epochs, a batch size of 256 and
the learning rate of 0.01. We follow [7] to construct the
adversarial examples with ξ=0.3. All models are trained
on the training dataset that consists of 70% data samples
randomly selected from each dataset, and tested on the
remaining 30% data samples.

Parameter setting of FROC-PRE algorithm. We use
L = 1, 000, δF ∈ [0.01, 0.2], and δR ∈ [0, 1] for the
FROC-PRE algorithm.

Evaluation metrics. We use the bias score (Eqn.
(7)), robustness scores (Eqn. (8)), and the accuracy (Eqn.
(4)) to evaluate fairness, robustness, and model accuracy
respectively.

Baseline - sequential methods. We consider the al-
ternative solution that enforces fairness and robustness
independently in a sequence. We consider two different se-
quential methods: (1) Robustness-before-Fairness (RbF)
method: we generate a number of adversarial examples
by PGD attack, and augment the training data with these
examples. Then we apply fairness-enhancing methods to
train the model on the training data with adversarial ex-
amples; (2) Fairness-before-Robustness (FbR) method:
we apply fairness-enhancing methods on the training data
to remove bias. Then we use PGD-adversarial training to
improve model robustness.

For the implementation of fairness solutions, we
choose two fairness-enhancing algorithms from IBM’s
AIF360 fairness toolbox2 that provide statistical parity: (1)

1. https://github.com/fatml-res/robustness-and-fairness
2. IBM AIF360 fairness toolbox: https://aif360.mybluemix.net
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Reweighing (RW) [44] method is a pre-processing method
that associates a weight value with each training sample to
indicate the independence between the protected attribute
and the label; and (2) Disparate Impact Remover (DIR)
[5] method is a pre-processing method that modifies the
non-protected attributes so that their distribution across
different groups is similar.

7.2. Failure of Sequential Methods
We evaluated the performance of both sequential

methods. We vary the value of the parameter λ =
{0, 0.01, 0.05, 0.1, 0.5, 1.0} for adversarial training (Eqn.
(3)) to control the degree of robustness. We show the
results on Adult and COMPAS datasets with adversarial
examples generated by PGD attack in Figure 2. The results
of Hospital dataset can be found in Appendix F.

First, for the RbF methods (Figure 2 (a) - (d)), when
the model is not equipped with robustness (i.e. λ = 0),
the bias score of the model by applying both fairness
enhancing methods (RW and DIR) is reduced compared
with the original model. This shows the effectiveness of
both RW and DIR in terms of fairness enhancement.
However, when these two fairness enhancing methods
are employed on the data with adversarial examples, the
bias score becomes very close to that without fairness for
both RW and DIR methods. Even worse, the bias score
can be even higher than that under no-fairness setting
after robustness is equipped with the model for COMPAS
dataset with gender as the protected attribute (Figure 2
(d)). This demonstrates that applying robustness before
fairness can make the existing fairness enhancing methods
become ineffective on the data with adversarial examples.

Similarly, for the FbR methods (Figure 2 (e) - (h)),
the bias score also increases after the model is equipped
with robustness. In some settings (e.g., COMPAS dataset),
the bias score increasingly grows with stronger robustness
(i.e., when the robustness parameter λ increases). In other
words, for a model that was fair, making it robust can
deteriorate its fairness.

Next, we analyze the reason why robustness hurts
fairness. Model unfairness can spur from two sources: (1)
biases in the training data; and (2) class imbalance (i.e.,
the protected group’s data is not sufficiently represented)
[45]. Therefore, we analyze the bias in the adversarial
examples as well as their distributions across different
groups. We found that, first, the adversarial examples gen-
erated by PGD attack are indeed biased. Their labels are
highly dependent on the protected attributes. The Pearson
correlation between the labels and the protected attributes
of the adversarial examples can be as high as 0.85. Second,
since the adversarial examples use the same values of the
protected attributes of their original ones, the distribution
of adversarial examples mimics the distribution of the
original data and thus is also imbalanced across different
groups. Therefore, adding such adversarial examples to the
training data that was imbalanced at first place exacerbates
the imbalance between different groups. Augmenting such
biased adversarial examples of imbalanced distribution
counteracts the fairness-enhancing effect by RW and DIR,
and thus downgrades model fairness.

We also compare both sequential methods with
FROC-IN in terms of their fairness and robustness. We
do not consider FROC-PRE for comparison because its

fairness and robustness parameters δF and δR are not
comparable to the parameter λ for adversarial training by
both sequential methods and FROC-IN.

The fairness performance of the three approaches for
both Adult and COMPAS datasets are shown in Figure 2.
The results on Hospital dataset are shown in Appendix F.
The main observation is that, in general, FROC-IN out-
performs both sequential methods in most of the settings.
The only exception is the setting of COMPAS dataset with
large λ value (e.g., λ ≥ 0.5) (Figure 2 (g) & (h)), where
the DIR method, one of the FbR methods, has better bias
score than FROC-IN. However, in these settings, the bias
score of FROC-IN is only slightly higher than that by
DIR. Nevertheless, FROC-IN still outperforms the two
RbF methods in terms of robustness (Figure 2 (c) & (d)).

7.3. Performance of FRoC-In Method
Trade-off between fairness, robustness, and accu-

racy. We measure model accuracy, fairness, and robust-
ness of FROC-IN on the three datasets. The results on
Adult and COMPAS datasets for PGD attack are shown
in Figure 3. The results on FGSM attack and for Hospital
dataset can be found in Appendice D and F respectively.
Unsurprisingly, the trade-off always exists between fair-
ness, robustness and accuracy. In all the settings of Adult
dataset, the accuracy downgrades when the robustness
scores grows (i.e., stronger robustness). Similarly, the
accuracy decreases when the bias scores decreases (i.e.,
more fairness). However, FROC-IN well addresses the
trade-off between fairness, robustness and accuracy. For
example, for Adult dataset, the model accuracy decreases
at most 4.24% in all the settings, even when the robust-
ness score as high as 0.83 and the bias score is as low
as 0.009. Interestingly, higher accuracy is also achieved
with stronger fairness or robustness on COMPAS dataset.
We found that the reason is that the original model on
COMPAS dataset was overfitting. Adding both fairness
and robustness regularizers eliminate such overfitting and
thus leads to higher accuracy.

Interaction between fairness and robustness regu-
larizers. In this part of experiments, we try to answer the
research question: How fairness and robustness interact
with each other during model training? We measure the
angle between ∇θF and ∇θR (i.e., the gradients of fair-
ness and robustness regularizers) during model training.
Intuitively, an angle that is greater than 90◦ indicates
that fairness and robustness compete with each other,
otherwise they are aligned with each other. Given that our
neural network is small and low-dimensional, the orthog-
onal angle between the gradient vectors of fairness and
robustness regularizers can demonstrate the interaction
between fairness and robustness.

We tried various settings of λF and λR values. We
ran 500 epochs of FROC-PRE, and monitored the angel
between ∇θF and ∇θR during these epochs. Figure 4
shows the results for Adult and COMPAS datasets when
PGD is the attack. The results for FGSM attack and for
Hospital dataset are included in Appendices D and F
respectively. First, we observe the angle between ∇θF
and ∇θR remains in the range of [70◦, 110◦] after the
initial 20 epochs, for all the settings. The angle grows fast
at first, and quickly becomes larger than 90◦ in the first
20 epochs. This indicates that the fairness and robustness
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Figure 2: Comparison between performance of both sequential methods and FROC-IN. Robustness is implemented by
inserting adversarial examples generated by the PGD attack. Fairness is implemented by pre-processing training data
with either Reweighing (RW) [44] or Disparate Impact Remover method (DIR) [5].
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Figure 3: Model fairness, robustness, and accuracy of FROC-IN method (PGD attack). X- and y- axis show robustness
and bias scores respectively. Accuracy is visualized in colors; light (deep) color indicates higher (lower) accuracy
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Figure 4: Interaction between fairness and robustness regularizers during training of FROC-IN method (PGD attack).
The interaction is measured as the angle between the gradients of both fairness and robustness regularizers
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regularizers are competing with each other at beginning
of model training. Then the angle eventually becomes
relatively stable when more epochs are executed. In par-
ticular, the stabilized angle (for both protected attributes)
is close to 90◦ for most of the settings. Such alignments
facilities the model to achieve both fairness and robustness
requirements with small model accuracy loss. The two
exceptions include the COMPAS dataset with race as the
protected attribute (blue line in Figure 4 (c) & (d)), and
the Adult dataset with gender as the protected attribute
and λR = 1 (red line in Figure 4 (b)). The main reason
behind these exceptions is that the model has not reached
convergence for these settings yet when the number of
epochs reaches 500.

Note that we have excluded the protected attribute
from training due to disparate treatment. Then why fair-
ness and robustness still interact with each? To ex-
plain this, we measured the correlation between each un-
protected attribute and the protected attribute for the three
datasets (results in Appendix C). Since some attributes are
categorical, we consider Cramer’s V measurement, which
measures the relation between two categorical variables. It
returns a value in the range [0, 1]. In general, a Cramer’s
V measurement value v ∈ [0.1, 0.3] indicates a weak
association, v ∈ [0.3, 0.5] indicates a medium association,
and v > 0.5 indicates a strong association. Our results
show a strong association between the un-protected and
protected attributes on Adult dataset (e.g., the Cramer’s V
is 0.65 between the un-protected relationship attribute and
the protected gender attribute). Thus simply removing the
protected attribute did not eliminate its disparate impact on
the decision, and thus leaving the model in a fierce com-
petition between the fairness and robustness regularizers
during training, leading to the gradients between them as
large as 110◦ at the initial 100 epochs (Figure 4 (a) & (b)).
On the other hand, the Cramer’s V correlation between
all the un-protected attributes and the protected attribute
gender on COMPAS dataset is weak (the strongest cor-
relation is 0.193). These weak/medium correlations still
cannot remove the disparate impact on the target model
(See Appendix C for more discussions). However, the
weak correlation leads to a milder competition between
fairness and robustness - the angel between the gradients
between fairness and robustness regularizers (red lines
in Figure 4) for COMPAS datasets is smaller than that
on Adult dataset. The observation on the race protected
attribute is similar - stronger correlation between un-
protected and protected attributes leads to higher tension
between fairness and robustness.

7.4. Performance of FRoC-Pre Method
Trade-off between fairness, robustness, and accu-

racy. Figure 5 shows the model accuracy, fairness, and
robustness of FROC-PRE for both Adult and COMPAS
datasets when PGD is the attack. The results for FGSM
attack and Hospital dataset are similar and can be found
in Appendix E and F respectively. The results shows that,
first, FROC-PRE addresses the trade-off between fairness,
robustness, and model accuracy. In particular, the accuracy
decreases when either the fairness constraint or the robust-
ness constraint gets stronger. Nevertheless, the accuracy
loss remains insignificant. For example, the accuracy de-
creases at most 7.46 % for Adult dataset and 10.26 % for

COMPAS dataset. We note that non-negligible accuracy
loss is expected to achieve both robustness and fairness.
Indeed, the previous literature [20] has shown that even
achieving statistical parity fairness alone can incur the
accuracy loss as high as 40%. Compared with this, our
10% loss is not significant.

We also measured the number of labels to be flipped as
well as the number of adversarial examples to be added
by FROC-PRE for the three datasets. The results show
that only a small percentage of labels are flipped as well
as the adversarial examples are inserted. In particular, for
Adult dataset, the algorithm flips 1,995 (6.3%) labels and
adds 4,940 (15.6%) adversarial examples. For COMPAS
dataset, the algorithm flips 2,395 (17.1%) labels and adds
1,858 (13.3%) adversarial examples. For Hospital dataset,
the algorithm flips 810 (2.2%) labels and adds 4,406
(11.9%) adversarial examples.

Varying target and surrogate models. One advan-
tage of FROC-PRE is that it considers a surrogate model,
so it can be used for different target classification models.
We consider the following five classification models as
the target model: (1) logistic regression (LR), (2) neural
networks with 1 hidden layer and 64 neurons (NN1x64),
(3) neural networks with 1 hidden layer and 128 neurons
(NN1x128), which is the same as the surrogate model in
FROC-PRE, (4) neural networks with 1 hidden layer and
256 neurons (NN1x256); and (5) neural networks with 2
hidden layers and 128 neurons on each layer (NN2x128).
We also consider three types of surrogate models, namely
LR, NN1x128, and NN2x128. We measure the archi-
tectural complexity of the neural networks as the total
number of neurons. All the NN models use the same
activation function. We tried various threshold values of
δR and δF , and picked those that deliver the best model
accuracy. We also consider three different settings of the
fairness and robustness thresholds for strong, medium, and
weak fairness-robustness settings. The details of δF and
δR of these settings can be found in Figure 6.

We present the results for Adult and COMPAS datasets
when adversarial examples are generated by PGD attack
in Figure 6. The results for FGSM attack on these two
datasets can be found in Appendix E. We use the colored
rectangles to indicate the δF -fairness and δR-robustness
requirements. Intuitively, the (bias score, fairness score)
points that lie either on the edges of the rectangles or
inside of the rectangle indicate that the model satisfies
δF -fairness and δR-robustness, otherwise it fails either δF -
fairness or δR-robustness or both.

We have the following main observations. First, when
the surrogate model has identical architecture as the target
model, it always satisfies both fairness and robustness
requirements in all the settings. Second, when the sur-
rogate model has the same type but different architectural
complexity from the target model (e.g., both are neural
networks), the output may fail to meet both fairness and
robustness simultaneously. Furthermore, the performance
depends on the difference in the architectural complexity
of the surrogate and target models. In particular, when
the architecture of the surrogate model is simpler than the
target model, the NN-based surrogate model that has the
same number of layers but different number of neurons
always has the closest performance as the target model.
For example, when NN1x128 is the surrogate model
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(a) Adult (race) (b) Adult (gender) (c) COMPAS (race) (d) COMPAS (gender)

Figure 5: Model fairness, robustness, and accuracy of FROC-PRE method (PGD attack). Accuracy is visualized in
colors; light (deep) color indicates higher (lower) accuracy

Surrogate model: NN1x128

(a) Adult (race) + PGD (b) Adult (gender) + PGD (c) COMPAS (race) + PGD (d) COMPAS (gender) + PGD

Surrogate model: NN2x128

(e) Adult (race) (f) Adult (gender) (g) COMPAS (race) (h) COMPAS (gender)

Surrogate model: Logistic Regression (LR)

(i) Adult (race) (j) Adult (gender) (k) COMPAS (race) (l) COMPAS (gender)

Figure 6: Performance of FROC-PRE method on various target and surrogate models (PGD attack). The colored
rectangles indicate the δF -fairness and δR-robustness requirements for different δF and δR thresholds. The (bias score,
fairness score) points that lie either on the borders of the rectangles or inside the rectangle indicate that the model
satisfies δF -fairness and δR-robustness, otherwise it fails either δF -fairness or δR-robustness or both.

(Figure 6 (a) - (d)), the performance for NN1x256 as the
target model (squares in Figure 6 (a) - (d)) is better than
the performance for NN2x128 (triangles in Figure 6 (a)
- (d)). On the other hand, when the architecture of the
surrogate model is more complex than the target model,
the model that has the closest complexity to the target
model has the best performance. For example, consider
NN2x128 as the surrogate model (Figure 6 (e) - (h))
and Adult dataset, the performance of NN1x128 as the
target model (circles in Figure 6 (e) & (f)) is better
than the performance for NN1x64 (pentagons in Figure
6 (e) & (f)). On the other hand, all surrogate models
whose architecture is simpler than the target model have

similar performance on COMPAS dataset (Figure 6 (g) -
(h)). Third, when the surrogate model is fundamentally
different from the target model (e.g., LR as the surrogate
model and neural networks as the target model), the output
fails to meet both fairness and robustness in most of
the settings. To summarize, FROC-PRE is effective for
those surrogate models of similar architecture as the target
model, especially the ones of the same number of layers
of NN. Number of neurons at these layers does not impact
significantly on the fairness and robustness performance.

Interaction between fairness and robustness dur-
ing iterations. To better understand how fairness and
robustness constraints interact with each other, we plot the
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(a) Adult (race)
(λR = 0.45, λF = 0.05)

(b) Adult (gender)
(λR = 0.4, λF = 0.1)

(c) COMPAS(race)
(λR = 0.45, λF = 0.10)

(d) COMPAS (gender)
(λR = 0.5, λF = 0.02)

Figure 7: Interaction between fairness and robustness of FROC-PRE (PGD attack). The interaction is illustrated as the
change of bias and robustness scores during iterations of FROC-PRE.

change of bias and robustness scores during the iterations
of FROC-PRE when PGD is the attack in Figure 7. The
results of FGSM attack can be found in Appendix E. From
the results in Figure 7, we observe that the competition
exists between both constraints in FROC-PRE, as both
scores are not consistently improved over the iterations.
Indeed, the two scores can change in opposite directions,
i.e., one score increases while the other decreases, in
the same iteration. However, the competition is weak as
eventually both scores reach their threshold requirements.
We also observe that both scores are improved at different
speeds. In particular, the robustness score is improved
faster than that of the bias score in most of the settings,
as the slope of the robustness score curve is more steep
than that of the bias score curve.

7.5. FROC-IN versus FROC-PRE

We compare model accuracy, fairness, and robustness
of FROC-IN and FROC-PRE. We show the results for
Adult and COMPAS datasets in Figure 8. The results
for Hospital dataset can be found in Appendix F. For
ease of demonstration, we use different colors to illustrate
the performance of two algorithms. In particular, the red
area shows the cases that FROC-PRE can meet both
fairness and robustness thresholds but FROC-IN cannot.
The blue area shows the cases that only FROC-IN can
meet both fairness and robustness thresholds but FROC-
PRE cannot. The purple area shows the cases that FROC-
PRE outperforms FROC-IN in terms of model accuracy
when they have comparable fairness and robustness per-
formance. And the green area shows the cases that FROC-
IN outperforms FROC-PRE in terms of model accuracy
under the same fairness and robustness performance.

From the results, we observe that, first, the “winner”
of FROC-PRE and FROC-IN varies even on the same
dataset but with different protected attributes. This is not
surprising as the performance of both methods depends on
the overall data distributions as well as the distributions of
both protected and un-protected groups. Second, FROC-
PRE is more likely to outperform FROC-IN in terms of
model accuracy under FGSM setting (the purple areas in
Figure 8 (a), (b), (e)) and (f)), but loses to FROC-IN
in terms of model accuracy under PGD setting, except
for COMPAS dataset with gender as the protected at-
tribute. Furthermore, when the robustness threshold is very
large (i.e., strong robustness requirement), FROC-PRE is

more likely to fail to meet both robustness and fairness
requirements than FROC-IN. On the other hand, when
the bias threshold is very small (e.g., less than 0.005),
FROC-IN may fail to meet both robustness and fairness
requirements while FROC-PRE can satisfy (e.g., the red
areas in Figure 8 (b), (d), (f), and (h)). Therefore, FROC-
IN is more suitable for the strong robustness settings,
while FROC-PRE is more suitable for the settings of very
strong fairness requirements.

8. Discussions
Incremental learning for FROC-PRE method. One
weakness of FROC-PRE is that it has to re-train the model
at each iteration for the estimation of influence scores. One
possible optimization is to let the model M(i) at the i-th
iteration first inherit the parameters of the model M(i−1)

from the last iteration, and use incremental learning tech-
niques [46] that allows remodelling the network in an
incremental way without retraining. We can adapt the step-
wise updating algorithm in [46] to remodel the network
by only computing the pseudoinverse of the flipped label.
Since we only flip a small portion labels in each iteration,
the incremental learning approach should be cost-efficient.

Adapting FROC methods to other fairness defi-
nitions. In this paper, we only consider statistical par-
ity. However, both FROC-IN and FROC-PRE methods
can be easily adapted to other fairness definitions (e.g.,
equal opportunity [17] and equalized odds [17]). The
fairness regularizer F (Eqn. (13)) has to be re-designed
for these fairness definitions. The fairness influence scores
of FROC-PRE can be efficiently estimated by taking the
gradient of the re-designed F accordingly.

Robustness against the data poisoning attacks. In
this paper, we only consider the robustness against the
evasion attacks. If the attack models change to the data
poisoning attacks [47], [48], we can apply the following
method to realize both fairness and robustness. First,
we identify the poisoned data points and filter them out
by the existing methods [49]–[51]. Then we apply the
existing bias mitigation methods (e.g., [5], [8], [19]) on the
cleaned data to meet the fairness requirement. Our claim
is that applying bias mitigation after cleaning of poisoned
samples will not counteract model robustness, as it will
not insert any poisoned samples into the training data.
This is different from the sequential method (Section 7.2)
that provides robustness against the evasion attack, which
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(a) Adult (race) + FGSM (b) Adult (gender) + FGSM (c) Adult (race) + PGD (d) Adult (gender) + PGD

(e) COMPAS (race) + FGSM (f) COMPAS (gender) + FGSM (g) COMPAS (race) + PGD (h) COMPAS (gender) + PGD

Figure 8: Comparison between FROC-IN and FROC-PRE. Red area: only FROC-PRE can satisfy both fairness and
robustness thresholds; Blue area: only FROC-IN can satisfy both fairness and robustness thresholds; Purple area:
FROC-PRE outperforms FROC-IN in terms of model accuracy; Green area: FROC-IN outperforms FROC-PRE in
terms of model accuracy

is destined to fail as it has to insert adversarial examples
which may bring new bias into the model.

Extension to non-binary protected attributes. Both
FROC-IN and FROC-PRE only consider binary protected
attributes. When extending to non-binary protected at-
tributes, FROC-IN has to re-design the approximation of
bias score (Eqn. (11)) as well as the fairness regularizer
(Eqn. (14)). FROC-PRE can utilize the same revised ap-
proximation of bias score (Eqn. (11)) to deal with the
non-binary protected attributes.

Extension to problem-space adversarial attacks. By
problem-space attacks, the adversary has to generate ad-
versarial examples in the problem-space [52]–[54]. A set
of problem-space constraints under problem-space attacks
have been identified in [55]. Intuitively, by incorporating
these problem-space constraints, FROC-PRE can be ex-
tended to defend against the problem-space data poisoning
attacks by searching for the adversarial examples in the
problem space that incurs the minimum influence on
model accuracy (Eqn. (22)) when inserting into the data.
The challenge is how to design efficient search strategies.
We will leave this to the future work.

Possibility of accessing surrogate models in prac-
tice. We have shown that FROC-PRE performs well if
the surrogate model has similar architecture as the target
model. However, the users may not have the knowledge
of target model architecture in practice. In the absence of
the prior knowledge to select a surrogate model, the users
can choose the surrogate model based on their experience
or the popularity of the models. However, this may lead
to poor performance of FROC-PRE. A more accurate but
also more costly way to choose the surrogate model is
to use surrogate modelling selection technique (SMTS)
[56], [57] that uses machine learning techniques to learn
and predict the best surrogate model whose output mimics
the output of the target model with the given input.

Generalizing to multi-label classifiers. So far we
only consider binary classifiers. Extending our work to
multi-label classifiers can face the following two chal-
lenges. First, it can incur significant classification accuracy
loss, as enforcing fairness alone on multi-label classifiers

can incur heavy accuracy loss [58]. Second, by adapting
both fairness regularizer (Eqn. (13)) and robustness reg-
ularizer (Eqn. (15)) to the multi-class setting, FROC-IN
may suffer from high computational complexity and slow
convergence, as the convergence rate of the multi-class
classifier with statistical parity fairness alone can be very
slow on large data [58]. The concern of slow convergence
also applies to FROC-PRE.

9. Conclusion and Future Work
In this paper, we study the problem of equipping the

classification models with both fairness and adversarial
robustness against evasion attacks. We design two algo-
rithms, namely FROC-IN and FROC-PRE. FROC-IN is
an in-processing method that adds fairness and adversarial
robustness as two regularizers to the objective function of
the model, while FROC-PRE is a pre-processing method
that modifies the training data to remove data bias and
add adversarial examples. Our experimental results show
that both FROC-IN and FROC-PRE address the trade-off
among fairness, robustness, and model accuracy.

For the future work, we will take privacy, another
important issue of trustworthy ML, into consideration. We
will consider various types of privacy inference attacks
(e.g., membership inference attack [59], [60], attribute
inference attack [61], [62], and model inversion attack
[63]) as well as their impacts on fairness and robustness.
We will also address the trade-off between fairness, ro-
bustness, privacy, and model accuracy.
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Data PA Acc. SB SR
FGSM PGD

Adult Race 0.8472 0.0904 0.1579 0.1477
Gender 0.8473 0.1933 0.1577 0.1460

COMPAS Race 0.7096 0.1523 0.3015 0.2867
Gender 0.7043 0.0194 0.3035 0.2834

Hospital Race 0.6593 0.0153 0.3407 0.3328
Gender 0.6572 0.0175 0.3430 0.3299

TABLE 2: Testing accuracy (Acc.), fairness (SB), and
robustness (SR) of three datasets with the average of 20
repeats (PA = protected attribute)

Appendix A.
Details of Real-World Datasets

We use the following datasets in the experiments:
(1) Adult dataset [40] includes 45,222 instances and 14
attributes (such as age, gender, education, marital status,
occupation, working hours, and native country) that de-
scribe the information about individuals from the 1994
U.S. census. The prediction task is to determine whether a
person makes over $50K annually. (2) COMPAS dataset
[41] contains criminal history, jail and prison time, de-
mographics and COMPAS (which stands for Correctional
Offender Management Profiling for Alternative Sanctions)
risk scores for defendants from Broward County, Florida.
The prediction task is to infer a criminal defendant’s
likelihood of becoming a recidivist (i.e., a criminal who
re-offend) within two years. (3) Hospital dataset [42]
is released by the Texas Department of State Health Ser-
vices. It contains records of inpatient stays in some health
facilities. The features include types of external causes of
injury, diagnosis, the procedures the patient underwent,
and demographic information such as gender, age, and
race. The classification task is to predict the patient’s main
procedure. We categorize the main procedures into two
groups (corresponding to the prediction labels): cardiology
and pulmonology.

Appendix B.
Fairness and Robustness on Original Data

We measure testing accuracy, fairness, and robustness
of the target model on the three datasets, and show the
results in Table 2. It can be observed that, first, the
target model has noticeable bias (SB ∈ [0.0153, 0.19])
in its prediction results. Second, the target model is
not robust against both FGSM and PGD attacks (SR ∈
[0.146, 0.343]).

Appendix C.
Correlation between Protected and Non-
protected Attributes

To understand why excluding the protected attributes
from the training of the target model cannot eliminate
the tension between fairness and robustness, we measure
the correlation between protected and non-protected at-
tributes. Since some attributes are categorical, we consider
Cramer’s V measurement, which measures the relation
between two categorical variables. It returns a value in the
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(a) Adult (b) COMPAS (c) Hospital

Figure 9: Correlation between the protected and non-protected attributes.

range [0, 1]. In general, a Cramer’s V value v ∈ [0.1, 0.3]
indicates a weak association, v ∈ [0.3, 0.5] indicates a
medium association, and v > 0.5 indicates a strong asso-
ciation. The results of Cramer’s V measurement is shown
in Figure 9. We observe a strong association between
the non-protected attributes and the protected attributes
on Adult dataset. For example, the Cramer’s V between
the non-protected relationship attribute and the protected
gender attribute is 0.65. On the other hand, the correlation
between the protected and the non-protected attributes is
weak on COMPAS and Hospital datasets (no more than
0.2 on COMPAS dataset and 0.3 on Hospital datasets).
However, even with such weak correlations, simply re-
moving the protected attribute did not eliminate its dis-
parate impact on the decision, which can be observed
from the high bias score on COMPAS and Hospital dataset
(e.g., the bias score of the original classifier on COMPAS
dataset when Race is the protected attribute is as high as
0.1523). Thus it still leads to the tension between fairness
and robustness.

Appendix D.
Additional Results of FROC-IN Method

Model fairness, robustness, and accuracy. Figure 10
shows the performance results of FROC-IN when FGSM
is the adversarial attack on Adult and COMPAS datasets.
The observations are similar to that of PGD attack (Figure
3). We omit the discussions due to limited space.

Interaction between fairness and robustness regu-
larizers. Figure 11 shows the interaction between fairness
and robustness regularizers during training of FROC-IN
method when FGSM is the attack. We omit the discussions
as they are similar to PGD as the attack (Figure 4).

Appendix E.
Additional Results of FROC-PRE

Model fairness, robustness, and accuracy. Figure
12 shows model fairness, robustness, and accuracy for
FGSM attack. The results are similar to that for PGD
attack (Figure 5).

Interaction between bias and robustness. Figure
13 illustrates the interaction between bias and robustness
scores over the iterations of FROC-PRE when FGSM is
the attack. The observations are similar to that for PGD
as the attack (Figure 7). We omit the discussions due to
the limited space.

Various target and surrogate models. Figure 14
presents the performance of FROC-PRE on various surro-
gate models when FGSM is the attack. The observations
are similar as Figure 6 and thus are omitted due to limited
space.

Appendix F.
Additional Results on Hospital Dataset

Performance of sequential methods The perfor-
mance of mode fairness by both sequential methods on
Hospital dataset is shown in Figure 15. The observation
is similar to that on Adult and COMPAS datasets: fairness
can be deteriorated by robustness, as the bias score of the
model with robustness deployment can be higher than that
of the model without fairness. In all settings, the bias score
is the same as that for the model without fairness when
the parameter λ = 1 (i.e., the strongest robustness). In
other words, strong robustness can eliminate the fairness
effect by both DIR and RW on the model.

The performance of model robustness by two sequen-
tial methods on both Adult and COMPAS datasets are
shown in Figure 16, where fairness is implemented by
pre-processing the training dataset with Disparate Impact
Remover method (DIR) [5]. Surprisingly, for both meth-
ods, the robustness score stays stable regardless the change
of fairness. Our analysis shows that DIR does not change
the distribution of data near the boundary of the classifiers;
thus the robustness score remains stable.

Performance of FROC-IN. Figure 17 shows the per-
formance of FROC-PRE on Hospital dataset. Our obser-
vation is similar to that on Adult and COMPAS datasets
(Figure 3) - FROC-IN addresses the trade-off between
fairness, robustness and accuracy. In most of the set-
tings, the accuracy downgrades when the robustness scores
grows (i.e., stronger robustness). Similarly, the accuracy
decreases when the bias scores decreases (i.e., more fair-
ness).

We also measure the interaction between fairness and
robustness regularizers during training of FROC-IN. Fig-
ure 18 shows the angle between fairness and robustness
regularizers during training. Due to the medium corre-
lation between un-protected attributes and the protected
attribute on Hospital dataset (the strongest correlation is
0.3), the competition between the two regularizers can
be tense, which leads to the angle between the gradients
larger than 100◦ at the initial 100 epochs (red line in Fig-
ure 18 (a) & (b)) However, similar to Adult and COMPAS
dataset, the angle between ∇θF and ∇θR shrinks into the
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(a) Adult (race) (b) Adult (gender) (c) COMPAS (race) (d) COMPAS (gender)

Figure 10: Model fairness, robustness, and accuracy of FROC-IN method (FGSM attack). X- and y- axis show robustness
scores and bias scores respectively. Accuracy is visualized in colors; light (deep) color indicates higher (lower) accuracy
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Figure 11: Interaction between fairness and robustness regularizers during training of FROC-IN method (FGSM attack).
The interaction is measured as the angle between the gradients of both fairness and robustness regularizers

(a) Adult (race) + FGSM (b) Adult (gender) + FGSM (c) COMPAS (race) + FGSM (d) COMPAS (gender) + FGSM

Figure 12: Model fairness, robustness, and accuracy of FROC-PRE method (FGSM attack). Accuracy is visualized in
colors; light (deep) color indicates higher (lower) accuracy

range of [70◦, 110◦] after the initial 20 epochs for all the
settings of Hospital dataset, and then keeps stable when
it is close to 90◦.

Performance of FROC-PRE. Figure 19 shows the
results of our FROC-PRE for Hospital dataset. It can
be observed that FROC-PRE well addresses the trade-
off among fairness, robustness, and model accuracy. The
accuracy decreases at most 1.31 % for Hospital dataset in
all settings.

FROC-PRE versus FROC-IN From the results in
Figure 20, we have the following observations: First, the
“winner” of FROC-PRE and FROC-IN varies even on
the same dataset but with different protected attributes.
Second, when the robustness threshold is very large (i.e.,
strong robustness requirement), FROC-PRE is more likely
to fail to meet both robustness and fairness requirements
than FROC-PRE. Similarly, when the fairness threshold is
very small (i.e., strong fairness requirement), FROC-PRE
may fail to meet both robustness and fairness requirements
more frequently than FROC-IN. This shows that FROC-
IN is more suitable than FROC-PRE on Hospital dataset.

Age Education Marital-status Hours-per-week

Example 1

Ori. 0.39 Assoc-acdm Divorced 0.39
Adv. 0.29 10th Married-spouse-absent 0.31

Example 2

Ori. 0.05 HS-grad Never-married 0.14
Adv. 0.15 Prof-school Married-civ-spouse 0.24

TABLE 3: Examples of adversarial examples (λR = 0.1).
The values of both Age and Hours-per-week attributes are
normalized.

Appendix G.
Generated Adversarial Examples

As explained in Section 6.2, we follow [39] to generate
adversarial examples in the discrete domain. We use the
implementation3 of [39], and illustrate two adversarial ex-
amples of Adult dataset in Table 3. The examples include
two numerical attributes Age and Hours-per-week, and
two categorical attributes Education and Marital-status.
The values of both numerical attributes are normalized.

3. https://github.com/ggcodeanonymous/Greedy-Attack-and-Gumbel-
Attack
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(a) Adult (race)
(λR = 0.6, λF = 0.03)

(b) Adult (gender)
(λR = 0.6, λF = 0.05)

(c) COMPAS (race)
(λR = 0.55, λF = 0.05)

(d) COMPAS (gender)
(λR = 0.65, λF = 0.01)

Figure 13: Interaction between fairness and robustness of FROC-PRE (FGSM attack). The interaction is illustrated as
the change of bias and robustness scores during iterations of FROC-PRE

Surrogate model: NN1x128

(a) Adult (race) (b) Adult (gender) (c) COMPAS (race) (d) COMPAS (gender)

Surrogate model: NN2x128

(e) Adult (race) (f) Adult (gender) (g) COMPAS (race) (h) COMPAS (gender)

Surrogate model: Logistic Regression (LR)

(i) Adult (race) (j) Adult (gender) (k) COMPAS (race) (l) COMPAS (gender)

Figure 14: Performance of FROC-PRE method with various target and surrogate models (FGSM attack, Adult &
COMPAS datasets). The colored rectangles indicate the δF -fairness and δR-robustness requirements for different δF
and δR thresholds. The (bias score, fairness score) points that lie either on the edges of the rectangles or inside of
the rectangle indicate that the model satisfies δF -fairness and δR-robustness, otherwise it fails either δF -fairness or
δR-robustness or both. NN2x128 model is the surrogate model.

The adversarial examples are generated from the discrete
domain of both categorical attributes. For example, in
Example 1, the adversarial example of ”Divorced” is
”Married-spouse-absent”, where the indices of these two
values is one position away in the domain of the attribute
Marital-status.
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(a) Hospital (race) (b) Hospital (gender) (c) Hospital (race) (d) Hospital (gender)

Figure 15: Comparison between performance of both sequential methods and FROC-IN on Hospital dataset. Robustness
is implemented by inserting adversarial examples generated by the PGD attack. Fairness is implemented by pre-
processing training data with either Reweighing (RW) [44] or Disparate Impact Remover method (DIR) [5]
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Figure 16: Robustness of two sequential methods. Robustness is implemented as adding adversarial examples generated
by PGD attack. Fairness is implemented by pre-processing the training dataset with Disparate Impact Remover method
(DIR) [5]

(a) Hospital (race) + FGSM (b) Hospital (gender) + FGSM (c) Hospital (race) + PGD (d) Hospital (gender) + PGD

Figure 17: Model fairness, robustness, and accuracy of FROC-IN method on Hospital dataset. Accuracy is visualized
in colors; light (deep) color indicates higher (lower) accuracy
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(a) Hospital (race) + FGSM (b) Hospital (gender) + FGSM (c) Hospital (race) + PGD (d) Hospital (gender) + PGD

Figure 18: Interaction between fairness and robustness regularizers during training of FROC-IN, measured as the angle
between the gradients of the two regulariziers (Hospital dataset)

(a) Hospital (race) + FGSM (b) Hospital (gender) + FGSM (c) Hospital (race) + PGD (d) Hospital (gender) + PGD

Figure 19: Model fairness, robustness, and accuracy of FROC-PRE (Hospital dataset). Accuracy is visualized in colors;
light (deep) color indicates higher (lower) accuracy

(a) Hospital (race) + FGSM (b) Hospital (gender) + FGSM (c) Hospital (race) + PGD (d) Hospital (gender) + PGD

Figure 20: Comparison between FROC-IN and FROC-PRE on Hospital dataset. Red area: the cases that only FROC-
PRE can satisfy both fairness and robustness thresholds; Blue area: the cases that only FROC-IN can satisfy both fairness
and robustness thresholds; Purple area: FROC-PRE outperforms FROC-IN in terms of model accuracy; Green area:
FROC-IN outperforms FROC-PRE in terms of model accuracy
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