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Abstract: The inhibition of protein–protein interactions is a growing strategy in drug development. In
addition to structured regions, many protein loop regions are involved in protein–protein interactions
and thus have been identified as potential drug targets. To effectively target such regions, protein
structure is critical. Loop structure prediction is a challenging subgroup in the field of protein
structure prediction because of the reduced level of conservation in protein sequences compared to the
secondary structure elements. AlphaFold 2 has been suggested to be one of the greatest achievements
in the field of protein structure prediction. The AlphaFold 2 predicted protein structures near the
X-ray resolution in the Critical Assessment of protein Structure Prediction (CASP 14) competition in
2020. The purpose of this work is to survey the performance of AlphaFold 2 in specifically predicting
protein loop regions. We have constructed an independent dataset of 31,650 loop regions from
2613 proteins (deposited after the AlphaFold 2 was trained) with both experimentally determined
structures and AlphaFold 2 predicted structures. With extensive evaluation using our dataset, the
results indicate that AlphaFold 2 is a good predictor of the structure of loop regions, especially for
short loop regions. Loops less than 10 residues in length have an average Root Mean Square Deviation
(RMSD) of 0.33 Å and an average the Template Modeling score (TM-score) of 0.82. However, we see
that as the number of residues in a given loop increases, the accuracy of AlphaFold 2’s prediction
decreases. Loops more than 20 residues in length have an average RMSD of 2.04 Å and an average
TM-score of 0.55. Such a correlation between accuracy and length of the loop is directly linked to
the increase in flexibility. Moreover, AlphaFold 2 does slightly over-predict α-helices and β-strands
in proteins.
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1. Introduction

Protein structure is both critical to understand protein function and key in virtual
drug screening and drug design. Technical challenges have held the problem of protein
structure prediction at the forefront in biology for the past decade. Traditional experimental
methods such as X-ray crystallography and NMR are time consuming and expensive [1].
Furthermore, these experimental methods often produce structures with regions that must
be reconstructed to fully understand protein structure and dynamics. Notably, more than
half of the proteins in the Protein Data Bank [2] have missing regions [3]. These missing
regions most often correspond to loops. Loops are protein regions that are neither α-helices
nor β-strands. Because loop regions are most frequently found near the surface of the pro-
tein, they are readily exposed to solvent and other proteins [4]. This enables loops to have
key roles both in protein structure and biological function [5–7]. Structurally, their position
allows the loops to shield the proteins’ hydrophobic core; functionally, their position allows
loops to be readily involved in protein function and protein–protein interactions [6–8].
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Because loops are key players in the overall structure and dynamics of proteins [5,9], it is
critical to reconstruct missing regions from efforts in protein structure prediction.

Most methods in protein structure prediction heavily rely on the PDB because of the
accuracy of homology modeling [10]. Homology modeling builds protein structures by
observing sequential patterns for proteins with existing structures. Unlike α-helices and
β-strands, loops have high sequence variability and structural irregularity [11], and thus
have a larger deviation from homologue templates [12–17]. Lacking an accurate homologue,
loops remain the most inaccurate or altogether missing regions of the model [18]. Notably,
not all loops are equal when it comes to protein structure prediction. Long loops are even
more difficult to reconstruct than short loops because of the nature of the data accessible
in the PDB. While it has a reasonable dataset of short loops [19,20], the PDB is missing
adequate data to build long loops. Without adequate homologues, ab initio methods are
left to predict the structure of long loops. However, ab initio methods have shown to be
much less accurate than knowledge-based methods [21].

Various protein loop structure prediction methods have gained the attention of the
scientific community, including RosettaNGK [22], GalaxyLoop-PS2 [23], DaReUS-Loop [24],
ArchPRED [25], FREAD [26], SuperLooper2 [27], LoopIng [28], CODA [29] and Sphinx [21].
Many of these methods have excelled in community-wide CASP experiments. RosettaNGK
is an ab initio method that uses a hybrid energy function that combines both physics-based
and knowledge-based energy terms. GalaxyLoop-PS2 is also an ab initio method that
implements a unique energy function. GalaxyLoop-PS2 considers multiple energy terms,
such as short-range, hydrophobic, and electrostatic interactions. LoopIng is a knowledge-
based method that considers both sequence and geometry. Finally, CODA and Sphinx
are hybrid loop prediction methods that combine both ab initio and knowledge-based
methods. While these protein structure prediction methods have proved to be useful tools,
AlphaFold 2 has recently surpassed them all.

The original AlphaFold [30] outperformed all other teams at the Critical Assessment
of protein Structure Prediction (CASP 13) competition in 2018. The newly upgraded
AlphaFold 2 [30] produced predictions that approach a score of 90 in the global distance
test (GDT_TS), where a score above 90 is considered roughly equivalent to the accuracy of
an experimentally predicted structure. The purpose of this work is to explore the accuracy
of AlphaFold 2 in specifically predicting loop regions of protein structures. Here, we
consider a dataset of 31,650 loop regions at least three residues in length from 2613 proteins
with both experimentally determined structures and AlphaFold 2 predicted structures.
Both RMSD and TM-score indicate that AlphaFold 2 is a good predictor of the structure of
loop regions. Furthermore, DSSP analysis indicates that AlphaFold 2 slightly over-predicts
regular secondary structure content. Lastly, we see that as the length of the loop increases,
the accuracy of predictions by AlphaFold 2 decreases, as indicated by RMSD, TM-score,
and DSSP.

2. Methods

We build a dataset of 31,650 loop regions at least 3 residues in length from a set of
2613 crystal structures that were deposited in the Protein Data Bank after AlphaFold 2 was
trained. Non-secondary structural regions within the crystal structures were identified
by DSSP analysis [31], where each amino acid is assigned a specific secondary structure
type (none, turn, bend, parallel beta sheet, antiparallel beta sheet, alpha helix, pi helix, or
3–10 helix). Any residue classified as none, turn, or bend was considered as a loop region
and included in our further statistical analyses. The corresponding tertiary structures of
the loop regions are extracted from both the experimental structure and the AlphaFold 2
structure by using BioPython [32]. All AlphaFold 2 structures were obtained from the
AlphaFold Protein Structure Database at https://alphafold.ebi.ac.uk (accessed on 3 January
2022) [30]. Note that the experimental structure and the AlphaFold 2 structure for each
loop region are 100% sequence identity. The link to download the dataset used in the work
is available at the end of the paper.
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3. Results

This work considers a dataset of 2613 proteins with both experimentally determined
structures and AlphaFold 2 predicted structures. The fraction of the loop regions in a
protein can affect the prediction accuracy of any structure prediction software. To quantify
the fraction of loop residues in each protein in our dataset, we performed DSSP [33]
analysis across each full-length protein. DSSP, or Dictionary of Secondary Structure of
Proteins [33], analysis assigns secondary structure types to each residue in a protein. Each
residue is assigned a secondary structure type of either none, turn, bend, parallel beta-sheet,
antiparallel beta-sheet, alpha helix, pi helix, or 3–10 helix. Loop residues are defined by the
DSSP secondary structure types as none, turn, and bend. As shown in Figure 1, the fraction
of loop residues in the experimentally determined structures (EX, tan) and the AlphaFold 2
predicted structures (AF2, blue) and are in relatively good agreement with each other.
In both cases, the proteins in the dataset have a Gaussian distribution of the fraction of
loop residues centered around 40%. Notably, the AlphaFold 2 predicted structures on
average have a slightly greater fraction of loop residues (none, turn, or bend) than the
experimentally determined structures. All subsequent analysis is performed only over the
loop regions of the given dataset (the 31,650 loops). As shown in Figure 1b, this dataset
is comprised of loops ranging from 1 to 65 residues in length. Notably, 82.7% of loops
are comprised of fewer than 10 residues, and 98.2% of loops are comprised of fewer than
20 residues.

Figure 1. Summary of the dataset. (a) Fraction of coiled residues in the full-length protein structures
based on DSSP analysis. The tan curve represents DSSP analysis across experimentally determined
structures (EX), and the blue curve represents DSSP analysis across AlphaFold 2 predicted structures
(AF2). (b) Length of each loop structure in the dataset. Loops range from 1 to 65 residues in length.

To quantify the accuracy of AlphaFold 2 in predicting the structure of loop regions,
the Root Mean Square Deviation (RMSD) and the Template Modeling score (TM-score) [34]
were calculated for each AlphaFold 2 predicted loop structure using the equivalent exper-
imentally predicted loop structure as a reference. RMSD is a traditional metric that has
been a standard in comparing protein structures. It measures the average distance between
atoms of structurally aligned proteins. Challengingly, RMSD is limited by size-dependency,
so it is difficult to directly compare proteins of different sizes with RMSD. TM-score is a
metric that was designed to overcome the imperfections of RMSD when comparing protein
structures. First, the TM-score weights errors that occur at short distances stronger than
those at long distances. Second, TM-score includes a length-dependency term to normalize
distance errors. As a result, TM-score produces values that, unlike RMSD, are indepen-
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Figure 8. Comparing the experimental range of accuracy to the accuracy of AlphaFold 2 predictions
with RMSD. The experimental range of accuracy has an average RMSD of 0.35 Å, and the accuracy
of AlphaFold 2 prediction against the experimentally predicted structures has an average RMSD of
0.28 Å.

4. Discussion

AlphaFold 2 has significantly outperformed all other protein structure prediction
methods available today. This work demonstrates that AlphaFold 2 can accurately predict
the structure of short loop regions in proteins, especially for loops shorter than 10 residues.
However, extra caution is needed when dealing with longer loop regions. Because the
vast majority of loop regions in our dataset are short loop regions (98.2% of loops are less
than 20 residues in length), AlphaFold 2 predicted structures have an average RMSD of
0.44 Å and an average TM-score of 0.78. Furthermore, AlphaFold 2 predicted structures
report no secondary structure content in approximately 93% of loop regions. These results
demonstrate that AlphaFold 2 can slightly over predict the regular secondary structures
(α-helices and β-strands).

RMSD increases as a function of the length of the loop, as loops comprised of less than
10 residues have an average RMSD of 0.33 Å while loops comprised of more than 20 residues
have an average RMSD of 2.04 Å. The TM-score decreases as a function of the length of
the loop, as loops comprised of less than 10 residues have an average TM-score of 0.82
while loops comprised of more than 20 residues have an average TM-score of 0.55. Echoing
trends in RMSD and TM-score, secondary structure content also increases in AlphaFold 2
predicted structure as the number of residues in the loop region increases. Loops comprised
of less than 10 residues have an average ∆SSE of 1.3% while loops comprised of more than
20 residues have an average ∆SSE of 12.5%. In other words, the AlphaFold 2 predicted
structures of loops comprised of more than 20 residues have 12.5% more secondary structure
content than their corresponding experimentally determined structures.

The correlation between accuracy and length of the loop is linked to the increase in
flexibility. The pLDDT score of AlphaFold 2 has been suggested to be an indicator of the
flexibility/disorder of a residue/region [30]. In our dataset, average pLDDT scores do not
clearly correlate with the length of the loop region. In the case of loop regions, it seems that
the average pLDDT scores failed to distinguish the prediction accuracy. Interestingly, the
average pLDDT scores do correlate to the accuracy of the prediction based on TM-score,
suggesting that AlphaFold 2’s pLDDT scores properly correspond to the accuracy of the
predicted structure. In summary, this work supports AlphaFold 2 as a good predictor of
the structure of loop regions while exposing limitations of AlphaFold 2 as the length of
loop increase.
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pLDDT score; Figure S2: Correlation between the number of residues in each loop region and the
number of residues in the corresponding full-length protein; Figure S3: Correlation between the
fraction of hydrophilic residues and the accuracy of AlphaFold 2 predicitons in loops greater than
20 residues in length; Figure S4: Correlation between the hydrophobicity index and the accuracy of
AlphaFold 2 predicitons in loops greater than 20 residues in length.

Author Contributions: Conceptualization, Y.H.; methodology, A.O.S. and Y.H.; validation, A.O.S.
and Y.H.; formal analysis, A.O.S.; investigation, A.O.S.; data curation, A.O.S. and Y.H.; writing—
original draft preparation, A.O.S.; writing—review and editing, Y.H.; supervision, Y.H.; project
administration, Y.H.; funding acquisition, Y.H.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Science Foundation Graduate Research Fellow-
ship Program (Grant No. DGE-1939267) and the National Science Foundation (Grant No. 2137558).
This work was also supported by the Substance Use Disorders Grand Challenge Pilot Research
Award provided by the University of New Mexico and the Research Allocations Committee (RAC)
Award provided by the University of New Mexico. This work was also supported by NIH grant
P20GM121176.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete loop structure database (containing 31,650 loops) is
available to download as a compressed Available online: https://tinyurl.com/3xk5dx3n (accessed
on 11 May 2022).

Acknowledgments: Authors thank Jian Wang from the Penn State College of Medicine for helping
with the preparation of the original loop database.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Johnson, M.S.; Srinivasan, N.; Sowdhamini, R.; Blundell, T.L. Knowledge-based protein modeling. Crit. Rev. Biochem. Mol. Biol.

1994, 29, 1–68. [CrossRef] [PubMed]
2. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank.

Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]
3. Brandt, B.W.; Heringa, J.; Leunissen, J.A.M. SEQATOMS: A web tool for identifying missing regions in PDB in sequence context.

Nucleic Acids Res. 2008, 36, W255–W259. [CrossRef] [PubMed]
4. Lins, L.; Thomas, A.; Brasseur, R. Analysis of accessible surface of residues in proteins. Protein Sci. 2003, 12, 1406–1417. [CrossRef]
5. Papaleo, E.; Saladino, G.; Lambrughi, M.; Lindorff-Larsen, K.; Gervasio, F.L.; Nussinov, R. The Role of Protein Loops and Linkers

in Conformational Dynamics and Allostery. Chem. Rev. 2016, 116, 6391–6423. [CrossRef]
6. Wu, S.; Dean, D. Functional significance of loops in the receptor binding domain ofBacillus thuringiensisCryIIIA δ-endotoxin.

J. Mol. Biol. 1996, 255, 628–640. [CrossRef]
7. Shi, L.; Javitch, J.A. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc. Natl. Acad. Sci.

USA 2004, 101, 440–445. [CrossRef]
8. Jones, S.; Thornton, J.M. Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 1997, 272, 133–143.

[CrossRef]
9. Fiser, A.; Bioinformatics, A.S. ModLoop: Automated modeling of loops in protein structures. Bioinformatics 2003, 19, 2500–2501.

[CrossRef]
10. Martí-Renom, M.A.; Stuart, A.C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. Comparative protein structure modeling of genes and

genomes. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291–325. [CrossRef]
11. Cohen, B.I.; Presnell, S.R.; Cohen, F.E. Origins of structural diversity within sequentially identical hexapeptides. Protein Sci. 1993,

2, 2134–2145. [CrossRef]
12. Ring, C.S.; Kneller, D.G.; Langridge, R.; Cohen, F.E. Taxonomy and conformational analysis of loops in proteins. J. Mol. Biol. 1992,

224, 685–699. [CrossRef]
13. Rufino, S.D.; Donate, L.E.; Canard, L.H.J.; Blundell, T.L. Predicting the conformational class of short and medium size loops

connecting regular secondary structures: Application to comparative modelling. J. Mol. Biol. 1997, 267, 352–367. [CrossRef]
14. Wojcik, J.; Mornon, J.P.; Chomilier, J. New efficient statistical sequence-dependent structure prediction of short to medium-sized

protein loops based on an exhaustive loop classification. J. Mol. Biol. 1999, 289, 1469–1490. [CrossRef]



Biomolecules 2022, 12, 985 11 of 11

15. Oliva, B.; Bates, P.A.; Querol, E.; Avilés, F.X.; Sternberg, M.J.E. An automated classification of the structure of protein loops. J. Mol.

Biol. 1997, 266, 814–830. [CrossRef]
16. Tippana, R.; Xiao, W.; Myong, S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic

Acids Res. 2014, 42, 8106–8114. [CrossRef]
17. Panchenko, A.R.; Madej, T. Structural similarity of loops in protein families: Toward the understanding of protein evolution.

BMC Evol. Biol. 2005, 5, 10. [CrossRef]
18. Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical assessment of methods of protein structure

prediction (CASP)—Round XII. Proteins Struct. Funct. Bioinforma. 2018, 86, 7–15. [CrossRef]
19. Bonet, J.; Planas-Iglesias, J.; Garcia-Garcia, J.; Marín-López, M.A.; Fernandez-Fuentes, N.; Oliva, B. ArchDB 2014: Structural

classification of loops in proteins. Nucleic Acids Res. 2014, 42, D315–D319. [CrossRef]
20. Fernandez-Fuentes, N.; Fiser, A. Saturating representation of loop conformational fragments in structure databanks. BMC Struct.

Biol. 2006, 6, 1–12. [CrossRef]
21. Marks, C.; Nowak, J.; Klostermann, S.; Georges, G.; Dunbar, J.; Shi, J.; Kelm, S.; Deane, C.M. Sphinx: Merging knowledge-based

and ab initio approaches to improve protein loop prediction. Bioinformatics 2017, 33, 1346–1353. [CrossRef]
22. Stein, A.; Kortemme, T. Improvements to Robotics-Inspired Conformational Sampling in Rosetta. PLoS ONE 2013, 8, e63090.

[CrossRef]
23. Park, H.; Lee, G.R.; Heo, L.; Seok, C. Protein loop modeling using a new hybrid energy function and its application to modeling

in inaccurate structural environments. PLoS ONE 2014, 9, e113811. [CrossRef]
24. Karami, Y.; Guyon, F.; De Vries, S.; Tufféry, P. DaReUS-Loop: Accurate loop modeling using fragments from remote or unrelated

proteins. Sci. Rep. 2018, 8, 1–12. [CrossRef]
25. Fernandez-Fuentes, N.; Zhai, J.; Fiser, A. ArchPRED: A template based loop structure prediction server. Nucleic Acids Res. 2006,

34, W173–W176. [CrossRef]
26. Choi, Y.; Deane, C.M. FREAD revisited: Accurate loop structure prediction using a database search algorithm. Wiley Online Libr.

2010, 78, 1431–1440. [CrossRef]
27. Ismer, J.; Rose, A.S.; Tiemann, J.K.S.; Goede, A.; Preissner, R.; Hildebrand, P.W. SL2: An interactive webtool for modeling of

missing segments in proteins. Nucleic Acids Res. 2016, 44, W390–W394. [CrossRef]
28. Messih, M.A.; Lepore, R.; Tramontano, A. LoopIng: A template-based tool for predicting the structure of protein loops. Bioinfor-

matics 2015, 31, 3767–3772. [CrossRef]
29. Deane, C.M.; Blundell, T.L. CODA: A combined algorithm for predicting the structurally variable regions of protein models.

Wiley Online Libr. 2001, 10, 599–612. [CrossRef]
30. Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al.

Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [CrossRef]
31. Touw, W.G.; Baakman, C.; Black, J.; Te Beek, T.A.H.; Krieger, E.; Joosten, R.P.; Vriend, G. A series of PDB-related databanks for

everyday needs. Nucleic Acids Res. 2015, 43, D364–D368. [CrossRef] [PubMed]
32. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.;

et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef] [PubMed]

33. Frishman, D.; Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinforma. 1995, 23,
566–579. [CrossRef] [PubMed]

34. Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33,
2302–2309. [CrossRef]

35. Binder, J.L.; Berendzen, J.; Stevens, A.O.; He, Y.; Wang, J.; Dokholyan, N.V.; Oprea, T.I. AlphaFold illuminates half of the dark
human proteins. Curr. Opin. Struct. Biol. 2022, 74, 102372. [CrossRef]

36. Ashraf, U.; Tengo, L.; Le Corre, L.; Fournier, G.; Busca, P.; McCarthy, A.A.; Rameix-Welti, M.A.; Gravier-Pelletier, C.; Ruigrok,
R.W.H.; Jacob, Y.; et al. Destabilization of the human RED–SMU1 splicing complex as a basis for host-directed antiinfluenza
strategy. Proc. Natl. Acad. Sci. USA 2019, 166, 10968–10977. [CrossRef]

37. Sok, P.; Gógl, G.; Kumar, G.S.; Alexa, A.; Singh, N.; Kirsch, K.; Sebő, A.; Drahos, L.; Gáspári, Z.; Peti, W.; et al. MAP Kinase-
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