
Inferring Halo Masses with Graph Neural Networks

Pablo Villanueva-Domingo1 , Francisco Villaescusa-Navarro2,3 , Daniel Anglés-Alcázar2,4 , Shy Genel2,5 ,
Federico Marinacci6 , David N. Spergel2,3 , Lars Hernquist7 , Mark Vogelsberger8 , Romeel Dave9,10,11 , and

Desika Narayanan12,13
1 Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, E-46980, Paterna, Spain; pablo.villanueva.domingo@gmail.com

2 Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA; fvillaescusa@flatironinstitute.edu
3 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton NJ 08544, USA

4 Department of Physics, University of Connecticut, 196 Auditorium Road, U-3046, Storrs, CT 06269-3046, USA
5 Columbia Astrophysics Laboratory, Columbia University, New York, NY, 10027, USA

6 Dipartimento di Fisica e Astronomia “Augusto Righi,” Università di Bologna, via Gobetti 93/2, I-40129, Bologna, Italy
7 Center for Astrophysics—Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138, USA

8 Kavli Institute for Astrophysics and Space Research, Department of Physics, MIT, Cambridge, MA 02139, USA
9 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK

10 Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa
11 South African Astronomical Observatories, Observatory, Cape Town 7925, South Africa

12 Department of Astronomy, University of Florida, Gainesville, FL, USA
13 University of Florida Informatics Institute, 432 Newell Drive, CISE Bldg E251, Gainesville, FL, USA
Received 2021 December 9; revised 2022 June 17; accepted 2022 June 19; published 2022 August 10

Abstract

Understanding the halo–galaxy connection is fundamental in order to improve our knowledge on the nature and
properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions,
velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among
galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with
irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from
the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for
cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a ∼0.2 dex accuracy.
Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on
simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our
method. The PyTorch Geometric implementation of the GNN is publicly available on GitHub (https://github.
com/PabloVD/HaloGraphNet).

Unified Astronomy Thesaurus concepts: Cosmology (343); Dark matter distribution (356); Galaxy dark matter
halos (1880); Hydrodynamical simulations (767); Neural networks (1933)

1. Introduction

In 1933 Fritz Zwicky found out that the mass of the Coma
cluster should be much larger than the one from its luminous
component (Zwicky 1933). That finding pointed to the
existence of an unknown type of nonluminous matter: dark
matter (DM). The requirement of unseen matter was later
supported by the observation of rotation curves of galaxies
(Rubin et al. 1978; Bosma 1978). Nowadays, there is
overwhelming evidence for the existence of dark matter,
although we are still ignorant of its fundamental properties
(Young 2017).

We now believe that dark matter is the backbone of the
distribution of matter in the universe: it concentrates in high-
density regions called halos, which are connected by thin
filaments with intermediate density and surrounded by gigantic
regions with low density (voids). It is within halos that gas can
cluster, cool, and form stars and galaxies (Somerville &
Davé 2015). Dark matter halos are therefore the environment
where galaxies reside.

Understanding the halo–galaxy connection is fundamental to
improve our knowledge on the nature and properties of dark

matter. There are two possible directions to take in the halo–
galaxy connection. On one hand, given a dark matter halo and
its properties and environment, predict the number and
distribution of galaxies it hosts. This task is fundamental in
order to create galaxy mocks with the correct clustering on all
scales needed for forward modeling approaches (Wechsler &
Tinker 2018). On the other hand, given a set of galaxies, it may
be useful to determine some properties of their host halo such
as its mass, spin, and concentration. This task is fundamental to
derive cosmological constraints from the abundance of dark
matter halos.
There has been an extensive program of weighing the masses

of halos and clusters, using a wealth of techniques including
gravitational lensing (Mandelbaum 2015; Huang et al.
2020, 2022), rotation curves of galaxies (Sofue & Rubin 2001;
Sofue 2015), abundance matching (Behroozi et al. 2010),
Sunyaev-Zeldovich effect (Grego et al. 2001), X-rays observa-
tions (Landry et al. 2013), velocity dispersion (Saro et al.
2013), and kinematics of satellite galaxies (Wojtak &
Mamon 2013; Seo et al. 2020) among others; see, e.g., Old
et al. (2015) for a comparison of different techniques for galaxy
clusters.
All the above techniques do not make use of all available

information. For instance, the abundance matching technique
only considers the total stellar mass in the system, disregarding
information about its clustering state. In this work, we attempt
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to build a model that can use all available information from
observations and/or simulations, e.g., phase-space information,
stellar masses, galaxy sizes, to infer the mass of the halo
hosting the galaxies. For this, we made use of neural networks
and their capacity as universal function approximators.

Different machine-learning (ML) algorithms have been
already used to perform this task. For instance, Convolutional
Neural Networks (CNNs) have been already applied in order to
predict dynamical galaxy cluster masses (Ho et al. 2019;
Ntampaka et al. 2019; Gupta & Reichardt 2020; Yan et al.
2020; Kodi Ramanah et al. 2020; de Andres et al. 2021; Kodi
Ramanah et al. 2021), as well as other ML techniques
(Ntampaka et al. 2015, 2016; Haider Abbas 2019; Armitage
et al. 2019; Green et al. 2019). Galaxy and subhalo masses can
be inferred from different subhalo properties via multilayer
perceptrons (Shao et al. 2022) or other ML algorithms (von
Marttens et al. 2021), as well as from images with CNNs (de
los Rios et al. 2021). Other works have employed different ML
algorithms to predict the mass of a halo from the properties of
the halo and galactic group (Man et al. 2019; Calderon &
Berlind 2019; Lucie-Smith et al. 2020). These ML-based
approaches have been shown to outperform other traditional
techniques to infer halo masses. However, some of these works
make use of N-body computations plus semianalytical galaxy
formation models, rather than more accurate hydrodynamical
simulations. Moreover, several of the features employed may
not be easily observable, which could complicate their
applicability to real data.

Although these approaches make use of the global properties
of a halo as well as individual features of the galaxies, they do
not incorporate explicitly the relationship between galaxies or
subhalos, in the form of clustering in configuration space and/
or distribution in phase space. In this article, we aim at
predicting halo masses exploiting the halo–galaxy connection,
using a novel method based on Graph Neural Networks
(GNNs). This type of neural network shares the typical training
procedure of other deep learning techniques, but it is applied to
data structured in the form of mathematical graphs. To
understand their significance, it is useful to compare them to
other deep learning frameworks. CNNs are mostly employed
with regular data (grids), such as images and 3D grids; CNNs
automatically account for translational invariance. Recurrent
neural networks, on their side, are designed to treat sequential
data, such as chains of characters in a natural language or time
series. However, GNNs can be applied when dealing with
irregular data, where data points may have arbitrary relations.14

That is the case of point clouds, as a galaxy catalog can be
regarded. GNNs have been successfully employed in different
fields such as chemistry, computer vision, natural language
processing, social networks, or particle physics (Wu et al.
2019; Bronstein et al. 2021). There are already some
applications of GNNs in cosmology, for instance in order to
perform symbolic regression (Cranmer et al. 2019, 2020), to
predict the redshift of galaxies (Beck & Sadowski 2019), or to
allocate resources in an unsupervised way in order to select
galaxies (Cranmer et al. 2021). GNNs have also been applied in
other physics fields, such as particle physics (Shlomi et al.
2020), but still represent a novel, promising, and mostly
unexplored way to extract information from irregular data.

We train our GNNs using galaxies from simulations of the
Cosmology and Astrophysics with MachinE Learning Simula-
tions (CAMELS) project (Villaescusa-Navarro et al. 2021) to
extract information from the galaxy properties and their phase-
space distribution. Since CAMELS contains thousands of state-
of-the-art (magneto)hydrodynamic simulations with different
values of the cosmological and astrophysical parameters, our
method accounts for uncertainties in cosmology and astro-
physics. Furthermore, since CAMELS contains two different
suites of hydrodynamic simulations run with two different
codes that employ different subgrid physics, we can quantify
the robustness of our results to astrophysical uncertainties.
Ultimately, we would like to build a tool that can infer the mass
of galaxy systems, like our own Milky Way and Andromeda,
just from the observed properties of those galaxies and their
satellites. Knowing the mass of the host dark matter halos of
those systems will allow us to make consistency checks within
the ΛCDM model.
The article is structured as follows. We start by reviewing the

basics on graphs and GNNs in Section 2. In Section 3, we
describe the data we use to train our model together with an
outline of the training procedure. The main results of this work
are presented in Section 4. Some aspects of the interpretability
of the GNNs are examined in Section 5, followed by a
discussion of the main conclusions in Section 6.

2. Graph Neural Networks

In this section, we review the basics of GNNs, first
summarizing the fundamentals of graphs, subsequently detail-
ing how to build graphs from the galaxies of halos, and finally
introducing how to build a neural network on a graph based on
the message passing scheme. We refer the reader to Bronstein
et al. (2021), Battaglia et al. (2018), Hamilton (2020) for
comprehensive references on GNNs and geometric deep
learning.

2.1. General Concepts on Graphs

We start by discussing some generic concepts of graphs and
standard definitions, since some astrophysicists, cosmologists,
and ML practitioners may not be familiar with the terminology.
A graph can be defined as a tuple ( )=  , , where  denotes
the set of nodes, and Í ´   the set of edges. For two
nodes of the graph Î i j, , there is an edge connecting them if
( ) Î i j, . Nodes i, j are thus coined as neighbors. The
connectivity can be described by the adjacency matrix Aij,
which takes value of 1 if the pair (i,j) is connected by an edge,
being 0 otherwise. A graph is undirected when ( ) Î i j, ; then
( ) Î j i, too. A loop is an edge, which connects a node to
itself. We restrict our discussion to simple graphs, i.e.,
undirected graphs without loops, since these are enough for
our purposes (although self-loops can be implicitly employed
in some GNN architectures).
Given a node i, we denote its feature vector as Îxi nin ,

encoding the relevant physical information about the node,
with nin as the number features. The feature matrix

( )∣ ∣
∣ ∣= Î ´


X x x,..., T n

1 in , where ∣ ∣ is the number of nodes
in the graph, comprises the feature vectors of all nodes. The
neighborhood of the node Î i , denoted by i, includes every
node that shares an edge with i, and can thus be written as

{ ∣ } ( )= = j A 1 . 1i ij14 See Battaglia et al. (2018) for a comparison of the different deep learning
components and their relational inductive biases.
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Note that i does not include the node i, since we dismiss
loops. Analogously, we can define the set of feature vectors of
the neighbors of the node i as

{ ∣ } ( )= Î x j . 2i j i

A graph is complete if every pair of nodes is connected by an

edge, having thus ( ) ∣ ∣(∣ ∣ )∣ ∣ = -  1 2
2

edges in total.15 The

edges set can hence be written as ⧹{( ) }= ´ Î   i i,
(excluding loops). As will be shown later, most of the halos
employed here lead to complete graphs.16

2.2. Halos as Graphs

The general terminology discussed above allows us to set up
our problem. Consider a halo h with mass Mh that hosts several
galaxies. We build a graph, denoted by h, by considering all
the (central and satellite) galaxies of the halo as the nodes of the
graph. The feature vector of a node i, xi, will include
information about the corresponding galaxy, namely the 3D
comoving position, p, the stellar mass, M*, the modulus of the
velocity, v, and the stellar half-mass–radius (i.e., the comoving
radius containing half of the stellar mass in the galaxy), R*.
These galactic properties are listed in Table 1. Positions are
expressed with respect to the center of the halo (chosen as the
point with minimum gravitational potential energy), while
velocities are written relative to the center of the mass frame of
all particles.17 The mass of the halo is taken as the total mass of
all components (dark matter, gas, stars, and black holes) within
a virial radius enclosing a density 200 times the critical density,
usually known as M200c.

Unlike other graph applications, such as, e.g., social
networks, we are dealing with the distributions of particles
not physically connected among them (sometimes known as
point clouds in graph contexts), and thus the edges are not
predetermined. There is not an unique way to build the edges
between the nodes. Since gravity is a long-range force, every
galaxy is affected by the rest, and all the nodes should be
connected in some way. However, gravitational effects, such as
tidal forces, are stronger for shorter distances. Hence, one can
expect that the dynamics and properties of a given galaxy will
be more affected by nearby companions rather than by distant
ones. Different approaches can be followed to connect the
graphs and build the neighborhood of each node. In our case,

we create the edges from a node taking into account the
neighbors within a fixed certain radius, which is taken as a
hyperparameter. Its specific value is given from the optim-
ization outlined in Section 3.2. A similar procedure could be
considering the k nearest neighbors for each node. However,
this approach does not properly reflect the effect of clustering.
It may miss some neighbors in a clustered region that should be
connected, and include others much farther away, which in
principle should have less influence in the node. We have
checked that the performance slightly worsens using this
approach instead of considering the nodes within a certain
distance. It is worth it to remark that we only consider the
galaxies that are part of the same halo, excluding thus
interlopers and explicit relations between halos.
Among the available halos in the CAMELS catalogs, we

work only with those containing more than one galaxy,
excluding therefore the halos without satellites. The halos
excluded, typically very low-mass halos, form trivial single-
node graphs, where the advantages of graph-structured data
with edge connections between nodes is absent and therefore
are not very interesting for our purposes here. We have
explicitly checked that by including those halos without
satellites our results worsen. Note also that this fact limits the
application of our method to real observations of halos with
more than one known satellite galaxy.

2.3. Message Passing

GNNs employ the so-called neighborhood aggregation or
message passing scheme.18 Each node i receives a message
from each of its neighbors j, appending its information to its
own features. This makes it possible to create a hidden feature
vector hi, which updates the node and contains aggregated data
from its neighborhood. From the hidden vectors, our GNN is
aimed at inferring the mass of the halo, which is a global
property of the graph. The architecture is thus composed of two
main steps: (1) update the nodes via message passing, and (2)
extract the global information from the graph. We designate as
Graph Layer, GL, to a generic message passing layer, which
can be written as

( ) ⨁ ( ) ( )y= =
Î




h x x xGL , , , 3i i i
j

i j

i

where hi is the output feature vector, ⨁ denotes a differenti-
able, permutation invariant aggregation function, such as the
maximum, the mean, or the sum, while ψ is the message
function, a differentiable function, like a Multilayer Perceptron
(MLP), which depends upon the feature vector of the node, xi,
as well as on those from its neighbors, xj, for Î j i. The
distinct ways to build ψ lead to different graph layers.19

The function ψ maps y : n nin out  , with nin and nout as the
number of initial and output features, respectively. As shown in
Section 2.4, nin may not correspond to the number of features
considered for each node. A common advantage of GNNs is
that they exploit the locality of data, because the closer nodes
may present stronger relations than those farther away. Here,

Table 1
Summary of Galactic Properties Employed to Train the GNNs

Symbol Feature

p 3D comoving position
v Modulus of relative velocity
M* Stellar mass
R* Stellar half-mass–radius

15 This can be reasoned as the number of pairs that can be chosen from a total
of ∣ ∣ elements.
16 Complete graphs can be very relevant in ML applications, since the popular
architecture transformers (Vaswani et al. 2017) can be regarded as a particular
case of a GNN, a Graph Attention Network (Veličković et al. 2018), where the
graph is complete (see Bronstein et al. 2021 for more details).
17 We have checked that using only distances rather than 3D positions
significantly worsens the performance of the GNN, because they do not provide
a complete description of the spatial distribution of the system, which can be
relevant for the halo–galaxy connection.

18 There are other similar frameworks, such as the Graph Network formalism
(Battaglia et al. 2018), which is mostly equivalent to our message passing
scheme.
19 One could also apply an additional MLP ξ to hi and its original feature
vector, ([ ])x¢ =h x h,i i i , where the square brackets indicate array concatena-
tion, although we dismiss this step for the sake of simplicity, and since we
apply several successive graph layers, which leads to a similar effect.
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the locality is enforced by assuming that the functions ψ are the
same for all nodes and graphs.20

The final GNN incorporates a last step to infer the global
graph target, and thus can be of the form

⨁ ( )f=
Î

⎜ ⎟
⎛

⎝

⎞

⎠
y h , 4

i
i

h

where f is a differentiable function, chosen as a MLP with
three hidden layers with 300 channels separated by ReLu
activation functions, and y is the output of the network. In our
case, since we perform likelihood-free inference to estimate the
mean and standard deviation of the posterior of the mass of the
halo, the target is given by a vector of two components y= [y,
σ], containing the mean prediction y, and its expected standard
deviation, σ. The targeted quantity is the logarithm of the mass
of the halo, [ ( )]= y M M hlog h10 . The likelihood-free
approach to estimate the posterior mean and standard deviation
is detailed in Section 3.2. The equation above can be easily
modified to include some global graph quantities u, which may
help to train the network, such as the number of nodes or the
total stellar mass, writing ([⨁ ])f= Îy h u,i ih . We include
these global features in our graphs, although we have checked
that removing them does not leave a significant impact in the
results. Figure 1 shows a sketch of this basic architecture,
illustrating the message passing scheme.

Permutation equivariance and invariance are key concepts in
GNNs. We say that a function acting on the node feature matrix
f (X) is permutation invariant if for every permutation matrix P,
one has f (PX)= f (X), leaving thus an unchanged output. On
the other hand, f is permutation equivariant if it transforms as
f (PX)= Pf (X).21 A message passing layer ( )xGL ,i i should
be permutation equivariant, since a reordering of the input
nodes produces the same permutation in the outputs, although
the output feature space can be different. However, any global

quantity of the graph such as the final output of the network,
the halo mass, must be permutation invariant, since its value
should not depend on the ordering of the nodes. The final
aggregation step, ⨁ ( )Î  xGL ,i i ih , can be regarded as a
function f (X) that fulfills by the construction permutation
invariance, ∣ ∣ ´f : n nout out  . In this case, the aggregation ⨁
may be termed as a global pooling layer, since it reduces
dimensionality. Note that the aggregation method here does not
have to be the same as in the message passing layer.
Furthermore, it is possible to employ different aggregation
operators, such as maximum, sum, and mean, and concatenate
them, which is the approach used in this work. The last MLP f
makes use of nout global features of the graph in order to extract
a global property vector y, the halo mass, and its expected
standard deviation in our case, f : n 2out  . Finally, we can
apply the multiple successive GNN layers, ( ( ) ) xGL GL , ,i i i ,
where { ∣ }= Î h ji j i denotes the updated feature vector of
the neighbors. In such a case, the node after k updates will
encode information from the nodes of its k-hop neighborhood.
We take the number of message passing layers as an
optimizable hyperparameter, although a single GNN layer is
sufficient to provide the best results, as shown in Section 3.2.

2.4. Graph Layer Architecture

So far we have discussed the general shape of the GNN, but
the explicit design of the message passing layer remains
undetermined. There are many possible ways to construct the
specific architecture of the GNN layer, which is defined by the
message function ψ and the aggregation scheme ⨁. For
instance, one could not take into account neighbors to update
each node, and employ only the information of the node xi to
extract the hidden information hi. These types of architectures,
a subset of GNNs, are known as DeepSets (Zaheer et al. 2017).
No aggregation function is thus needed to update the node
features, and the hidden layer can just be written as hi= ψ(xi).
However, to fully exploit the relations among the nodes, it is

useful to incorporate the neighborhood and edge information
actually performing message passing. Here we assume an
architecture based on the edge convolutional layer, coined as
EdgeNet (Wang et al. 2019), where for each neighbor j of the

Figure 1. Sketch of a GNN with one message passing layer acting on a graph h composed of 5 nodes. During the message passing step, node b receives a message
from each of its neighbors Î j b, aggregating and updating its features to the hidden vector hb (red). Once this step is done over all nodes, a global pooling step is
performed, aggregating the hidden node features over all vertices of the graph h, which leads to the global target y (green). Figure based on https://github.com/
PetarV-/TikZ.

20 Similarly, CNNs in, e.g., computer vision tasks guarantee locality by
employing the same kernels over all different images.
21 See Bronstein et al. (2021) for more details on invariances on graphs.
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node i, the relative vectors xi− xj are concatenated to the
feature vector xj. The aggregation function is chosen as the
maximum, writing thus the hidden layer as

([ ]) ( )y= -
Î

h x x xmax , , 5i
j

i i j
i

where the square brackets indicate an array concatenation. In
this case, the initial input number is given by nin= 2nfeat, where
nfeat is the number of features. The differentiable function ψ is
taken as a MLP with three hidden layers, with 300, 300, and
100 hidden channels, separated by ReLu activation functions.
We have checked that other choices of the number of channels
do not improve the predictions of the net.

There are other popular architectures, such as PointNet (Qi
et al. 2017a, 2017b), which employs only the relative spatial
positions for the message passing, pi− pj, rather than the full
feature vector, or the Graph Convolutional Network (Kipf &
Welling 2017), where the neighbor information is simply
incorporated by taking a linear combination of the features and
summing over all the neighbors, imitating a convolution
operation. We have checked that the EdgeNet (Equation (5))
outperforms the other architectures mentioned above via a
hyperparameter optimization procedure, as commented in
Section 3.2. See, e.g., Wu et al. (2019), Zhou et al. (2018)
for a discussion of other different GNN architectures.22

3. Methods

In this section, we specify the details regarding the data
employed and the training of the network.

3.1. The CAMELS Simulations

The CAMELS project (Villaescusa-Navarro et al.
2021, 2022) comprises a set of state-of-the-art hydrodynamic
and N-body simulations, specially suited and designed to train
and test ML algorithms. They include thousands of realizations
varying two cosmological parameters, namely the matter
density parameter Ωm, and the variance of the linear field on
8 Mpc/h at z= 0, σ8, plus four astrophysical parameters
controlling the efficiency of supernovae and active galactic
nuclei (AGN) feedback. The rest of the cosmological
parameters are kept fixed to standard values in flat cosmologies
with cosmological constant: the baryonic fraction Ωb= 0.049,
the reduced Hubble constant h = 0.6711, the tilt of the
primordial power spectrum ns = 0.9624, the equation of state
of the dark energy (corresponding to a cosmological constant)
w=−1, and the total neutrino mass Mν= 0 eV. Each
simulation follows the evolution from z= 127 to z= 0 of
2563 DM particles and 2563 gas resolution elements within a
periodic box of size 25 Mpc /h. The DM particle mass
resolution is ∼108Me/h. A collection of different cosmological
fields in the form of 2D maps and 3D grids from the CAMELS
simulations is available as the CAMELS Multifield Dataset
(CMD),23 intended to be a standard cosmological data set for
ML applications (Villaescusa-Navarro et al. 2022), while the
full data set has been recently made publicly available
(Villaescusa-Navarro et al. 2022).

The CAMELS project includes two suites of simulations,
with different astrophysics modeling and subgrid physics. On

the one hand, a suite of magnetohydrodynamic simulations
with the subgrid physics models of IllustrisTNG (Weinberger
et al. 2017; Pillepich et al. 2018; Nelson et al. 2019) performed
with the code Arepo24 (Weinberger et al. 2020; see also
Springel et al. 2018; Naiman et al. 2018; Marinacci et al. 2018
for more details). Its galaxy formation model is based on the
predecessor Illustris (Vogelsberger et al. 2013, 2014). On the
other hand, another suite employs the SIMBA subgrid physics
model (Davé et al. 2019), making use of the code GIZMO25

(Hopkins 2015). SIMBA is built on its precursor MUFASA
(Davé et al. 2016) with the addition of supermassive black hole
growth and feedback (Anglés-Alcázar et al. 2017). The
hydrodynamics simulations are accompanied by N-body
counterparts, run with the GADGET-III code
(Springel 2005).26

Within each simulation suite, there are different sets,
according to the configuration of astrophysical and cosmolo-
gical parameters. The cataclysmic variable (CV) simulations
(standing for Cosmic Variance) include 27 simulations sharing
their astrophysical and cosmological parameters, fixed to
standard values (Ωm= 0.3 and σ8= 0.8), and varying only
the random seed to generate the initial conditions. The Latin-
Hypercube (LH) set consists of 1000 simulations, varying all
the astrophysical and cosmological parameters (together with
the random seed) along a LH.27 We make use of both sets for
training our networks, in order to check whether the
architectures considered are robust enough for the different
cosmologies and baryonic feedback parameters. The halos and
subhalos are identified using the SUBFIND algorithm (Springel
et al. 2001). We define galaxies as subhalos that contain more
than 20 star particles. Although the CAMELS suite contains
data for several redshifts, only the simulations at z= 0 are
considered in this work. We refer the reader to the CAMELS
webpage28 and Villaescusa-Navarro et al. (2021) for further
details.
As an example of the differences between IllustrisTNG and

SIMBA, Figure 2 shows the number of halos as a function of
the number of galaxies that the halos contain for the
simulations of the LH set. While most of the halos in the
simulations only host a few galaxies, there are a number of
them that contain hundreds of satellites. Note that, for a fixed
halo mass, the SIMBA simulations contain more galaxies than
the IllustrisTNG simulations. In general, SIMBA simulations
usually contain many more galaxies than their IllustrisTNG
counterpart, being an average of ∼1200 and ∼700 per
simulation respectively, both at z= 0. Furthermore, SIMBA
simulations tend to be more stochastic, and usually can produce
more extreme scenarios (with larger effects of the baryonic
feedback effects) than IllustrisTNG. These facts reflect the
inherent differences between the two codes/subgrids models.
We refer the reader to Villaescusa-Navarro et al. (2021) for a
more detailed comparison between the different observables of
both suites, such as clustering or halo population, and to
Villaescusa-Navarro et al. (2022), Villanueva-Domingo &
Villaescusa-Navarro (2022) for more information on the

22 See also https://github.com/thunlp/GNNPapers for a comprehensive list
of GNN references.
23 https://camels-multifield-dataset.readthedocs.io

24 https://arepo-code.org/
25 http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html
26 See, e.g., Vogelsberger et al. (2020) for a comparison of different models of
galaxy formation in cosmological simulations.
27 Besides CV and LH, other simulation sets are also included in CAMELS,
but not employed in this work.
28 https://camels.readthedocs.io
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distribution and correlations between the different galactic
features of the CAMELS catalogs.

3.2. Training Procedure

We construct our data set, the collection of graphs, based on
the procedure outlined in Section 2.2. We restrict our analysis
to the halos with more than one galaxy, as mentioned above.
The models are trained on simulations of the CV and LH sets
separately, where in each case we split the data set into training
(70%), validation (15%), and testing (15%) sets. We employ an
Adam optimizer (Kingma & Ba 2014) and L2 regularization.
The batch size is set to 128, and the number of epochs is
limited to 150. The GNN architecture is implemented following
the prescription outlined in Section 2.3, concatenating one or
several message passing layers and appending at the end a
global pooling and MLP to infer the halo mass.

We perform a hyperparameter optimization in order to get
the best values for the hyperparameters, following a bayesian
model-based optimization procedure with the Tree Parzen
Estimator (Bergstra et al. 2011), making use of the Python
package Optuna29 (Akiba et al. 2019). The hyperparameters
considered for this optimization are the learning rate, the
weight decay, the number of message passing layers, the
distance to define neighborhoods, and the specific architecture
(among those defined in Section 2.4). We perform at least 75
trials for each suite and set, where each trial is a specific choice
of the values of the hyperparameters. The optimization
procedure leads to different values for each simulation suite
and set, with the learning rates ranging between 10−5 and
6× 10−4, the weight decay values between 10−8 and 10−7, and
the neighborhood distance between 2 and 20 Mpc/h. One
unique message passing layer (i.e., one update of the hidden
features of the nodes from Equation (3)) and the EdgeNet
architecture (among those discussed in Section 2.4) are the
optimal choices for all cases. The large values of the
neighborhood radii obtained imply that most of the graphs
created are complete, around 98% for both the CV and LH sets.

That means that most of the galaxies are connected with each
other within the halo, and most nodes can access information
about each other’s companions, from the graph, at one hop.
We follow a likelihood-free bayesian inference approach to

sample the expected standard deviation of the outputs. This
procedure allows us to reproduce some properties of the
posterior (its second centered moment in this case) without the
need of a likelihood (Jeffrey et al. 2021). We follow Jeffrey &
Wandelt (2020) and design our model to output two quantities:
the mean and standard deviation of the halo mass posterior. The
loss function needed to achieve that is given by = +  1 2,
where

( ) ( )å= -
Î
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Note that we have included log functions to make sure that the
two contributions are similar. For instance, if the errors are
much smaller than the mean, the loss will be dominated by the
mean, and the errors may not be accurately computed (see
Villaescusa-Navarro et al. 2022 for further details).
It is worth emphasizing the symmetries fulfilled by the

GNNs. By construction, GNNs are permutation invariant,
guaranteed by neighborhood aggregation as discussed in
Section 2.3. Furthermore, given that graphs are written in the
center of mass rest frame, our framework is also translational
invariant, since any displacement of the galaxy group would
not alter the relative coordinates with respect to the center, and
hence the graph would be the same. Moreover, for our special
case of point clouds, our GNNs should be rotationally
invariant, since an arbitrary rotation of all galaxies around the
center of the halo should not change the global halo properties.
We try to enforce this symmetry by performing random
rotations on each graph at every training epoch, as a data
augmentation procedure. This practice also helps in alleviating
overfitting, given that the network becomes robust when tested
in systems with arbitrary rotations. Overfitting also becomes
absent in our training procedure with the proper selection of the
hyperparameters.
We write and train the models making use of PyTorch

Geometric30 (Fey & Lenssen 2019). Our implementation of the
GNNs, HaloGraphNet, is publicly available on GitHub31

(Villanueva-Domingo 2020).

4. Results

In this section, the main results of the work are discussed.
We first introduce a benchmark model to estimate halo masses
from stellar masses, and next we detail the results of training
and testing the GNNs in the different CAMELS simulation sets
and suites considered, examining also their robustness over
different astrophysical modeling.

Figure 2. Number of halos sorted by the number of galaxies that they host in
the IllustrisTNG (blue) and SIMBA (purple) suites, for the LH sets. On
average, the halos of the SIMBA simulations contain more galaxies than the
halos of the IllustrisTNG simulations, reflecting the large differences between
the two simulation suites given their distinct subgrid physics models.

29 https://optuna.readthedocs.io

30 https://pytorch-geometric.readthedocs.io
31 https://github.com/PabloVD/HaloGraphNet
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4.1. Predictions from Stellar Masses

Before starting to discuss the accuracy of the GNN
predictions, it may be useful to set a benchmark model to
predict halo masses, to test the worthiness and degree of
improvement of using GNNs. A traditional approach exploits
the relation between stellar and halo mass, based on abundance
matching (Behroozi et al. 2010; Wechsler & Tinker 2018).
Figure 3 shows the mass of a halo Mh as a function of its total
stellar mass M*,tot=∑iM*,i (summing over all stellar particles
in the central and satellite galaxies within the halo) in the
IllustrisTNG and SIMBA suites, for the CV (left) and the LH
(right) sets.32 One can notice a clear correlation between the
stellar and halo masses, although with a large scatter. This is
specially noteworthy in the LH set, where multiple values of
the cosmological and astrophysical parameters are considered,
leading to completely different outcomes. Shaded areas denote
the standard deviation of the points, which is around ∼0.2 dex
in the CV case, but grows up to ∼0.3–0.4 dex in the LH set.

Taking advantage of the expressed correlation, we can build
a naive estimator of the halo mass based only on the total stellar
mass of galaxies. A simple fourth-degree polynomial fit is
shown in dashed lines in Figure 3. This can be regarded as a
benchmark model for comparing with our forthcoming models
based on GNNs, in order to further evaluate their strength. To
check its accuracy for predicting [ ( )]= y M M hlog h10 , we
employ the mean relative error ò,

∣ ∣
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with N the number of test halos, as well as the correlation
coefficient (or coefficient of determination) R2, defined in the
usual way as
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with ytruth the mean of true values. This naive estimator gives
fairly accurate results in the CV set, with relative errors around
1% and a linear correlation coefficient of R2; 0.94. However,
when an analogous fit is attempted in the LH case, the relative
error worsens down to ∼1.7% (∼2.4%) for SIMBA (Illu-
strisTNG), with R2; 0.84 (R2; 0.67). Note that these errors
are for the logarithm of the mass, y, rather than for the halo
mass itself, which corresponds to relative errors in the mass
between ∼50%–120%. This fact illustrates the nontrivial
dependence of the halo and stellar masses on the different
astrophysical and cosmological scenarios. Notice that the LH
set contains some extreme scenarios that may be unlikely to
describe the real universe. In any case, the most appropriate
astrophysical parameters to describe our cosmos are still
unclear, and thus, models able to robustly marginalize over
baryonic feedback effects are required. Thus, a prediction of
the halo mass from only the stellar mass when a broad range of
astrophysical models are considered seems to be quite
inaccurate. In the following, we shall show how a GNN is
able to overcome this difficulty by considering further features
and taking advantage of the graph structure of halos.

4.2. Inferring Halo Masses with GNNs

Here we first discuss the results of training a GNN to predict
the halo masses using the galaxies from simulations of the CV
set. As stated in Section 3.1, this set contains 27 simulations
with fixed fiducial values for the cosmological and astro-
physical parameters, only varying the random seed. The left
panels of Figure 4 show the accuracy of the network in the
CAMELS CV sets, where the top panel stands for the
IllustrisTNG subgrid model, and the bottom one stands for
the SIMBA suite. The vertical axis is the difference between
the predicted and true logarithms of the halo mass,

( ( ))M M hlog h10 , with respect to the true value in the
horizontal axis. Error bars have been estimated via likelihood-
free inference, sampling the standard deviation of the posterior,
as outlined in Section 3.2. One can see that the performance is
fairly good in both cases, as the linear correlation coefficient of

Figure 3. Halo masses with respect to the total stellar mass within, both for SIMBA and IllustrisTNG suites, for samples of 2000 halos from the CV (left) and LH
(right) sets. Shaded areas denote standard deviation of points while dashed lines correspond to polynomial fits. The LH set covers a large astrophysical and
cosmological parameter space, leading to a broader scatter in the masses with respect to the CV set, where parameters are fixed. While such fits can lead to accurate
predictions of the halo mass for the CV set, it worsens in the LH set, given the larger dispersion.

32 Note that other works consider the stellar mass of the central galaxy rather
than the total one, which is employed here with the aim to take into account the
contribution of the satellites.

7

The Astrophysical Journal, 935:30 (15pp), 2022 August 10 Villanueva-Domingo et al.



R2= 0.96–0.97 confirms, with a relative error lower than ∼1%
in y (∼25%–40% in the mass itself). The dashed lines show the
mean of test points, while the shaded region depicts their actual
standard deviation, which extends up to ∼0.14 dex. Thus, most
of the test predictions lie within this region, although there are
some outliers. The neural network is thus able to accurately
infer the halo mass given some features of its galaxies.

Nevertheless, the previous results only show that the GNN is
capable of predicting the mass of a halo when the cosmology
and astrophysics is known, i.e., when the parameters are fixed.
However, the specific values of the relevant parameters for the
real universe are not well known yet, especially the
astrophysical ones. In order to marginalize over uncertainties
in cosmology and astrophysics, we have trained our network in
the LH simulation set, which includes 1000 simulations
varying the cosmological and astrophysical parameters,
together with the random seed (to also incorporate effects of
sample variance), as noted in Section 3.1. The right panels of
Figure 4 show the GNN predictions for training the GNN in
IllustrisTNG (top) and SIMBA (bottom). One can see that the
results only slightly worsen from the equivalent case in the CV
simulation set, with R2= 0.90− 0.92 and relative errors of

∼1%. Uncertainties are also larger than in the CV set, roughly
by a factor of 2, meaning that the model trained in the LH set
offers lower precision. This worsening is expected since the
network needs to marginalize over the astrophysical and
cosmological parameters, differently from the network trained
on the CV set. It should be noted that a small bias appears at
low masses, below 1011Me/h, which deviates up to 0.4 dex
(also present in the SIMBA CV case). This could be explained
due to the smaller number of low-mass halos in the data sets,
preventing the network to properly learn in that range.
Moreover, the expected fewer satellites in low-mass halos
could also affect the predictions, because the GNN counts on
less satellites to extract information. In any case, these results
indicate that our model is able to learn the mapping between
astrophysics/cosmology and the halo mass, and thus margin-
alize over the value of the parameters present in the simulations
to make an accurate prediction.
To further evaluate the predictive power of GNNs, it is worth

comparing these results to those obtained from the naive fit
based only on stellar mass outlined in Section 4.1. For both the
CV and LH sets, the GNN predictions outperform those from
the polynomial fit, presenting larger R2 coefficients and lower

Figure 4. Predicted vs. true logarithm of halo masses [ ( )]M M hlog h10 for the CV (left) and LH sets (right), training in the IllustrisTNG suite (top) and in SIMBA
(bottom). A sample of 200 halos in the test data set is shown in each case. Shaded regions and dashed lines correspond to real standard deviation and mean of test
points, respectively. While in the CV set, astrophysical and cosmological parameters are fixed to fiducial values; the LH set comprises a broad range of astrophysical
and cosmological scenarios. Even so, the GNN is still able to learn the halo–galaxy relation and predict masses in the LH case, only slightly worsening the prediction
with respect to the CV case.
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relative errors. The improvement is especially clear in the LH
case, where the R2 is significantly better than the benchmark
method. Moreover, the scatter around the true values spans
∼0.14 and 0.2 dex, compared to the larger standard
deviations from the naive fit, which are 0.2 and 0.3–0.4 dex
respectively. Note that 0.2 dex is a factor up to ∼1.6 in the
mass (rather than in the logarithm), while 0.3 dex is a factor
∼2, meaning a ∼100% error in the mass. These results
demonstrate how, taking advantage of the graph structure and
further galaxy features, it is possible to attain richer correlations
and better results.

Nevertheless, it has to be emphasized that the linear
correlation coefficient R2 and the relative error cannot
constitute a complete statistical summary for testing the
accuracy of the GNN. It is because our network is also
predicting the standard deviation of the target, for which an
additional component to the loss has been included, as
discussed in Section 3.2. Thus, neither R2 nor the relative
error quantify the sampling accuracy of the standard deviation.
To test whether the uncertainties are reasonably predicted, it is
useful to compute the χ2, defined as
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Note that minimizing the loss function contribution from
Equation (7) tends to drive the χ2 toward unity. This is actually
the case in the LH set, where χ2= 1.00 for IllustrisTNG and
χ2= 1.03 for SIMBA, indicating that uncertainties are
accurately predicted. In the CV cases, however, while the
mean predictions are more accurate, some errors are under-
estimated, leading to larger χ2 values, around ∼4 in SIMBA.
Moreover, since the test data set is smaller, a few outliers with
too small standard deviations greatly impact the value of the
χ2.

One can also compute how many points in the test data set
present an accurate uncertainty by counting the fraction that
fulfill the conditions |ytruth,i− yinfer,i|� σi and
|ytruth,i− yinfer,i|� 2σi, i.e., how many points lie within one
and two times the standard deviation of the posterior. We find
that, for the LH cases, the fraction of points fulfilling the above
conditions is 69% and 95% respectively for both suites. For the
CV sets, these fractions only slightly deviate, 62% and 90% for
IllustrisTNG, and 72% and 96% for SIMBA, respectively. For
the Gaussian distributed errors, these fractions should be
around 68% and 95% respectively. Note however that our
calculation of the posterior mean and standard deviation does
not make any assumption about the form of the posterior.
Therefore, the numbers quoted above should be taken with
caution, and a comparison with the Gaussian case should be
done in a careful manner.

There is another way to figure out whether uncertainties are
correctly sampled. The shaded regions in Figure 4 represent the
actual standard deviation of the test points computed within
several mass bins. Therefore, if the predicted uncertainties are
accurately sampled, their mean value s should correspond to
those shaded regions. For the CV case, despite the GNN
providing more accurate models, the mean uncertainties s are
underpredicted with respect to the actual scatter by ∼40% for
IllustrisTNG and ∼20% for SIMBA. However, in the LH case,
the uncertainties are better sampled, only deviating ∼3% and
∼7% for IllustrisTNG and SIMBA respectively. This implies

that models trained in LH, despite predicting slightly less
accurate results than those from the CV set, provide a better
sample of the posterior uncertainties.

4.3. Robustness over Different Subgrid Physics Models

Subgrid physics, i.e., the models used to simulate unresolved
astrophysical processes, such as the feedback from supernovae
and black holes, can only be implemented in a phenomen-
ological way, and therefore there is not a unique subgrid model
that best represents reality. Thus, having a ML model robust
over different subgrid scenarios would be needed in order to
obtain predictions that do not depend on the particular type of
simulation used to train the networks.
To check whether our GNN fulfills this requirement, we

have taken the model previously trained on simulations from
the IllustrisTNG suite, and we have tested it on the galaxies
from the SIMBA simulations, which make use of a completely
different subgrid physics model for AGN and SN feedback.
The top left panel of Figure 5 shows the predictions for the halo
mass in the CV set, i.e., trained in IllustrisTNG CV and tested
in SIMBA CV. We see that the performance becomes worse,
and actually a bias appears. This offset may arise from the fact
that the IllustrisTNG and SIMBA models make different
predictions for the halo–galaxy connection, as shown in
Figure 3. This can be related with the fact that astrophysical
parameters are not completely correlated and calibrated
between both cases. While the CV set assumes fiducial values
for the astrophysical and cosmological parameters, the default
values in the IllustrisTNG suite do not correspond to the ones
in SIMBA, since they refer to different quantities and physics.
The absence of a one-to-one relation between both suites in the
CV set may explain why the network fails to make a robust
prediction.
The right panel of Figure 5 depicts the results of testing the

network trained on galaxies of the IllustrisTNG LH set on
galaxies of the SIMBA LH set. In this case, the bias present in
the CV case disappears, and only a broad scatter holds. The
absence of the offset can be attributed to the intrinsic
marginalization of astrophysical effects carried out by the
network (although a slight tilt is present in the trend).
Moreover, the linear correlation coefficient only slightly
decreases with respect to testing in IllustrisTNG (top right
panel of Figure 4), and is actually better than in the CV
counterpart (top left panel of Figure 5), in spite of dealing with
a much broader astrophysical parameter space. The χ2 also
remains closer to unity than in the CV case, meaning that the
uncertainties are better sampled in the LH set. The fraction of
points fulfilling the conditions |ytruth,i− yinfer,i|� σi and
|ytruth,i− yinfer,i|� 2σi is 65% and 93% respectively, while
much lower for the CV case (20% and 46% respectively).
These facts imply that the models trained in the LH set
generalize better than those trained in the CV one.
An analogous experiment has been carried out, employing

the model trained in the SIMBA suite and testing it in
IllustrisTNG. The results are shown in the bottom panels of
Figure 5 for the CV set (left) and LH set (right). Note the offset
in the CV case, which is similar but opposite (underpredicting
the mass) to the one appearing in the top left panel of Figure 5.
This is reasonable, since given that the IllustrisTNG model
overpredicts the mass in SIMBA, the contrary should be
expected when a SIMBA model is tested in IllustrisTNG. In the
LH scenario, the predictions are slightly worse, decreasing the
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truth-prediction correlation down to R2= 0.8, and also poorer
than in the CV case. Both sets present larger χ2 values and a
deviation from the Gaussian counterpart, given that only a
fraction of ∼50% and ∼80% points lie within one and two
times the posterior standard deviation, respectively.

It is noteworthy that, for the LH set, a model trained in
IllustrisTNG generalizes better in SIMBA than the opposite
case. An interpretation of this outcome is problematic. SIMBA
usually covers more extreme astrophysical scenarios than
IllustrisTNG, presenting also more galaxies per halo (see
Figure 2), facts that could have an impact in this different cross
testing. SIMBA simulations usually show a more stochastic
behavior, presenting more scatter in some properties such as
galaxy scaling relations. This can be due to the small box size
compared to the large scale effect of the SIMBA AGN jets
(Davé et al. 2019; Villaescusa-Navarro et al. 2021). Never-
theless, although we observe a higher variance and some
outliers, most of the predictions only deviate up to 0.4 dex from
the ground truth. In all cases, the mean relative error in the
logarithm of the mass lies below 2%. The GNNs are able to
recover the true mass in the majority of the cases within the
standard deviation uncertainty. This shows that the models are
relatively accurate even when they are applied to the
simulations with a different subgrid physics modeling,
manifesting their robustness.

5. Interpretability of the GNN

Neural networks represent superb tools to deal with multiple
problems, but the factors that determine their behavior and
performance are difficult to understand. It is always desirable to
gain some interpretability of our ML models, in order to
determine which features and inputs are the most relevant for
predicting the output. To do so, we make use of the Python
library Captum33 (Kokhlikyan et al. 2020), a package designed
for model interpretability and attribute selection. Specifically,
we employ the saliency method for computing the gradients of
the outputs with respect to the inputs and features employed
(Simonyan et al. 2013). In that way, the larger gradients, and
hence larger saliency values, imply that the prediction is more
sensitive to variations of that variable.
We have computed the gradients with respect to the features

employed in the training of the GNN, averaged over all
galaxies and taken the absolute value. This approach gives us a
saliency value for each property, which is shown in Figure 6
for the IllustrisTNG suite in the CV (blue) and LH (red) sets.
For both sets, we can notice that, as could be expected, each
coordinate of the position presents a very similar importance,
due to implicit rotational invariance present in the problem.
Regarding the CV case, the most relevant features to determine
the output appear to be the stellar mass, M* (as expected from
the tight correlation shown in left panel of Figure 3) and,

Figure 5. Same as Figure 4 but either using a model trained with the IllustrisTNG suite and tested with the SIMBA simulations (top) or trained in SIMBA and tested in
the IllustrisTNG suite (bottom), for CV (left) and LH (right) sets. A model trained in a given suite worsens its behavior when tested in the other one, appearing biased
in the CV case. However, in the LH set, it is possible to find a mapping between the parameter space of both subgrid physics models, alleviating such biases.

33 https://captum.ai/
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subsequently, the stellar half-mass–radius, R*. However, in the
LH case, the network focuses more on R* and v rather than the
stellar mass. One can interpret this change of learning behavior
from the larger scatter in stellar mass shown in Figure 3 in LH
with respect to the CV set. In other words, the large variety of
astrophysical and cosmological scenarios in the LH set may
require the network to base its predictions on features that do
not exhibit such large scatter. While the predictor mostly relies
on the M*-Mh correlation when the scatter is small, the
velocities and galaxy size become better tracers otherwise.
Nevertheless, one has to be cautious with these interpretations,
since the saliency values may not give a complete picture. For
instance, the spatial position importance may be under-
estimated since its weight could be split into the three
coordinates.

It is common in computer vision tasks to calculate the
saliency map, which indicates those pixels in an image that are
most relevant for the final output (see, e.g., Villanueva-
Domingo & Villaescusa-Navarro 2021 for an application in
cosmology). In our case, we are dealing with graphs rather than
images. Therefore, for a given halo, it is possible to compute
the saliency graph, which shows the nodes whose features are
more relevant for predicting the halo mass. Saliency values can
be computed using the same procedure as above, but taking the
absolute value and averaging over all features at each node.
Examples of such saliency graphs for different halos are
depicted in Figure 7, where the color indicates the saliency
value, and the size is proportional to the stellar mass. Neighbors
are connected by lines. Chosen samples present relative errors
lower than 1.5% to ensure that their saliency graphs are
meaningful. The top row stands for the CV set and bottom for
LH, both in IllustrisTNG. In the CV set, as one would naively
expect, the central galaxies provide the most relevant nodes for
the output. These galaxies are also those with larger stellar
masses. However, given that the stellar mass is an informative
property, as seen in Figure 6, halos with relatively massive
satellites can also show other relevant nodes besides the central
one. On the other hand, in the LH set, the stellar mass is less
informative, as seen in Figure 6; the network may focus more

on some low-mass satellites rather than in central galaxies,
which become less important. This illustrates the importance of
the satellite population in our method. Hence, one has to be
cautious when applying these models to galactic systems, since
excluding some relevant satellites may have an impact in the
predictions and induce a bias in the results.
It is thus pertinent to ask ourselves which satellites leave a

greater impact on the halo mass. Figure 8 depicts the saliency
value of each satellite galaxy as a function of distance to the
center, excluding central galaxies. Point size is proportional to
the stellar mass of the node. One can notice a trend where the
closer galaxies become more relevant than those farther away.
Moreover, this tendency seems to be relatively independent on
their stellar mass. Furthermore, in real applications, the
membership of galaxies lying at the boundaries of the system
may be less secure, being not clear whether a far galaxy is a
satellite or not. Figure 8 shows that removing or including such
candidates would not have a significant impact in the results of
the network, given the decreasing saliency value with the
distance. This plot employs the IllustrisTNG CV data set,
although similar qualitative conclusions can be extracted from
the other cases.
These tests provide us with enlightening information about

how GNNs learn and predict their outputs, as well as which are
the most relevant components to understand the halo–galaxy
connection. It has to be noted that the previous interpretations
have to be taken with caution, because the saliency maps can
be sometimes dominated by noise in the gradients and lose
meaningfulness. Further development is required in order to
obtain a better understanding of the training procedure and the
emergent properties of halos from galaxies.

6. Discussion

6.1. Main Conclusions

Constraining the total mass of dark matter halos from
galaxies still presents a challenge from both theoretical and
observational perspectives, given the large contribution of the
dark matter component. In this work, we have presented a new
method based on artificial intelligence designed to infer the
total mass of a halo from the properties of the galaxies it hosts.
The point cloud arrangement of halo–galaxy catalogs has been
exploited in order to structure halos as mathematical graphs,
where galaxies constitute the nodes, connected by proximity.
This organization of data makes it possible to employ GNNs,
naturally suited to operate with graphs, to extract global
permutation invariant quantities, as is the case of the halo mass.
The models are fed with different observable galactic features,
such as the position, velocity, stellar mass, and stellar half-
mass–radius.
We have made use of the large collection of state-of-the-art

hydrodynamic simulations from the CAMELS project to train
our networks, which include thousands of simulations covering
different astrophysical scenarios. Training GNNs over this data
set allows us to achieve precise models capable of predicting
the mass of a halo with remarkable accuracy. Here we outline
some of the key conclusions of our method:

1. Our models are able to accurately infer the mass of a halo
when trained and evaluated in simulations with fixed
astrophysical and cosmological parameters, with a
precision better than ∼1% (in terms of the logarithm of
the halo mass).

Figure 6. Saliency values of the galaxy features employed to train the GNN.
Larger values imply that the network prediction is more influenced by
variations of that feature, indicating that such properties are more relevant for
the result.
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2. The networks have also been trained in simulations with
different astrophysical and cosmological scenarios, suc-
cessfully marginalizing over a broad astrophysical
parameter space, and learning the connection between
the halo mass and the properties of the galactic
components. This provides accurate predictions of the
total halo mass, with relative errors (in the logarithm of
the halo mass) around ∼1%.

3. We have proven that the trained networks in a simulation
suite still provide relatively precise predictions when
tested in simulations with a different subgrid physics

model, only increasing the mean relative error up to
∼2%. This illustrates the robustness of this method with
respect to the astrophysical modeling.

4. Our results strongly rely on the velocity and size of the
satellite galaxies, demonstrating the importance of other
galactic features beyond the stellar mass.

5. We have performed likelihood-free bayesian inference,
providing additionally an estimate for the standard
deviation without knowing the actual likelihood.

6. Hyperparameter optimization has been carried out to
maximize the performance of the networks.

6.2. Comparison to Previous Works

It is not straightforward to compare our results to previous
works, given that the data sets employed, problem setups and
features considered can be notably different. In the following,
we compare our approach to other ML methods estimating the
halo mass in previous literature, while emphasizing that a
proper comparison between two techniques would require the
use of common data and a problem statement.

1. Calderon & Berlind (2019) apply several ML techniques,
such as standard MLPs, to predict the halo mass from
galaxy groups data. They train their models in semi-
analytical galaxy catalogs calibrated to SDSS data,
outperforming traditional methods to infer the dynamical
mass. Their 1σ scatter region spans ∼0.4–0.6 dex (a
fractional difference of ∼3%–5%), while for the same
masses, our GNN reduces down to ∼0.14 dex for the CV
set and ∼0.2 dex for the LH one. In terms of the relative
error in the mass (rather than in the logarithm), their
scatter gets up to ∼250%–400%, while our models
reduce it down to 40% and 60% for CV and LH
respectively. Furthermore, our models make use of fewer

Figure 7. Saliency graphs for six different halos from the IllustrisTNG CV (top) and LH (bottom) data sets. Colors denote the saliency attributes, meaning that
galaxies with larger values are more relevant for the prediction. Sizes of the nodes are proportional to the stellar mass of the galaxies. In the CV set, central galaxies
usually have the greatest impact on the prediction; although if there are massive satellites, they can also contribute significantly (e.g., right panel). In the LH case,
however, more attention is often focused on smaller satellites rather than on central galaxies.

Figure 8. Saliency for each satellite galaxy depending on its distance to the
halo center, excluding the central ones. Point diameter indicates the stellar mass
of the nodes. There is a general tendency where closer galaxies to the center
present larger saliency values, and therefore, are more relevant for predicting
the output.
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galaxy features (6 rather than their 9), and the LH
simulations cover a large volume of the astrophysical and
cosmological parameter space.

2. Man et al. (2019) face a similar problem of predicting
halo masses from group galaxy properties, splitting their
data sets in red and blue groups, according to the color of
the central galaxies. They train a random forest estimator,
obtaining scatter comparable to ours (note the 2 factor
of difference in their definitions), but employing 9
features with a semianalytical galaxy formation model
with fixed parameters.

3. von Marttens et al. (2021) predict galactic properties,
such as the total mass, training different ML models in
the TNG100 simulation. As in our case, the galaxies
considered present stellar masses above 108Me/h,
although they predict the subhalo mass rather than the
halo one. They employ up to 15 features, including
photometric, kinematic, and structural properties. When
all features are included, they are able to get accurate
results, with correlation of R2= 0.92. This case can be
compared to our IllustrisTNG CV set, since it presents the
fixed astrophysical and cosmological parameters,34 where
we obtain a better correlation of R2= 0.97 even using
only 6 features. Moreover, we are also capable of
obtaining a similar accuracy in the LH set compared to
their models in TNG100.

4. Lucie-Smith et al. (2020) train CNNs on the density field
of dark matter halos to infer their masses, with an
accuracy comparable to the one of our network train on
the CV set. However, note that this is a very different
task, since that method relies on the 3D dark matter
density field rather than on observable features, as is the
case of our GNNs. Moreover, the authors employ N-body
simulations with fixed cosmology rather than full
hydrodynamic simulations. In any case, one has to be
cautious at comparing these different approaches, due to
the distinct data sets, assumptions, and features con-
sidered, being appropriate only for illustrating the
potential of GNN models.

6.3. Caveats and Future Prospects

While the ML method presented here shows reasonable
accuracy, it however has some caveats that have to be
emphasized. For instance, it may not be obvious whether one
galaxy belongs to a halo or not, in cases where two galactic
groups are close together. This can be exacerbated in real
observations, which take place in redshift space. This may
cause the appearance of interlopers in a halo that could be
counted as its own satellites, distorting the results. The effect of
the presence of other halos in the environment when building
the graph is also disregarded, which could have an impact for
some close halos gravitationally bound. A way to deal with the
influence of surrounding groups may be to include some global
feature regarding the amount of galaxies or halos within a
certain distance from the halo that is evaluated.

Note that, since only the halos with more than one galaxy
have been considered, this method should only be applied to
the halos that contain multiple satellites (above the assumed

mass threshold). In those cases where the existence of satellites
is not clear, the method may not be reliable. ML approaches
could also be employed to identify the satellites around a given
central galaxy, i.e., training a network to predict whether a
subhalo is part of a given halo or not.
It is important to highlight that, given the small size of the

simulation boxes, the amount of very massive galaxies may be
undersampled. The fraction of galaxies with stellar mass above
1011Me/h is 1% for both suites, implying a relatively low
amount of those large objects. Training in larger simulation
boxes with a higher amount of large halos would be advisable
to ensure the reliability of our method when applied to very
massive galaxies.
Moreover, we have only trained with halos at z= 0, but it

would be also convenient to derive models capable of inferring
halo masses at earlier times. New difficulties may arise in that
case, such as redshift-space distortions, or the fact that we
could expect fainter galaxies at higher redshift (because for a
given luminosity threshold, the number density of galaxies
decreases with redshift), reducing thus the size of the training
data set.
The cross-tests discussed in Section 4.3 are aimed to

illustrate the robustness of the network under different
conditions regarding the baryonic feedback modeling. While
our results are still relatively accurate even when they are tested
in a different subgrid physics model than the one used for
training, it would be desirable to further maximize their
robustness. While training on IllustrisTNG and SIMBA
simultaneously could enhance the performance, there is no
guarantee that the network would be more robust under other
conditions. It is possible that the model learns some kind of
bimodal distribution of simulations, identifying first whether
the halo corresponds to an IllustrisTNG or a SIMBA
simulation, and then predicting the halo mass. A further
improvement on this would be to train on IllustrisTNG plus
SIMBA and cross-test in a third different suite. Such an
additional suite with equivalent features to those of Illu-
strisTNG and SIMBA is still missing, although the CAMELS
collaboration is already working to include other suites using
different hydrodynamic codes and baryonic feedback models.
The results presented here are obtained by restricting

ourselves to a reduced set of several observable quantities.
However, it is possible in principle that using further variables,
the results could improve. Additional correlations with the halo
mass could arise if supplementary features are considered to
train the GNNs. For instance, previous works like von Marttens
et al. (2021) have shown the importance of photometric
variables, such as luminosities at different wavelengths, for
inferring the total halo mass. Additionally, considering, e.g.,
radii enclosing 20% and 80% of the mass (or light) may
provide further information about the concentration and
morphology of the halo. Among the other appealing galactic
properties that could be contemplated are the gas mass, the
neutral hydrogen (HI) mass, metallicities, velocity dispersion,
etc. Furthermore, it would be desirable to explore more
complex GNN architectures to find whether more accurate
results can be achieved, reducing the scatter and the predicted
uncertainties. The training of GNNs on galactic properties
combined with other observables such as lensing could also
enhance its predictive power.
The framework developed in this article has been proposed

to infer the total mass of a given halo. However, since it is

34 Although TNG100 has a box size of ∼100 Mpc/h, larger than the 25 Mpc/
h CAMELS box size, the CV set includes 27 simulations varying the
random seed.
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based on extracting global quantities from galaxy features, it
could be generally applied to predict any other global quantity
of the halo, such as its concentration, spin, characteristic age,
etc. Depending on the specific global quantity considered,
different galaxy or subhalo features may be required in order to
maximize accuracy, which in principle could differ from those
employed here. Moreover, one could apply GNN architectures
to other problems, such as edge prediction. For instance, given
a set of galaxies, a GNN could be trained to identify those that
conform separate halos, as a ML alternative to friend-of-friends
algorithms. Furthermore, note that our GNNs are trained to
marginalize over the baryonic feedback and cosmological
parameters, but they cannot identify the specific parameters
underlying the simulation of a given halo. However, a GNN
can be explicitly trained to infer the values of the cosmological
parameters from a simulation employing its galactic popula-
tion, a task that has been tackled with CAMELS catalogs in
Villanueva-Domingo & Villaescusa-Navarro (2022).

It would be desirable to synthetize the predictive power of
the GNNs into an analytical formula, via symbolic regression,
as has been done already in other cosmological contexts
(Cranmer et al. 2019, 2020; Wadekar et al. 2020; Shao et al.
2022). The analytical formulae derived in this way would
depend upon the messages exchanged between the nodes.
Nonetheless, obtaining a model susceptible of being replicated
by a concise formula presents further difficulties. Performing
symbolic regression requires interpretable models. One way to
achieve this is to enforce sparse weights, obtained, e.g., by
applying L1 regularization, which can affect the accuracy of the
network. Sometimes, increasing the accuracy of a network
reduces its extrapolation properties, and the other way around
(Shao et al. 2022). Hence, deriving simple analytical formulae
via symbolic regression from these GNNs remains as a
desirable but challenging step for future work.

Our mass inference method based on GNNs is developed for
galactic systems composed by central and satellite galaxies, but
it could also be applied to galaxy clusters, given that the data
description as graphs would be equivalent. While we believe
our method will be perfect to perform mass estimates of galaxy
clusters, the CAMELS simulations may not be the best training
data set given the small volume that they cover, which
translates into a lack of galaxy clusters, as already pointed out
by previous work Wadekar et al. (2022).

Besides galaxy clusters, the description as graph-structured
data makes this kind of network suitable for other types of
astrophysical systems, which are characterized by point clouds.
Examples of these may include globular clusters, stellar
populations within a galaxy, or even planetary systems. Any
point distribution could take advantage of the graph structure
presented here for halos, in order to derive global quantities of
such systems. An unexplored window remains open to apply
all the power of GNNs to astrophysics.

Given that halo masses can be accurately predicted from
numerical simulations by using the method shown here, the
natural step forward would be applying this kind of model to
real data. Once a GNN model is trained in simulations, one can
predict the mass of a real halo using the observed kinematic
and internal features of some real galactic systems as input
data. Note that this procedure presents further challenges.
Spectroscopic measurements would be required to infer the
velocity, redshift information, and 3D positions of every
satellite and central galaxy. The satellite population of distant

halos could not be completely observable given their faintness,
which could induce some biases in the results. Moreover,
additional problems may arise when considering several
redshifts at once, such as dealing with redshift-space distor-
tions. However, our local galactic neighborhood provides us
with a simple scenario to apply our method, where the previous
difficulties can be handled. This task is carried out in a
companion paper (Villanueva-Domingo et al. 2021), where
GNNs trained with CAMELS simulations are employed to
predict the masses of the halos containing the Milky Way and
Andromeda. In that article, independent predictions for both
halos are presented, which are consistent with other standard
methods for estimating the dynamical masses of our galaxy and
its companion. This represents a success of applying ML
models trained with numerical simulations on real data,
illustrating the power of artificial intelligence to enhance our
knowledge of the universe.
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Data Availability

The models and implementation of GNNs in PyTorch
Geometric, HaloGraphNet, are available on GitHub35

(Villanueva-Domingo 2020). Details on the CAMELS simula-
tions can be found in https://www.camel-simulations.org.
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