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Abstract. Motivated by applications in combinatorial geometry, we consider the following
question: Let A = (A1,A2,...,Am) be an m-partition of a positive integer n, S; C C*i be finite
sets, and let S := S1 X S2 X --- X Sy, C C™ be the multigrid defined by S;. Suppose p is an n-
variate degree d polynomial. How many zeros does p have on S? We first develop a multivariate
generalization of the combinatorial nullstellensatz that certifies existence of a point ¢ € S so that
p(t) # 0. Then we show that a natural multivariate generalization of the DeMillo-Lipton—Schwartz—
Zippel lemma holds, except for a special family of polynomials that we call A-reducible. This yields
a simultaneous generalization of the Szemerédi—Trotter theorem and the Schwartz—Zippel lemma
into higher dimensions, and has applications in incidence geometry. Finally, we develop a symbolic
algorithm that identifies certain A-reducible polynomials. More precisely, our symbolic algorithm
detects polynomials that include a Cartesian product of hypersurfaces in their zero set. It is likely
that using Chow forms the algorithm can be generalized to handle arbitrary A-reducible polynomials,
which we leave as an open problem.
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1. Introduction. Incidence geometry studies properties of arrangements of geo-
metric objects such as lines, points, and hypersurfaces. The focus is on understanding
extremal geometric configurations. For example, if P is a collection of points in the
real plane with cardinality m, and L is a collection of lines with cardinality n, one is
interested in understanding what could be the maximal number of incidences between
the elements of P and L in terms of m and n.

Incidence geometry is a fundamental and relatively old field in combinatorics.
Yet, its quests in the last two decades have unraveled surprising connections between
theoretical computer science, harmonic analysis, and number theory vindicating long
standing conjectures [12, 4, 11]. Most of these recent breakthroughs in incidence
geometry rely on creatively using (the zero sets of) polynomials and classical algebraic
geometry. This circle of ideas already formed an emerging field in combinatorics called
“the polynomial method” [5, 27, 10, 21].
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One of the early achievements of the polynomial method is Alon’s combinatorial
nullstellensatz [1], which reads as follows.

THEOREM 1.1 (combinatorial nullstellensatz). Let F be a field and let p €
Flz1,22,...,2,] be a polynomial of degree deg(p) = Y.i t; for some positive inte-
gers t;; further assume that the coefficient of H?Zl xf‘ in p is nonzero. Let S; C T for
i1 € [n], be finite sets with |S;| > t; and S := S1 X Sy x-S, CF". Then, there exists
t € S such that p(t) # 0.

The deep impact of Alon’s result in combinatorics hinges on the fact that one
can translate a diverse set of questions in structural graph theory, additive number
theory, and Diophantine equations into the problem of locating zeros of a polynomial
on a grid of points.

In the opposite direction to Alon’s theorem, one can also try to use a known
grid of points to understand an unknown polynomial. This direction represents a
subject of extensive research in symbolic computation where the basic result is the
DeMillo-Lipton—-Schwartz—Zippel (DLSZ) lemma [13, 19, 17].

THEOREM 1.2 (DLSZ lemma). Let S C T be a finite set where F is a field and
let p € Flay,x9,...,2,] be a polynomial of degree d. Assume |S| > d and consider
S"=8xS8x---x 8. If Z(p) is the zero set of p, then we have

1Z(p) N S"™| < d|S|",

where |.| denotes the cardinality of a set.

A common view of these two classical results would be that the combinatorial
nullstellensatz certifies if a given polynomial p entirely vanishes on a grid, where the
DLSZ lemma provides quantitative estimates on the number of zeros of p on the grid.

Mojarrad, Pham, Valculescu, and de Zeeuw further noticed that the question of
estimating the number of zeros of a 4-variate polynomial on a finite subset of C? x C?
is equivalent to classical questions in incidence geometry [14]. Motivated by Mojarrad,
Pham, Valculescu, and de Zeeuw’s observation, we consider the following questions:
Let A\; € N for 1 <1 < m be a partition of n, that is, 2721 \i =n, and let S; C CHi.
Consider the multigrid S defined as

S =51 xSy x---x8,.

For a given n-variate polynomial p of degree d can we prove that there is a t € S with
p(t) # 0?7 Can we go one step further and prove an upper bound for the number of
zeros of p on S?

We prove multivariate generalizations of the combinatorial nullstellensatz and the
DLSZ lemma which answers both of these questions. These results have immediate
consequences in incidence geometry, some of which we collect in section 1.4.

1.1. Summary of our results. First, we present a generalization of Alon’s
combinatorial nullstellensatz (Theorem 1.4) on a multigrid. Then, we develop a gen-
eralization of the DLSZ lemma (Theorem 1.7) to the multivariate setting. Here mat-
ters are considerably more complicated as certain multigrids and polynomials do not
allow any nontrivial bound. We assume that the structure of the multigrid is a priori
not known, and we seek polynomials that are compatible with any multigrid. We call
this family of polynomials A-irreducible polynomials (Definition 1.5). The proofs are
in section 4.

Our algebraic toolbox allows us to obtain bounds for a variety of geometric con-
figurations in a unified way (subsection 1.4). We derive some corollaries such as a
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complex version of the Szemerédi—Trotter theorem (Corollary 1.8), that are known to
be sharp, to demonstrate sharpness of our results.

We present an algorithm (section 3) to recognize certain A-reducible polynomials:
It detects if there are hypersurfaces V; C C* that satisfy V; x Vo x --- x V;,, € Z(p).
The construction is based on some classical, yet powerful, tools from computational
algebra such as multivariate resultants and regular sequences which we introduce in
section 2. The algorithm has the potential to be generalized to handle arbitrary
A-reducible polynomials using Chow forms, but we leave this as an open problem.

Comparison with previous work. There have been numerous remarkable articles
that focus on incidences between a collection of real algebraic sets and a set of points
under certain tameness assumptions. We humbly provide a sample [23, 16, 22, 8] but
we warn the reader that they only represent the tip of an iceberg. These articles pose
natural assumptions on the input data and derive sharp estimates. However, in most
of the cases, these combinatorial assumptions on the input data are not formalized
as a checkable condition but assumed to be granted. Our contribution consists in
identifying a workable assumption on the input (A-irreducibility; see Definition 1.5)
that we equip with an algorithm to detect certain A-irreducible polynomials.

The bounds of our main result (Theorem. 1.7) seem to be sharp at this level of
generality except for some loss in the exponents of d; this can be seen from sharp
bounds presented in various corollaries in subsection 1.4. However, unlike the men-
tioned results in the literature, our estimates do not improve with extra assumptions
on the data.

1.2. Multivariate combinatorial nullstellensatz. To present a multivariate
generalization of the combinatorial nullstellensatz, we need to introduce the algebraic
degree of a finite set.

DEFINITION 1.3 (algebraic degree of a finite set). Let F be a field and let S C F™
be a finite set of points. Let I(S) C Flx1,...,x,] be the ideal of polynomials vanishing
on S. We define

deg(S) := pgi(g) deg(p)

to be the algebraic degree of S.

For the univariate case, that is when S C F, it holds that deg(S) = |S|. This
was one of the key observations in Alon’s celebrated combinatorial nullstellensatz.
However, for n > 2 one can have arbitrarily large sets of degree one in F™: just
consider many points sampled from a hyperplane. The only general relation between
the size and the degree of a set S C F” seems to be the following inequality,

Sl> <deg(S)1+n>.

n

This inequality can be proved by linear algebra as follows: Let the vector space of
polynomials of degree at most deg(S) — 1 be denoted by Paeg(s)—1, and consider the
linear map Ls : Pyeg(s)—1 — FI5! that is defined by listing pointwise evaluations of a
polynomial on the set S. Then, if |S| < dim(Pyeg(5)—1), the map Lg has a nontrivial
kernel, i.e., there exists a polynomial vanishing to the entire set S.

Let A = (A1, A2, ..., Ay) be an m-partition of n, i.e., n = >, \;. We will consider
multigrids with a partition structure determined by A. So, it makes sense to use the
following convention: Z; = (x1,Z2,...,%x;), T2 = (Ta;4+1sTA1+2)- -+ Trg+2g)s and
so on. Moreover, we will use deg;(p) to denote the degree of p with respect to the
variables ;. It holds that deg;(p) < deg(p) and deg(p) < >, deg;(p).
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THEOREM 1.4 (multivariate combinatorial nullstellensatz).  Let F be a field,
A= (A1, A2, ..., Am) be an m-partition of n, and let p(z) € Flxy,za,...,2,] be a
polynomial with deg;(p) = d;. Furthermore, assume that the coefficient of % in p(x),
that satisfies deg;(z®) = d; for all i € [m], is not zero. Let S; C F*i be finite sets and
consider the multigrid S := S1 X Sg X -+ x S, CF™. If deg(S;) > d; for all i € [m],
then there exists a t € S such that p(t) # 0.

The proof of the theorem appears in subsection 4.1.

1.3. Multivariate Schwartz—Zippel lemma. In the same way we use Alon’s
nullstellensatz to understand the structure of a grid created from a number of finite
sets S; C IF, we can use its multivariate extension supported by Theorem 1.4 to certify
S ¢ Z(p) for a multigrid. However, for applications in incidence geometry one needs
a quantitative statement, like the DLSZ lemma, for multigrids. We provide such
a quantitative statement in Theorem 1.7, but first we would like to consider some

examples.
Consider g1,92 € Clzy1,2z2,23], 93,94 € Clag,z5,26], and p = g1h1 + ga2ho +
g3hs + gahg, where h; € Clzy,x9,...,26]. If the polynomials g; and g2 are generic,

then the intersection Z(g1) N Z(g2) is a one dimensional variety; the same holds for
Z(g3) N Z(ga). We have the following inclusion:

(Z(g1) N Z(g2)) x (Z(g3) N Z(g4)) € Z(p).

Therefore, for any sets S1 C Z(g1)NZ(g2) and S C Z(g3)NZ(g4), we have S; x So C
Z(p). More generally, we can consider two positive dimensional varieties Vy, Vo C C"
and then take an ideal sum in Clz1, ..., 2, Tpt1, ..., Ton]: I :=I(V1)+I(V2). Then,
any polynomial f € I vanishes on V; x V.

These examples indicate that to have a quantitative statement on |Z(p) N S| one
has to assume certain compatibility conditions between p and S. Since we assume
the structure of the multigrid S is a priori not known, we take it as a Gordian knot
and seek polynomials that are compatible with any grid. We call such polynomials
A-irreducible.

DEFINITION 1.5 (A-irreducible algebraic sets).  Let A be an m-partition of n
and let V. C C™ be an algebraic set. We say V is A-reducible if there exist positive
dimensional varieties V; C CNi for i € [m] such that

V1><V2X-'-vagv.

We call V' a A-irreducible algebraic set otherwise. If V' is a hypersurface defined by a
polynomial p, then we say p is A-reducible (resp., A-irreducible).

Mojarrad, Pham, Valculescu, and de Zeeuw [14] studied the problem for the special
case where A = (2,2). Note that a positive dimensional variety embedded in C? is
either the entire space C? or it is a one dimensional hypersurface. Based on this
fact, the authors of [14] observed that a polynomial p(z) € Clzy,z2,x3, z4] is (2,2)-
reducible if and only if there exist polynomials g1 € Clzy, 23] and g2 € Clzs, z4] of
degree at least one, and hq, hy € Clx1, 29, x3, 4] such that it holds that

p(x) = g1(z1, 22)h1(2) + g2(T3, T4) 2 ().

The authors of [14] raise the following question: Is there an algorithm that decides if
a p(x) € Clxy, xe, w3, 4] is (2,2)-reducible? The algorithm in section 3 answers this
question in a more general setting and proves the following theorem.
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THEOREM 1.6 (symbolic algorithm). Let A = (A1, A2, ..., Ay) be an m-partition
of n and let p € Clxy,...,x,] be a polynomial of degree d. There exists a symbolic
algorithm 1S_DECOMPOSABLE (Algorithm 1) which for a given polynomial p finds irre-
ducible polynomials g; € C[Z;] with degg; > 1, Ty = Tx; 4ot s 1+1s- s TAptot i1 +Ns
, L =1T1,...,Tn, Such that

p(z) = Z 9i(T;) hi(z),

or certifies that no such decomposition exists.

Theorem 1.6 solves the following problem: Given p € Clxy, za,...,z,], are there
irreducible hypersurfaces V; € C* such that V; x Vo x --- x V,, C Z (p)? This covers
all A-reducible polynomials only if A = (2,2,...,2). For the moment, we leave it as

on open problem to develop an algorithm that detects all A-reducible polynomials for
arbitrary .

The algorithm 1S_DECOMPOSABLE (Algorithm 1) uses some standard tools from
computer algebra, namely, multivariate resultants, Canny’s generalized characteristic
polynomial [3], and regular sequences. We introduce these algebraic tools in the
preliminaries (section 2). We are now ready to state our main result.

THEOREM 1.7 (multivariate Schwartz—Zippel lemma). Let A = (A1, A2, ..., Am)
be an m-partition of n, let S; C CNi be finite sets, and let S := Sy x Sy X - X Sy,
be the multigrid defined by S;. Then, for a A-irreducible polynomial p of degree d > 2
and for every e > 0 we have

1Z(p) VS| = O | IS5+ S T8
=1

i=1 ji
where the Oy, 4. hides constants depending on €,d, and n.
We dedicate section 4.2 to the proof of this result.

1.4. Applications in combinatorial geometry. A gem in incidence geometry
is the Szemerédi—Trotter theorem on the number of incidences between points and
lines in the real plane [25]. We recover this theorem in the complex plane except
for an ¢ in the exponent (this complex version seems to be first proved by Té6th [28]
without the €’s).

COROLLARY 1.8 (complex Szemerédi-Trotter theorem). Let P be a set of points
and L a set of lines in the complex plane C2. If (P, L) is the set of point-line inci-
dences, then it holds that

[Z(P.L)] = O. (|PI3*[LI3+= + |P| + |L]).

Proof. Let p(x1,x9,x3,24) = x1 + Tows + x4. It is easy to prove p is (2,2)-
irreducible. Observe that for a given point z = (21,2) € C? and a line 2 + ay + b =
0 with nonzero slope, we have an incidence between z and the line if and only if
p(21,22,a,b) = 0. Theorem 1.7 gives the bound above for point-line incidences for a
set of lines with nonzero slopes. There are at most |P| incidences between points and
zero-slope lines, so the claimed bound holds for any set of lines |L|. |

Our next application is inspired by the unit distances theorem of Spencer, Szemerédi
and Trotter [24]. This classical result shows that for a given set of points P in the
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real plane, the number of pairs in P x P that have a unit distance admits a sub-
quadratic upper bound. The next corollary shows that a similar statement holds for
(n, n)-irreducible polynomials.

COROLLARY 1.9. Let P be a finite set of points in C" and consider a degree
d polynomial f € Clz1,...,Tn,Y1,-..,Yn] such that q(x,y) = f(z,y) — 1 is (n,n)-
irreducible. Then, we have

{(uwv) € Px P f(u,0) = 1} = Onae (IPP775 4 |P]),

where € > 0 is arbitrary, and the constant hidden in O, 4. depends on ¢, d, and n.
One can also consider the same result for any A-irreducible polynomial.

COROLLARY 1.10 (repeated values of polynomials). Let A = (A1, A2, ..., Apm) be
an m-partition of n, let S; C C* be finite sets, and let S := Sy x So x -+ x S, be the
multigrid defined by S;. Let p be a polynomial of degree d, assume that g =p—1is a
A-irreducible polynomial. Then, for every e > 0 we have

Hz e S:p(x) =1} =Onae H|Si\1_ﬁ+s + ZH'SJ|

i=1 i=1 j#£i

The following result is not a direct corollary of our main theorem, but it can be
proved by a minimal adaptation of our proof. We include the result here for purely
aesthetic reasons.

PROPOSITION 1.11 (sparse hypersurface-point incidence theorem). Let A = {ay,
as,...,ar} be a set of lattice points in 7% with 2?21 a;j < d foralll < i < k.
We say a polynomial f is supported in A if f(x) = Zle c;x%, where ¢; € C and
x% = g{txl®? . x%n. Let P be a set of points in C", L be a set of polynomials
supported with A, and let Z(P,L) denote the collection of incidences between P and
L. We assume for any sets Uy C P and Uy C L with |Uy| > d™ and |Us| > d*, Uy x U,
is not included in Z(P,L). Then,

[T(P, L)| = Onpac (1P| 7L R4 4 P4 L))

Proof sketch. We define p(z,y) := Zle yix®, where y = (y1,¥2,...,Yr) repre-
sents polynomials in L, and = (1,2, ...,2,) represents points in P. The poly-
nomial p(z,y) is not (n, k)-irreducible and our main theorem does not directly apply.
However, the assumption that large Cartesian products are not included in I(P, L)
forces p(x,y) to behave as (n, k)-irreducible on the set P x L (see Lemma 2.3). One
can then prove Proposition 1.11 by repeating the steps in the proof of Theorem 1.7
with minimal adaptations using the assumption that large Cartesian products are not
included instead of (n, k)-irreducibility. O

2. Algebraic preliminaries. In this section we present some tools from com-
putational algebraic geometry, real algebraic geometry, and commutative algebra that
will be later used in the symbolic algorithm and in the proof of Theorem 1.7.

2.1. Resultants and generalized characteristic polynomial. For a polyno-
mial f, respectively, a polynomial system (F'), we denote by Z(f) C C", respectively,
Z(F) C C™, its zero set. Suppose a polynomial system (F') consisting of m equa-
tions f; = 0 in n variables, where m < n. Every nonempty component of Z(F') has
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dimension at least n — m [15, Cor. 3.14]. The proper components are the ones with
dimension exactly n —m. We call the components of dimension greater than n — m
excess components. From the system (F') we can eliminate m — 1 of the n variables
and obtain a single polynomial in the remaining n —m 4 1 variables. This polynomial
vanishes if the polynomials in (F) have a common zero. We call this polynomial the
resultant. We can think of the resultant as a projection operator. It projects the
algebraic set defined by the input polynomial system that lives in dimension n to an
algebraic set that lives in dimension n — m + 1, by eliminating m + 1 variables.

The resultant is one of the most important tools in (computational) algebraic
geometry and it is well-defined for a square system of homogeneous polynomials. We
can compute it efficiently as the determinant or a nontrivial divisor of the determinant
of a matrix (see [9, 7]) and it provides a necessary and sufficient condition for the
existence of a solution in the projective space. Things change considerably when one
seeks solutions over the affine space. If we homogenize the polynomials to obtain
a square homogeneous system and compute the resultant, then the resultant might
vanish even when there are no affine solutions. The reason for this is the presence of
solutions at infinity in the projective closure of the affine zero set or the presence of
excess components at infinity.

If the number of the (affine) polynomials is less than or equal to the number
of variables, m < n, then we can consider only the m — 1 variables and regard the
rest n —m + 1 as parameters. Then, we obtain an affine system of m equations in
m — 1 variables and we can use the usual techniques [9, 7] to compute the resultant,
which would be a polynomial in n — m + 1 variables. However, if there are (affine or
projective) excess components, i.e., components of dimension greater than n—m, then
the resultant vanishes identically; that is, it is always zero independently of whether
there is a component of dimension n — m or not and so it gives no information.

Canny [3] introduced a projection operator that he called generalized characteris-
tic polynomial (GCP) to overcome the issues of the resultants, in particular, to avoid
the identical vanishing in the presence of excess components. The idea is to perturb
symbolically the polynomials of the initial system using a new parameter, say s, then
compute the resultant of the perturbed system and consider the resultant as a poly-
nomial in s. The perturbation is such that it guarantees the new resultant polynomial
is not identically zero. The coefficient of the lowest degree term in s is the projection
operator of interest. If there are no excess components, then the constant coefficient
(with respect to s) is the projection operator and coincides with the classical resultant.

The GCP guarantees that we recover all the proper components of the inter-
section, that is, the components of the expected dimension; we refer the reader
to [3, Thm. 3.2] for the proof and further details. However, it might also con-
tain additional proper components, that live in the excess components; these com-
ponents can also be projected in the resultant polynomial, but they do not af-
fect our algorithms. Nevertheless, we can identify (in a randomized way) the ad-
ditional components by performing many random perturbations. In what follows,
for a polynomial system fi,..., fm with polynomials in C[zq,...,x,], of degrees
dy,...,dn, the following operator Elim(f1,..., fm : Z1,...,%;) realizes the tech-
nique of GCP. It eliminates the variables z1,...,x,, and results in a non-identically
zero polynomial R € Clxmq1,...,2,]). It proceeds as follows: First, it perturbs
symbolically the polynomials, that is, it constructs the polynomials f, = sxfb + fi
for in i € [m]. Then it computes the resultant of fi,...,f, that eliminates the
variables z1,...,Tm; the resultant is R € (Clxmet1s---,xpn])[s]. Finally, it returns
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R = tcoeff(R,s) € ClZmy1,...,2n], where tcoeff returns the trailing coefficient of
a polynomial with respect to s.

2.2. Some basic algebraic geometry. We begin with an affine version of
Bézout’s theorem. This result is certainly well-known but we do not know who was
the first person to write it down. We state the version of the result we need below.
For square systems (the case m = n), an affine Bézout’s inequality was subject to
a well written paper by Schmid [20]. The more general version we need can also be
proved by essentially repeating Schmid’s argument, where the u-resultant in his proof
needs to be replaced by the GCP of Canny. One can also give a proof based on regular
sequences and Schmid’s result for square systems. We will give a sketch of the latter
idea.

THEOREM 2.1 (affine Bézout inequality for overdetermined systems). Consider
the polynomials p1,pa, ..., pm in n-variables and degree at most d. Denote by V(py,
D2, ...,Pm) the affine variety defined by p; in C™. Further assume that

V(p17p27 s 7pYrL) = ‘/0 U ‘/17

where Vy is a pure zero dimensional variety, and Vi is either an empty set or a positive
dimensional variety. Then, we have |Vp| < d™.

Proof Sketch. Let I := (I(V(p1,p2,---,0m)) : I(V1)) be the ideal defined by sat-
urating the radical ideal I(V) with I(V;). By definition I = I(V}), and also I =
<f1,f2, .. ,fm> for some f; of degree at most d. Since V; is zero dimensional, I =
<f1, fg, R f:n> has depth n; thus we can find a regular sequence fc,(l), fg(g), ceey fg(n)
that generates the ideal I, and are given by linear combinations of ﬁ So, Vp is in-

cluded in V(fs,, foy,---» fo, ), and the cardinality of this set is bounded above by d"
due to the affine Bézout inequality. 0

Similar results to Theorem 2.1 can be found in [29]. For a nice and elementary
exposition on Theorem 2.1 we refer the reader to Tao’s blog post [26]. Theorem 2.1
leads to a simple criterion that needs to be satisfied by all A-irreducible polynomials.

LEMMA 2.2. Let C C C™ be a Zariski closed subset and d > 1 be an integer.
There exists a finite subset U C C such that any degree d polynomial that vanishes on
U also vanishes on C.

Proof. Set Pq = {p € Clz1,22,...,2y] | deg(p) < d} and for a subset S C C",
define I;(S) == {p € Py | p(s) = 0,¥x € S}. Let U C C be a finite subset with
minimal dim I4(U). Then, for each x € C we have I4(U) = I;(UU{z}). In particular,
if pe I4(U), then p € I4y(U U {z}) so p(z) = 0. As x € C is arbitrary, we deduce that
p vanishes on C; thus, I;(U) = I4(C). |

Theorem 2.1 leads to a simple criterion that needs to be satisfied by all A-
irreducible polynomials.

LEMMA 2.3. Let A = (A1, Mg, ..., Am) be a partition of n, i.e., n = A1 + -+ A\
Let U; C C* be finite sets with |U;| > d* for some integer d > 1. Let p be a
polynomial of degree d in n variables. If p vanishes entirely on the set

U1XU2><-~-><Um,

then p is A-reducible.
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Proof. For every point y € C"~*, we define a polynomial p, in A\; variables by
setting p,(z) = p(z,y). We know that

NyetvaxUsx-xv,, V (py)| 2 [U1] > d*.
By Theorem 2.1, there exists a positive dimensional variety C'; C C* such that
Cy x Uy x Uz X -+ xUp, CV(p).

We use Lemma 2.2 to obtain a finite subset U; C Cy with the property that any
degree d polynomial that vanishes on U also vanishes on Cj.

Now for every point y € Uy x Us x Ug X -+ X Uy, we consider a polynomial p,
in Ag variables by setting p,(z) = p(z,y), and we repeat the argument above using
Theorem 2.1. This shows the existence of a positive dimensional variety Cy with

leszU3><~~~><UmCV(p).

On the other hand, if y € Cy x Uz x -+ X Uy, then p, vanishes on U, and has degree
at most d. By the defining property of Uy, we have C; C V(p,) and, hence,

Cl><02><U3><-~-><UmCV(p).

We can iterate this argument: At the ith step, we pick a finite subset U; C
C1 x(Cy x---x (C;_1 with the desired property using Lemma 2.2; we then observe that
for any point y € U; x Uiy1 X - -+ x Up, py vanishes on U;. Then, using Theorem 2.1,
we deduce that p, vanishes on a positive dimensional variety C;. But now, for each
y € C; x Uig1 X -+ X Up,, py vanishes on U;; therefore,

C1><C2><~~-XCZ-><U1-+1><~~><UmCV(p).

After the mth step, we have constructed positive dimensional varieties C1,Cs, ..., C,
such that C; x Co X -+ x Cp, C V(p) and obtained the desired result. O

2.3. Tools from real algebraic geometry and polynomial partitioning.
We first present a useful tool invented by Guth and Katz in their solution to Erdés
distinct distances problem [12]; see [23] for a nice exposition (in particular, Corol-
lary 5.3).

PROPOSITION 2.4 (polynomial partitioning lemma). Let Q@ C R™ be a finite set of
points, and let d > 2 be an integer. Then, there exist a polynomial p € Rlzy, xa,. .., Ty
with degree at most d and a partition

RnZZ(p)UQlLJQQU“-UQM,

such that the boundary of each set Q; is in Z(p), and |Q N Q| < |Q|/d™ for all
i=1,2,.... M.

We will need a refinement of the polynomial partitioning lemma due to Fox, Pach,
Sheffer, Suk, and Zahl.

LEMMA 2.5 (Theorem 4.2 in [8]). Let V C R™ be an irreducible algebraic variety
of dimension k and assume the degree of the complezification of V is 6. Let Q be
a collection of points in R™. Then there exists a polynomial p that does not vanish
entirely on V' such that degp < C(k,d)d for a constant C(k,d) that depends only on
k,6, and

Rn:Z(p)UglLJQQUUQM,

such that the boundary of each set ; is in Z(p), and |Q N Q;| < |Q|/d™ for all
i=1,2,..., M.
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Now we recall a result from real algebraic geometry which has been proved in a
more general form by several authors (see, for instance, Appendix Theorem A.2 of
[23] and [2]).

THEOREM 2.6. Letp € Rxy,...,x,] be a polynomial of degree d, and let V C R™

be the real part of a k-dimensional complex variety. Then the semialgebraic set {x €
V :p(x) # 0} has at most Oy, x(d*) many connected components.

3. Symbolic algorithm. To simplify the presentation we modify the notation
for the variables. Let T; = (2;1,...,%;,) for ¢ € [m + 1]. That is we assume
A = (n,n,...,n) is an (m + 1)-partition of n(m + 1). In this section we consider
polynomials with rational coefficients because our algorithms rely on the irreducibility
of polynomials over the rationals. If we allow complex coefficients, then we have to
rely on polynomials that are irreducible over the complex numbers, which is a stronger
condition (known as absolute irreducibility).

To summarize, we are interested in an algorithm that solves the following problem.

PROBLEM 3.1. Consider a polynomial F € Q[Z1,...,Tmy1] of degree d. Are there
polynomials G; € QI[Z;] of degree § > 1 irreducible over the rationals and H; €
Q[Z1, .- s Timy1] with deg(H;) < d, where i € [m + 1], such that we can write F
as

m—+1
(3.1) F(T1,...,Zmy1) = Z Gi(T;) Hi(ZT1, ..., Tmy1)-
i=1

Equivalently, are there hypersurfaces V; C C™ such that
ViXVyx---x Verl C V(F) cC (C(’m-‘rl)n7

where V; = V(G;) C C™ are the zero sets of the polynomials G;, i € [m + 1].

The equivalence of the algebraic and geometric formulation in Problem 3.1 follows
by the following proposition. The proof is similar to the proof of [14, Theorem 2.2] in
which the authors prove the case n =4, m = 2.

PROPOSITION 3.2. Let G; € C[z;],i = 1,2,...,m, be irreducible polynomials each
having degree at least 1. Then if

Z(Gh) x Z(Ga) x - -+ x Z(Gy,) C Z(F),
then there exist polynomials Hy, Ha, ..., Hy, of degree at most deg(F'), such that
F=GH+GyHy+ -+ GpHy,.

Proof. We proceed by induction on m. For the base case m = 1, we note that
Z(F) D Z(Gy) implies F € C[Z1] - G1 and, hence, F = G H; since G is irreducible.
The degree bound follows by deg F' = deg G; + deg H;.

For m > 1, we fix a monomial ordering that prioritizes the variables Z; over Z;
for i < j, and respects the degree of monomials; that is, if ® < 2 then |a| < |A].
Using polynomial divison, we write

F=G{Hi+ R,

where no monomial of R is divisible by the leading term of G;. Note that since the
monomial ordering respects the degree, we have deg R < deg F' and deg H; < deg F'.
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For a point p such that
p € Z(Gy) X -+ x Z(Gp),
F(T1,p) vanishes on Z(G1), by the assumption on F'. Hence,
R(z1,p) = F(Z1,p) — G1(T1)H1(T1, p)

which implies that R(Z1,p) also vanishes on Z(G1) and it is divisible by G;. On the
other hand, each monomial of R(Z1, p) divides a monomial of R and by the assumption
that no monomial of R is divisible by LT (G1), this is only possible when R(Z,p) = 0.

Write
R=> R.Z{,

so we have
Z(G2) X -+ X Z(Gp) € Z(Ry)-
By the induction hypothesis, R, can be written as follows

Ra = GQHa,2 +-- GmHa.,ma

where deg H, ; < deg R, < deg R — |a| < deg F' — |c|. Then we have

F=G{Hi+ Gy (Z Ha)gl‘(l)‘) +--+ Gy (Z Hmmx(f‘) .

Setting H; = ), Ho ;ZTT, the result follows. O

The algorithm 1S_DECOMPOSABLE (Algorithm 1) provides a solution to the prob-
lem 3.1. It depends on two subalgorithms. The first one, RECOVER_M (Algorithm 2),
recovers candidates for G, ..., G, and the second one, RECOVER_LAST (Algorithm 3),

Algorithm 1: IS_DECOMPOSABLE

Input: F(fl,...,fm,fm_ﬂ)
Output: TRUE if we can write F' as
F=Y""Gy@) Hi(T1, ..., Tm, Trmy1), FALSE otherwise.

Gi,...,Gm < RECOVER_M(F) ;
Gm+1 < RECOVER_LAST(F) ;
/* Perform a square-free decomposition and factorization to each Gy.

x/
for 1 <k<m+1do
0 Osy,
ey
for iy € [s1],--yim € [Sm], tmt1 € [Smy1] dO
Check (using linear algebra) if there are Hy, ..., Hy,41 (of degree < d)
such that

F=Gy Hi+-+G, Hy+Gi . Hypp

i7n
If this is the case, then RETURN TRUE
RETURN FALSE
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Algorithm 2: RECOVER_M

Input: F(T1,...,Tm, Tm+1)
Output: G, € C[z,] with v € m such that if we can write F' as
F= ZZJ{I Gi(z;) Hi(T1, ..., Tm, Tm+1), then G,(T,) is a factor of

G (Ty).
/* Introduce new variables fgl), U O .fﬁ""”, T */
3 R SRR G
M
'fgmn) 'fémm R

M+ 1—t det(M) ;
for 1 < j <mn do
| B« F@EY, .29 Fmia)
for1<v<m do
for 1 <k < (mn)>—mn+1do
Li(Zmg1) < leo+ e iZmyr1+ -+l nTmgin ;
L Ry + ELin(Fy, ..., Fny, M, L = {7 V< jzm s Tt 1) 5

G, ELim(Ry, .., Romny2—mni1 © T Ty 2™ w0 €
Q[T,(,l)} Rename the variables so that G, € Q[Z,] ;
RETURN G1,...,Gn
provides candidates for G,,,+1. Given the various candidates for G, ..., G,,, the algo-

rithm IS_DECOMPOSABLE checks if there is a certain combination of them that allows
us to write F' as in (3.1).

Let (agj), ce a%)) €V X Vy XV, C(C™)™ be an m-tuple of (complex) points.
Also let £ = {(agj), . .,a%))}je[N] be a set containing N such m-tuples for some
positive N. Now consider the restriction of F' at these N tuples; this results in NV
polynomials in Z,,+1, that is, F} = F(agl), e a%),me% o Fy = F(agN), cee
all ),fm+1), and the system (X) consisting of the polynomials

(x) {F (agl),...,a%)7§m+1) oL F (agN),...,as,]Lv)7fm+1) ,L(§m+1)},

where L(Zpm41) = 4o + l1Tm+11 + - -+ + €nTmt1,n 18 & generic linear polynomial. By
generic we mean that the coefficients of L belong to a (Zariski) open subset so that
L does not intersect the variety defined by the polynomials Fi, ..., Fiy in any special
way. We can guarantee this by picking them uniformly at random from a sufficiently
large finite subset of Z. Thus, (X) consists of N + 1 polynomials in n variables, i.e.,
T4l = ($m+171, - ,a:m+17n). Since (agj), ceey Oé%)) EVy x Vo x -V, C ((Cn)m’
and V,,41 is positive dimensional as it is a hypersurface, we conclude that (X) is not
empty, that is V(X) # (. Our goal is to search for suitable sets of (m-tuples of) points
{(agj), cee a%))} that have this property. These sets will be the candidates for the
sets V1,..., Vm.

We present in detail how to extract candidates for the polynomial G; or, equiva-
lently, for the set V;. The algorithm RECOVER_M (Algorithm 2) does this and, in ad-
dition, it computes candidates for the polynomials G, ..., G,,. This is the semantics
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Algorithm 3: RECOVER_LAST

Input: F(T1,...,Tm, Tm+1)
Output: G411 € C[T),+1] such that if we can write F as
e _ _ _ .
F= Zm+ i(T) Hi(T1, -+ -, Ty Tmt1), then Gi1 (Tmt1) s a
factor of Gra1(Tmt1)-
/* Introduce new variables :v(l) ... ,fﬁi)ﬂ, .. fém"), . ,Tgﬁ) */
=(1) —(1) 7(1)
Lo T3 T
M % . . .
—_(mn) —(mn) —(mn)
x x PR m+1

M+ 1—t det(M) ;
for 1 < j <mn do
L F; %F(El,xé]),... grjl)_H) ;
for 1 <k < (mn)>—mn+1do
Li(Z1) < lro+leazia+ -+l nin;
Ry + Elim(Fy, ..., Fopn, M, Ly, : :l:l,x(Q ),...,f%),t) :

gm—i—l — Elim(Rh BRI R(mn)z—mn—i-l :
—(2) @) omm) | plmm) .
Lo ,...,Z‘m+1,...,l'2 e ’rn+1) € Q[ m-‘rl] ’

Rename the variables so that Om+1 € Q@mi1] 3
RETURN G, 41

of the loop over the variable v, where at each iteration we compute a polynomial G,
that contains the corresponding G, as a factor.

Let @(J ) be n-tuples of new variables, where i € [n] and j € [mn]. We arrange the
new variables in a square mn X mn matrix M as follows:

70 ey

x2 ... l‘m
(3.2) M=]": : :

We consider the polynomial M (*i t) = 1 —t det(M). It serves the following

<> R LI G G0

purpose: If for a given set of points 73 M ogeeeyT] yeee, T there exists a

t € C such that
(f§1)7...,fg),...,fgm”),...,fqu"),t) € V(M),
then the rows of the matrix M are linearly independent. This will prevent us from

constructing the trivial zero set by repeating twice or more the same polynomial.
We need to introduce (mn)? —mn + 1 generic linear polynomials in the variables

a1, 88y Lg(Tma1), for 1 < k < (mn)? —mn + 1. Consider the linear polynomial

L1 and the polynomial system

F=F (ﬁ”,...,fiﬁ’jmﬂ) =0,

3.3 by ’

(3-3) (%1) F. = <f§mn)7”.’fgzlnn)7fm+1) =0,
M (@5, t) =1—t det(M) =0,
L1(§m+1) - 0
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The system (¥;) consists of mn + 2 polynomial equations in (mn)? +n + 1 variables.
Hence, using a resultant operator we can eliminate mn+1 of the variables. We choose

to eliminate fél) xﬁn), Tm+1,t. We denote this elimination by

R, « Elim (Fl,...,an,M,Ll : {fgl>,...,f;§>,§m+1,t}) ,

where Ry € Q[fg *§2), . wgi), . ,x&mn), f&T”’] has (mn)? —mn + n variables.
We repeat this ehmlnatlon process (mn)2 — mn + 1 times, each time using a

different linear polynomial, say L (Z,,+1). Thus, after elimination, we obtain (mn)? —

mn + 1 polynomials R}, that live in Q[igl),f?), LT ,xgm”), ... ,f%n")].

Next, we consider the polynomial system consisting of the (mn)2—mn-1 resultant
polynomials, {R1, ..., Rimn)2—mn+1}, in (mn)? —mn +n variables. We can eliminate
(mn)? — mn of them. We choose to eliminate x( U U ,E&mn), L, E and
SO

G «+ Elim (R17 ey R(mn)27mn+1 : 552), .. ,fg), - ,fgmn), .. 7(mn)) S @[ ]

where G; € Q[Tgl)]. We can rename the variables of G; and assume that G, € Q[z1].
By construction the projection V; is included in V(Gy). Therefore, if we can write
F asin (3.1), then we can recover G as a factor of Gy, because we have assumed that
it is irreducible over the rationals. Thus, we should perform a factorization of G; over
the rationals.
To recover candidates for G2, when we compute the resultants Ry, we choose to

eliminate the variables :vg ) a:gl), . ,fsi)7§m+1, t. Subsequently, the elimination pro-

cedure gives us Go, which is a polynomial in Q[fgl)]. We work similarly for Gs, ..., G,,.
To obtain G,,+1 we should choose a different generic linear polynomial, but the algo-
rithm is almost the same. We call it RECOVER_LAST (Algorithm 3). In this case we
introduce linear forms Ly € Q[Z;] and we choose the variables that we eliminate in
order to end up with a polynomial G, 11 € Q[T+1]-

Finally, 1IS_DECOMPOSABLE (Algorithm 1) combines the various candidates to test
if it is possible to write F' as in (3.1). This step relies purely on linear algebra. Recall,
that we know the degrees of the polynomials H;. If we are given Gy, ...,G 1, then
we consider the coefficients of H; as unknowns and we construct the linear system
formed by identifying the coefficients of F' with those of the polynomial Zm+1 G; H;.
If the linear system has a solution, then we have obtained a decomposition.

Remark 3.3. We only need the degree bound on H; coming from Proposition 3.2
because we rely on linear algebra for computing the decomposition of F. Alternatively,
we can exploit the fact that the polynomials G; form a Grobner basis and compute
the H;’s, following the proof of Proposition 3.2, using successive polynomial divisions.
In this case the degree bound is not necessary.

4. The proofs.
4.1. Proof of multivariate combinatorial nullstellensatz.

Proof of Theorem 1.4. We assume the existence of a monomial z® with nonzero
coefficient in the expansion of p with deg;(z®) = d; for all i. We use the notation

T = (x1,29,...,2),), and smularly for z; for 1 < i < m. We use Z{* to denote the
. ax
monomial xf‘lx;"" c.xy b and 757, ..., Tom are used in the same fashlon. We will now

construct some auxiliary functions for our proof: We claim the existence of functions
fi: S; = Ffori={1,2,...,m} with the following properties:
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1. For all 8 € 23}, with deg,(z]) < d; and B # a;, we have

Z fily)y® =o0.

yES;

2. For the case of z;, that is, when = «;, we have

> hlyy™ =1

y€ES;

We prove the existence of f;; the same proof works for all f;. The technique has
similarities with the construction of multivariate Lagrange interpolation polynomials.
We construct a (’\1£Zd1) x |S1] matrix A. Each row of A corresponds to a 8 € Z;‘lo

with degl(ff) < d; and is of the form

B
(ylﬁ?yQV"yyfgl‘)y

where y; are the distinct elements of ;. The matrix A is a multivariate Vandermonde
matrix. There are (Aldtdl) rows and |S7| columns. The assumption deg(Sy) > di
implies that |S1| > ()‘l(zdl ). We will show that A is full rank, i.e., rank(A) = (Aldtdl ).
Assume that rows of A are linearly dependent. That is, we assume there exists a
(Aljldl) x 1 vector ¢ = (cg) with ¢ A = 0. Then for any y € S; we have

Z c;;yﬁ =0.

deg(B)<d:

If we define a polynomial g € F[z;] by setting g(z1) = Zdeg(ﬂ)gdl cﬁff, then g, which
is of degree dj, vanishes on the entire set S7. This contradicts the assumption that
deg(S1) > dj, that imposes that every polynomial vanishing on S; has to have degree
greater than dy. Thus, the rows of A are linearly independent. Now we can find the
desired f; by solving the linear system

Alf1(n), fr(y2), -5 filys,)] T =10,0,...,0,1]7,

where the only nonzero entry in the right-hand side is at the coordinate corresponding
to ag.

Using the f;’s we complete the proof as follows: Assume that p € Flxy,...,x,]
satisfies the hypothesis of the theorem and also vanishes on the entire set S. Let
p=7>4 ppz?, where the sum is over all monomials z” with deg;(z?) < d; for all
i € [m]. Now consider the following sum:

> (ﬁ fi(ti)> p(t).

t=(t1,t2,....tm)ES \i=1

Due to the assumption that p(t) = 0 for all ¢ € S, this sum is 0. On the other hand,
we have the following way of rewriting the sum:

> (H fi(tz‘)) p(t) = s DR | B
B

t=(t1,t2,....tm)ES \1=1 (t1,t2,...,tm)ES i=1
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Note the following identity:

DO | EXOCE | DIRAGLS
ti; €S

(t17t2;-~7t7n)es7;:1 i=1

By the established properties of f;, we have

unless 8 = «. In conclusion, we have

2 (H fi(ti)) p(t) = pa > st | = pa-

t=(t1,t2,....tm)ES \i=1 (t1,t2,.. tm )ES i=1

By the theorem’s hypothesis, p, # 0, which implies that there exists a t € S with
p(t) #0. 0

4.2. Proof of multivariate Schwartz—Zippel lemma. The proof involves
detailed inequalities. For the sake of clarity in presentation, we only present the proof
in the case m = 2. For m > 2, one simply repeats the proof we present below.

4.2.1. Preparation for the proof.

LEMMA 4.1. Let F be a characteristic zero field, L be a collection of varieties in
F™, and let P be a collection of points in F™. We denote the set of incidences between
L and P with Z(L, P). Suppose that for any n-tuple of distinct varieties Vi, Va, ..., V,
in L the Bézout bound holds: |N}_,Vi| < d". Then, we have

\Z(L, P)| < 2d|L||P|*"* + 2n|P|.

Proof. For every x € P we define the set of incidences I, := {V € L : x € V}.
Then, we have
zeP
We set the vector I := (|I;])zcp. We have |Z(L, P)| = ||I|l1. Now, we consider the

expansion of ||I]|7:

(4.1)
Iy =Y 1" =Y {1, Va,...,Va) €L x -+- x L: V; € I for all 1 < i < n}|.
zEP xzEP
We divide (4.1) into two summands; the first summand consists of n-tuples (V1,...,V,)

where all V; are distinct, and the second summand consists of n-tuples V; where at
least one of the V; is repeated. This gives us the following:

(42) 712 < STH(VA Voo Vi) € Lx - x L Vi £ Vy, Vi€ L} +nI[370
zeP

Here we used the crude estimate n||I||”~} to bound the second summand:

Z\{(Vl, Va, ..., V) : Vi € I, at least one V; is repeated}|.
rEP
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Now we will do a double counting argument for the first summand in (4.2); instead of
summing over x € P we sum over n-tuples (V1,Va,...,V,,), where V; € L are distinct.
The Bézout assumption in the lemma statement gives us the following bound:

7
i < (") iz

Note that || 1]~ = 3, cpll:|"", so using Hélder’s inequality for the pair ( n)

gives the following:

_n_
n—1’

1
n

I

L
(4.3 i < ()4 nip
Either we have |||, < 2n|P|% or Il > n|P|#. In the second case, we have
(1.4 bl <l = alpl < (M),

where we used (4.3) for the latter inequality. Using Holder’s inequality and Stirling’s
estimate gives us the following:

I < ingier=t < 2 (B e < oo

In the first case, we would have ||I]jy < ||I[|l|P|*~% < 2n|P|. |

LEMMA 4.2. Let F be a characteristic zero field, and let S1 C F™* and Sy C F™2
be finite sets. Let V be a variety in F™1T"2; suppose that for any two sets Uy, Us with
|U;| > d™ the Cartesian product Uy x Uy is not included in V. Then there exist sets
S1; with the following properties:

1. Sl = UE-:lSlj with t S d2n1.
2. For every 1 <i <t and any I C Sy; with |I| = ny we have the following:

Neer{y € F"? : (z,y) € V}| < d"™2.

Proof of Lemma 4.2. We consider all ng-element subsets I of S7, and write down
the corresponding varieties

Vii=Neer{y € F"2 : (z,y) € V}.

We discard all V; that have less then d™? + 1 many elements, and keep track of all the
rest. Suppose we have a list Vi, Vs, ..., Vyy C C™2. For every V; in the list, we define
U; C 57 as follows:

Ui={x €S :(z,y) € Viorally e V;}.

Since |V;] > d™ + 1, we must have |U;| < d". Assume otherwise, without loss
of generality (w.l.o.g.) say |Uj| > d™ and pick a subset W; of V; with more than
d™ many elements. Then p vanishes on U; x Wj by construction, and this gives a
contradiction by Lemma 2.3.

The rest of the proof is as follows: We will create a poset out of Uy, Us,...,Uss;
this poset will have at most d”' many layers and we color the U; in every layer with
d™ many colors. Thus, in total, we use at most d?™ colors and these colors will
correspond to Si;.
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We define the poset as follows: We use the partial order > given by the inclusion
of the varieties V;. For instance, if V; UV; C Vj, then we have U, = U; and Uy, = Uj.
Also note that here we must have U, # U; and U, # U;, otherwise either V; or
V; is redundant and will be discarded from our list of varieties together with the
corresponding U; (or Uj).

First, we observe that the longest chain in this poset could be of length d"':
Uy > U; implies |U;| > |Ug| for i # k, and we know |U;| < d™ for all U;. Thus we
have a poset with at most d™* many layers. We start with the first layer and color
elements of every Uy in this layer using d™* many colors. Suppose for some U; and U;
in the first layer, we have U; N U; # 0. Then the corresponding variety V; UV; (or a
variety including this variety) must be in our list of varieties, say V, = V; UV}, where
we have U; NU; C Uy. By definition of the poset, we have U, > U; and U, > Uj,
and that the set Uy is in the second layer or higher in our poset. The elements in
U;NU; C Uy, will be recolored with new colors that are going to be used in the second
layer of the poset. Similarly, if U; NU; N U, # 0 for some i, j, £, the corresponding set
U;NU; NU, C Uy, satisfies Uy, = U; NU; > U; and is at least in the third layer of the
poset, etc. Hence, using d™! different colors at every layer we can guarantee that for
any two elements u,v € Uy for some ¢, the color of u and the color v are different.
Thus, at most d?™* many colors suffice. ]

4.2.2. X-irreducibility for real varieties.

DEFINITION 4.3 (real A-irreducible variety). Let A = (A1, Aa, ..., Am) be a vector
with positive integer coordinates, let n.= Xy +- -+ A, and let V.C RM x R x ... x
R be a real algebraic set. We say V is A-reducible if there exist positive dimensional
real varieties C1,Co, ..., C,, with

C’1><Cg><--~><CmgV.
We say V is A-irreducible otherwise.

There is a translation between the complex and the real definitions as follows.

PROPOSITION 4.4. Let A = (A1, Ao, ..., Am) be a vector with positive integer coor-
dinates, let n = A1+ -+ A\, and let W C C™ be a variety, and denote the embedding
of W into R*™ with V.. We set 2\ as 2\ := (2A1,2Xa,...,2\,,). Then, W is a complex
A-irreducible variety if and only if V is a 2\-irreducible real algebraic variety.

Proof. (=) Assume on the contrary that V is 2\-reducible, that is, there exist
real varieties C; € R%* of dimension > 1 such that

CixCyx---xCp CV.
As W is a complex variety, it is Zariski closed and, hence,

CixCyx---xCp CW.

It is standard to show that
CixCyx-xCpr=C1xCyx-xCh.

Moreover, dimc C; > 1; thus, W is complex A-reducible which is a contradiction.
() Say
CixCyx--xC, CW.
The standard embedding of C; into R?*¢ is real algebraic and has dimension 2 dim¢ C;.
Hence, V contains the product [];~, C; of real algebraic sets of dimension at least 1,
which contradicts with the assumption that V is 2\-irreducible. O
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Moreover, one can also bound the degree of the V' using deg W.

LEMMA 4.5. Let W C C" be a variety of degree d. Then, the standard embedding
of V.C R?" is a real algebraic variety. Moreover, the complezification V. C C2" of the
real algebraic variety V. C R*™ has degree at most O(d)*™.

Proof. The degree d complex variety W is the zero locus of some complex poly-
nomials f; of degree at most d (see, for example, [6, Prop. 3.5]). Each f; splits into
the real and the imaginary part, say p;, ¢;, respectively. Setting

n
F=Y e
i=1

we have
V=2z (Zp? +q§) C R*
i=1
as a real algebraic set. Now we can use the result of [18]: The degree of the complex-
ification of a real variety Z(F) C R" is bounded by O(deg F)*". In particular,

degV < O(d)*". 0

4.2.3. Proof for the case m = 2.

PROPOSITION 4.6. Letn = ny+ns be a two partition, and let S; C R™, S5 C R™
be finite sets. Let V. C R™ be a k-dimensional irreducible real algebraic variety where
the degree of the complexification of V is d and d > 2. Suppose that for every ns-
element subset I of S1, and for every ny-element subset J of So, we have the following,

Neer{y : (z,y) eV} <d™ , [Nyes{z: (z,y) € VI <d™.

Then for every € > 0, we have

1

VSt x 85| < ced™ H1]83 [ mRmTES, TmTE 4 ond” (18] + 1)),

where c. is a constant that depends only on €.

Proof of Proposition 4.6. The proof will be by double-induction on the dimension
of real algebraic set and on the size |S1| + |Sa].

For a zero dimensional real algebraic set, the result immediately follows from the
assumption on the degree of the complexification. This is the base for induction on
the dimension.

For the base of induction on [Si| + |S2|, by Lemma 4.1 we have the following
direct bound X

‘VﬂSl X SQ’ < 2d|51”52|1_"72 + 2TL2|SQ|.

If |S1|"11+1 < |Sg|%_nzl+1, then we have

(4.5) \vﬂ S % 52’ < 2|8y |1 TSy T 4 2n0[Ss.
Note that the inequality (4.5) gives a bound stronger than our claim, and there is no

work to do in this special case. This establishes the claim whenever one of the two
sets are sufficiently small, and this gives the basis to start the induction. From this
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point on, we assume |Sl\ﬁ > |52|%_ﬁ and |Sg|ﬁ > |Sl\"711_ﬁ. Also, for
n1 =1 or no = 1 the claim holds immediately: Suppose no = 1, then for every point
x € 51 there are at most d corresponding y € Sy with (x,y) € V which gives a d| S|
upper bound. So, we assume min{nj,na} > 2.

The proof below will count every point on V' (1) S1 x Sy twice. We use Lemma 2.5 to
find degree d? polynomials hy (respectively, hy) which gives the following partitioning
of R™ (respectively, R™2):

R™ :Z(hl)UglUQQU-"UQT,

where T' < d*™ and |Q; N S1| < [S1|/d?™ for all i = 1,2,...,T; we also require that
hihs does not vanish on V. Note that to guarantee hihs does not vanish on V is
simple thanks to Lemma 2.5: Pick (z,y) € V, define V,, := {& € R™ : (z,y) € V},
and use Lemma 2.5 to make sure hy does not vanish on V.

Since we are only interested in counting zeros on S7 X So, in the rest of the proof €2;
will simply denote ©;N.S;. Now we would like to count zeros of p on (S \ Z(h1)) x Sa.
For this we define the following sets:

L;:={y €Sy : 3z € Q; such that (z,y) € V}.

Note that for a fixed y € Sy the set {x € R™ : (x,y) € V} is a variety of dimension
at most nq — 1. Therefore the number of connected components of the semialgebraic
set

{x e R™ : (z,y) €V, hi(x) # 0}

is bounded by O(d?>"1~2) due to Theorem 2.6. This simply shows that any y € S
can be included in at most O(d?"1~2) many L;’s. So we have

T

(4.6) D ILi| < d*™ 2|8y

i=1

Using the induction hypothesis, we can bound incidences between §2; and L;:
‘Qi x L; ﬂZ(w‘ < eod™ Q| L T 4 20 (|| 4 [)]) -

Summing through Q; we have

T
’(51 — Z(hy)) x Sy mZ(p)‘ < eed™ Y djy| I Ly et
i=1

T
+2nd™ Y (1Li + [9l).-

i=1
Since |Q;| < |Sy|/d*™ for all 4, we have

T T
dei'kﬁﬁ‘[/i'lfﬁﬁ Sd174n1(1—ﬁ+e)‘51|1—ﬁ+eZ|Li|1—ﬁ+e.

i=1 i=1

Using Holder’s inequality and (4.6) we have

T ) ) T 1
Z\Lﬁl_mﬁ <Tme s <Z|Li>
i=1 i=1

<™ (ﬁ—s)-{-(an—Q) (1—#-%5) |52|17ﬁ+s.

1
“nprrte
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Now we collect the exponents of d in last two inequalities and make it humanly
readable:

1 1 1
4 — 2n1 —2)(1—- 1-4 1-— .
n1(n2+1 5)+(n1 )( n2+1+8)+ n1( n1+1+€>

We can bound this expression, using basic algebra and the inequality min{nq,na} > 2,
as follows:

(2n; +2) (

1 11— 4
— 5)+2n124n14n16+5§3nl4n15

4(711 - 2)

<1-
o 3

—4nqe.
All in all, we have
[(5\ 2(h) x 5 2(0)|
< Cad1—w—4nls|51|1—ﬁ+s|52‘1—n2ﬁ+s + 9pd™” (1S4] + d2m 2] Sy]) .

We repeat the same counting argument for the zeros of p on S; x (S2 \ Z(hs)),
which gives us the following upper bound:

S1x (82\ Z(h2)) () 2()|

(no—2) _ _ k
< cod! = TET e g 1 6 1T m T HE 4o (0272728 | + |Ss])

We note that the difference

3k 4(n—4) 1 1
ar (d_dl— : —4n5> |51|1 nl+1+8|52‘1 mpiTe

is bigger than d"” ™= (|S| 4 |S,|), so for this part of the induction we are done.

Now we are interested in counting (S1 N Z(h1)) X (Z(he) N S2) (V. Let h = hiha,
and let Z(h) be the complexification of the real zero set Z(h). Let V denote the
complexification of V. And let W denote the real part of Z(h) N'V. By construction,
Z(h1) x Z(h2) YV € W. We denote the real ideals of V and W with I(V) and
I(W), and the real quotient rings with P(V) and P(W). V is irreducible over the
reals, so we have dimP(V) = dimV. Since h is not included in I(V), we have
dim P(W) < dimP(V) = dim(V'). Therefore, the dimension of W is at most one less
than the dimension of V. We also know that W is (n1,ng)-irreducible: Assume W
includes a Cartesian product of real curves; this implies that the Cartesian product
of real curves is included in V and, hence, the Cartesian product of real curves is
included in V, which gives a contradiction. The degree of h is d* and the degree of
V is d, so the degree of the complexification of W is bounded by d°. By using the
induction hypothesis on the dimension of the real algebraic set, we can bound the
incidences between an irreducible component of W and S; x Ss as

3k—3

(A7) cd™ |G TR 5y w4 o — 2)d D" (18] + (S,

The number of connected components of W is bounded by (2d°)" as follows: We can
write down W using polynomials that have degree at most d® (see, e.g., Lemma 4.2
of [23]); using the classical Thom—Milnor bound then yields the estimate (2d°)"™. To
close the induction all we need is to have (2d%)"d®™”" *+5 < @""*+1_ which holds since
n>4andd> 2. O
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Now we are ready to state and prove Theorem 1.7 for m = 2.

THEOREM 4.7 (the case m = 2). Let S; C C™ and S2 C C™2 be finite sets. Let
n =ny + na, and let p be an (n1,nz)-irreducible polynomial of degree d > 2. Then,
for every e > 0 we have

[Z0) )51 % 82| = Onae (11777455 "7 4 [31] + |53 )

where O, 4. only hides constants depending on €,d and n.

Proof. The proof is based on Lemmas 2.3, 4.2, and 4.5 and Proposition 4.6.
Suppose two sets S; and S are given and we use Lemmas 2.3 and 4.2 to create
partitions S; = Uf\ilsu and Sy = U;-V:ngj, where M < d*™, N < d?"2. We embed
the sets Sy; into R?™ and Sa; into R?"2. By Lemma 4.5 we know that Z(p) C R?™1+2n2
is a (2n1, 2ng)-irreducible real variety, and the complexification of Z(p) in C?1+2n2
has degree at most d". To apply Proposition 4.6, we need p to be irreducible but this
not an issue since p can have at most d many irreducible components. So, w.l.o.g. we
treat Z(p) C R?™ as an irreducible real variety and apply Proposition 4.6 for all pairs
of Si;,52;. This gives the following bound:

1 __1
[V NSt % Sa| = Oane | YISl 5180, |1 T2 4 |41

i,J
By Hoélder’s inequality we have
M 1——t—+¢ —_— 1—2—+e 2 1—t—+e
‘ 1|Sli| T+n, S M TFn1 ‘S1| T+n, S d |Sl| T+n, .
ZZ:

1 1 1

Similarly SN Sy, 1T T < N7 |6y |1 T T < d2[ 85| T TE. Note that

M N
SISl Ty 1 (leli'l_”w) (Z'SQj'l_%%) |
2% i=1 i=1

Also note that, since 1 <i < M < d?™ and 1 < j < N < d?"2, we have

Z Z |S14| + 1525 Sdzn(‘51|+‘52|)a

1<iSM 1<j<M

which completes the proof of Theorem 4.7. O
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