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The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO2), yet

estimates of air-sea CO2 flux for the region diverge widely. In this study, we constrained Southern Ocean

air-sea CO2 exchange by relating fluxes to horizontal and vertical CO2 gradients in atmospheric transport

models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based

measurements of the vertical atmospheric CO2 gradient provide robust flux constraints. We found

an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during

the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and

surface-ocean partial pressure of CO2 (PCO2)–based products, but our data indicate stronger annual

mean uptake than suggested by recent interpretations of profiling float observations.

O
cean water-column carbon inventories

suggest that the SouthernOceanaccounts

for more than 40% of the cumulative

global ocean uptake of anthropogenic

CO2 (1, 2). However, estimates of con-

temporary net Southern Ocean air-sea carbon

fluxes based on surface-ocean partial pressure

of CO2 (PCO2) observations or atmospheric in-

versions remain highly uncertain (3–8). Recent

interpretations of profiling float observations

have introduced further complications, pro-

posing a profound revision of the Southern

Ocean carbon budget, with reduced summer-

time uptake and larger wintertime outgassing

(9, 10). Given the SouthernOcean’s critical role

as a sink for anthropogenic CO2, as well as

indications that regional fluxes vary subs-

tantially on decadal time scales (7, 11, 12), it is

essential to develop more-robust constraints

on Southern Ocean air-sea CO2 exchange.

Observations of atmospheric CO2 provide an

opportunity for doing so, as the atmosphere

effectively integrates flux signals over large

surface regions. Atmospheric inversion mod-

els provide a formal statistical method to es-

timate fluxes that optimally satisfy atmospheric

observational constraints, given circulation

simulated by data-constrained atmospheric

transport models (4, 13, 14). However, global-

scale atmospheric inversion models have not

converged on consistent Southern Ocean fluxes,

as they suffer from inaccuracies in the simu-

lated transport, reliance on uncertain “prior”

flux estimates, and requirements tomeet tighter

constraints elsewhere in the world, where sig-

nals are stronger and measurements less sparse

(4, 13–17).

In this study, we derived “emergent con-

straints” on regional air-sea fluxes by relating

fluxes in a collection of models to observable

gradients in CO2 in the atmosphere directly

overlying the Southern Ocean. We used ob-

servations from nine deployments of three

recent aircraft projects: the HIAPER Pole-to-

Pole Observations (HIPPO) project (18), the

O2/N2 Ratio and CO2 Airborne Southern Ocean

(ORCAS) study (19), and the Atmospheric

Tomography (ATom) mission (20) (see sup-

plementary materials, hereafter SM). We also

examined 44 atmospheric CO2 records from

surface monitoring stations in the high-latitude

Southern Hemisphere, selecting and filtering

the highest-quality data (SM). Collectively, these

observations show a distinct pattern in the

seasonal variability of atmospheric CO2 overly-

ing the Southern Ocean, most notably charac-

terized by lower-troposphere CO2 depletion in

austral summer and neutral to weakly positive

enhancement in austral winter (Figs. 1 and

2, A to C). To isolate CO2 gradients driven by

Southern Ocean fluxes, we examined CO2

anomalies relative to a local reference, using

potential temperature (q) to delineate boun-

daries in the vertical dimension (SM).Wedefined

a metric quantifying the vertical CO2 gradient,

DqCO2, as the difference between the median

value of CO2 observed south of 45°S, where

q < 280 K, and that in the mid- to upper-

troposphere, where 295 K < q < 305 K. The

aircraft observations suggest that the ampli-

tude of seasonal variation in CO2 is minimized

within this upper q range relative to the rest of

the column (fig. S7); it is also above the vertical

extent of wintertime, near-surface homogeneity

(Fig. 2A) and below altitudes substantially

influenced by the stratosphere, making it a

good reference for detecting regional air-sea

flux signals (see SM). Similarly, we defined a

metric of the horizontal surface gradient,

DyCO2, as the difference between CO2 aver-

aged across stations in the core latitudes of

summertime CO2 drawdown (Fig. 1, C and D,

shaded region) and that at the South Pole Ob-

servatory (SPO). DqCO2 is strongly negative in

the austral summer, followed by near-neutral

conditions in the austral winter through spring

(Fig. 2B). Correspondingly, DyCO2 also indi-

cates summertime drawdown at the surface

andweakly positive to near-neutral conditions

in winter (Fig. 2C), although the amplitude

of seasonal variation in DqCO2 is more than

three times larger than that in DyCO2. Var-

iation in drawdown intensity across stations

contributing to DyCO2 likely reflects differen-

tial sampling of air exposed to strong ocean

productivity signals (fig. S4).

We developed inferences about air-sea CO2

fluxes from these gradient metrics by exam-

ining a collection of atmospheric inversemodels

that simulate time-varying, three-dimensional

CO2 fields sampled to replicate observations

(SM). The inverse models demonstrate that

seasonality in DqCO2 and DyCO2 is dominated

by Southern Ocean air-sea fluxes. Although

land and fossil fuel fluxes are small south of

45°S, extraregional contributions do influence

local gradients via transport from the north.

The models explicitly simulate CO2 tracers

responsive only to ocean (CO2
ocn

), land (CO2
lnd
),

and fossil fuel (CO2
ff
) fluxes and subject to

identical transport fields. The simulations of

these tracers indicate that the influence of land

fluxes generally opposes the effect of fossil fuel

emissions for both gradient metrics, and the

seasonality in the land and fossil fuel tracers

is much weaker than the ocean-derived signal

(Fig. 2, D and E, and fig. S6). The negative

vertical (positive horizontal) gradient in fossil

fuel CO2 is consistent with elevated CO2 con-

centrations in the equatorward portion of the
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domain, particularly at high altitude (Fig. 1, A

and B, and figs. S2 to S4). Ancillary measure-

ments of methane-mixing ratios confirm that

this feature reflects long-range transport of

emission signals from land, but that it has

little influence on DqCO2 (figs. S6 and S8).

Additional evidence that fossil fuel emissions

make only small contributions to the annual

mean and seasonality in DyCO2 comes from

ancillary observations of sulfur hexafluoride—

which provides an analog for fossil fuel CO2

(21) and shows very little spatial or temporal

structure over the Southern Ocean (fig. S9).

To develop quantitative flux estimates, we

related simulated DqCO2
ocn

and DyCO2
ocn

to

regionally integrated, temporally averaged air-

sea flux in each modeling system (Fig. 3). In

addition to inversemodels, we included forward

atmospheric transport integrations forced with

spatially explicit surface-ocean PCO2-based flux

datasets (SM). Ultimately, each model realiza-

tion was a forward simulation producing three-

dimensional CO2 fields from which we com-

puted gradient metrics consistent with the

model’s surface fluxes and atmospheric tran-

sport. The relationship between the fluxes

and simulated gradient metrics across the

collection of models enabled using the ob-

served gradients to constrain Southern Ocean

fluxes. We assumed that the relevant surface-

influence region can be approximated as the

area south of a particular latitude and focused

on fluxes integrated over the region south of

45°S, noting that the flux products indicate

strongmeridional gradients and seasonality in

the zonal mean fluxes south of 30°S (fig. S18,

A and B). We averaged the regional fluxes

over individual seasons to regress against the

surface mole fraction observations and over

90 days before each aircraft campaign (see SM

for sensitivity tests, including an assessment

of different region boundaries and a similar

analysis based on gradients in total CO2). There

is a robust relationship between the CO2 flux

south of 45°S and DqCO2
ocn

across the models

(Fig. 3, A and B). The sensitivity of DqCO2
ocn

to fluxes varies seasonally, as indicated by a

change in slope between seasons. December to

February (DJF) is distinct in having a smaller

slope (higher sensitivity); the other seasons

individually have larger slopes that are similar

to each other, thus we grouped data from

campaigns flown inMarch toNovember together

(Fig. 3B). For the surface data, we find a signif-

icant positive relationship between the regional

air-sea flux and DyCO2 in DJF across the models

(Fig. 3C); the flux-DyCO2 relationship dwindles

in strength during nonsummer months, how-

ever, and there is no significant relationship

in austral winter [June to August (JJA)] (Fig.

3D). The spread enabling these relationships

results from the diversity of flux estimates,

while the scatter about the fits represents

both different realizations of atmospheric

transport and spatiotemporal mismatch be-

tween the true surface influence function

and our coarse spatiotemporal approximation.

The smaller slope for the aircraft data inDJF is

consistent with greater atmospheric stability

(reduced vertical mixing) over the cold ocean

during austral summer, intensifying the flux

signal in the lower troposphere; more-energetic

vertical mixing in other seasons, as well as

stronger horizontal flow, results in diminished

sensitivity in DqCO2 and no clear relationship

Long et al., Science 374, 1275–1280 (2021) 3 December 2021 2 of 6

A B

C D

Fig. 1. Observed patterns in atmospheric CO2 over the Southern Ocean.

(A and B) Cross sections observed by aircraft during (A) ORCAS, in January to

February 2016, and (B) ATom-1, in August 2016. Colors show the observed CO2

dry air mole fraction relative to the average observed within the 295–305 K

potential temperature range south of 45°S on each campaign. Contour lines show

the observed potential temperature. See figs. S1 and S2 for flight tracks and

cross-sectional plots for all campaigns, and figs. S3 and S4 for simulated fields.

(C and D) Compilation of mean CO2 observed at surface monitoring stations

minus the National Oceanic and Atmospheric Administration (NOAA) in situ

record at the South Pole Observatory (SPO) during the period 1999–2019 for (C)

summer (DJF) and (D) winter (JJA). The black line is a spline fit provided simply

as a visual guide. Blue shading denotes the latitude band in which we designate

“Southern Ocean stations.” See table S1 and fig. S5 for station locations and

temporal coverage. SM includes additional methodological details.
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between fluxes and the surface station–based

DyCO2 metric in winter.

Vertical lines in Fig. 3 show representative

observations of each gradient metric cor-

rected for land and fossil fuel contributions;

the intersection of these lines with the flux-

gradient fit provides a quantitative flux estimate.

Applying this emergent constraint for each

aircraft campaign yields 10 flux estimates

spread over 7 months of the year; these data

suggest that the Southern Ocean is a strong

sink for CO2 in austral summer, with fluxes

that are near-neutral during winter (Fig. 4A).

Applying a two-harmonic fit to the data, we

estimated an annual mean flux spread over

the aircraft observing period (2009–2018)

of –0.53 ± 0.23 petagrams of carbon (Pg C)

year
–1
(Fig. 4B). The seasonal cycle of fluxes

estimated from aircraft campaigns largely

agrees with flux estimates derived from the

Surface Ocean CO2 Atlas (SOCAT) PCO2 data

product, using either neural network interpo-

lation (22) or the Jena mixed-layer scheme (23)

(Fig. 4A). Similarly, the aircraft-based fluxes

agree with the multimodel mean of inverse

estimates, although inversions tend to under-

estimate summer uptake (fig. S12C), over-

estimate winter uptake (fig. S12D), and show

greater than 100% disagreement on the annual

mean flux. We have not explicitly accounted

for interannual variability or trends in the

fluxes over the period of aircraft data col-

lection (fig. S12, C and D), although we expect

this to be a relatively small effect, as seasonal

coverage between HIPPO and ATom is rela-

tively uniform (Fig. 4A). The flux estimates

obtained from the surface atmospheric CO2

gradient in summer are consistent with the

aircraft-based estimates (fig. S12C) but have

larger uncertainty—indeed, the magnitude of

the DyCO2 signal is small relative to analytical

uncertainty (SM), a particular challenge in

this region, where sites are remote, conditions

are harsh, and intercomparison between the

multiple laboratoriesmaintaining CO2 records

is limited (24, 25). Despite the large uncertainty,

however, trends in DyCO2 are consistent with

increasing Southern Ocean uptake since 2005

(7, 26) (see SM); for instance, DyCO2 declined

by about 0.16 ± 0.03 parts per million (ppm)

decade
−1

over the period 2005–2019 for both

DJF and JJA, and while there was no signi-

ficant flux-gradient relationship in JJA (Fig. 3D),

the associated DyCO2 -based flux estimates sug-

gest the DJF flux was –0.5 ± 0.7 Pg C year
–1
from

2005 to 2009, –1.1 ± 0.9 Pg C year
–1
from 2010

to 2014, and −1.3 ± 1.1 Pg C year
–1
from 2015

to 2019 (fig. S12C). Notably, the aircraft-based

flux estimates indicate stronger annual mean

uptake than fluxes incorporating PCO2 estimates

from the Southern Ocean Carbon and Climate

Observations and Modeling (SOCCOM) pro-

filing float pH measurements (10, 27). The

primary SOCCOM flux product we examined

(SOCAT+SOCCOM) is derived from neural net-

work interpolation including both ship-based

surface-oceanPCO2 observations aswell as float-

derived PCO2 estimates [see SM and (27)]; this

product yields weaker annual mean uptake but

tracks the individual aircraft campaign flux

estimates within uncertainty (Fig. 4A). The

other two SOCCOM-based products presented

here are sensitivity runs (10, 27) that selectively

exclude ship-based PCO2 observations in the

SouthernOcean (see SM).While these products

have a seasonal phase and amplitude sim-

ilar to those of the aircraft flux estimates,

they indicate greater outgassing in winter

and less ingassing during summer than the

aircraft-based fluxes (Fig. 4). Such large fluxes

should have clear atmospheric signatures
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A

B C

D E

Fig. 2. Seasonal evolution of atmospheric CO2 over the Southern

Ocean. (A) Vertical profiles of CO2 observations collected by aircraft south of

45°S, binned on 5 K potential temperature (q) bins and averaged by season

(whiskers show standard deviation; fig. S6 shows model comparison). MAM,

austral fall (March to May); SON, austral spring (September to November).

(B) The vertical gradient (DqCO2) in CO2 measured from aircraft south of 45°S.

Small points show DqCO2 for individual profiles; larger points show the median

and standard deviation (whiskers) for each flight. The black line shows a

two-harmonic fit to the flight-median points. (C) Monthly climatology

(1999–2019) of the latitudinal gradient in CO2 measured by surface stations

(Fig. 1); the black line shows the station mean metric (DyCO2). Separate

laboratory records at Syowa Station (SYO) and Palmer Station (PSA)

have been averaged. The seasonal evolution of (D) DqCO2 and (E) DyCO2

simulated in a collection of atmospheric inversion models (table S3). The

points show the median across the models, and whiskers show the standard

deviation. The colors correspond to the total CO2 (black) and CO2 tracers

responsive to only ocean (blue), land (green), and fossil (red) surface fluxes.

Note that the y axis bounds differ by panel.
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(Fig. 3, A and B), but no such signatures are

evident in any of the Southern Ocean aircraft

campaigns (Fig. 2, A and B, and figs. S2, S10,

and S11).

Our analysis demonstrates that Southern

Ocean air-sea fluxes impart a coherent pattern

in atmospheric CO2 as measured by aircraft.

The surface station network is only detectably

sensitive to variations in fluxes during austral

summer and hampered by measurement noise

commensurate with flux signals. Our results

highlight the difficulty global atmospheric in-

versions have in capturingmeaningful estimates

of Southern Ocean fluxes using existing surface

data constraints. It is important to note that a

robust emergent constraint (Fig. 3) requires a

diverse collection of models to avoid results

being affected by biases specific to a singlemodel

Long et al., Science 374, 1275–1280 (2021) 3 December 2021 4 of 6

A B

C D

Fig. 3. Emergent constraints on air-sea fluxes south of 45°S. (A and B) 90

day–mean air-sea fluxes south of 45°S versus DqCO2
ocn from model simulations

(see SM) replicating aircraft observations collected during (A) December to

February and (B) March to November. Colored vertical lines show an observed

value of DqCO2 [ORCAS during January in (A) and ATom-1 in (B)] corrected for

land and fossil fuel influence, with shading indicating both analytical uncertainty

and model spread in the correction (see SM); colored points highlight the model

samples from these particular campaigns, while gray points show data from

other campaigns in the (A) December to February or (B) March to November

timeframe. Figures S10 and S11 show similar plots for each individual aircraft

campaign. (C and D) Seasonal-mean surface fluxes versus DyCO2
ocn computed

from models for (C) summer (DJF) and (D) winter (JJA) over the period

1999–2019. Points correspond to individual models; whiskers denote the standard

deviation of interannual variability. Light blue vertical lines show the observed

DyCO2 corrected for land and fossil fuel influence; shading shows analytical

uncertainty and model spread in the correction (see SM; fig. S12, A and B, shows

DyCO2 time series). The sign convention for fluxes is positive upward. Diagonal

lines, where significant, show the best-fit line to all data points shown; inset text

shows an estimate of the slope with standard error (SM), and goodness-of-fit

statistics are also shown. Table S3 provides detailed information on the model

products, defining the acronyms used in the legend. Note that the axis bounds

differ by panel. See fig. S16 for a version of this plot based on total CO2.
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or unidentified transport biases common across

models. The collection of models we included

use four different underlying meteorological

reanalysis datasets, four different transport

models, and differ in spatial resolution and

treatment of vertical transport (table S3); more-

over, they make up a substantial proportion

of the models commonly used for long-term

global CO2 inversions. However, inclusion of

additional model solutions would improve

confidence in our result by increasing the

number of independent realizations of transport.

Despite this potential limitation, aircraft obser-

vations leverage the broad integrative power of

the atmosphere, which provides an advantage

over estimating fluxes from surface ocean

PCO2 observations: The ocean surface is heter-

ogeneous, making representative sampling

difficult; air-sea fluxes computed from PCO2

estimates depend on an uncertain gas ex-

change parameterization (28); and float-based

estimates have additional uncertainty associ-

ated with estimating PCO2 itself (29). However,

we resolved fluxes only over a broadly defined

Southern Ocean region; finer-scale spatial fea-

tures present in surface-ocean PCO2 data can

provide important mechanistic insight, rein-

forcing the need for more high-quality, widely

distributed ocean observations to advance pro-

cessunderstanding.Uncertainty regardingSouth-

ern Ocean carbon uptake is a critical limitation

in current understanding of the global carbon

cycle (30). Our results can be used to validate

Earth system models and inversion-based as-

sessments of the SouthernHemisphere carbon

budget. Critically, integral constraints on the

atmospheric CO2 budget require balanced fluxes;

therefore, our result of strong Southern Ocean

uptake alleviates the need to identify missing

SouthernHemisphere land or subtropical ocean

sinks, as suggested by the float observations.

Finally, our analysis has important implications

for effective monitoring of the Southern Ocean

carbon sink. A regular program of aircraft ob-

servations could provide a cost-effective ap-

proach to drastically improve estimates of the

carbon budget for the Southern Ocean and

globally, helping to fulfill a societal requirement

for clear understanding of mechanisms driving

variation in atmospheric CO2.
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A

B

Fig. 4. Observationally based estimates of Southern Ocean air-sea fluxes. (A) The seasonal cycle

of air-sea CO2 flux south of 45°S estimated from aircraft campaigns (black points, labels), plotted at the

center of the 90-day window for which the emergent flux constraint was calibrated. Whiskers show

the standard deviation derived from propagating analytical and statistical uncertainties; the black line

shows a two-harmonic fit used to estimate the annual mean flux. The colored lines give the seasonal

cycle from atmospheric inversion systems as well as the neural network extrapolation (22) of the Surface

Ocean CO2 Atlas (SOCAT) PCO2 observations (31) and profiling float observations from the Southern

Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (32). Fluxes are averaged over the

period 2009–2018, except for the three neural network–based flux estimates (27) incorporating SOCCOM

observations, which are averaged over the period 2015–2017. (B) Annual mean flux estimated in this

study (leftmost bar) including uncertainty (whisker), along with the mean and standard deviation (whiskers)

across the inversion systems shown in (A) as well as the surface-ocean PCO2-based methods; averaging

time periods are noted in the axis labels (both SOCAT flux estimates were derived using neural network

training over the full observational period). The uncertainty estimate on the SOCAT and SOCCOM fluxes is

approximated from (10), which reported ±0.15 Pg C year−1 as the “method uncertainty” associated with the

neural network–based flux estimates for the whole Southern Ocean (south of 44°S). Note that while

s99oc_v2020 and s99c_SOCAT+SOCCOM_v2020 are global inversions, their ocean fluxes are prescribed,

not optimized using atmospheric observations (see SM); similarly, the CAMS(v20r1) ocean fluxes remain
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