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Abstract

Compact nonresonant systems of sub-Jovian planets are the most common outcome of the planet formation
process. Despite exhibiting broad overall diversity, these planets also display dramatic signatures of intrasystem
uniformity in their masses, radii, and orbital spacings. Although the details of their formation and early evolution
are poorly known, sub-Jovian planets are expected to emerge from their natal nebulae as multiresonant chains,
owing to planet–disk interactions. Within the context of this scenario, the architectures of observed exoplanet
systems can be broadly replicated if resonances are disrupted through postnebular dynamical instabilities. Here, we
generate an ad hoc sample of resonant chains and use a suite of N-body simulations to show that instabilities can
not only reproduce the observed period ratio distribution, but that the resulting collisions also modify the mass
uniformity in a way that is consistent with the data. Furthermore, we demonstrate that primordial mass uniformity,
motivated by the sample of resonant chains coupled with dynamical sculpting, naturally generates uniformity in
orbital period spacing similar to what is observed. Finally, we find that almost all collisions lead to perfect mergers,
but some form of postinstability damping is likely needed to fully account for the present-day dynamically cold
architectures of sub-Jovian exoplanets.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet astronomy (486); Orbital
resonances (1181); Exoplanet formation (492)

1. Introduction

Over the course of the past two decades, the discovery and

characterization of thousands of extrasolar planets by the

Kepler and TESS missions has shown that planet formation is

both highly efficient and suggested that the dominant mode of

planet formation is one that produces so-called super-Earths.

These planets tend to exist in multiples, and typically have

masses a few times that of Earth and orbital periods smaller

than ∼100 days (Howard et al. 2012; Batalha et al. 2013;

Fressin et al. 2013; Marcy et al. 2014; Thompson et al. 2018).

A remarkable discovery of this expanding census is the

physical diversity of the galactic planet sample. Planets vary by

several orders of magnitude in radius, mass, and orbital

distance and frequently orbit stars not similar to the Sun

(Raymond & Morbidelli 2022). While not fully quantified, the

emerging picture suggests the solar system is an unusual

outcome of planet formation because of the presence of Jupiter

and the lack of a compact system of inner planets (Batygin &

Laughlin 2015; Izidoro et al. 2015; Raymond et al. 2020).
An equally remarkable, but more recent discovery, is that the

galactic diversity largely disappears when considering only

individual planetary systems. The “peas-in-a-pod” pattern of

intrasystem uniformity has demonstrated that the dispersion in

planet spacing, mass, and radius within individual planetary

systems is much smaller than that across the exoplanet

population as a whole (Millholland et al. 2017; Wang 2017;

Weiss et al. 2018). In other words, many systems seem to have

a characteristic planet mass, radius, and spacing that is

representative for a particular star, but differs drastically

system to system. The physical origin of this uniformity
remains unresolved.
A distinct mystery is the origin of the period ratio distribution.

Plausible models of super-Earth formation typically include
planet–disk interactions that drive inward migration and often
lead to capture of the planets into mean-motion resonances
(MMRs)—orbital configurations where the period ratios are
approximated by nearby integers (Terquem & Papaloizou 2007).
While there is weak clustering of planets just wide of MMRs,
near-resonant planets form a distinct minority in the close-in
planet sample (Fabrycky et al. 2014). A rare, but important
exception to this rule is the class of resonant chains, such as
Kepler-60, Kepler-80, Kepler-223, K2-138, TRAPPIST-1, and
TOI-178 (Goździewski et al. 2016; MacDonald et al. 2016; Mills
et al. 2016; Luger et al. 2017; Christiansen et al. 2018; Leleu et al.
2021), as well as a subset of near-resonant systems that show hints
of past resonant behavior (Pichierri et al. 2019; Goldberg &
Batygin 2021). Nevertheless, the dominantly nonresonant orbital
configurations of short-period planets constitute an important
point of tension between theory and observations.
Multiple ideas have been put forth to explain this discrepancy

over the last decade and a half. One suggestion is that disk
turbulence destabilizes resonances for small planets (Adams et al.
2008; Rein & Papaloizou 2009; Batygin & Adams 2017).
However, both analytic calculations (Batygin & Adams 2017) as
well as numerical simulations have confirmed that this effect is
too small to explain the discrepancy (Izidoro et al. 2017).
Likewise, resonant metastability, proposed in Goldreich &
Schlichting (2014), operates in a region of parameter space that
does not encompass most of the sample. As a whole, these models
have failed to provide a complete explanation for the data, and
detailed hydrodynamic simulations (e.g., Cresswell & Nelson
2008; Ataiee & Kley 2020, and the references therein) find that
the formation of compact resonant chains is a common outcome
of disk-driven orbital evolution. Given this tension between
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theoretical expectations and observational ground truths, physical
processes must either prevent the formation of resonances in the
first place, or disrupt them later.

The recently proposed “breaking the chains” scenario of
Izidoro et al. (2017) argues for the latter alternative. In this model,
resonances are in fact routinely established in nascent exoplane-
tary systems during orbital migration. Subsequently, the gaseous
disk, which had provided eccentricity damping, dissipates, and the
planetary system relaxes through the onset of dynamical instability
and collisions. Several aspects of the exoplanetary sample are
consistent with this hypothesis. First, planetary systems lie close to
the margin of stability on gigayear timescales, suggesting that they
experienced dynamical sculpting, i.e., encountering instabilities
until becoming stable (Pu & Wu 2015). Second, widespread
instabilities reproduce the shape and slope of the observed period
ratio distribution if∼90% of systems experience such a disruption
in their lifetime (Izidoro et al. 2017, 2021). As successful as this
scenario is in explaining many constraints of the observed
planetary sample, an important outstanding problem remains.
Naively, consolidation of planets during collisions could destroy
the delicate intrasystem uniformity that is observed. Furthermore,
orbital eccentricities are excited by planet–planet scattering, but
damped by collisions (Matsumoto & Kokubo 2017; Esteves et al.
2020; Poon et al. 2020) and it remains unclear whether measured
low eccentricities of planets in compact systems are consistent
with typical postinstability orbits (Hadden & Lithwick 2014; Mills
et al. 2019; Yee et al. 2021).

The remainder of this paper details our investigation into the
compatibility of the observed peas-in-a-pod correlations with the
instability model. We create physically motivated models of
preinstability super-Earth/sub-Neptune systems, trigger instabil-
ities, and compute statistical properties of their postinstability
architectures. We then compare them to observed results. In
Section 2, we describe how we construct physically realistic
initial conditions of resonant systems informed by real, stable,
resonant chain systems. In Section 3, we describe how we trigger
dynamical instabilities and track evolution of the systems
through collisions and mergers. In Section 4 we present the
results of our suite of simulations and their degree of consistency
with observed data. We summarize and discuss our results in
Section 5.

2. Initial Conditions

The first step in modeling the instability scenario is to construct
a broad library of initial conditions. In the framework of this
model, the observed resonant chains are the small fraction of
systems that did not undergo episodes of postnebular planet–
planet scattering. Therefore, we construct our initial conditions

informed by this observed subsample. By virtue of being near
MMR, these systems lend themselves to precise mass determina-
tions through transit timing variations (TTVs; Lithwick et al.
2012), and are well studied with spectroscopic surveys (e.g.,
Petigura et al. 2017).
To construct multiresonant systems through convergent

orbital migration, we select the number of planets N, the
average planet mass m , the planet relative standard deviation

mm , and the initial resonant indices p: q. We take N= 11,
approximately twice the inferred true average multiplicity
(Zink et al. 2019). To cover a similar distribution of masses as
the observed resonant chains (Table 1), we pick values of
m 10.0 for a higher-mass sample (runs 1–8) and m 1.5
for a lower-mass sample (run 9), typically selecting the highest
mass for which the resonances can be formed without
triggering an instability in the presence of the disk. Initial
mass dispersions mm are in the range 0–0.5. Each simulation
draws masses from a normal distribution with mean m and
variance m

2 . While real resonant chain systems, such as the
ones in Figure 1, contain a variety of first-, second-, and third-
order resonances, our constructed systems must be more
compact than the observed resonant systems in order to go

Table 1

Basic Properties of the Six Well-characterized Resonant Chains with Sub-Jovian Planets

System # Planets m M M( ) (M⊕) mm
Resonances Present Source of Mass Measurements

Kepler-60 3 3.91 0.18 4:3, 5:4 Jontof-Hutter et al. (2016)

TRAPPIST-1 7 11.51 0.46 5:3, 8:5, 3:2, 4:3 Agol et al. (2021)

Kepler-223 4 5.63 0.31 3:2, 4:3 Mills et al. (2016)

Kepler-80 6a, b 8.43 0.23 3:2, 4:3 MacDonald et al. (2016)

TOI-178 6 6.41 0.53 2:1, 5:3, 3:2 Leleu et al. (2021)

K2-138 5b 7.06 0.62 3:2 Christiansen et al. (2018)

Notes.
a
Only four planets in Kepler-80 have measured masses.

b
Kepler-80 f and K2-138 g have been excluded because they are decoupled from the resonant dynamics.

Figure 1. Mass ratios and orbital period ratios of five well-characterized
resonant chains. Center: colored points represent adjacent pairs of planets and
are placed according to mass and orbital period ratio computed from outside in.
Colored lines connect adjacent pairs in the same system, and horizontal black
lines mark orbital resonances. Adjacent pairs missing at least one measured
mass were discarded. Top: kernel density estimates of the distribution of mass
ratio for the five resonant chains (red) vs. all sub-Jovian systems (gray). Right:
histogram of period ratios of adjacent planets with the same color scheme as the
top panel. Overall, resonant chains exhibit tighter clustering in both period
ratios and mass ratios than the overall sample of sub-Jovian exoplanets.
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unstable. Therefore, we pick resonances with smaller period
ratios, specifically 4:3 for the high-mass sample and 5:4 for the
low-mass sample. These initial conditions are summarized in
Table 2.

We simulate resonant chain formation and subsequent
evolution with the mercurius integrator from the rebound

gravitational dynamics software package, with time steps lower
than 1/15 of the innermost orbital period (Rein et al. 2019).
Planets are placed on circular, coplanar orbits around an
M

å
= 1Me star, with the semimajor axis of the innermost planet

set to 0.1 au and period ratios just wide of the intended resonance.
We then activate convergent migration with eccentricity damping,
implemented within reboundx (Tamayo et al. 2020), until the
planets have entered the intended resonance (105 yr). The details
of the migration and damping timescales are provided in the
Appendix. In practice, planets in the lower-mass simulations
entered either the 5:4 or the 6:5 resonance. Then, we remove the
semimajor axis and eccentricity damping exponentially over a
timescale of 103 yr. We have checked that increasing these
timescales does not meaningfully alter our results. The final
preinstability systems contain many librating resonance angles
and the orbital eccentricities are typically∼0.05 or smaller. At this
point we rescale the systems so that the inner planet has a
semimajor axis 0.1 au, which corresponds to a drop-off in the
prevalence of super-Earths (Petigura et al. 2013).

3. Instabilities

The instability and collision-driven model necessitates a source
of instabilities. To this end, Izidoro et al. (2017) and Izidoro et al.
(2021) produce post-disk-dissipation planetary systems that are
too tightly packed to remain stable on gigayear timescales, and
hence will undergo an intrinsic dynamical instability triggered
purely by gravitational dynamics. However, there are many other
possible instability mechanisms due to extrinsic, i.e., astrophysi-
cal, factors. Spalding & Batygin (2016) and Spalding et al. (2018)
demonstrate that an oblique and initially rapidly rotating star can
excite mutual inclinations, leading to secular resonances that drive
instabilities (see also Schultz et al. 2021). Matsumoto & Ogihara
(2020) show that mass loss in the systems (of order ∼10% in
planetary mass or ∼1% in stellar mass) can also induce
instabilities and break resonant chains. As a whole, if instabilities
occur frequently, they unavoidably play a major role in modifying
orbits and shaping the architectures of exoplanetary systems
(Ogihara & Ida 2009).

Our intention is not to test various instability mechanisms;
rather, we want to investigate the consequences of collisions
and mergers. Additionally, the instability mechanism is not
believed to dramatically affect the postinstability configuration
itself (Nesvorný & Morbidelli 2012). Therefore, we adopt the

mechanism of Matsumoto & Ogihara (2020): planet masses are

exponentially decreased with an evolution timescale of 1 Myr

until they reach 90% of their original mass. This suffices

to trigger instabilities in many cases without qualitatively

changing the system and does not require overly long

integrations. We evolve the initially resonant systems for a

further 5 Myr, monitoring for collisions. When one is detected,

we record the colliding pair’s masses and relative velocities and

then replace them with a single planet whose mass and linear

momentum are the sum of the colliders’. While this assumes

collisions are perfect mergers, we verify this assumption below,

in agreement with the results of Poon et al. (2020) and Esteves

et al. (2022). To produce a statistically useful sample, we repeat

the collision phase 50 times, starting from the mass reduction,

but use a mass loss timescale that is randomly shifted by ∼1%

from 1Myr. Because of the chaotic dynamics of planet–planet

scattering, each run produces a different set of collisions and it

is possible to compute distributions of the final parameters

(Figure 2).

4. Results

To evaluate whether collisions are consistent with the

architecture of observed planetary systems, we compute statistical

measures used in previous works to characterize the mass and

spacing uniformity of our synthetic systems. To construct the

sample of observed systems with which to compare our synthetic

ones, we select all systems from the Exoplanet Archive3 with at

least three planets that do not contain planets more massive
than 30 M⊕. The latter constraint is chosen because mass
uniformity vanishes in systems with giant planets (Wang 2017).
The six resonant chains in Table 1 and Figure 1 are a subset of
this sample.

4.1. Intrasystem Uniformity

Although the works that identified the intrasystem unifor-

mity pattern each used different statistics to identify the

uniformity (Millholland et al. 2017; Wang 2017; Weiss et al.

2018), for definitiveness, we adopt a modified version of the

mass uniformity metrics from Wang (2017). Specifically, we

normalize by the average planet mass in a system, so that larger

planets do not appear less uniform, and by the total number of

systems, so that the metric does not depend on the number of

Table 2

Key System Architecture Parameters in Our Suite of Simulations with N = 11

Run Initial m (M⊕) Final m (M⊕) Initial Resonance Initial Final Final r Final Final f

1 8.0 16.6 4:3 0.00 0.31 0.34 10.2 0.46

2 8.6 17.1 4:3 0.09 0.31 0.44 11.6 0.43

3 9.1 18.2 4:3 0.16 0.32 0.57 11.4 0.43

4 9.6 20.2 4:3 0.23 0.34 0.36 10.1 0.46

5 10.2 21.9 4:3 0.29 0.39 0.46 11.4 0.41

6 10.7 23.7 4:3 0.35 0.41 0.53 12.1 0.43

7 11.3 24.7 4:3 0.40 0.42 0.36 12.8 0.39

8 11.8 26.5 4:3 0.44 0.40 0.46 13.1 0.37

9 1.50 2.64 5:4, 6:5 0.00 0.30 0.44 16.5 0.46

3
exoplanetarchive.ipac.caltech.edu
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systems. Hence, we define
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Here, the inner sum is taken over a single system: Npl is the

number of planets in a system and mj is the individual mass of the

jth planet. The outer sum is taken over all systems: Nsys is the total

number of systems considered and m m Ni j

N
j1 pl

pl is the

average planet mass in a system. The metric is dimensionless,

and can be understood as the average relative standard deviation

in mass. It is also closely related to the mass partitioning Q

defined in Gilbert & Fabrycky (2020), differing by a square root

and a factor of Npl. A similar expression for uniformity in radius

can be defined, but we do not explicitly use it because radii in our

simulations are computed directly from the mass and assume a

constant density. The uniformity metric for our multiplanet sample

is 0.48, and 0.37 for the six resonant chains. Hence,

the resonant chains are somewhat more uniform in mass than the

full population (see also Figure 1).
As collisions combine planets, varies significantly, and its

final value depends strongly on which planets collide. Accord-
ingly, we take the average of across the 50 runs and track it as
a function of time. The evolution of the average for the high-
mass sample is shown in Figure 3. During the 5Myr integration,
the number and masses of planets change as planets collide and
merge or, rarely, are ejected from the system. For more uniform
initial conditions generally increases, and settles to a value
of ∼0.3–0.4. This lies slightly above the observed of 0.37
for resonant chains and below 0.48 for all systems with
M M30max , meaning that even after dynamical relaxation
and the associated collisions, this set of postinstability systems is
marginally more uniform than the overall Kepler sample.

Surprisingly, the final value of does not strongly depend on

the initial mass distribution. We ran eight suites of simulations
with m M10 , 4:3 resonances, and initial varying from 0 to

0.45. The results, shown as translucent lines in Figure 3, indicate
that the cascade of collisions does not necessarily increase , but

brings it within a range of 0.3–0.4. This suggests that an arbitrary
choice of initial does not significantly bias the results.

4.2. Hill Spacing and Period Uniformity

A straightforward consequence of an instability phase is that
the postinstability system must be stable on approximately
gigayear timescales. This manifests as an increase in the Hill

Figure 2. Eight collisional outcomes for the same initial system with N = 11, m M8.6 , initial resonance 4:3, and initial mass dispersion 0.1. For each planet,
the semimajor axis a, pericenter distance a(1 − e), and apocenter distance a(1 + e) are plotted in the same color. When two planets collide, the traces retain the color
of the inner planet. Instability-driven evolution leads to wider orbital spacing, while retaining a degree of mass uniformity that is compatible with the data.

Figure 3. Runs of 50 integrations of nearly the same initial conditions, with
N = 11, m M10 , and initial resonance 4:3, but differing initial mass
dispersion . The dashed line marks the evolution for run 9, which has
different initial conditions (see Table 2). The red and black horizontal lines
represent for the resonant chains from Section 2 and all systems,
respectively. For the run starting around 0.35, plotted darker in blue,
translucent vertical lines indicate the time of a collision, which triggers a
change in .
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spacing. First, we define the mutual Hill radius as

R
m m

M

a a

3 2
, 2Hj

j j j j1
1 3

1
⎜ ⎟⎛
⎝

⎞
⎠

( )

which represents a characteristic length scale for gravitational

interactions between planets. Then, the Hill spacing is

a a

R
, 3j

j j

Hj

1
( )

and the average Hill spacing is simply the average of Δj in a

system. The lifetime of a multiplanet system strongly depends

on (Chambers et al. 1996), so collisions will proceed until

grows and the system relaxes. The final values of in Table 2

are 10−13 for the high-mass sample, comparable to observed

compact multiplanet systems (Pu & Wu 2015).
Because Equations (2) and (3) depend exclusively on planet

mass and semimajor axis, intrasystem uniformity in mass and
Hill spacing directly implies uniformity in semimajor axis ratio
and therefore period spacing. To quantify this, we adopt the
metric from Weiss et al. (2018), which is to compute the
Pearson r correlation coefficient of period ratios of adjacent
pairs of planets, i.e., Pi+2/Pi+1 and Pi+1/Pi. With their sample
of well-characterized planets, they find a correlation of 0.46
and high statistical significance. Our simulations broadly
reproduce this in the high- and low-mass simulations, with an
average correlation of r 0.44 and some scatter (Table 2,
Figure 4).

4.3. Period Ratio Distribution

The principal difference between our high-mass and low-mass
systems is the period ratio distribution. Higher-mass systems must
be more widely spaced to ensure stability. The high-mass sample
lacks almost any planet pairs with period ratios less than 1.5 but
otherwise matches the slope of the cumulative distribution. On the
other hand, the low-mass sample misses period ratios above 2.0.
This suggests that we should combine the samples in a particular

proportion to produce an optimal match to the data. A similar

approach was taken in Izidoro et al. (2017, 2021). We create the

blended populations by choosing a fraction of systems to draw

from the low-mass sample (run 9) while drawing the remainder

from run 5 of the high-mass sample, which has an average mass

and initial dispersion similar to the resonant chains. Figure 5 shows

the results of this exercise. A mixture of 25% of systems taken

from the low-mass sample and 75% from the high-mass one fits

the period ratio distribution best. We emphasize that these numbers

are not to be taken literally—super-Earth planetary systems do not

form in these two discrete mass ranges—but we highlight that a

simple model of two populations reproduces many aspects of the

observed sample with surprising ease. Because the uniformity

observed in super-Earth systems is confined to planets that orbit a

common star, it is not suppressed by combining a diverse set of

systems. Accordingly, this merged sample has a period ratio

correlation of r= 0.56 and an intrasystem mass dispersion

of 0.33.

Figure 4. Period ratios of outer planet pairs and inner planet pairs for the well-characterized systems in Weiss et al. (2018; left) and synthetic systems (right). In the
right panel, blue and green dots correspond to the low-mass and high-mass samples, respectively. The Pearson r correlation between the orbital period ratios is
statistically significant (p < 10−4

) in both cases.

Figure 5. Cumulative frequency of period ratios for the postinstability
synthetic systems (colored lines) and real systems (black line). Blended
samples are constructed by mixing the two populations of low- and high-mass
planets in the listed fractions.
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4.4. Collisions

While our simulations treat impacts as perfect mergers, the
outcomes of planetary-scale collisions in general depend
strongly on the speed and angle of the encounter as well as
the mass ratio of the colliders (Stewart & Leinhardt 2012).
Consider a projectile of mass m and radius s that collides with
a target of mass m and radius s at a relative velocity Vimp and
impact angle θ. Only a fraction of the projectile interacts with
the target, specifically the interacting mass

m
s l l

s
m

3

4
4interact

2 3

3
( )

where l is the projected length

l s s 1 sin 5( )( ) ( )

(Leinhardt & Stewart 2012). Numerical simulations have

shown that collisions are nearly perfect mergers if the

collisional speed does not exceed the escape velocity of the

newly formed planet:

V G m m S2 , 6esc interact( ) ( )

where G is the gravitational constant and S s s3 3 1 3( ) is

the radius of the new planet, assuming constant density

(Stewart & Leinhardt 2012).
The left panel of Figure 6 shows the ratio of collision speed

to escape velocity for the 2529 collisions in our simulations.
While all collisions occur above 0.7Vesc due to the mutual
gravitation of the planets as they come together in the collision,
approximately 70% of collisions occur below the final escape
velocity. Of the ∼30% of collisions with Vimp> Vesc, most are
just above the threshold for merging except for one collision
with Vimp≈ 12Vesc, not shown in the histogram. This unusual
event likely resulted from a retrograde orbit formed during the
scattering process.

Nevertheless, even collisions above the escape velocity do
not necessarily disperse material completely. Specifically, for
the projectile to catastrophically disrupt and unbind the target

of mass into two or more pieces, the specific impact energy Q
must exceed the catastrophic disruption threshold *QD, where

Q
m V

m m2
7

imp
2

( )
( )

and, in the gravity dominated regime,

*Q q
s

1cm
, 8D g m

b

⎛
⎝

⎞
⎠

( )

where, for high-speed collisions of basalt, qg≈ 0.5 erg cm3g−2,

ρm≈ 3 g cm−3 is the density, and b= 1.36 (Armitage 2010).

The right panel of Figure 6 shows the ratio *Q QD for the

same collisions. All events lie below the catastrophic disruption

threshold, including the exceptional event referred to above,

which has *Q Q 0.98D .
These results are broadly consistent with those of Poon et al.

(2020). They use a different definition of escape velocity that
is, in practice, always smaller than Equation (6), but none-
theless find that the majority of collisions occur only slightly
above the escape velocity of the merged planet. They show
furthermore that typical collisions do not dramatically change
the ice fraction, but can strip gaseous envelopes. Similarly,
Esteves et al. (2022) find that, while fragmentation during
collisions can occur, the total amount of material that is
stripped is small and has little effect on the dynamics.

5. Discussion

This work investigates the implications of dynamical instabil-
ities and collisions on compact multiplanet system architectures.
Within the context of this picture, we argue that the currently
observed subsample of multiresonant chains constitutes an
adequate set of initial conditions for the instability model, and
from this we conduct a suite of simulations to quantify the
outcome of breaking the resonant locks. By and large, our
calculations show that intrasystem uniformity in mass, seen in
resonant chains, is preserved after collisions and mergers in a way

Figure 6. Collisional energetics of impacts in our simulations. Left panel: the distribution of the relative speed just before a collision, scaled by the escape velocity of
the new planet. Collisions with Vimp/Vesc < 1 are expected to be perfect mergers. One event with Vimp/Vesc ≈ 12.4 has been omitted for clarity. Right panel: the

distribution of specific collision energy to the energy required for catastrophic disruption. The event omitted from the left panel lies just below *Q Q 1D .
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that is consistent with observations. Furthermore, as the planetary
orbits are dynamically sculpted, a smooth period ratio distribution
and period spacing uniformity naturally arise. Finally, we
demonstrate that typical collisions are slow and unlikely to
disrupt a large fraction of the planets.

An intriguing feature exhibited by the observational data is that
the degree of orbital packing correlates inversely with the average
planetary mass. That is to say, low-mass planets occupy more
compact orbital architectures than their more massive counterparts
(L. Weiss et al. 2022, in preparation). This feature is distinct from
a simple requirement of uniformity and long-term dynamical
stability. For example, the Titius–Bode law is reflective of a
period uniformity in the solar system, despite a lack of mass
uniformity (Hayes & Tremaine 1998). The fact that a correlation
that links mass and spacing exists hints that beyond any disk-
driven processes that may regulate the terminal masses of forming
planets (e.g., Lambrechts et al. 2014; Ormel 2017), the planetary
masses themselves play a role in regulating the terminal spacings.
Early dynamical evolution driven by transient instabilities
provides the most natural mechanism to produce this feature in
the data.

A possible drawback of the instability model is the degree of
dynamical heating from violent gravitational interactions. That
is, orbit crossings entail growth in eccentricities and mutual
inclinations (Tremaine 2015). Figure 7 shows the distributions
of orbital eccentricities in our simulations. Postinstability
planets have eccentricities that approximately follow a
Rayleigh distribution with a scale parameter σe that depends
on the initial mass. For the high-mass sample, σe≈ 0.05, as has
been seen in previous work (Dawson et al. 2016; Izidoro et al.
2017). For the low-mass sample, σe≈ 0.02. Median system
eccentricities are higher for higher intrinsic multiplicities, in
line with the expectation from the maximum angular
momentum deficit model of He et al. (2020).

Eccentricity measurements of observed planets typically come
from one of two methods. The first is a forward modeling
approach that treats eccentricities and mutual inclinations as
underlying distributions, along with other system parameters.
Synthetic systems are then compared to observations; in particular,
transit durations are the primary constraint on eccentricity (Ford
et al. 2008). Such studies tend to recover scale parameters of
∼0.05 (Xie et al. 2016; Van Eylen et al. 2019; Mills et al. 2019;
He et al. 2020). More recent work has suggested evidence for a
multiplicity dependence on the distribution parameters, although

that requires additional assumptions on system architecture as well
as observational constraints from transit duration variations to
confirm (He et al. 2020; Millholland et al. 2021).
The second method is through TTVs, which, while typically

used to measure masses, also depend strongly on eccentricity
(Agol et al. 2005). Statistical studies with this technique recover
smaller eccentricities, with a scale factor ∼0.02 (Hadden &
Lithwick 2014). Furthermore, TTV systems have been shown to
be significantly more circular than is required for stability (Yee
et al. 2021). However, two important biases limit the conclusions
that can be drawn from TTV-derived eccentricities. Planet mass
and eccentricity are degenerate in most cases, and hence
eccentricity distributions depend on the choice of mass prior
(Hadden & Lithwick 2017). Additionally, TTV systems are a
nonuniform sample of the multiplanet system population that
preferentially selects planet pairs that are close to resonance and
coplanar. In the instability scenario, these may be the systems that
remained stable and did not experience growth in eccentricity. Or,
if they did encounter an instability, they may have experienced a
smaller degree of scattering that left them unusually coplanar and
circular (Esteves et al. 2020).
For simplicity, our simulations were confined to the plane. In

reality, planets are expected to exit the protoplanetary disk with
inclinations of ∼0°.1. To test the impact of small but nonzero
inclinations, we repeated runs 1–5 starting from the mass loss step
but gave each planet an inclination drawn uniformly from [0°,
0°.1]. Because first-order resonances do not depend on inclination,
the resonant angles continued to librate until the instability was
triggered. The final intrasystem uniformity in masses and period
ratios was consistent with the results of the planar simulations.
However, because in three dimensions orbital eccentricities can
grow larger without guaranteeing a collision, collisional velocities
were ∼20% higher and the final eccentricity distribution had a
longer tail past e∼ 0.1. These results are consistent with the trends
seen by Matsumoto & Kokubo (2017). Nevertheless, this set of
inclined simulations likely overestimates eccentricities somewhat
because the final planets have ∼30% larger masses than in the
coplanar simulations, which are themselves larger than typical
super-Earth masses.
Even if eccentricities from postinstability systems are higher

than those that are observed, this is not evidence against the
instability model. Planet pairs just wide of MMRs require a
mechanism that damps eccentricity after disk dissipation and
this mechanism could operate in nonresonant systems as well

Figure 7. Eccentricity distributions for our suite of simulations. Left panel: cumulative frequency of planet eccentricity for pre- and postinstability planets for the high-
mass sample (runs 1–8) and the low-mass sample (run 9). Thicker gray lines represent Rayleigh distributions with scale factors 0.02 and 0.05. Right panel: median
system eccentricity as a function of multiplicity, with the same colors as the left panel. Multiplicities are shifted slightly for clarity. Red crosses mark the power law
(Equation (51)) from He et al. (2020).
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(Lithwick & Wu 2012; Batygin & Morbidelli 2013). Future
work should determine to what extent tides or planetesimal
scattering can reproduce the observed eccentricity distribution
and whether such damping leaves observational signatures that
can constrain postnebular evolution.

Beyond consideration of the angular momentum deficit
itself, collisions may effect a preference for ordering in systems
by mass (Ogihara et al. 2015). Our initial conditions have no
ordering as planet masses are chosen randomly. However, in
real systems, planets tend to increase in mass and radius as
orbital radius increases (Millholland et al. 2017; Weiss et al.
2018). To quantify any ordering in mass, we adapt the metric
from Weiss et al. (2018) that considers the fraction f of planet
pairs in which the outer planet is more massive; unordered
systems have f= 0.5. As collisions proceed, mass tends to
settle close to the star; by the end of our simulations, 40%–50%
of planet pairs have a more massive outer planet. This
prediction of the model does not match observed trends
wherein 65% of planet pairs have a larger-radius outer planet
(Weiss et al. 2018) and a similar ordering exists in mass
(Millholland et al. 2017). Planet radii measured from transit
observations include atmospheres that may be strongly affected
by photoevaporation or tidal heating (Millholland 2019) and
are therefore not a reliable estimate of mass (Chen &
Kipping 2017). However, the presence of a marginally
significant, but similar trend in mass measurements highlights
a shortcoming of the instability scenario. A possible solution
could be to consider a mass ordering in the initial conditions as
an outcome of the planet formation process that is later partially
eroded by collisions. Another potential process may be

additional postnebular accretion of leftover debris. These
avenues for the continued quantification of the instability
mechanism as the process responsible for shaping the terminal
architectures of exoplanet systems are worthy of investigation
as their postnebular evolution comes into sharper focus.

We are thankful to Erik Petigura, Juliette Becker, Fred
Adams, Andrew Howard, and Lauren Weiss for insightful
discussions. We are especially grateful to the anonymous
referee, whose input significantly improved this work. K.B. is
grateful to Caltech, the Caltech Center for Comparative
Planetary Evolution, the David and Lucile Packard Foundation,
and the Alfred P. Sloan Foundation for their generous support.

Appendix
Migration Prescription

Here we specify details of our ad hoc migration prescription
to construct the original resonant chains. The migration
timescale is

t
a

a r

2 10

log au 1
yr, A1m

5

10( )
( )

where r is the orbital radius. The timescale for eccentricity

damping is

t
e

e r

2 10

au
yr. A2e

2

( )

The purpose of such a prescription is as follows. Capture into
resonance depends only on the relative migration rate between

Figure 8. Evolution of orbital elements during a typical simulation of capture into a resonant chain. Here, the planet parameters are those of run 1 (see Table 2).
Migration and eccentricity damping proceeded from t = 0 to t = 100 kyr, at which point tm and te increase exponentially, representing gas disk removal. At t =
110 kyr, both timescales are set to infinity.
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a pair of planets. Denoting the inner planet by 1 and the outer
planet by 2, that rate is

t t

a

a

a

a

r r P P

1 1

log

2 10 yr

log

3 10 yr
.

m m,2 ,1

2

2

1

1

1 2

5

1 2

5

For P2> P1, this rate is negative, and migration is always

convergent. Furthermore, the migration rate depends only on

the period ratio and not the radius or period itself. The

normalization constant in the denominator causes no migration

at 0.1 au. The eccentricity damping timescale is chosen to be

approximately 2 orders of magnitude smaller than the relative

migration rate, in line with typical disk models (Tanaka &

Ward 2004; Cresswell & Nelson 2008).
Figure 8 shows a typical capture into a resonant chain using

this prescription. Planets spaced just wide of the intended
resonance smoothly capture into the resonance and all 20
angles librate. The final eccentricities are consistent with more
physically motivated simulations (Izidoro et al. 2017).
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