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CARBON CYCLE

Strong Southern Ocean carbon uptake evident in

airborne observations
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The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO,), yet
estimates of air-sea CO, flux for the region diverge widely. In this study, we constrained Southern Ocean
air-sea CO, exchange by relating fluxes to horizontal and vertical CO, gradients in atmospheric transport
models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based
measurements of the vertical atmospheric CO, gradient provide robust flux constraints. We found

an annual mean flux of —0.53 + 0.23 petagrams of carbon per year (net uptake) south of 45°S during
the period 2009-2018. This is consistent with the mean of atmospheric inversion estimates and
surface-ocean partial pressure of CO, (Pco,)-based products, but our data indicate stronger annual
mean uptake than suggested by recent interpretations of profiling float observations.

cean water-column carbon inventories
suggest that the Southern Ocean accounts
for more than 40% of the cumulative
global ocean uptake of anthropogenic
CO, (I, 2). However, estimates of con-
temporary net Southern Ocean air-sea carbon
fluxes based on surface-ocean partial pressure
of CO, (Pco,) observations or atmospheric in-
versions remain highly uncertain (3-8). Recent
interpretations of profiling float observations
have introduced further complications, pro-
posing a profound revision of the Southern
Ocean carbon budget, with reduced summer-
time uptake and larger wintertime outgassing
(9, 10). Given the Southern Ocean’s critical role
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as a sink for anthropogenic CO,, as well as
indications that regional fluxes vary subs-
tantially on decadal time scales (7, 11, 12), it is
essential to develop more-robust constraints
on Southern Ocean air-sea CO, exchange.
Observations of atmospheric CO, provide an
opportunity for doing so, as the atmosphere
effectively integrates flux signals over large
surface regions. Atmospheric inversion mod-
els provide a formal statistical method to es-
timate fluxes that optimally satisfy atmospheric
observational constraints, given circulation
simulated by data-constrained atmospheric
transport models (4, 13, 14). However, global-
scale atmospheric inversion models have not
converged on consistent Southern Ocean fluxes,
as they suffer from inaccuracies in the simu-
lated transport, reliance on uncertain “prior”
flux estimates, and requirements to meet tighter
constraints elsewhere in the world, where sig-
nals are stronger and measurements less sparse
(4, 13-17).

In this study, we derived “emergent con-
straints” on regional air-sea fluxes by relating
fluxes in a collection of models to observable
gradients in CO, in the atmosphere directly
overlying the Southern Ocean. We used ob-
servations from nine deployments of three
recent aircraft projects: the HIAPER Pole-to-
Pole Observations (HIPPO) project (18), the
0,/N, Ratio and CO, Airborne Southern Ocean
(ORCAS) study (19), and the Atmospheric
Tomography (ATom) mission (20) (see sup-
plementary materials, hereafter SM). We also
examined 44 atmospheric CO, records from
surface monitoring stations in the high-latitude
Southern Hemisphere, selecting and filtering
the highest-quality data (SM). Collectively, these
observations show a distinct pattern in the
seasonal variability of atmospheric CO, overly-
ing the Southern Ocean, most notably charac-
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terized by lower-troposphere CO, depletion in
austral summer and neutral to weakly positive
enhancement in austral winter (Figs. 1 and
2, A to C). To isolate CO, gradients driven by
Southern Ocean fluxes, we examined CO,
anomalies relative to a local reference, using
potential temperature (0) to delineate boun-
daries in the vertical dimension (SM). We defined
ametric quantifying the vertical CO, gradient,
AgCO,, as the difference between the median
value of CO, observed south of 45°S, where
0 < 280 K, and that in the mid- to upper-
troposphere, where 295 K < 6 < 305 K. The
aircraft observations suggest that the ampli-
tude of seasonal variation in CO, is minimized
within this upper 6 range relative to the rest of
the column (fig. S7); it is also above the vertical
extent of wintertime, near-surface homogeneity
(Fig. 2A) and below altitudes substantially
influenced by the stratosphere, making it a
good reference for detecting regional air-sea
flux signals (see SM). Similarly, we defined a
metric of the horizontal surface gradient,
A,CO,, as the difference between CO, aver-
aged across stations in the core latitudes of
summertime CO, drawdown (Fig. 1, Cand D,
shaded region) and that at the South Pole Ob-
servatory (SPO). AgCO, is strongly negative in
the austral summer, followed by near-neutral
conditions in the austral winter through spring
(Fig. 2B). Correspondingly, A,CO, also indi-
cates summertime drawdown at the surface
and weakly positive to near-neutral conditions
in winter (Fig. 2C), although the amplitude
of seasonal variation in AgCO, is more than
three times larger than that in A,CO,. Var-
iation in drawdown intensity across stations
contributing to A,CO, likely reflects differen-
tial sampling of air exposed to strong ocean
productivity signals (fig. S4).

We developed inferences about air-sea CO,
fluxes from these gradient metrics by exam-
ining a collection of atmospheric inverse models
that simulate time-varying, three-dimensional
CO, fields sampled to replicate observations
(SM). The inverse models demonstrate that
seasonality in AgCO, and A,CO, is dominated
by Southern Ocean air-sea fluxes. Although
land and fossil fuel fluxes are small south of
45°8S, extraregional contributions do influence
local gradients via transport from the north.
The models explicitly simulate CO, tracers
responsive only to ocean (CO,*™), land (CO,™),
and fossil fuel (C02ff) fluxes and subject to
identical transport fields. The simulations of
these tracers indicate that the influence of land
fluxes generally opposes the effect of fossil fuel
emissions for both gradient metrics, and the
seasonality in the land and fossil fuel tracers
is much weaker than the ocean-derived signal
(Fig. 2, D and E, and fig. S6). The negative
vertical (positive horizontal) gradient in fossil
fuel CO, is consistent with elevated CO, con-
centrations in the equatorward portion of the
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A Aircraft obs: CO; minus 295-305K mean (Jan-Feb 2016)

B Aircraft obs: CO; minus 295-305K mean (Aug 2016)
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Fig. 1. Observed patterns in atmospheric CO, over the Southern Ocean.

(A and B) Cross sections observed by aircraft during (A) ORCAS, in January to
February 2016, and (B) ATom-1, in August 2016. Colors show the observed CO,
dry air mole fraction relative to the average observed within the 295-305 K
potential temperature range south of 45°S on each campaign. Contour lines show
the observed potential temperature. See figs. S1 and S2 for flight tracks and
cross-sectional plots for all campaigns, and figs. S3 and S4 for simulated fields.
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(C and D) Compilation of mean CO, observed at surface monitoring stations
minus the National Oceanic and Atmospheric Administration (NOAA) in situ
record at the South Pole Observatory (SPO) during the period 1999-2019 for (C)
summer (DJF) and (D) winter (JJA). The black line is a spline fit provided simply
as a visual guide. Blue shading denotes the latitude band in which we designate
“Southern Ocean stations.” See table S1 and fig. S5 for station locations and
temporal coverage. SM includes additional methodological details.

domain, particularly at high altitude (Fig. 1, A
and B, and figs. S2 to S4). Ancillary measure-
ments of methane-mixing ratios confirm that
this feature reflects long-range transport of
emission signals from land, but that it has
little influence on A¢CO, (figs. S6 and S8).
Additional evidence that fossil fuel emissions
make only small contributions to the annual
mean and seasonality in A,CO, comes from
ancillary observations of sulfur hexafluoride—
which provides an analog for fossil fuel CO,
(21) and shows very little spatial or temporal
structure over the Southern Ocean (fig. S9).
To develop quantitative flux estimates, we
related simulated AgCO,°" and A,CO,°™" to
regionally integrated, temporally averaged air-
sea flux in each modeling system (Fig. 3). In
addition to inverse models, we included forward
atmospheric transport integrations forced with
spatially explicit surface-ocean Pco,-based flux
datasets (SM). Ultimately, each model realiza-
tion was a forward simulation producing three-
dimensional CO, fields from which we com-
puted gradient metrics consistent with the
model’s surface fluxes and atmospheric tran-
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sport. The relationship between the fluxes
and simulated gradient metrics across the
collection of models enabled using the ob-
served gradients to constrain Southern Ocean
fluxes. We assumed that the relevant surface-
influence region can be approximated as the
area south of a particular latitude and focused
on fluxes integrated over the region south of
45°S, noting that the flux products indicate
strong meridional gradients and seasonality in
the zonal mean fluxes south of 30°S (fig. S18,
A and B). We averaged the regional fluxes
over individual seasons to regress against the
surface mole fraction observations and over
90 days before each aircraft campaign (see SM
for sensitivity tests, including an assessment
of different region boundaries and a similar
analysis based on gradients in total CO,). There
is a robust relationship between the CO, flux
south of 45°S and AgCO,”™ across the models
(Fig. 3, A and B). The sensitivity of AgCO,°"
to fluxes varies seasonally, as indicated by a
change in slope between seasons. December to
February (DJF) is distinct in having a smaller
slope (higher sensitivity); the other seasons

2021

individually have larger slopes that are similar
to each other, thus we grouped data from
campaigns flown in March to November together
(Fig. 3B). For the surface data, we find a signif-
icant positive relationship between the regional
air-sea flux and A, CO, in DJF across the models
(Fig. 30); the flux-A,CO, relationship dwindles
in strength during nonsummer months, how-
ever, and there is no significant relationship
in austral winter [June to August (JJA)] (Fig.
3D). The spread enabling these relationships
results from the diversity of flux estimates,
while the scatter about the fits represents
both different realizations of atmospheric
transport and spatiotemporal mismatch be-
tween the true surface influence function
and our coarse spatiotemporal approximation.
The smaller slope for the aircraft data in DJF is
consistent with greater atmospheric stability
(reduced vertical mixing) over the cold ocean
during austral summer, intensifying the flux
signal in the lower troposphere; more-energetic
vertical mixing in other seasons, as well as
stronger horizontal flow, results in diminished
sensitivity in AqCO, and no clear relationship
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Fig. 2. Seasonal evolution of atmospheric CO, over the Southern

Ocean. (A) Vertical profiles of CO, observations collected by aircraft south of
45°S, binned on 5 K potential temperature (8) bins and averaged by season
(whiskers show standard deviation; fig. S6 shows model comparison). MAM,
austral fall (March to May); SON, austral spring (September to November).
(B) The vertical gradient (A¢CO,) in CO, measured from aircraft south of 45°S.
Small points show A¢CO, for individual profiles; larger points show the median
and standard deviation (whiskers) for each flight. The black line shows a
two-harmonic fit to the flight-median points. (C) Monthly climatology

between fluxes and the surface station-based
A,CO, metric in winter.

Vertical lines in Fig. 3 show representative
observations of each gradient metric cor-
rected for land and fossil fuel contributions;
the intersection of these lines with the flux-
gradient fit provides a quantitative flux estimate.
Applying this emergent constraint for each
aircraft campaign yields 10 flux estimates
spread over 7 months of the year; these data
suggest that the Southern Ocean is a strong
sink for CO, in austral summer, with fluxes
that are near-neutral during winter (Fig. 4A).
Applying a two-harmonic fit to the data, we
estimated an annual mean flux spread over
the aircraft observing period (2009-2018)
of -0.53 + 0.23 petagrams of carbon (Pg C)
year™* (Fig. 4B). The seasonal cycle of fluxes
estimated from aircraft campaigns largely
agrees with flux estimates derived from the
Surface Ocean CO, Atlas (SOCAT) Pco, data
product, using either neural network interpo-
lation (22) or the Jena mixed-layer scheme (23)
(Fig. 4A). Similarly, the aircraft-based fluxes
agree with the multimodel mean of inverse
estimates, although inversions tend to under-
estimate summer uptake (fig. S12C), over-
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responsive to only ocean

estimate winter uptake (fig. S12D), and show
greater than 100% disagreement on the annual
mean flux. We have not explicitly accounted
for interannual variability or trends in the
fluxes over the period of aircraft data col-
lection (fig. S12, C and D), although we expect
this to be a relatively small effect, as seasonal
coverage between HIPPO and ATom is rela-
tively uniform (Fig. 4A). The flux estimates
obtained from the surface atmospheric CO,
gradient in summer are consistent with the
aircraft-based estimates (fig. S12C) but have
larger uncertainty—indeed, the magnitude of
the A,CO, signal is small relative to analytical
uncertainty (SM), a particular challenge in
this region, where sites are remote, conditions
are harsh, and intercomparison between the
multiple laboratories maintaining CO, records
is limited (24, 25). Despite the large uncertainty,
however, trends in A, CO, are consistent with
increasing Southern Ocean uptake since 2005
(7, 26) (see SM); for instance, A,CO, declined
by about 0.16 + 0.03 parts per million (ppm)
decade™ over the period 2005-2019 for both
DJF and JJA, and while there was no signi-
ficant flux-gradient relationship in JJA (Fig. 3D),
the associated A,CO, -based flux estimates sug-
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(1999-2019) of the latitudinal gradient in CO, measured by surface stations
(Fig. 1); the black line shows the station mean metric (A,CO,). Separate
laboratory records at Syowa Station (SYO) and Palmer Station (PSA)

have been averaged. The seasonal evolution of (D) AqCO, and (E) A,CO;
simulated in a collection of atmospheric inversion models (table S3). The
points show the median across the models, and whiskers show the standard
deviation. The colors correspond to the total CO, (black) and CO, tracers

(blue), land (green), and fossil (red) surface fluxes.

Note that the y axis bounds differ by panel.

gest the DJF flux was -0.5 = 0.7 Pg C year ™ from
2005 t0 2009, -1.1 + 0.9 Pg C year™' from 2010
to0 2014, and -1.3 = 1.1 Pg C year™" from 2015
to 2019 (fig. S12C). Notably, the aircraft-based
flux estimates indicate stronger annual mean
uptake than fluxes incorporating Pco, estimates
from the Southern Ocean Carbon and Climate
Observations and Modeling (SOCCOM) pro-
filing float pH measurements (10, 27). The
primary SOCCOM flux product we examined
(SOCAT+SOCCOM) is derived from neural net-
work interpolation including both ship-based
surface-ocean Pco, observations as well as float-
derived Pco, estimates [see SM and (27)]; this
product yields weaker annual mean uptake but
tracks the individual aircraft campaign flux
estimates within uncertainty (Fig. 4A). The
other two SOCCOM-based products presented
here are sensitivity runs (10, 27) that selectively
exclude ship-based Pco, observations in the
Southern Ocean (see SM). While these products
have a seasonal phase and amplitude sim-
ilar to those of the aircraft flux estimates,
they indicate greater outgassing in winter
and less ingassing during summer than the
aircraft-based fluxes (Fig. 4). Such large fluxes

should have clear atmospheric signatures
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Fig. 3. Emergent constraints on air-sea fluxes south of 45°S. (A and B) 90
day-mean air-sea fluxes south of 45°S versus AoC0,°" from model simulations
(see SM) replicating aircraft observations collected during (A) December to
February and (B) March to November. Colored vertical lines show an observed
value of AgCO, [ORCAS during January in (A) and ATom-1 in (B)] corrected for
land and fossil fuel influence, with shading indicating both analytical uncertainty
and model spread in the correction (see SM); colored points highlight the model
samples from these particular campaigns, while gray points show data from
other campaigns in the (A) December to February or (B) March to November
timeframe. Figures S10 and S11 show similar plots for each individual aircraft
campaign. (C and D) Seasonal-mean surface fluxes versus A,CO,°" computed

from models for (C) summer (DJF) and (D) winter (JJA) over the period
1999-2019. Points correspond to individual models; whiskers denote the standard
deviation of interannual variability. Light blue vertical lines show the observed
A,CO; corrected for land and fossil fuel influence; shading shows analytical
uncertainty and model spread in the correction (see SM; fig. S12, A and B, shows
A,CO; time series). The sign convention for fluxes is positive upward. Diagonal
lines, where significant, show the best-fit line to all data points shown; inset text
shows an estimate of the slope with standard error (SM), and goodness-of-fit
statistics are also shown. Table S3 provides detailed information on the model
products, defining the acronyms used in the legend. Note that the axis bounds
differ by panel. See fig. S16 for a version of this plot based on total CO,.

(Fig. 3, A and B), but no such signatures are
evident in any of the Southern Ocean aircraft
campaigns (Fig. 2, A and B, and figs. S2, S10,
and S11).

Our analysis demonstrates that Southern
Ocean air-sea fluxes impart a coherent pattern

Long et al., Science 374, 1275-1280 (2021)

in atmospheric CO, as measured by aircraft.
The surface station network is only detectably
sensitive to variations in fluxes during austral
summer and hampered by measurement noise
commensurate with flux signals. Our results
highlight the difficulty global atmospheric in-

3 December 2021

versions have in capturing meaningful estimates
of Southern Ocean fluxes using existing surface
data constraints. It is important to note that a
robust emergent constraint (Fig. 3) requires a
diverse collection of models to avoid results
being affected by biases specific to a single model
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Fig. 4. Observationally based estimates of Southern Ocean air-sea fluxes. (A) The seasonal cycle

of air-sea CO, flux south of 45°S estimated from aircraft campaigns (black points, labels), plotted at the
center of the 90-day window for which the emergent flux constraint was calibrated. Whiskers show

the standard deviation derived from propagating analytical and statistical uncertainties; the black line
shows a two-harmonic fit used to estimate the annual mean flux. The colored lines give the seasonal

cycle from atmospheric inversion systems as well as the neural network extrapolation (22) of the Surface
Ocean CO, Atlas (SOCAT) Pco, observations (31) and profiling float observations from the Southern

Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (32). Fluxes are averaged over the
period 2009-2018, except for the three neural network-based flux estimates (27) incorporating SOCCOM
observations, which are averaged over the period 2015-2017. (B) Annual mean flux estimated in this
study (leftmost bar) including uncertainty (whisker), along with the mean and standard deviation (whiskers)
across the inversion systems shown in (A) as well as the surface-ocean Pco,-based methods; averaging
time periods are noted in the axis labels (both SOCAT flux estimates were derived using neural network
training over the full observational period). The uncertainty estimate on the SOCAT and SOCCOM fluxes is
approximated from (10), which reported +0.15 Pg C year™ as the “method uncertainty” associated with the
neural network-based flux estimates for the whole Southern Ocean (south of 44°S). Note that while
$990c_v2020 and s99¢_SOCAT+SOCCOM_v2020 are global inversions, their ocean fluxes are prescribed,
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Up in the air

Understanding ocean-atmospheric carbon dioxide (CO) fluxes in the Southern Ocean is necessary for quantifying the
global CO budget, but measurements in the harsh conditions there make collecting good data difficult, so a quantitative
picture still is out of reach. Long et al. present measurements of atmospheric CO concentrations made by aircraft and
show that the annual net flux of carbon into the ocean south of 45°S is large, with stronger summertime uptake and
less wintertime outgassing than other recent observations have indicated. —HJS
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