
IEEE Proo
f

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Shufflecast: An Optical, Data-Rate Agnostic and
Low-Power Multicast Architecture for
Next-Generation Compute Clusters

Sushovan Das , Afsaneh Rahbar, Xinyu Crystal Wu, Graduate Student Member, IEEE,
Zhuang Wang, Weitao Wang, Ang Chen, and T. S. Eugene Ng

Abstract—An optical circuit-switched network core has the

AQ:1

1

potential to overcome the inherent challenges of a conventional2

electrical packet-switched core of today’s compute clusters.3

As optical circuit switches (OCS) directly handle the photon4

beams without any optical-electrical-optical (O/E/O) conver-5

sion and packet processing, OCS-based network cores have6

the following desirable properties: a) agnostic to data-rate,7

b) negligible/zero power consumption, c) no need of transceivers,8

d) negligible forwarding latency, and e) no need for frequent9

upgrade. Unfortunately, OCS can only provide point-to-point10

(unicast) circuits. They do not have built-in support for one-to-11

many (multicast) communication, yet multicast is fundamental12

to a plethora of data-intensive applications running on compute13

clusters nowadays. In this paper, we propose Shufflecast, a novel14

optical network architecture for next-generation compute clusters15

that can support high-performance multicast satisfying all the16

properties of an OCS-based network core. Shufflecast leverages17

small fanout, inexpensive, passive optical splitters to connect18

the Top-of-rack (ToR) switch ports, ensuring data-rate agnos-19

tic, low-power, physical-layer multicast. We thoroughly analyze20

Shufflecast’s highly scalable data plane, light-weight control21

plane, and graceful failure handling. Further, we implement a22

complete prototype of Shufflecast in our testbed and extensively23

evaluate the network. Shufflecast is more power-efficient than24

the state-of-the-art multicast mechanisms. Also, Shufflecast is25

more cost-efficient than a conventional packet-switched network.26

By adding Shufflecast alongside an OCS-based unicast network,27

an all-optical network core with the aforementioned desirable28

properties supporting both unicast and multicast can be realized.29

Index Terms—Multicast architecture, next-generation compute30

clusters, optical circuit-switched core, data-rate agnostic, power,31

capital cost.32

I. INTRODUCTION33

TRADITIONAL packet-switched network cores in today’s34

compute clusters are not sustainable in the long run35

as CMOS-based electrical packet switches face the chal-36

lenge posed by the end of Moore’s Law [11], [52]. The37

power consumption of the commodity Ethernet switches esca-38

lates at a faster rate compared to the switching capacity,39

AQ:2 Manuscript received April 9, 2021; revised November 4, 2021; accepted
February 14, 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor B. Ramamurthy. This work was supported in part by NSF
under Grant CNS-1718980, Grant CNS-1801884, and Grant CNS-1815525.
(Corresponding author: Sushovan Das.)

AQ:3 The authors are with the Department of Computer Science, Rice University,
Houston, TX 77005 USA (e-mail: sd68@rice.edu).
Digital Object Identifier 10.1109/TNET.2022.3158899

thus hindering the free scaling for next-generation compute 40

clusters. For example, a 400 Gbps Ethernet switch with 41

Broadcom Tomahawk III chip and bare metal hardware has 42

10.8× more power consumption per port than a 25 Gbps 43

Ethernet switch with Broadcom Trident III chip and similar 44

features. Optical circuit switching technologies seem to be 45

the most promising alternative. The major advantages of 46

such optical circuit-switched network cores over the electrical 47

packet-switched counterparts are as follows: a) optical circuit 48

switches (OCS) are agnostic to data-rate as they forward the 49

incoming photons directly, b) OCS have negligible/zero power 50

consumption because they are bufferless and their operating 51

principles are simple (e.g., mirror rotation, diffraction etc.), 52

c) there is no need for transceivers at the network core 53

because of no optical-electrical-optical (O/E/O) conversion, 54

d) OCS have negligible forwarding latency as they do not 55

need packet-by-packet processing, and e) the network core 56

does not need frequent upgrade because OCS are data-rate 57

agnostic. As a result, designing next-generation compute clus- 58

ter architectures with optical circuit-switched cores has been 59

gaining significant momentum during recent years. Different 60

proposals have leveraged a wide range of OCS technologies 61

e.g., 3D/2D MEMS [38], [43], [47], [51], arrayed waveguide 62

grating router (AWGR) [11], [63], [65], [66], free-space optics 63

mirror assembly [30] etc. 64

However, unlike the packet-switched network cores that 65

can natively support one-to-many (multicast) communication, 66

OCS-based network cores cannot inherently multicast packets 67

to multiple destinations. The fundamental reason is that OCS 68

are only capable of providing point-to-point (unicast) circuit 69

connections between source-destination pairs with some form 70

of dynamic reconfigurability. Having no support for multicast 71

is a serious technological gap, as data-intensive applications 72

are on the rise in large-scale compute clusters and they heavily 73

rely on iterative big-data multicasts. For instance, consider dis- 74

tributed machine learning (ML) workloads in compute clusters 75

today. Take the LDA algorithm [15] as an example. Gigabytes 76

of data representing the word distribution of all the sampled 77

topics are multicasted in each algorithm iteration. Since an 78

LDA job runs for thousands of iterations, multicast traffic 79

volume can easily reach terabytes. Other ML examples include 80

the Logistic Regression algorithm for Twitter spam filtering 81

and the Alternating Least Squares algorithm for Netflix movie 82

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8842-7612


IEEE Proo
f

2 IEEE/ACM TRANSACTIONS ON NETWORKING

rating prediction [25]. Both jobs take hundreds of iterations,83

and multicast communications account for 30% and 45% of84

the job completion time, respectively. Next, consider high per-85

formance computing (HPC) workloads which include various86

scientific data analysis jobs [29], [34], [60]. Those applications87

perform iterative multicasts using MPI_Bcast [8], which is88

a primitive in the MPI framework for one-to-many message89

passing. Consider also data mining workloads (e.g., Apache90

Hive [54], Spark SQL [24]). In such workloads, one of the91

most critical and time-consuming operations is the distributed92

database join, in which one of the input tables is multicasted93

to all workers. These tables are up to 6.2 GB in a popular94

database benchmark [3].95

Hence we believe, enabling high-performance multicast96

for next-generation compute clusters while preserving all the97

properties of OCS-based network core is the most necessary98

next step, as it will provide a crucial missing piece of the99

all-optical circuit-switched network puzzle. However, conven-100

tional solutions are not enough. On one hand, application-101

level peer-to-peer overlays on OCS-based cores would be102

a zero capital-cost solution, but it would suffer from poor103

multicast performance and high power consumption due to104

redundant data transmission. On the other hand, network-level105

multicast (a.k.a. IP-multicast) on a separate packet-switched106

core (complementing the OCS-based unicast-capable core),107

despite achieving ideal multicast performance, won’t satisfy108

any of the OCS properties.109

Passive optical splitter is a potentially adoptable technology110

which supports data-rate agnostic physical-layer multicast111

satisfying all the properties of OCS-based network core. How-112

ever, designing a cluster-wide multicast capable network using113

optical splitters is not straightforward. A single giant splitter114

cannot span across all the ToRs to provide a cluster-wide mul-115

ticast tree, because the insertion loss of a splitter proportionally116

increases with its fanout. No optical transceiver would be able117

to compensate such high insertion loss of that giant splitter.118

Also, splitter cannot make smart forwarding decisions when119

necessary, due to lack of software control.120

We present a novel optical architecture called Shufflecast121

to support high performance multicast in next-generation122

compute clusters, which complements any unicast capable123

OCS-based network cores and preserves all the properties.124

Shufflecast has a unique optical-splitter topology which can125

scale to arbitrary network size even using small fanout split-126

ters, ensuring data-rate agnostic multicast at scale. We show127

that ToR-to-ToR-level routing on Shufflecast can be static,128

yet such simplicity in routing still optimally exploits the129

topology and enables multiple one-to-all multicast to happen130

simultaneously at line-rate. Moreover, such static nature of131

routing eliminates the need for runtime ToR-to-ToR-level tree132

construction, group state exists only at the network edge;133

which makes its control plane light-weight. Shufflecast is134

robust enough against single relay failure. We design a failure135

recovery algorithm which completely restores the reachability136

with graceful performance degradation. Finally, we develop137

a prototype implementation of Shufflecast and perform com-138

prehensive testbed evaluation. We demonstrate that Shuffle-139

cast is up to 1.77× more power-efficient compared to a140

peer-to-peer overlay on an OCS-based unicast network core. 141

Also, Shufflecast is up to 1.85× more power-efficient 142

and 1.89× more cost-efficient compared to IP-multicast on 143

a minimal-layer packet-switched network core. Shufflecast 144

ensures high physical-layer reliability and works well with 145

existing transport layer protocols. Furthermore, we show that 146

real-world high-throughput and low-latency applications can 147

leverage and benefit from Shufflecast with only minor modi- 148

fications. 149

II. MOTIVATION 150

A. Advantages of OCS-Based Network Core 151

The fundamental properties of OCS-based network cores 152

are: a) data-rate agnostic nature, b) negligible/zero power con- 153

sumption, c) no need of transceivers, d) negligible forwarding 154

latency, and e) no need for frequent upgrade. OCS are agnostic 155

to data-rate because they direct the incoming photon beams 156

across predefined circuits irrespective of the modulation rate 157

of the electronic signal. OCS intrinsically have negligible or 158

zero power consumption due to their operating principles. For 159

example, MEMS-based OCS consume very little power just to 160

drive the DSP circuitry used for rotating the mirrors to setup 161

the circuits among input/output ports. As another example, 162

AWGR switches are fully passive (i.e., consumes no power) 163

as they perform wavelength routing of the optical signals 164

across the predefined input/output ports based on diffraction 165

grating. As OCS deal with photons, they do not need optical 166

transceivers for O/E/O conversion. As a consequence, OCS 167

do not need any electronic data processing or buffering which 168

leads to negligible forwarding latency. Due to the data-rate 169

agnostic property and absence of transceivers, the OCS-based 170

network cores need not be replaced even as the network edge 171

(ToRs and servers) is upgraded to higher speeds. Finally, the 172

combination of all these aspects results in OCS-based network 173

cores to be sustainable in the long run, while achieving close to 174

non-blocking network performance for point-to-point (unicast) 175

communication. Hence, there is a major momentum shift 176

towards building such OCS-based cores for next-generation 177

compute cluster architectures [11], [30], [38], [43], [51], [65]. 178

B. OCS-Based Network Core Lacks of Multicast Capability 179

Unlike the packet-switches, OCS are not capable of support- 180

ing point-to-multipoint (multicast) connectivity. However, dis- 181

tributed ML/HPC/database applications are dominating work- 182

loads in today’s compute clusters and such applications heavily 183

rely on multicast. Hence, there is an urgent need for the 184

next-generation compute clusters to support high performance 185

multicast while preserving all the properties of OCS-based 186

network core. Under these circumstances, the easiest approach 187

would be to deploy the application-level peer-to-peer over- 188

lay on OCS-based cores. Here, the application organizes its 189

processes into an overlay network and the peers distribute mul- 190

ticast messages as TCP-based unicast flows [12], [21], [22], 191

[27], [33], [35], [55]. Despite being a zero capital-cost solution 192

with easy deployability, peer-to-peer overlay-based multicast 193

suffers from bandwidth inefficiency because of significant data 194

packet duplication at the end hosts and high control overhead. 195

Such high data redundancy leads to non-negligible link stress 196



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 3

Fig. 1. A “hybrid” network architecture: OCS-based core serves unicast and
a separate packet-switched network core serves multicast traffic. The minimal-
layer packet-switched network core requires 175% excess resource to support
one cluster-wide multicast tree across eight ToR (4-port) switches.

(e.g., 1.9 − 10×) which becomes worse with large multicast197

group size [18], [21], [26]. Even when very carefully opti-198

mized by experts, redundancy is still at 39% [18]. Additionally,199

application layer overlays can lead to unpredictable latency200

fluctuation in relay server performance with large multicast201

group size [14]. Based on our experiments, overlay multicast202

in state-of-the-art frameworks like MPI [8] and Spark [25], can203

be 3− 5.7× slower than optimal (see section VI-A). Overlay-204

based multicast also suffers from high power consumption due205

to redundant data transmission.206

Therefore, enabling high performance multicast in207

next-generation compute clusters while preserving all the208

properties of OCS-based network core is challenging.209

Conventionally we could imagine a “hybrid” network210

architecture, where OCS-based network core serves the211

unicast traffic and a separate hierarchical packet-switched212

network core serves the multicast traffic exclusively. Such213

a packet-switched network core would preserve the ideal214

multicast performance, as the packet-switches can inherently215

support IP-multicast forwarding without any data redundancy.216

However, it would violate all the OCS properties, as packet217

switches are not agnostic to data-rate; they have high218

power consumption; they need transceivers, packet-by-packet219

processing and short-term upgrade. Moreover, such a network220

would have high capital cost. Even constructing a minimal221

layer packet-switched network core using identical port-count222

packet switches (same as ToR switches) would require223

non-trivial amount of electronics. To quantify such effect,224

we define a metric “excess resource usage” which is the ratio225

of extra switch ports to total ToR uplink ports, expressed226

in percentage. As an illustrative example, consider a simple227

cluster with eight 4-port ToR switches shown in Fig. 1.228

To support a one-to-all multicast tree using a minimal-layer229

packet-switched network core, we need 14 extra switch ports230

apart from 8 uplink ToR ports, leading to 175% excess231

resource usage. Similarly, a cluster with 192 32-port ToR232

switches require at least 107% excess resources to enable a233

one-to-all multicast. Hence, deploying such a network will234

not be sustainable in the long run.235

C. Explore Optical Splitter Technology236

Fortunately there exists optical splitters, an alternative tech-237

nology to enable high performance multicast without data238

duplication. Optical splitter is a small passive device that239

splits the incoming optical signal from one input fiber to 240

multiple output fibers (defined as fanout), thus providing 241

built-in physical layer support for line-rate multicast. Addi- 242

tionally, optical splitter satisfies all the properties of OCS 243

i.e., agnostic to data rate as it has no electronic processing, 244

passive and no power consumption, no O/E/O conversion, 245

bufferless and negligible latency, long term sustainable and no 246

frequent upgrade. Furthermore, splitters are inexpensive and 247

commercially available [6]. 248

But, designing a low-diameter yet cluster-wide scalable mul- 249

ticast capable architecture is still an open problem, as making 250

use of splitters have several difficulties. Naïvely we could use 251

one giant splitter to directly join all the ToRs in a cluster 252

consuming one transceiver port from each. Such a design is 253

unrealistic and practically infeasible because the insertion loss 254

(in absolute scale) of a splitter increases proportionally with 255

bigger fanout. Empirically, the insertion loss (in log scale) 256

of a splitter with fanout p is given by 0.8 + 3.4 log2 p dB. 257

Hence, a compute cluster with 1024 ToRs would require a 258

giant splitter of fanout 1024, having insertion loss of 34.8 dB. 259

Such high insertion loss cannot be compensated by any 260

commercially available optical transceiver. A high-gain optical 261

amplifier would be able to compensate such loss, but at the 262

cost of higher power consumption, higher capital cost [10] and 263

lower signal-to-noise ratio (SNR) at the receiver. Hence, such 264

a network has limited scalability. Moreover, splitter is a dumb 265

device, i.e., it does not have the ability to make smart decisions 266

e.g., configure the multicast trees for different sources, redirect 267

the traffic during failure etc. 268

We design Shufflecast, a highly scalable and low- 269

diameter multicast-capable optical network architecture for 270

next-generation compute clusters, which leverages small 271

fanout passive optical splitters to connect the ToR ports. 272

Thus, Shufflecast provides high performance multicast, while 273

preserving all the OCS properties. By supporting multicast and 274

complementing the unicast capable OCS-based network core, 275

Shufflecast is a crucial component in the all-optical network 276

core puzzle. In the next sections, we will show the following 277

advantages of Shufflecast: 278

a) Shufflecast’s data plane achieves high scalablility with 279

low network diameter (Sec. III-A) using small fanout 280

splitters, ensuring data-rate agnostic multicast. As Shuf- 281

flecast can scale with limited number of ToR ports, it has 282

low capital cost (Sec. VI-A) 283

b) The optimal ToR-to-ToR-level routing over Shufflecast 284

(Sec. III-A) supports simultaneous one-to-all multicasts 285

at line-rate. Also, Shufflecast is power efficient compared 286

to the conventional multicast solutions (Sec. VI-A). 287

c) As the routing is static, ToR-to-ToR-level multicast tree 288

construction at runtime is not necessary; group state exists 289

only at the network edge. Hence, the control plane of 290

Shufflecast is very simple and light-weight (Sec. III-B). 291

d) Shufflecast provides good failure resilience and 292

graceful performance degradation after failure recovery 293

(Sec. III-C and VI-C). 294

e) Shufflecast can reliably support multiple multicast groups 295

using existing multicast transport protocols (Sec. VI-B). 296



IEEE Proo
f

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Furthermore, real-world applications can benefit from297

Shufflecast with minor modifications (Sec. VI-D).298

III. SHUFFLECAST ARCHITECTURE299

In this section, we discuss the Shufflecast architecture in300

detail with data plane design, control plane design and failure301

handling.302

A. Data Plane303

In the Shufflecast data plane, passive optical splitters pro-304

vide direct ToR-to-ToR connectivity. The optical transceivers305

and splitters are co-located at the ToRs without consuming306

extra rack space.307

1) Topology: The Shufflecast topology is parameterized308

by p and k, where p denotes the number of ToRs that a309

single ToR connects to via a splitter, and k is the number310

of logical ToR columns in the topology. In general, a p, k-311

Shufflecast has N = k · pk ToR switches forming a p-regular312

graph, with each column having pk ToRs. Fig. 2 shows an313

example of 2, 2-Shufflecast, where there are 8 ToRs arranged314

in 2 columns, with 4 ToRs per column and each ToR equipped315

with 1:2 optical splitter (nodal degree 2). More examples are in316

Appendix A-A1. Note that Shufflecast can also accommodate317

an arbitrary number of ToRs. Assume the total number of318

ToRs = T , where k1 · pk1 < T < k2 · pk2 . To accommodate319

T ToRs, the network is wired as a p, k2-Shufflecast where320

a few physical ToRs would act as additional logical nodes321

to maintain the connectivity pattern. Such a strategy would322

require more than one splitter at those ToR switches. For323

example, consider T = 15; the nearest Shufflecast instance for324

p = 2 is a 2, 3-Shufflecast (24 ToRs), where 9 ToRs would be325

assigned two splitters and act as two distinct logical sources.326

Logical ToR ID: We realize the Shufflecast topology using327

IP-based L2/L3 Ethernet switches. The “logical” ToR IDs328

are defined to explain the properties of the topology and the329

routing scheme. In a p, k-Shufflecast, the columns (c) are330

numbered as 0, 1 . . . (k − 1) from left to right, and the rows (r)331

are numbered as 0, 1 . . . (pk − 1) from top to bottom. Any ToR332

with a decimal representation ‘i’ (i ∈ [0, N − 1]) is uniquely333

identified by the pair
(
ci, ri

)
where column ID (ci) is ⌊ i

pk ⌋334

and row ID (ri) denotes the k-tuple p-ary representation of335

(i mod pk) given by [rik−1r
i
k−2 . . . r

i
1r

i
0]. For 2, 2-Shufflecast336

shown in Fig. 2, each ToR has a binary 2-digit row ID337

r1r0. Considering any ToR switch e.g., ToR 6, its column338

ID is ⌊ 6
22 ⌋ = 1 and row ID is the binary representation of339

(6 mod 22) = 2, i.e., 10, resulting in a combined ID (1, 10).340

ToR connectivity:We can further define the ToR connectiv-341

ity pattern of Shufflecast topology using such logical IDs. Any342

ToR (ci, rik−1r
i
k−2 . . . r

i
1r

i
0) is connected to p other ToRs of343

the next column (cj =
(
ci + 1

)
mod k), having the row IDs344

as 1 place left-shift of its own row-ID digits with the least345

significant digit m ∈ [0, p− 1](i.e., rj = [rik−2r
i
k−3 . . . r

i
0m]).346

Partition: We logically partition the columns into p regions347

based on the logical ToR IDs. The partition ID of each ToR348

is defined by the most significant digit of the ToR’s p-ary349

row ID (i.e., rk−1 ∈ [0, p− 1]). For the 2, 2-Shufflecast in350

Fig. 2, every column has two partitions with partition IDs 0351

Fig. 2. Connectivity of 2, 2-Shufflecast.

(ToRs {0, 1} and {4, 5}) and 1 (ToRs {2, 3} and {6, 7}). All 352

the outgoing links from partition ID 0 are marked with darker 353

arrows and those from partition ID 1 are marked with lighter 354

arrows. The notion of partition has two important properties. 355

a) A logical partition refers to an independent resource unit 356

(i.e., subset of relays) of Shufflecast topology, which is evi- 357

dent from the connectivity structure. In general, a partition 358

containing pk−1 ToRs is sufficient to forward the multicast 359

traffic to all the pk ToRs of next column. b) The number of 360

partitions in a given column dictates the degree of parallelism 361

for Shufflecast topology. Because, the relays from different 362

partitions of a given column can forward multicast traffic in 363

parallel without any interference. In Sec. III-A3, we discuss 364

the ToR-to-ToR-level routing scheme, which cleverly exploits 365

such parallelism of Shufflecast topology to support multiple 366

one-to-all multicasts simultaneously at line-rate. 367

2) Topological Properties: The unique topology of Shuf- 368

flecast has some highly desirable properties such as high 369

scalability and bounded latency. 370

Scalability and port counts: Shufflecast topology can scale 371

to an arbitrary network size (N = kpk) with small splitter 372

fan-out (p), by increasing the parameter k (independent of 373

power-splitting limitations). The number of columns scales 374

linearly (k) and the number of rows scales exponentially (pk). 375

At first glance, each ToR needs 1 transmit and p receive 376

ports. However, one transmit and one receive port can be 377

simultaneously handled by one transceiver in practice, which 378

leads to p transceiver ports consumed per ToR. For example, 379

a 2, 2-Shufflecast can accommodate 8 ToRs. Similarly, a 380

2, 3-Shufflecast (Fig. 9 in A-A1) scales to 24 ToRs. Both these 381

instances only require 2 transceiver ports per ToR. 382

Hop counts: Leveraging the topological properties of Shuf- 383

flecast, routing can be performed with low worst-case hop 384

count (∝ logp N ≈ k). 385

Lemma 1: For a p, k-Shufflecast all the ToRs are reachable 386

from a given source by at most 2k − 1 hops. 387

Intuitively, we generate the multicast tree along the 388

splitter-based connectivity from any given source ToR, and 389

all other ToRs can be reached from the source column within 390

two complete traversals. For example, in 2, 2-Shufflecast of 391

figure 2, multicast packets from ToR 0 can reach ToR 4 and 392

5 in 1st hop. At 2nd hop, ToR 4 relays these packets to ToR 1, 393

and ToR 5 relays to ToRs 2 and 3. During the second traversal, 394



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 5

Algorithm 1 Next-Hop Relay Computation Algorithm

1: src = cs, rsk−1 . . . r
s
1r

s
0, dest = cd, rdk−1 . . . r

d
1r

d
0

2: cur = c′, r′k−1 . . . r
′
1r

′
0

3: if cd == c′ then
4: X = k
5: else
6: X =

(
k + cd − c′

)
mod k

7: end if
8: if (X == k) OR (rdk−1 . . . r

d
X == r′k−X−1 . . . r

′
0) then

9: next = (c′ + 1) mod k, r′k−2 . . . r
′
0r

d
X−1

10: else
11: X ′ = (k + c′ − cs) mod k
12: next = (c′ + 1) mod k, r′k−2 . . . r

′
0r

s
k−X′−1

13: end if

either of ToR 1 or 3 can relay the packets to ToRs 6 and 7 in395

3rd hop. Therefore, the maximum hop count is 3. A proof is396

given in Appendix A-A3.397

3) Multicast-Aware Routing: To multicast packets from398

a source, every ToR along the path needs to know399

whether packets should be relayed via its optical splitter.400

Our multicast-aware routing provides static ToR-to-ToR-level401

relaying rules that depend only on the source ToR ID, without402

needing runtime switch reconfigurations. Separately, ToR-to-403

server forwarding is dynamically configured based on the404

multicast group as needed by the applications.405

The objective of the multicast-aware routing is to maximize406

the utilization of disjoint one-to-all multicast trees exploiting407

the degree of parallelism of the Shufflecast topology. Algo-408

rithm 1 illustrates next-hop relay computation. It takes the409

source (src), destination (dest) and current (cur: initialized410

to src) ToR IDs as input (lines 1 and 2), and computes the411

next-hop (next) ToR ID which acts as the relay for routing412

packets from that source towards the given destination. At a413

high level, the algorithm determines whether the destination414

ToR is reachable from the source ToR during the first traversal415

or second traversal cycle. Accordingly, it finds the next-hop416

(next) ToR ID by shifting the current ToR’s row-ID to the417

left by one digit; and putting pre-calculated row-ID digit from418

either destination or source ToR ID as a least significant digit419

(lines 9 and 12). As shown in Fig. 3, we calculate all routes420

and relay sets for multicast sources ToR-0 (0, 00) and ToR-3421

(0, 11) of 2, 2-Shufflecast using Algorithm 1.422

The routing algorithm enables any source ToR to perform423

one-to-all multicast while choosing the relays from each424

column in a compact manner. More specifically, a given source425

ToR uses the subset of relay ToRs from each column which426

belong to the partition IDs defined by the source row-ID427

digits, termed as partition criteria. Such selective inclusion428

of relays ensures the maximal utilization of the Shufflecast429

topology, which we generalize in the next section. As shown430

in Fig. 3, ToR 0(0, 00) and ToR 3(0, 11) in 2, 2-Shufflecast431

relay through partition IDs 0 (ToRs 0, 1 and 4, 5) and partition432

IDs 1 (ToRs 2, 3 and 6, 7) of both the columns respec-433

tively, maintaining the partition criteria. As a consequence,434

ToRs 0 and 3 have disjoint relay sets and they can perform435

one-to-all multicasts simultaneously at line-rate.436

Fig. 3. Relay sets for ToR-0 and ToR-3 in 2, 2-Shufflecast.

4) Routing Properties: Shufflecast has the ability to exploit 437

all degrees of network parallelism, with careful choices of 438

relay ToRs, enabling high multicast performance. Next, we for- 439

mally state the properties of multicast-aware routing with high 440

level insights. All the proofs are in Appendix A-A3. 441

Lemma 2: Using the multicast-aware routing for a p, k- 442

Shufflecast, any given source ToR can perform one-to-all 443

multicast following the partition criteria i.e., using the relays 444

from each column belonging to the partition IDs predefined 445

by its k row-ID digits. 446

The intuition is from the construction of next-hop relay 447

computation algorithm. For computing the next-hop relay ToR 448

ID, the algorithm 1 carefully uses pre-calculated source or 449

destination ToR row-ID digits. Eventually, those source ToR 450

row-ID digits govern the partition for choosing the relays. 451

Lemma 3: Using the multicast-aware routing for a 452

p, k-Shufflecast, p ToRs in one column can perform one-to- 453

all multicasts simultaneously at line-rate, 2p ToRs at half of 454

line-rate, 3p ToRs at one-third of line-rate, and all pk ToRs in 455

one column at pk−1 fraction of line-rate. 456

The result is directly obtainable from Lemma 2 and the 457

definition of partition (Sec. III-A1). Multicast-aware routing 458

effectively exploits all degrees of network parallelism. 459

Lemma 4: Multicast-aware routing is optimal in terms of 460

minimizing the relay usage and maximizing the number of one- 461

to-all simultaneous multicast at line-rate. 462

The first part of this lemma is directly obtainable from 463

Lemma 2 and properties of partition discussed in Sec. III-A1. 464

Any given source ToR uses one partition of relays from 465

each column by multicast-aware routing, which indeed is the 466

minimum number of ToRs required to reach all the ToRs in 467

the next column. Further, the second part of this lemma is 468

obtainable by extending this intuition along with Lemma 3. 469

B. Control Plane 470

We assume that ToR switches support direct control of for- 471

warding rules (e.g., OpenFlow or P4 switches). These switches 472

identify and forward the multicast packets sent by applications 473

(IP datagrams with Class D destination addresses). 474

1) Static ToR-to-ToR Relaying: For a given instance of 475

Shufflecast, we need to apply the relay computation algorithm 476

for each multicast source ToR once to obtain the list of relays 477

on the routes towards all destination ToRs. Then we insert one 478

forwarding rule on these relay switches in regard to that source 479

ToR. With these relay forwarding rules, data can flow from a 480

source to all other ToRs through the designated relays. As the 481

forwarding rules can be precomputed, they can be pre-installed 482

on the ToR switches, eliminating the need for computing 483

routes at runtime. Moreover, the number of such fixed rules 484



IEEE Proo
f

6 IEEE/ACM TRANSACTIONS ON NETWORKING

are not significant compared to the memory capacity of485

modern switches. As discussed in Sec. III-A1, each ToR in a486

p, k-Shufflecast needs to install kpk−1 fixed forwarding rules487

as it relays multicast packets for kpk−1 source ToRs. For488

example, a 4, 4-Shufflecast covering 1024 ToRs needs only489

256 static forwarding rules to install on each ToR where490

the modern OpenFlow-based SDN switches can accommodate491

more than 10k rules. Hence, the scheme is highly scalable.492

2) Application-Directed ToR-to-Server Forwarding: We493

enable dynamic ToR-to-server forwarding rule update based494

on application defined multicast server group membership. All495

the ToRs are managed by a logically centralized controller. The496

application interacts with the switches via the controller. When497

the application starts, one of its processes proactively sends498

the multicast group membership configuration request to the499

controller and waits for its response. Then the controller iden-500

tifies the active servers (of that multicast group) under each501

ToR switch, converts them into corresponding multicast rules502

(capable of forwarding incoming packets to multiple ports503

simultaneously) and install those rules on the switches. Finally504

the application proceeds after getting the acknowledgement505

from the controller. By doing so, multicast data is confined506

to only the servers who belong to the respective multicast507

group defined by the application, which avoids unnecessary508

contention.509

C. Failure Handling510

Fault tolerance is another important consideration for archi-511

tecture design. Next, we discuss data and control plane failure512

handling of Shufflecast in detail.513

1) Data Plane Failure Handling: The primary sources of514

the Shufflecast data plane failure are bad optical transceiver,515

bent fiber, damaged splitter and dirty connector [67]. We con-516

sider any such component failure as a complete failure of the517

associated relay. We discuss the performance impact of single518

relay failure and our re-routing algorithm to get around such a519

failure, as correlated multiple relay failures would be relatively520

rare.521

Reachability impact of single relay failure: First we522

model the reachability impact of single relay failure on523

p, k-Shufflecast. Fig. 4 illustrates different reachability scenar-524

ios for an example case and provides the intuition to formulate525

the general case. Consider when ToR relay number 8 fails in526

a 2, 3-Shufflecast (Fig. 9 in A-A1). As shown in Fig. 4, there527

are six configurations ((a)-(f)) showing unique locations of the528

failed relay 8 on one-to-all multicast trees of different source529

ToRs. All these multicast trees have similar structure; a major530

spine consisting of three (i.e., k) ToRs with source ToR as531

the root and one perfect binary (i.e., p = 2) subtree (defined532

as islands) of height three (i.e., k), hanging from each ToR533

in the spine. As we vary the source ToR, the location of the534

failed relay on the multicast tree varies (24 different locations535

for 24 possible sources) and correspondingly that leads to536

one of these six configurations along with certain number of537

unreachable ToRs.538

Configuration (a) shows the case where the failed relay 8 is539

a leaf in island 1, i.e., ToR 8 does not relay the multicast packet540

for that source and there are 12 such leaf locations across three541

Fig. 4. Different reachability scenarios when relay 8 fails in a
2, 3-Shufflecast. configurations (a)-(f) illustrates the unique locations of the
failed relay (i.e. ToR 8) on one-to-all multicast trees considering different
source ToRs.

islands. Hence, there are 12 source ToRs for which there will 542

be no impact on reachability if relay 8 fails. In configuration 543

(b), the failed relay 8 is located at one-level above the leaf in 544

island 1, i.e., ToR 8 relays the multicast packet to two (i.e., 545

p) other non-relay ToRs (leafs). As there are 6 such possible 546

locations across the three islands, there exists 6 source ToRs 547

which can’t send multicast data to 2 leaf ToRs (marked with 548

dashed contour) if the relay 8 fails. Similarly in configuration 549

(c), the failed relay 8 is the root of island 1. Hence the number 550

of unreachable ToRs is 6 (i.e., p + p2) and 3 source ToRs will 551

have such impact, as there are 3 such equivalent locations 552

across the islands. 553

Next, in configurations (d)-(f), the failed relay 8 is located 554

on the major spine of the multicast tree. As these locations 555

are unique, there is a unique source associated with each of 556

these cases. Specifically in configuration (d), the source ToR 557

is 16 and the failed relay 8 is at the lowest level of the spine. 558

Hence, ToR 16 can’t send multicast data to all 7 (i.e., pk − 1) 559

ToRs in island 3. Similarly in configuration (e), all the ToRs 560

in island 2 and 3 along with the lowest relay of the spine 561

(i.e., total 2pk − 1 = 15) are unreachable from the source 562

ToR 0. Finally, configuration (f) shows the trivial case where 563

failed relay 8 is the source i.e., root of the multicast tree. 564

Hence, all kpk − 1 = 23 other ToRs are unreachable from 565

ToR 8. Extending this idea, we compute the distribution of 566

reachability impact of single relay failure on p, k-Shufflecast, 567

which we further evaluate in Sec. VI-C. 568

Single relay failure recovery: For p, k-Shufflecast, a given 569

ToR in any column is directly connected from p ToR relays 570

(one from each partition) of the previous column. For example, 571

in 2, 3-Shufflecast (Fig. 9 in A-A1), ToR relays 0 (0, 000) and 572

4 (0, 100) are situated at 0th location of partition IDs 0 and 573

1, respectively, and both are connected to ToR 8 (1, 000). 574

We define these ToR relays as “mirrored relays,” where their 575

row-ID digits are the same except the most significant digit 576

which dictates the partition. Note that there exist more than 577

one path to reach a set of ToRs from a given source, allowing 578

Shufflecast to reroute packets upon relay failure. Algorithm 2 579

shows how to handle a single relay failure for p, k-Shufflecast. 580

Depending on the failed relay ToR ID, we need to deactivate 581



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 7

Algorithm 2 Single Relay Failure Recovery Algorithm
1: failedrelay = c, rk−1rk−2 . . . r1r0
2: y = (rk−1 + 1) mod p
3: mirrorfailed = c, yrk−2 . . . r1r0
4: Deactivate all relaying rules on failedrelay
5: Activate all failedrelay rules on mirrorfailed
6: precedentrelay = (c− 1) mod k, r0y . . . r2r1
7: y′ = (r0 + 1) mod p
8: mirrorprecedent = (c− 1) mod k, y′y . . . r2r1
9: for i ← 1 to (k − 1) do
10: ni = (c− i) mod k, ri−1 . . . r0rk−1 . . . ri ◃ Circular

right shift of failedrelay row ID by i positions
11: Deactivate relaying for ni on precedentrelay
12: Activate relaying for ni on mirrorprecedent
13: end for

some relaying rules on two specific ToR relays (including582

the failed relay) and activate those on two other ToR relays,583

regardless of network size.584

We explain the algorithm using the example below. Consider585

a 2, 3-Shufflecast, where relay 8 (1, 000) fails (failedrelay)586

and source 0 (0, 000) needs to perform one-to-all multicast.587

Based on Algorithm 2, the four specific ToRs are marked588

in Fig. 5, for which the relay rules will be affected. All589

relaying rules on failed relay 8 are deactivated and its mir-590

rored relay 12 (1, 100) (mirrorfailed) activates those rules591

on its behalf (lines 1-5). Additionally, the precedent relay592

2 (0, 010) (precedentrelay) deactivates the relaying rules of593

a subset of source ToRs and it’s mirrored relay 6 (0, 110)594

(mirrorprecedent) activates those rules (lines 6-12).595

Note that, only activating the relay rules on mirrorfailed596

on behalf of failedrelay is not enough. Because, after the597

first traversal cycle through all the columns, packets from598

ToR 0 can only reach to the ToRs of partition ID 1 (ToRs599

4, 5, 6 and 7) at its own column; the ToRs from its own600

partition ID 0 (i.e., ToRs 1, 2 and 3) have not received them601

yet. Unfortunately, none of those relays from partition ID 1 can602

forward the packets as per the routing rule. Similar situation603

happens for source 16 (2, 000) too. Specifically, the relay 12604

(mirrorfailed) cannot get the packets from its designated605

precedent relay 2 (precedentrelay). Hence, relaying of source606

0 and 16 (n1 and n2 respectively, at line 10 inside the loop)607

are deactivated on relay 2, while relay 6 (mirrorprecedent)608

activates those rules on its behalf. Now, ToR 0 can successfully609

perform one-to-all multicast, where the outgoing links from610

newly activated relays are marked with darker arrows and611

all other required links are marked with lighter arrows. Thus,612

Shufflecast can recover 100% reachability from a relay failure613

(except for the servers under the ToR of the failed relay can no614

longer be multicast sources) by re-routing packets. Moreover,615

such failure recovery results in graceful performance degrada-616

tion, evaluated in Sec. VI-C.617

Note that our single relay failure recovery algorithm is618

general enough to handle many concurrent failures. Each619

relay failure is treated independently and the algorithm620

turns on and off appropriate relays accordingly. In gen-621

eral, a p, k-Shufflecast can always handle any concurrent622

Fig. 5. Failure recovery in a 2, 3-Shufflecast when ToR 0 needs to make a
one-to-all multicast while ToR 8 fails.

failure involving less than p ToRs. However, the reachabil- 623

ity may not be restored for some failures involving p or 624

more relays if all the p mirrored relays in one column fail. 625

The probability of such a failure event involving p relays is 626

k · pk−1

(k·pk
p )

, which decreases rapidly with the size of the network. 627

2) Control Plane Failure Handling: Controller failure does 628

not affect ToR-to-ToR forwarding in Shufflecast, as those 629

relaying rules are static and pre-installed offline. However, 630

it affects the server-level multicast group membership config- 631

uration, as Shufflecast still needs dynamic application-directed 632

ToR-to-server forwarding update at runtime. To handle such 633

controller failure, the logically centralized controller can be 634

realized as a small cluster of controllers, where one can act 635

as primary controller and others can be as backup controllers. 636

When the primary controller fails, a backup controller can be 637

elected as the leader, which can be used by the application for 638

runtime switch configuration. 639

IV. DISCUSSIONS 640

In this section, we discuss several practical advantages in 641

the Shufflecast architecture. 642

A. Leveraging Idle Edge Bandwidth 643

Shufflecast can potentially leverage idle edge bandwidth, as 644

often there exists unused switch ports at ToRs due to design 645

constraints on space, power, and network oversubscription. 646

This observation is first made by recent works [20], [23], 647

[45] and confirmed by large network operators we consulted. 648

Additionally, we conduct an analysis to quantify the likelihood 649

of unused ToR ports (details in Appendix A-B). We consider 650

a wide range of network configurations. The results show that 651

unused ports, as well as a large amount of unused bandwidth, 652

often exist. The existence of 2+ unused ports and 100 Gbps 653

of unused bandwidth can be seen in nearly 79% and 73% 654

of the cases, respectively. Under 1:1 oversubscription (o/s), 655

54% of cases have at least 10 unused ports and 500 Gbps 656

of unused bandwidth. We also observe that the likelihood of 657

having unused ports do not correlate with o/s ratios, rack 658

sizes, and server port speeds etc., indicating that unused 659

ports can exist throughout the continuum of configuration 660

choices. 661



IEEE Proo
f

8 IEEE/ACM TRANSACTIONS ON NETWORKING

B. Simplifying Network Management662

Shufflecast incurs very little need for runtime switch con-663

figurations as it uses static optimal ToR-level routing rules.664

Except for the forwarding behaviors to end hosts at the ToRs,665

all ToR-to-ToR forwarding rules are precomputed and pre-666

installed on switches. These preconfigurable and static switch667

actions make Shufflecast much less prone to configuration668

errors, which is the primary source of network management669

complexities. In addition, the physical wiring of Shufflecast670

is easy to deploy. For a p, k-Shufflecast topology, the optical671

transceivers and splitters are co-located at the ToRs, meaning672

that we only need to install p incoming and outgoing optical673

fiber cables. In terms of wiring, the mapping from the logical674

ToRs to physical ToR locations is based on the logical column-675

wise placement, bundling fibers across partitions. Also, most676

physical wiring is between the adjacent physical rows of racks,677

and the length of fibers would not incur significant attenuation678

(0.36 dB/km at 1310 nm [6]).679

C. End-to-End Reliability680

Shufflecast is dedicated to multicast traffic and leverages681

optical splitters to enable physical-layer multicast. Below we682

concretely argue how Shufflecast can ensure reliability from683

different aspects.684

a) Physical layer reliability: Typically, the chances of685

packet loss in the optical devices are extremely rare. The686

optical transceivers have bit-error rate less than 10−12. Even687

though passive optical splitters have insertion loss, the optical688

link can be made completely lossless when choosing compati-689

ble optical transceivers with a feasible power budget (Table I).690

Moreover, as shown in Sec. III-C, Shufflecast can gracefully691

handle and reroute traffic in presence of single relay failure.692

Hence, Shufflecast has inherent physical layer reliability.693

b) Higher layer reliability: In presence of multiple appli-694

cations, the occasional packet losses in Shufflecast links can be695

handled by transport layer solutions such as NORM [4], an off-696

the-shelf reliable multicast protocol enabled with congestion697

control [58], [59]. As shown in Sec. VI-B, Shufflecast can698

handle concurrent multicast applications using NORM with699

high reliability. Additionally, multiple applications can also700

coordinate based on the explicit knowledge of the topology,701

static relaying pattern and design capacity of Shufflecast702

network. For example, two applications can inject multicast703

traffic simultaneously at line-rate if they use disjoint partitions704

of Shufflecast; otherwise, they can take turn at line-rate based705

on their arrival time (FCFS) if they have common relays, thus706

maximizing the network utilization and minimizing packet707

losses between ToR-to-ToR links.708

V. IMPLEMENTATION709

We implement a prototype of 2, 2-Shufflecast in our testbed.710

Our setup uses 3 OpenFlow switches, 8 optical splitters (1:2),711

and 16 servers. We divide logically 2 OpenFlow switches to712

emulate 4 ToR switches each, and 2 servers are connected713

to each logical ToR. We wire the Shufflecast network using714

optical splitters on these 8 logical ToR switches. The 3rd715

OpenFlow switch is used for comparative evaluation, it con- 716

nects to the logical ToRs, creating a 2-layer full-bisection 717

bandwidth network across ToR switches and emulating a 718

non-blocking network core. Each server has 6 3.5GHz CPU 719

cores with 12 hyperthreads and 128 GB RAM. All connections 720

are 10 Gbps Ethernet. To minimize the number of ports 721

used, while wiring the 2, 2-Shufflecast, at each logical ToR 722

switch we connect the outgoing fiber (to its own splitter) 723

and one of the 2 incoming fibers (from 2 other splitters) to 724

a single transceiver port. Thus, each logical ToR consumes 725

only 2 transceiver ports (optimal for 2, 2-Shufflecast). The 726

forwarding rules are installed on the switches using the Ryu 727

OpenFlow controller [5], running on one of the servers. 728

The controller program consists of two parts. The first 729

part runs Algorithm 1 (Next-hop relay computation algorithm) 730

and pre-installs the static ToR-to-ToR forwarding rules for 731

2, 2-Shufflecast (<100 lines of python code). The second 732

part translates application-based multicast group membership 733

information into the ToR-to-server multicast rules and installs 734

them on the switches at runtime (<30 lines of python code). 735

We make simple modifications to applications to interact with 736

the controller program (≈10 lines of C++ code). 737

VI. EVALUATION 738

In this section, we present comprehensive testbed experi- 739

mental results to demonstrate that Shufflecast can achieve a) 740

line-rate multicast throughput with low power consumption 741

and capital cost, b) high end-to-end reliability while supporting 742

concurrent multicast groups, c) high robustness against single 743

relay failure and graceful performance degradation after failure 744

recovery and d) improved application performance for both 745

high-bandwidth and low-latency applications. 746

A. Shufflecast Achieves Line-Rate Multicast Performance 747

With Low Power Consumption and Capital Cost 748

We perform experiments and analysis to evaluate the multi- 749

cast performance of Shufflecast. Also, our analysis shows that 750

Shufflecast is power and cost efficient across network scale. 751

a) Multicast performance of Shufflecast vs. state-of-the- 752

art multicast mechanisms: For comparing throughput, our 753

baseline mechanisms are state-of-the-art multicast solutions 754

i.e., 1) peer-to-peer mechanisms such as MPI_Bcast [8] and 755

Spark-Cornet [25] and 2) IP-multicast. For both the baselines, 756

we use full-bisection bandwidth network to measure their ideal 757

maximal performance. 758

We perform a 1:15 multicast with varying data size (from 759

200 MB to 1.4 GB) and measure the multicast reading time 760

(i.e. the duration between receiving program issues reading 761

request and finishes reading it). Fig. 6(a) shows the multicast 762

throughput (averaged over 10 runs) defined as the ratio of 763

multicast data size to multicast reading time. We observe 764

that Shufflecast achieves line-rate multicast throughput, same 765

as the upper-bound performance of IP-multicast (over full- 766

bisection bandwidth network), irrespective of the multicast 767

group size. We also observe that, even without any competing 768

traffic on full-bisection bandwidth network, both MPI_Bcast 769

and Spark-Cornet achieve the multicast throughput only upto 770



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 9

Fig. 6. (a) Throughput (averaged over 10 runs) for different multicast mechanisms (Shufflecast, IP-multicast and peer-to-peer overlay) across different data
size for a 1:15 multicast flow. Shufflecast achieves the line-rate multicast performance, (b) Improvement in power consumption (ratio of baseline power
consumption to that of Shufflecast) per one-to-all multicast tree of Shufflecast compared to peer-to-peer overlay (on optical circuit-switched network core) and
IP-multicast (on minimal layer packet-switched network core) with scale. The improvement factor is the same across different data rates (10 Gbps, 25 Gbps,
100 Gbps), as it only depends on the relative count of switch ports (same as transceivers), (c) Improvement in capital cost per (ratio of baseline capital cost to
that of Shufflecast) one-to-all multicast tree of Shufflecast compared to IP-multicast (on minimal layer packet-switched network core) with scale at different
data rates (10 Gbps, 25 Gbps, 100 Gbps), (d) Practical and theoretical average multicast throughput per group with varying number of concurrent multicast
groups on Shufflecast, (e) Throughput (averaged over 10 runs) of multicast flows launched in a staggered way on Shufflecast.

35% and 20% of the line-rate throughput across data size,771

which is far from optimal.772

In Spark-Cornet, a node first locates a block of data it needs773

from another node then performs a block transfer. We observe774

that although each individual block transfer can reach near775

line-rate throughput, far more time is taken up by control776

communications to locate and wait for data blocks, which777

becomes the bottleneck for overall throughput. MPI_Bcast778

adopts different approaches based on multicast data size779

[8], [13]. For comparatively smaller data size, MPI_Bcast780

uses binomial tree approach. In the first round, the multicast781

sender process sends data to one receiver. In the second round,782

these two processes send the same data to one additional783

receiver each and so on. For the medium and bigger data784

sizes, MPI_Bcast adopts scatter + altogether approach. The785

altogether is realized by recursive doubling or ring algorithm,786

where the data is pipelined from one node to the next. In this787

case, the software handling of data from input to output and788

the need to ensure reliability across the pipeline become the789

bottleneck for overall throughput.790

We consider the case of a 64 byte packet to compare791

Shufflecast and IP-multicast architectures in terms of average792

latency for a one-to-all multicast. Commercial 100 Gbps793

packet-switches have forwarding delay of at most 1 microsec-794

ond. The propagation delay for a 100m fiber link is795

0.5 microsecond. The transmission delay for a 64 byte packet796

at 100 Gbps is 0.005 microsecond. Thus, the approximate797

per-hop latency is at most 1.505 microsecond. In our analysis,798

we choose the number of ToRs in such a way that it can be799

realized with some instance of p, k-Shufflecast having p <= 8,800

e.g., 50 ≡ 5, 2-Shufflecast, 128 ≡ 8, 2-Shufflecast and so on801

upto 1024 ≡ 4, 4-Shufflecast. Note that, if the number can be802

realized by more than one Shufflecast instances, we choose803

the specific instance with the smallest k value to minimize804

the hop-count. For IP-multicast, we consider the minimal-805

layer packet-switched network core with identical port-count806

packet switches as shown in Fig. 1. We observe that a p, k-807

Shufflecast with k <= 3 has smaller average latency than808

that of a minimal-layer IP-multicast network. However, for the809

scenarios with k = 4, Shufflecast has slightly higher average810

latency (around one per-hop latency) than IP-multicast.811

b) Power consumption analysis: Shufflecast is power 812

efficient compared to both a) peer-to-peer overlay multicast 813

and b) IP-multicast. Ethernet switch ports and the optical 814

transceivers consume power. Passive splitters and fiber optic 815

cables do not consume any power. We count the number 816

of active switch ports and transceivers (similar methodology 817

as [11]) involved in one cluster-wide multicast tree for all three 818

network architectures. 819

For peer-to-peer overlay multicast on optical circuit- 820

switched core, we assume the lowest possible power consump- 821

tion, where the data propagates through a chain across all 822

the ToR switches at line-rate. Thus it consumes two switch 823

ports (with two transceivers) from each ToR (both receive 824

and transmit). A minimal-layer IP-multicast network (Fig. 1) 825

would consume excess switch ports (with same number of 826

excess transceivers) in addition to one port (with one trans- 827

ceiver) per ToR. Although for IP-multicast, the data can be 828

instantaneously forwarded from one port to multiple ports 829

in a switch, each port still needs to physically transmit the 830

data to other switches. Thus, more active transmissions result 831

in high power consumption. Finally, Shufflecast requires two 832

active ports (with two transceivers) on each relay ToR (both 833

receive and transmit) and one port (with one transceiver) 834

on each non-relay ToR (only receive) to realize a one-to-all 835

multicast tree. Shufflecast saves the number of active port 836

(and transceiver) usage significantly, because it needs only 837

one transmit port (with one transceiver) on any relay ToR to 838

send the data into optical splitter. Then the splitter performs 839

physical layer multicast without consuming power. For a 840

simple example, in a cluster with 8 ToRs (4-port switches), 841

the number of active ports to support a one-to-all multicast 842

(one server per ToR) will be 16, 22 and 12 for peer-to-peer, 843

IP-multicast and Shufflecast respectively. The corresponding 844

transceiver count will also be the same. 845

To evaluate power consumption, we vary the number of 846

ToRs using the methodology as given in average latency 847

analysis. The typical power consumption values [6] of different 848

Ethernet switch ports and optical transceivers are given in 849

Table I. For Shufflecast we consider the optical transceiver 850

having sufficient power budget to compensate the insertion loss 851

of different optical splitters. As shown in Fig. 6(b), Shufflecast 852



IEEE Proo
f

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

MOST RECENT POWER CONSUMPTION AND COST VALUES
OF DIFFERENT COMPONENTS

is 1.5−1.77× more power efficient than peer-to-peer overlay.853

Note that for peer-to-peer overlay, we consider the active854

power consumption only from the network. But in reality,855

the power consumption will be even more because it also856

involves the host peers (servers) to receive and transmit the857

multicast data repeatedly. Also, Shufflecast is 1.55 − 1.85×858

more power efficient than IP-multicast over the minimal-layer859

packet-switched network core. The improvement factors (ratio860

of baseline power consumption to that of Shufflecast) are the861

same across different data rates, as it only depends on the862

relative count of switch ports (same as transceivers).863

c) Capital cost analysis: The deployment of Shufflecast864

incurs very little extra hardware cost since the optical devices865

including passive optical splitters, optical transceivers, and866

fiber-optic cables are all inexpensive. For a p, k-Shufflecast,867

each ToR requires one optical splitter, p optical transceivers,868

p outgoing fiber cables and p switch ports. Table I summa-869

rizes the most recent costs [6] of different components. The870

approximate cost of a duplex single-mode fiber per 100 meter871

is 37.37 USD. Given a 4, 4-Shufflecast (spanning 1024 ToRs)872

with 100 meter fiber optic cable as an example, the capital873

cost per ToR are approximately 487 − 1867 USD across874

different data rates, which is fairly inexpensive for large875

clusters. Fig. 6(c) shows the improvement in capital cost (ratio876

of baseline capital cost to that of Shufflecast) per one-to-877

all multicast tree of Shufflecast compared to IP-multicast (on878

minimal layer packet-switched network core) with scale at879

different data rates (10 Gbps, 25 Gbps, 100 Gbps). We con-880

sider the necessary components involved in one cluster-wide881

multicast tree for both Shufflecast (switch ports, transceivers,882

splitters and fiber-optic cables) and IP-multicast (switch ports,883

transceivers and fiber-optic cables) architectures. Based on our884

evaluation, Shufflecast is 1.57 − 1.89× more cost efficient885

compared to IP-multicast over minimal-layer packet-switched886

core, across different network scale and data rates. We observe887

that the improvement factor decreases slightly with higher888

data rate. The reason is that switch port and transceiver costs889

are data-rate dependent and start dominating the fiber cost890

(data-rate independent) at higher data rate. As a result, the891

higher fiber cost for IP-multicast matters less at higher data892

rates. If the costs of higher speed switch port and transceiver893

continue to rise while fiber/splitter cost remain constant, the894

improvement factor will converge to the relative count of895

switch ports (same as transceivers) i.e., 1.55− 1.85×.896

B. Shufflecast Achieves High Reliability While Supporting897

Concurrent Multicast Groups With Negligible Overhead898

We measure the responsiveness of Shufflecast control plane899

and experimentally demonstrate that Shufflecast achieves high900

reliability in presence of concurrent multicast groups using 901

off-the-shelf transport layer solutions [4]. 902

a) Shufflecast has highly responsive control plane: 903

Although Shufflecast has pre-installed static ToR-to-ToR relay- 904

ing rules, application-directed dynamic ToR-to-server multi- 905

cast forwarding rule update is required before the multicast 906

starts (Sec. III-B). Based on our measurement, such a multicast 907

rule update on a Quanta T3048-LY2R OpenFlow switch only 908

takes 0.6 msec. Moreover, Shufflecast controller sends parallel 909

requests to the ToRs simultaneously. For big data applications, 910

such latency is negligible compared to their multicast dura- 911

tions, which can easily reach tens of seconds (Sec. VI-D). 912

b) Shufflecast achieves high reliability while support- 913

ing concurrent multicast groups: We perform multicast of 914

2 GB data size over 2, 2-Shufflecast with a group size of 915

16 (1:15 multicast) using NORM [4], a well-known off-the- 916

shelf reliable multicast solution. NORM [4] is a NACK-based 917

reliable multicast protocol enabled with forward error cor- 918

rection (FEC) and the TCP-Friendly Multicast Congestion 919

Control (TFMCC) scheme [58], [59]. We vary the number 920

of concurrent multicast groups from 1 to 16 by running 921

parallel norm sessions on each destination server and invoking 922

the corresponding number of servers as multicast senders. 923

We observe that all the multicast flows get close to fair-share 924

throughput at steady state and the packet loss is below 0.28%. 925

Fig. 6(d) shows that the observed average multicast throughput 926

per group at steady state is almost same as the theoretical 927

fair-share. Therefore, the aggregate network throughput in 928

presence of such concurrent multicast groups is always close 929

to line-rate. Next, we launch 4 multicast flows (group size 930

is 16 and data size is 4 GB) with a progressive staggering 931

of 1.5 sec. Fig. 6(e) shows the individual flow throughput 932

and aggregate network utilization (averaged over 10 runs) 933

variation with time. We observe that multicast flows achieve 934

their fair-share quickly and the overall network utilization is 935

close to line-rate. Note that even when multiple sources send 936

data towards a common destination ToR, the performance will 937

still be predictable due to the following reasons. First, the 938

upper-bound of per-flow fair-share can be pre-computed based 939

on Lemma 3. Second, due to the inherent load balancing of 940

our multicast-aware routing, the relay usage will be evenly 941

distributed and there will be a low chance of a hotspot. When 942

feasible for an application, topology-aware placement of the 943

multicast sources could further improve bandwidth utilization 944

of the network. 945

C. Shufflecast Achieves High Robustness Against Single 946

Relay Failure and Graceful Performance Degradation After 947

Failure Recovery 948

We evaluate the reachability impact on Shufflecast under 949

single relay failure. We also evaluate the impact of latency 950

and throughput degradation of Shufflecast after enabling the 951

single relay failure recovery. 952

a) Shufflecast is robust enough against single-relay 953

failure: Based on our reachability analysis (Sec. III-C), 954

we compute the distribution of reachability impact after a 955

single relay failure on p, k-Shufflecast. Fig. 7(a) shows the 956



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 11

Fig. 7. (a) CDF of fraction of loss in reachability of Shufflecast under single relay failure. Without failure recovery, there is no reachability impact for
majority of sources performing one-to-all multicast. With failure recovery, the reachability is completely restored, (b) CDF of excess latency (in terms of max
hop count) after single relay failure recovery in Shufflecast. After failure recovery, latency is unchanged for majority of the sources performing one-to-all
multicast, (c) Average throughput degrades gracefully after single relay failure recovery in Shufflecast, with varying the number of active sources performing
one-to-all multicast.

distribution for different Shufflecast instances. We observe957

that, the majority of sources does not have any impact in958

reachability under a single relay failure even before enabling959

the failure recovery. Also, the size of this majority increases960

with bigger network scale. As shown in Fig. 7(a), for Shfflecast961

instances with p = 4, p = 6, and p = 8, 75%, 83%,962

and 88% of the source ToRs do not lose reachability from963

a relay failure, respectively. Moreover, we also observe that964

reachability is completely restored after enabling the single965

relay failure recovery (Algorithm 2). Hence, Shufflecast is966

robust enough against single relay failure. On the other hand,967

as the IP-multicast architecture is hierarchical, the impact of a968

single link failure would be much worse if a higher-layer link969

fails. Moreover, the reachability cannot be restored without970

physical backup switches because such a single link failure971

will partition the multicast tree.972

b) Shufflecast has graceful performance degradation973

after failure recovery: According to Lemma 1, in a healthy974

p, k-Shufflecast any source ToR can reach all other ToRs975

within two complete traversals i.e., maximum hop count is976

(2k − 1). Based on our analysis, after enabling the failure977

recovery, the maximum hop count is unchanged for the major-978

ity of sources. Also, the upper bound of maximum hop count979

now becomes (3k − 1), i.e., any source ToR can reach all980

other ToRs within three complete traversals in the worst case.981

Fig. 7(b) demonstrates the CDF of possible increase in latency982

(in terms of maximum hop count) after single relay failure983

recovery for different Shufflecast instances (p = 4, 6 and984

8). We observe that, after single relay failure recovery the985

maximum hop count remains unchanged for 90− 95% of the986

sources and the possible increase in maximum hop count is987

upper bounded by k = 3.988

In Fig. 7(c) we vary the fraction of active ToR sources989

performing one-to-all multicast and observe the multicast990

throughput degradation for different Shufflecast instances after991

enabling failure recovery. For a given fraction of active992

sources, we uniformly sample random set of ToRs and com-993

pute the relative multicast throughput degradation of those994

ToR sources between the healthy and failed network (after the995

failure recovery) averaged over the samples. The throughput996

for an individual ToR source is defined as the inverse of997

maximum fair-share for that source in presence of other active998

sources. As shown in Fig. 7(c) shows that the average multicast 999

throughput of Shufflecast degrades gracefully after failure 1000

recovery and the degradation reduces with bigger network 1001

scale. For Shufflecast instances with p = 4, 6 and 8, the 1002

throughput degradation is upper-bounded by 25%, 16.7% and 1003

12.5% respectively. Such graceful degradation also reflects 1004

on the simultaneous multicast capability of Shufflecast. For 1005

a healthy p, k-Shufflecast, p ToRs in one column, having 1006

their set of relays from disjoint partitions, can simultaneously 1007

perform a one-to-all multicast at line-rate. After the single 1008

relay failure, two partitions of at least one column are shared, 1009

so the degree of parallelism now becomes (p− 1), i.e., (p− 1) 1010

ToRs can in parallel perform one-to-all multicast at line-rate. 1011

D. Shufflecast Achieves Improved Application Performance 1012

for High-Bandwidth and Low-Latency Applications 1013

We briefly discuss three different workloads and experi- 1014

mentally demonstrate that real-world applications can leverage 1015

Shufflecast with only minor modifications. 1016

a) Spark ML: Under Spark Machine Learning applications, 1017

we focus on Latent Dirichlet Allocation (LDA), one of the 1018

popular iterative machine learning algorithms. We use the 1019

Spark LDA implementation [16] with the dataset of 20 News- 1020

groups as the input corpus [44] which performs the one-to-all 1021

multicast for the training vocabulary model (735 MB in size). 1022

We use a cluster of 8 servers to run LDA, where the application 1023

randomly chooses one server with four cores and 88 GB 1024

RAM as the master, while the other seven servers with two 1025

cores and 44 GB RAM serve as 14 slave executors. Currently, 1026

the application uses Spark’s native multicast mechanisms like 1027

Cornet [25] and HTTP (repeated unicasts to all receivers) 1028

over full-bisection bandwidth network. We use an extension 1029

to Spark that can perform multicast [53] over Shufflecast 1030

network and compare the application performance with Cornet 1031

and HTTP. We obtain the total multicast reading times and 1032

application running times averaged over 10 runs, as shown 1033

in Fig. 8(a). Shufflecast achieves 3.25× and 6.24× speedup 1034

in multicast reading time compared to Cornet and HTTP 1035

respectively, with corresponding improvements of 23.41% and 1036

43.1% in overall application runtime. 1037

b) Spark distributed database: TPC-H is a widely used 1038

database benchmark of 22 business-oriented queries with high 1039



IEEE Proo
f

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Application performance improvements of Shufflecast compared to native multicast mechanisms over full-bisection bandwidth network. (a) For LDA,
the speedup in multicast reading time are 3.25× and 6.24× compared to Cornet and HTTP, respectively. The corresponding improvement in application
running time are 23.41% and 43.1% (b) CDF of TPC-H multicast reading time. Shufflecast improves the distribution and achieves 2.7× and 3.5× speedup
in total multicast reading time compared to Cornet and HTTP respectively, (c) The average running time of each TPC-H query (q1 to q22) over the three
multicast mechanisms. For certain queries (e.g., 1, 4, 6, 14, 15, 22), the amount of multicast data is either very small (under 200 MB) or non-existent, so there
is no visible difference between Shufflecast, Cornet, and HTTP. However, for other queries (e.g., 9, 17, 18), the multicast data is large (5 GB). Shufflecast
improves the total query running time by 13.7% compared to Cornet and 17% compared to HTTP, (d) The latency improvements (ratio of baseline latency to
that of Shufflecast) of multicast Paxos over Shufflecast compared to unicast Paxos over full-bisection bandwidth network with one sender and varying number
of acceptors. The 90th and 99th percentile latency improvements are 2.21 − 2.93× and 1.39− 2.13× respectively.

complexity and concurrent data modifications [3]. We run1040

these queries using the Spark SQL framework [24]. The1041

database tables are 16 GB in size overall, and the multicast1042

data is one of such tables with size ranging from 4 MB to1043

6.2 GB for the distributed database join, making a total of1044

48.3 GB of multicast data across queries. We compare the1045

performance of TPC-H with and without Shufflecast keeping1046

the same server configuration as Spark ML. Fig. 8(b) shows1047

the multicast reading time distribution of different multicast1048

mechanisms across all TPC-H queries (queries 1 to 22).1049

Shufflecast improves the distribution and gets speedup of1050

2.7× and 3.5× in total multicast reading time compared to1051

Cornet and HTTP respectively. Fig. 8(c) shows the application1052

running time of each TPC-H query averaged over 10 runs.1053

For certain queries (e.g., 1, 4, 6, 14, 15, 22), the amount1054

of multicast data is either very small (<200 MB) or non-1055

existent, showing no visible difference between Shufflecast,1056

Cornet, and HTTP. However, for other queries (e.g., 9, 17,1057

18), multicast data is large (5 GB). The improvement of total1058

query running time is 13.7% compared to Cornet and 17%1059

compared to HTTP.1060

c) Paxos-based consensus protocol: Paxos [36], [37] is a1061

consensus protocol that provides the foundation for building1062

distributed fault-tolerant systems. Paxos has distributed entities1063

called proposers, acceptors and learners. The execution of1064

the protocol consists of four major steps, out of which three1065

steps require one-to-many communications. As the messages1066

tend to be small, the performance of Paxos is sensitive to1067

latency. We run Paxos where the client repeatedly (100 times)1068

sends 1 Byte values to the proposer. The client sends the1069

next value as soon as the previous is successful, and repeats1070

for one hundred iterations; each iteration provides a latency1071

measurement. All acceptors are placed on different servers.1072

We run multicast-based Paxos [1] (natively leverage network-1073

level multicast) over Shufflecast network (no application mod-1074

ification required) and compare the latency with unicast-based1075

Paxos [2] (repeated-unicasts to realize multicast) running over1076

full-bisection bandwidth network, with one sender and varying1077

number of acceptors. Fig. 8(d) shows that Shufflecast improves1078

the tail latency significantly, e.g., 90th and 99th percentile 1079

latency improvements (ratio of baseline latency to that of 1080

Shufflecast) are 2.21 − 2.93× and 1.39− 2.13× respectively 1081

across different number of acceptors. 1082

VII. RELATED WORK 1083

Recent work has explored how software-defined net- 1084

works (SDN) can be leveraged to improve IP-multicast support 1085

on packet-switched network (e.g. tree construction, group 1086

forwarding state maintenance, and packet retransmissions) in 1087

the cloud data center setting, which is related to the compute 1088

cluster environment [18], [39]–[42], [50], [55]. Our Shufflecast 1089

architecture directly connects the ToR switches which signif- 1090

icantly reduces the excess resource usage. Also, shufflecast 1091

eliminates the need for run-time ToR-to-ToR-level multicast 1092

tree construction, group state exists only at the network edge. 1093

There have been proposals [48], [49], [56], [57], [64] that use 1094

a MEMS-based OCS as a connectivity substrate to construct 1095

optical multicast trees via optical splitters. However, they are 1096

not scalable, they cannot achieve predictable performance, 1097

and they incur significant cost. Their scalability is limited 1098

by the centralized OCS, which has only a few hundred 1099

ports [17], [31], [46], and these ports need to interconnect 1100

all ToRs and all in/out ports of optical splitters. Scalability 1101

is further limited by the need for optical power amplification, 1102

which is difficult and expensive when the tree gets large. The 1103

performance predictability of these proposals is hurt by long 1104

circuit switch configuration delays that are exacerbated by the 1105

need to concatenate multiple optical circuits through split- 1106

ters to form the tree. Moreover, OCS incurs significant cost 1107

which restricts such proposals from large scale deployment. 1108

In contrast, Shufflecast provides simple, scalable and data-rate 1109

agnostic multicast in a more power efficient and economical 1110

way. [61] proposes a topology that eliminates the centralized 1111

OCS, but its scalability is inherently limited by splitter fan-out 1112

and the entire proposal consists of only the topology design. 1113

In contrast, Shufflecast’s topology can scale to an arbitrary size 1114

even with a small splitter fanout and we have demonstrated the 1115

complete system’s effectiveness using end-to-end applications. 1116



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 13

VIII. CONCLUSION1117

Optical circuit-switched (OCS) network core has several1118

advantages to be a potential candidate for next-generation1119

compute clusters. However, there is no inherent support for1120

multicast by such networks. Shufflecast architecture can com-1121

plement those high performance OCS-based core and support1122

data-rate agnostic multicast maintaining low power and low1123

capital cost. Shufflecast’s data plane is scalable and supports1124

line-rate throughput; its control plane is simple and respon-1125

sive; Shufflecast is robust enough against failure. Experiments1126

using a complete hardware and software prototype of Shuf-1127

flecast show that Shufflecast can improve the performance of1128

real-world applications with minor modifications.1129

APPENDIX A1130

A. Details of Shufflecast Data Plane1131

1) Scalability of Shufflecast Fabric: Shufflecast can scale1132

easily even with small fanout splitters. Fig. 9 shows1133

2, 3-Shufflecast consisting of 3 · 23 = 24 ToRs arranged in1134

3 columns connected via 1:2 optical splitters, and each column1135

has 23 = 8 ToRs. We can realize even bigger instances of1136

Shufflecast with small p. For example, 4, 4-Shufflecast uses1137

1:4 splitters, covering 1024 ToRs.1138

2) Detailed Analysis of Multicast-Aware Routing: First, the1139

next-hop relay computation algorithm (Algorithm 1) computes1140

the column-difference parameter X (<=k) between the desti-1141

nation ToR (dest) and the current ToR (cur: initialized to src).1142

If both the ToRs belong to the same column, X is considered1143

as k (lines 3 and 4), otherwise X (<k) is computed as stated1144

by line 6. From the construction of Lemma 1, we observe that1145

X dictates the hop count from cur to dest. If both the ToRs1146

belong to the same column, both X and the hop count are1147

k (reachable at the end of the first cycle). Otherwise, dest1148

is reachable either in hop count X (during the first cycle) or1149

k +X (during the second cycle). Next, the algorithm checks1150

whether the hop count from cur to dest is <=k (line 8) by1151

matching their partial row-ID digits (k − X most and least1152

significant row-ID digits of the dest and cur respectively).1153

Finally, the next-hop (next) ToR ID is determined by shifting1154

the current ToR’s row-ID to the left by one digit, and then1155

putting the (X − 1)th digit of the destination ToR’s row-ID1156

(line 9) if the condition is true, or putting the (k −X ′ − 1)th1157

digit of the source ToR’s row-ID (line 12) if the condition1158

is false, where X ′ (<k) is the column-difference parameter1159

between cur and src (line 11).1160

3) Proofs of Lemmas: Proof of Lemma 1: By construction1161

of a p, k-Shufflecast, any given source ToR has 1:p splitter1162

connecting p ToRs of the next column in 1st hop, again from1163

those p ToRs another p2 ToRs at two-columns ahead from1164

the source are reachable in 2nd hop and so on. Eventually1165

pk−1 ToRs belonging to one partition at previous column1166

of source are reachable in (k − 1) hops which is sufficient1167

for reaching all pk ToRs of its own column in the next kth1168

hop. During the second cycle, the remaining ToRs of next1169

column from the source are all reachable from any of the1170

partitions of pk−1 ToRs at source column. The same scenario1171

follows for all the consecutive columns during the second1172

Fig. 9. Connectivity of 2, 3-Shufflecast.

cycle, reaching the remaining ToRs of all the other columns. 1173

Finally, the remaining ToRs at the previous column of source 1174

can be reached in another (k − 1) hops. Therefore, all the 1175

ToRs are reachable within two cycles of traversal i.e., the hop 1176

count is at most (k + k − 1) = 2k − 1. 1177

Proof of Lemma 2: By construction of p, k-Shufflecast, for 1178

the destinations reachable in at most k hops (i.e., during the 1179

first cycle), the chosen relays are at most (k − 1) hops away 1180

from the source, with most significant digit as source row-ID 1181

digits left shifted by at most (k − 1) places. As a result, the 1182

relays are inherently chosen from the partition IDs defined by 1183

the source row-ID digits. Hence, appending the pre-calculated 1184

destination digit (rdX−1) as the least significant digit ensures 1185

the shortest-path next-hop relay ID following the partition 1186

criteria. After first cycle, all the k source row-ID digits are 1187

ignored due to k effective left shifts. Therefore, for all the 1188

remaining ToRs reachable in the second cycle, the algorithm 1189

ensures the partition criteria by appending the pre-calculated 1190

source row-ID digit (rsk−X′−1) as the least significant digit 1191

during the first cycle. These digits govern the selective choice 1192

of relays from proper partition IDs during the second cycle. 1193

Hence, any given source ToR can perform one-to-all multicast 1194

following the partition criteria. 1195

Proof of Lemma 3: Following the partition criteria 1196

in 2, a given source ToR (cs, rsk−1, r
s
k−2 . . . r

s
1r

s
0) in a 1197

p, k-Shufflecast performs one-to-all multicast using relays 1198

from its own column with partition ID rsk−1, from next column 1199

with partition ID rsk−2 and so on, finally from previous column 1200

with partition ID rs0. We also know, each column contains p 1201

partitions as every row-ID digit can have p distinct values 1202

(∈ [0, p− 1]). Eventually, to perform one-to-all multicast at 1203

line-rate, the group of source ToRs are to be chosen so that 1204

the relays are disjoint i.e., from distinct partitions at every 1205

column. Thus for the given source, the group of other source 1206

ToRs from the same column must have all distinct k row-ID 1207

digits. Intuitively, we must choose one ToR from each of 1208

the p partitions which at least makes all the most significant 1209

digits distinct. For example, given source ToR row-ID, if we 1210

choose one j ∈ [0, p− 1] and perform (rsi + j) mod p for all 1211

i ∈ [0, k − 1], eventually we get p ToRs having all distinct k 1212

row-ID digits and hence they can perform one-to-all multicast 1213



IEEE Proo
f

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. CDF of unused ports and unused bandwidth under all configurations
and 1:1 oversubscription ratio configuration.

simultaneously at line-rate using relays from distinct partition.1214

Now, if we choose two such groups of p ToRs, effectively1215

we have two ToRs from each of the p partitions. Thus, for1216

each of the k places, there exist two unique ToRs using the1217

same digit twice a given place which results them uniquely1218

sharing the relays from same partition. Hence, those 2p ToRs1219

can make one-to-all multicast simultaneously at half of the1220

line-rate. Extending this idea, we can choose all such pk−1
1221

groups of p ToRs i.e., all the pk ToRs of one column using1222

the relays from same partition and hence they can make one-1223

to-all multicast at pk−1 fraction of the line-rate.1224

Proof of Lemma 4: In a p, k-Shufflecast, every ToR of1225

a given column is connected to another p ToRs of its next1226

column, and every column has pk ToRs. Therefore, we need1227

at least pk−1 ToRs of a given column to reach all the1228

ToRs of the next column. Hence a given source ToR must1229

require at least pk−1 number of relays from each of the1230

k column to perform one-to-all multicast. In Lemma 2 we1231

have already proved, with multicast-aware routing any source1232

ToR can perform one-to-all multicast using the relays from1233

one partition at each column. From the definition of partition1234

we know, every partition has pk−1 ToRs which is the same1235

as the minimum relay requirement. Thus, multicast-aware1236

routing minimizes the relay usage. Also, we know there are1237

p partitions per column. Hence, with such minimum relay1238

requirement, maximum p sources in one column can possibly1239

use disjoint set of relays from every column and consequently1240

can perform one-to-all multicast simultaneously at line-rate.1241

This is indeed the number of simultaneous one-to-all multicast1242

supported by multicast-aware routing at line-rate as proved in1243

Lemma 3. Thus, multicast-aware routing is optimal in terms1244

of relay usage and multicast performance.1245

B. Analysis to Show Unused ToR Ports Often Exists1246

Our methodology considers a wide range of network con-1247

figurations. For each configuration, we choose the ToR switch1248

that minimizes the amount of unused bandwidth. We study1249

14 types of ToR switches with different port configurations1250

from several well-known companies. Specifically, we use 21251

HP switches with either 24 × 10 Gbps ports or 48 × 10 +1252

4 × 40 Gbps ports, 2 Juniper switches with either 32 ×1253

10 Gbps ports or 48 × 10 + 4 × 100 Gbps ports, 3 Arista1254

switches ranging from 32 × 10 + 4 × 40 Gbps ports to 96 × 1255

10 + 8 × 40 Gbps ports, and 8 Cisco switches ranging from 1256

32 × 40 Gbps ports to 64 × 100 Gbps ports. For the network 1257

configurations, we adopt several oversubscription (o/s) ratios 1258

reported in the literature, i.e., 1:1, 3:2, 3:1, 4:1, 5:1, 8:1, 1259

10:1 and 20:1 [19], [28], [32], [62]. We also include a few 1260

additional o/s ratios: x:1 where x ∈ [1, 10]. We consider 1261

commercially available standard rack cabinet sizes ranging 1262

from 18U to 48U [7], [9], and five different per-server network 1263

port speed configurations – 10 Gbps, 2 × 10 Gbps, 25 Gbps, 1264

40 Gbps and 2 × 25 Gbps. The detailed results are shown in 1265

Fig. 10. Indeed, unused ports, as well as a large amount of 1266

unused bandwidth, often exist. Among all cases, the config- 1267

uration of 1:1 o/s is unique and the unused ToR ports truly 1268

cannot be used to add more bandwidth into the network core. 1269

ACKNOWLEDGMENT 1270

The authors thank the editors and anonymous reviewers for 1271

their valuable feedback. They also thank Prof. Debasish Datta 1272

for very helpful discussions. 1273

REFERENCES 1274

[1] Libfastpaxos. [Online]. Available: https://sourceforge.net/projects/libpaxos/ 1275

files/LibFastPaxos/src-rev-17/ AQ:41276

[2] Libpaxos3. [Online]. Available: https://sourceforge.net/projects/libpaxos/ 1277

files/LibPaxos3/ 1278

[3] (2001). TPC Benchmark H. [Online]. Available: http://www.tpc. 1279

org/tpch/ 1280

[4] (2009). Nack-Oriented Reliable Multicast (Norm) Transport Protocol. 1281

[Online]. Available: https://tools.ietf.org/html/rfc5740 1282

[5] (2015). Ryu Openflow Controller. [Online]. Available: http://osrg. 1283

github.io/ryu/ 1284

[6] (2019). Fs (Fiberstore)—Leading Communication Systems Integrator 1285

and Optical Solutions Provider for Data Centers. [Online]. Available: 1286

http://www.fs.com 1287

[7] (2019). HPE—Rack Cabinet Provider for Data Centers. [Online]. 1288

Available: https://buy.hpe.com/us/en/rack-power- 1289

infrastructure/racks/server-racks/racks/hpe-g2-enterprise-series- 1290

racks/p/1009803311 1291

[8] MPI Broadcast and Collective Communication. [Online]. 1292

Available: http://mpitutorial.com/tutorials/mpi-broadcast-and-collective- 1293

communication/ 1294

[9] Server Cabinet Enclosures—Common Standard Rack Cabinet for 1295

Data Centers. [Online]. Available: https://www.racksolutions.com/rack- 1296

mount-enclosure.html 1297

[10] (2020). 25 dB Gain DWDM EDFA Pre-Amplifier. [Online]. Available: 1298

https://www.fs.com/products/107367.html 1299

[11] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond 1300

optical switching,” in Proc. Annu. Conf. ACM Special Interest Group 1301

Data Commun. Appl., Technol., Archit., Protocols Comput. Commun., 1302

Jul. 2020, pp. 782–797. 1303

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica- 1304

tion layer multicast,” in Proc. Conf. Appl., Technol., Archit., Protocols 1305

Comput. Commun., 2002, pp. 205–217. 1306

[13] J. Bao, D. Dong, B. Zhao, and Z. Gong, “ICAST: Accelerating high- 1307

performance data center applications by hybrid electrical and opti- 1308

cal multicast,” in Proc. IEEE 23rd Int. Conf. Parallel Distrib. Syst. 1309

(ICPADS), Feb. 2017, pp. 302–309. 1310

[14] D. Basin, K. Birman, I. Keidar, and Y. Vigfusson, “Sources of instability 1311

in data center multicast,” in Proc. 4th Int. Workshop Large Scale Distrib. 1312

Syst. Middleware, 2010, pp. 32–37. 1313

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” 1314

J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003. 1315

[16] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. Jermaine, 1316

“A comparison of platforms for implementing and running very large 1317

scale machine learning algorithms,” in Proc. ACM SIGMOD Int. Conf. 1318

Manage. Data, 2014, pp. 1371–1382. 1319

[17] Calient. (2019) Series Optical Circuit Switch. [Online]. Available: 1320

http://www.calient.net 1321



IEEE Proo
f

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC AND LOW-POWER MULTICAST ARCHITECTURE 15

[18] J. Cao et al., “Datacast: A scalable and efficient reliable group data1322

delivery service for data centers,” IEEE J. Sel. Areas Commun., vol. 31,1323

no. 12, pp. 2632–2645, Dec. 2013.1324

[19] Z. Cao, R. Proietti, and S. J. B. Yoo, “Hi-LION: Hierarchical large-scale1325

interconnection optical network with AWGRs,” J. Opt. Commun. Netw.,1326

vol. 7, no. 1, p. A97, Jan. 2015.1327

[20] R. Carlson, “Considerations for choosing top-of-rack in today’s fat-tree1328

switch fabric configurations,” Cabling Installation Maintenance Mag.,1329

Feb. 2014.AQ:5 1330

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and1331

A. Singh, “Splitstream: high-bandwidth multicast in cooperative envi-1332

ronments,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 298–313,1333

2003.1334

[22] M. Castro et al., “An evaluation of scalable application-level multicast1335

built using peer-to-peer overlays,” in Proc. 23nd Annu. Joint Conf.1336

Comput. Commun. Soc., 2003, pp. 1510–1520.1337

[23] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron,1338

“Larry: Practical network reconfigurability in the data center,” in1339

Proc. 15th USENIX Symp. Netw. Syst. Design Implement., 2018,1340

pp. 141–156.1341

[24] T. Chiba and T. Onodera, “Workload characterization and optimization1342

of TPC-H queries on apache spark,” in Proc. IEEE Int. Symp. Perform.1343

Anal. Syst. Softw. (ISPASS), Apr. 2016, pp. 112–121.1344

[25] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,1345

“Managing data transfers in computer clusters with orchestra,” ACM1346

SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109,1347

Aug. 2011.1348

[26] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system1349

multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1456–1471,1350

Oct. 2002.1351

[27] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-consistent1352

infection-style process group membership protocol,” in Proc. Int. Conf.1353

Dependable Syst. Netw., 2002, pp. 303–312.1354

[28] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet1355

spraying in data center networks,” in Proc. INFOCOM, Apr. 2013,1356

pp. 2130–2138.1357

[29] R. Furrer, M. G. Genton, and D. Nychka, “Covariance tapering for1358

interpolation of large spatial datasets,” J. Comput. Graph. Statist.,1359

vol. 15, no. 3, pp. 502–523, 2006.1360

[30] M. Ghobadi et al., “Projector: Agile reconfigurable data center intercon-1361

nect,” in Proc. ACM SIGCOMM Conf., 2016, pp. 216–229.1362

[31] Glimmerglass. (2018). Intelligent Optical System. [Online]. Available:1363

http://www.glimmerglass.com1364

[32] A. Greenberg et al., “Vl2: A scalable and flexible data center network,”1365

in Proc. SIGCOMM, Aug. 2009, pp. 51–62.1366

[33] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,1367

“A survey of application-layer multicast protocols,” IEEE Commun.1368

Surveys Tuts., vol. 9, no. 3, pp. 58–74, 3rd Quart., 2007.1369

[34] S. Itoh, P. Ordejón, and R. M. Martin, “Order-n tight-binding molecular1370

dynamics on parallel computers,” Comput. Phys. Commun., vol. 88,1371

nos. 2–3, pp. 173–185, 1995.1372

[35] J. Jannotti et al., “OverCast: Reliable multicasting with on overlay1373

network,” in Proc. 4th Conf. Symp. Oper. Syst. Design Implement., vol. 4,1374

2000, p. 14.1375

[36] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,1376

vol. 16, no. 2, pp. 133–169, 1998.1377

[37] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,1378

no. 4, pp. 18–25, 2001.1379

[38] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams, and1380

X. Zhao, “XFabric: A reconfigurable in-rack network for rack-scale1381

computers,” in Proc. 13th USENIX Symp. Netw. Syst. Design Implement.,1382

2016, pp. 15–29.1383

[39] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center1384

multicast using multi-class Bloom filter,” in Proc. 19th IEEE Int. Conf.1385

Netw. Protocols, 2011, pp. 266–275.1386

[40] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: Efficient and scalable1387

data center multicast routing,” IEEE/ACM Trans. Netw., vol. 20, no. 3,1388

pp. 944–955, Jun. 2012.1389

[41] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen, “Reliable1390

multicast in data center networks,” IEEE Trans. Comput., vol. 63, no. 8,1391

pp. 2011–2024, Aug. 2014.1392

[42] X. Li and M. J. Freedman, “Scaling ip multicast on datacenter topolo-1393

gies,” in Proc. 9th ACM Conf. Emerg. Netw. Exp. Technol., 2013,1394

pp. 61–72.1395

[43] W. M. Mellette et al., “RotorNet: A scalable, low-complexity, optical 1396

datacenter network,” in Proc. Conf. ACM Special Interest Group Data 1397

Commun., Aug. 2017, pp. 267–280. 1398

[44] T. Mitchell. (1999). 20 Newsgroups. [Online]. Available: 1399

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html 1400

[45] Y. Ohsita and M. Murata, “Optical data center networks: Architec- 1401

ture, performance, and energy efficiency,” in Handbook Data Centers. 1402

Springer, 2015, pp. 351–391. AQ:61403

[46] Polatis. (2016). Series 7000 Software Defined Optical Switch. [Online]. 1404

Available: http://www.polatis.com 1405

[47] G. Porter et al., “Integrating microsecond circuit switching into the 1406

data center,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 1407

pp. 447–458, 2013. 1408

[48] P. Samadi, D. Calhoun, H. Wang, and K. Bergman, “Accelerating cast 1409

traffic delivery in data centers leveraging physical layer optics and sdn,” 1410

in Proc. Int. Conf. Opt. Netw. Design Modeling, 2014, pp. 73–77. 1411

[49] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and K. Bergman, 1412

“Optical multicast system for data center networks,” Opt. Exp., vol. 23, 1413

no. 17, pp. 22162–22180, 2015. 1414

[50] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and 1415

M. Hira, “ELMO: Source routed multicast for public clouds,” in Proc. 1416

ACM Special Interest Group Data Commun., 2019, pp. 458–471. 1417

[51] V. Shrivastav et al., “Shoal: A network architecture for disaggregated 1418

racks,” in Proc. 16th USENIX Symp. Netw. Syst. Design Implement., 1419

2019, pp. 255–270. 1420

[52] A. Singh et al., “Jupiter rising: A decade of CLOS topologies and 1421

centralized control in Google’s datacenter network,” ACM SIGCOMM 1422

Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015. 1423

[53] X. S. Sun, Y. Xia, S. Dzinamarira, X. S. Huang, D. Wu, and T. S. E. Ng, 1424

“Republic: Data multicast meets hybrid rack-level interconnections in 1425

data center,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), 1426

Sep. 2018, pp. 77–87. 1427

[54] A. Thusoo et al., “Hive: A warehousing solution over a map-reduce 1428

framework,” VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009. 1429

[55] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, and Y. Tock, 1430

“Dr. Multicast: Rx for data center communication scalability,” in 1431

Proc. 2nd Workshop Large-Scale Distrib. Syst. Middleware, 2008, 1432

pp. 349–362. 1433

[56] H. Wang, C. Chen, K. Sripanidkulchai, S. Sahu, and K. Bergman, 1434

“Dynamically reconfigurable photonic resources for optically connected 1435

data center networks,” in Proc. Opt. Fiber Commun. Conf., 2012, p. 2. 1436

[57] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and 1437

K. Sripanidkulchai, “Rethinking the physical layer of data center net- 1438

works of the next decade: Using optics to enable efficient*-cast connec- 1439

tivity,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp. 52–58, 1440

Jul. 2013. 1441

[58] J. Widmer and M. Handley, “Extending equation-based congestion 1442

control to multicast applications,” ACM SIGCOMM Comput. Commun. 1443

Rev., vol. 31, no. 4, pp. 275–285, Oct. 2001. 1444

[59] J. Widmer and M. Handley, TCP-Friendly Multicast Congestion Control 1445

(TFMCC): Protocol Specification, document RFC 4654, Aug. 2006. 1446

[60] B. D. Wozniak, F. D. Witherden, F. P. Russell, P. E. Vincent, and 1447

P. H. Kelly, “Gimmik-generating bespoke matrix multiplication kernels 1448

for accelerators: Application to high-order computational fluid dynam- 1449

ics,” Comput. Phys. Commun., vol. 202, pp. 12–22, Oct. 2016. 1450

[61] D. Wu, X. Sun, Y. Xia, X. S. Huang, and T. E. Ng, “HyperOptics: 1451

A high throughput and low latency multicast architecture for datacen- 1452

ters,” in Proc. HotCloud, 2016, pp. 1–5. 1453

[62] D. Wu, W. Wang, A. Chen, and T. S. E. Ng, “Say no to rack boundaries: 1454

Towards a reconfigurable pod-centric dcn architecture,” in Proc. ACM 1455

Symp. SDN Res., Apr. 2019, pp. 112–118. 1456

[63] G. Wu, H. Gu, K. Wang, X. Yu, and Y. Guo, “A scalable AWG-based 1457

data center network for cloud computing,” Opt. Switching Netw., vol. 16, 1458

pp. 46–51, Oct. 2015. 1459

[64] Y. Xia, T. S. E. Ng, and X. S. Sun, “Blast: Accelerating high- 1460

performance data analytics applications by optical multicast,” in Proc. 1461

INFOCOMM, 2015, pp. 1930–1938. 1462

[65] M. Xu, C. Liu, and S. Subramaniam, “PODCA: A passive optical data 1463

center network architecture,” J. Opt. Commun. Netw., vol. 10, no. 4, 1464

pp. 409–420, 2018. 1465

[66] T. Ye, T. T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnec- 1466

tion for large-scale data center networks,” IEEE Trans. Cloud Comput., 1467

vol. 6, no. 3, pp. 785–799, Oct. 2016. 1468

[67] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy, 1469

and T. Anderson, “Understanding and mitigating packet corruption in 1470

data center networks,” in Proc. Conf. ACM Special Interest Group Data 1471

Commun., 2017, pp. 362–375. 1472



IEEE Proo
f

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Sushovan Das is currently pursuing the Ph.D.1473

degree with the Department of Computer Science,1474

Rice University. His research interest includes novel1475

optical architecture design to optimize application1476

performance for future generation cloud infrastruc-1477

tures.1478

Afsaneh Rahbar received the Ph.D. degree from the1479

Department of Computer Science, Rice University.1480

She is currently a Research Scholar at Rice Univer-1481

sity. Her research interests include static analysis,1482

high performance computing, and data center net-1483

works.1484

Xinyu Crystal Wu (Graduate Student Member,1485

IEEE) is currently pursuing the Ph.D. degree with1486

the Department of Computer Science, Rice Univer-1487

sity. Her research interests include programmable1488

networks and distributed systems, including lossless1489

networks, network infrastructure, distributed training1490

optimization, network monitoring, and diagnose.1491

AQ:7

Zhuang Wang is currently pursuing the Ph.D.1492

degree with the Department of Computer Science,1493

Rice University. His research interests include dis-1494

tributed machine learning and networking systems,1495

including efficient distributed training, gradient com-1496

pression algorithms, and performance isolation in1497

public clouds.1498

Weitao Wang is currently pursuing the Ph.D. degree 1499

with the Department of Computer Science, Rice Uni- 1500

versity. His research interests include application- 1501

infrastructure co-design, including congestion con- 1502

trol, network monitoring, and network scheduling. 1503

Ang Chen is currently an Assistant Professor with 1504

the Department of Computer Science, Rice Univer- 1505

sity. His research interests span networking, security, 1506

and systems, with a particular focus on making net- 1507

worked systems more reliable, efficient, and secure. 1508

T. S. Eugene Ng received the Ph.D. degree in 1509

computer science from Carnegie Mellon University 1510

in 2003. He is currently a Full Professor of computer 1511

science at Rice University. His research interests 1512

lie in developing new network models, network 1513

architectures, and holistic networked systems that 1514

enable a robust and manageable network infrastruc- 1515

ture. He received the U.S. National Science Founda- 1516

tion (NSF) CAREER Award in 2005 and the Alfred 1517

P. Sloan Fellowship in 2009. 1518


