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ABSTRACT

Isolating the real roots of univariate polynomials is a fundamental
problem in symbolic computation and it is arguably one of the most
important problems in computational mathematics. The problem
has a long history decorated with numerous ingenious algorithms
and furnishes an active area of research. However, the worst-case
analysis of root-finding algorithms does not correlate with their
practical performance. We develop a smoothed analysis framework
for polynomials with integer coefficients to bridge the gap between
the complexity estimates and the practical performance. In this
setting, we derive that the expected bit complexity of DESCARTES
solver to isolate the real roots of a polynomial, with coefficients
uniformly distributed, is 53 (d? + dr), where d is the degree of the
polynomial and 7 the bitsize of the coefficients.
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1 INTRODUCTION

The interactions between the ways we design and the ways we
analyze algorithms are transformative on both ends: Unreasonably
effective algorithms transform our complexity analysis frameworks,
where else the discovery of essential complexity parameters trans-
forms the ways we design algorithms. In numerical computation,
the use of the condition numbers illustrate emphatically this phe-
nomenon: condition numbers are a way of explaining the success
of certain numerical algorithms!, a guiding complexity parameter
for the design of new algorithms, and a foundation for average and
smoothed analysis of numerical algorithms [5, 6]. In discrete com-
putation, this two-sided interaction between complexity analysis
frameworks and algorithms’ design forms a dynamic and excit-
ing area of current research [11, 37] with a rich history rooted at
the beginnings of complexity theory [2, Ch. 18]. Inspired by these
developments, we aim to take a first step for bringing different
modalities of algorithmic analysis into symbolic computation. To
the best of our knowledge, this large field almost entirely relies on
the worst-case analysis.

We consider one of the most basic problems in symbolic com-
putation: computing the roots of univariate polynomials. This is a
singularly important problem with applications in the whole range
of computer science and engineering. It is extensively studied from
theoretical and practical perspectives for decades and keeps attract-
ing plenty of attention [18, 28, 32, 35]. We focus on the real root
isolation problem: to compute intervals with rational endpoints that
contain only one real root of the polynomial and each real root is
contained in an interval. Besides its countless direct applications,
this problem is omnipresent in symbolic computation; among its
numerous uses it stands out as a crucial subroutine for elimination
based multivariate polynomial systems solvers, e.g., [18].

Despite the ubiquity of real root isolation in engineering and its
relatively long history in theoretical computer science, the state-
of-the-art complexity analysis falls short of providing guidance for
practical computations. Pan’s algorithm [34] has the best worst-case
complexity since nearly two decades and is colloquially referred
to as the “optimal” algorithm. However, Pan’s algorithm is rather
sophisticated and has only a prototype implementation in PARI/GP
[46]. In contrast, other algorithms with inferior worst-case complex-
ity estimates have excellent practical performance, e.g., [21, 25, 51].
In our view, this lasting discrepancy between theoretical complex-
ity analyses and practical performance is related to the insistence
on using the worst-case framework in the symbolic computation
community. However, let us mention the exceptions of [16], that
provides estimates for the expected complexity of sTurM algorithm
for real solving, [51], that provides (conditional) expected case

! According to Wilkinson [54], Turing [52] introduced condition numbers to explain
the practical success of Gaussian elimination despite the existing worst-case analyses.
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bounds for the continued fraction algorthm, and [36] that considers
the expected number steps for the problem of real root refinement.

We demonstrate how average/smoothed analysis frameworks
can help to predict the practical performance of symbolic real root
isolation algorithms. In particular, we show that in our data model
the DESCARTES solver has a bit complexity quasi-linear in the input
size, when we consider the dense representation. This provides an
explanation for the excellent practical performance of DESCARTES
that even outperforms its numerical alternatives. See §1.2 for a
simple statement and §1.3 for the full technical statement.

1.1 Synopsis of real root isolation algorithms

We can (roughly) characterize the various algorithms for (real) root
isolation as numerical or symbolic algorithms; the recent years
there are also efforts to combine the best of the two worlds.

The numerical algorithms are, in almost all the cases, iterative
algorithms that approximate all the roots (real and complex) of a
polynomial up to any desired precision. Their main common tool
is (a variant of) a Newton operator. The algorithm with the best
worst-case complexity due to Pan [34] is based on Schonhage’s
splitting circle divide-and-conquer technique [44]. It recursively
factors the polynomial until we obtain linear factors that approxi-
mate, up to any desired precision, all the roots of the polynomial
and it has nearly optimal arithmetic complexity. We can turn this
algorithm, and also any other numerical algorithm, to an exact one,
by approximating the roots up to the separation bound; that is the
minimum distance between the roots. In this way Pan obtained
the record worst case bit complexity bound Os (d?7) for a degree
d polynomial with maximum coefficient bitsize 7 [34]; see also
[3, 24, 29]. Besides the algorithms already mentioned, there are also
several seemingly practically efficient numerical algorithms, e.g.,
MPSOLVE [4] and eigensolve [20], that lack convergence guarantees
and/or precise bit complexity bounds.

Regarding symbolic algorithms, the majority is subdivision-based.

These algorithms mimic binary search. Given an initial interval that
contains all (or some) of the real roots, they repeatedly subdivide it
until we obtain intervals containing zero or one real root. Prominent
representatives of this approach are STURM and DESCARTES. STURM
depends on Sturm sequences to count exactly the number of distinct
roots in an interval, even when the polynomial is not square-free.
Its complexity is 53 (d*7?) [9, 12] and it is not so efficient in prac-
tice; the bottleneck seems to be the high cost of computing the
Sturm sequence. DESCARTES is based on Descartes’ rule of signs
to bound the number of real roots of a polynomial in an interval.
Its worst case complexity is 53 (d*r?) [14]. Even though its worst
case bound is similar to STURM, the DESCARTES solver has excel-
lent practical performance and it can routinely solve polynomials
of degree several thousands [21, 23, 38, 50]. There are also other
algorithms based on the continued fraction expansion of the real
numbers [45, 51] and on point-wise evaluation [7, 43].

Let us also mention the bitstream version of DESCARTES [13],
where we assume that there is an oracle that for each coefficient
of the polynomial returns an approximation to any absolute error.
This approach, by also incorporating several tools from numerical
algorithms, leads to improved variants of DESCARTEs [42]. In the
end, this variant yields the record worst case complexity bounds
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and efficient implementation [25] especially when there are clusters
of roots. Even more, there is also a subdivision algorithm [3] that
applies several improvements to the modified Weyl algorithm by
Pan [33] and achieves the (record) complexity bound Og (d3 + d?7).

1.2 Warm-up: A simple form of the main result

The main complexity parameters for univariate polynomials with
integer (or rational) coefficients is the degree d and the bitsize ;
the latter refers to the maximum bitsize of the coefficients. We
aim for a data model that resembles a “typical” polynomial with
exact coefficients. The first natural candidate is the following: fix a
bitsize 7, let ¢p, ¢1, . .., ¢y be independent copies of the uniformly
distributed integer in [-27,27| N Z, and let f = Z?:o ¢;X* which
we call the uniform random bit polynomial with bitsize . Recall that
O, resp. Op, denote the arithmetic, resp. bit, complexity and that
we use O, resp. O, to ignore (poly-)logarithmic factors of d. For
uniform random bit polynomials, our result has the following form.

THEOREM 1.1. For a degree d uniform random bit polynomial
f with bit size (f), DESCARTES solver isolates the real roots of  in
expected time Og(d T + d?).

Notice that the expected time complexity of DESCARTES solver
in this simple model is better by a factor of d than the record worst-
case complexity bound of Pan’s algorithm.

1.3 Statement of main results in full detail

We develop a general model of randomness that provides the frame-
work of smoothed analysis for polynomials with integer coeffi-
cients.

Definition 1.2. Letd € N. A random bit polynomial with degreed is
a random polynomial f := 2;-1:0 ¢;X*, where the ¢; are independent
discrete random variables with values in Z. Then,
(1) the bitsize of f, 7(f), is the minimum integer 7 so that for all
i€{0,1,2,...,d},P(J¢;|] <£27)=1.
(2) the weight of f, w(f), is the maximum probability that ¢, ¢1,
¢4—1,> and ¢ can take a value, i.e.,

w(f) == max{P(c; = k) | i € {0,1,d — 1,d}, k € R}.

Remark 1.3. Note that we only impose restrictions on the size of the
probabilities of the coefficients of 1, X, X d-1 and X9, This might
look odd at the first sight. We set our randomness model this way to
be able to consider the most flexible data-model that can be handled
by our proof techniques. We provide examples below to justify this
technical assumption.

Example 1.4. The uniform random bit polynomial of bitsize 7 we
introduced is the main example of a random bit polynomial {. Note

that in this case we have w(f) = HZ% and 7(f) = 7.

As we will see in the examples below, our randomness model is
very flexible. However, this flexibility comes at a cost. In principle,
we could have w(f) = 1 which would make our randomness model
equivalent to the worst-case model. To control the effect of large
w(f) we introduce the following quantity, which measures how far
we are from a uniform random bit polynomial.
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Definition 1.5. The uniformity of a random bit polynomial f is

u(f) == In (w(f)(l + 2T<f>+1)) .

Remark 1.6. Note that u(f) = 0 if and only if the coefficients of 1,
X, X% ! and X9 in f are uniformly distributed in [-27,27 ] N Z.

The following three examples illustrate the flexibility of our
random model by specifying the support, the sign of the coefficients,
and their exact bitsize. Although we specify them separately, any
combination of specifications is also possible.

Example 1.7 (Support). Let A € {0,1,...,d — 1,d} with 0,1,d —
1,d € A Then f:= 3;c4 ¢; X!, where the ¢;’s are independent and
uniformly distributed in [-27, 27] is a random bit polynomial with
u(f) =0and z(f) = r.

Example 1.8 (Sign of the coefficients). Lets € {-1, +1}9+! The ran-
dom polynomial f := Z;.j:() ¢;X*, where the ¢;’s are independent and
uniformly distributed in s;([1, 27 ] N N), is a random bit polynomial

with u(f) < In(3) and 7(f) = 7.

Example 1.9 (Exact bitsize). Letf := Z?:o ¢;X" be the random poly-
nomial, where the ¢;’s are independent random integers of exact
bitsize 7, i.e., ¢; is uniformly distributed in Z N ([-27 + 1,-27"1] U
[2771,27 —1]). Then f is a random bit polynomial with u(f) < In(3)
and z(f) = .

We consider a smoothed random model for polynomials, where
a deterministic polynomial is perturbed by a random one. In this
way our random bit polynomial model includes smoothed analysis
over integer coefficients as a special case.

Example 1.10 (Smoothed analysis). Let f € P4 be a fixed integer
polynomial with coefficients in [-27,27], 0 € Z \ {0} and | €
P4 a random bit polynomial. Then {5 := f + of is a random bit-
polynomial with bitsize 7(fs) < max{r,z(f) + 7(0)} + 1, where
7(a) denotes the bitsize of a, and uniformity u(fs) < 1 + max{r —
7(f), 7(o)} + u(f). By combining the smoothed random model with
the previous examples, we can obtain structured perturbations.

Our main result is the following:

THEOREM 1.11. Let { be random bit polynomial, of degree d, bitsize
7(f), and uniformity parameter u(f), such that v(f) = Q(gd + u(f)),
then DESCARTES solver isolates the real roots of  in expected time

Op(d7 (1+u())® +d® (1 + u))?).

Remark 1.12. Note that if f is not square-free, DESCARTES will com-
pute its square-free part and then proceed as usual. The probabilistic
complexity estimate covers this case.

Remark 1.13. One might further optimize the probabilistic estimates
present in Section 2.3 by employing strong tools from Littlewood-
Offord theory [39]. However, the complexity analysis depends on
the random variables in a logarithmic scale and so further im-
provements on probabilistic estimates will not make any essential
improvement on our main result. Therefore, we prefer to use more
transparent proofs with slightly less optimal dependency on the
uniformity parameter u(f).
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1.4 Overview of main ideas

The important quantities in analyzing DESCARTES are the separation
bound and the number of complex roots nearby the real axis.

The separation bound is the minimum distance between the
distinct (complex) roots of a polynomial. [15]. This quantity con-
trols the depth of the subdivision tree of DEsCARTESs. To estimate
this quantity we use condition numbers [5, 6, 10], following [49].
In short, we use condition numbers to obtain an instance-based
estimate for the depth of the subdivision tree of DESCARTES. Even
though the DESCARTEs algorithm isolates the real roots, complex
roots near the real axis control the width of the subdivision tree.
This fact follows from the work of Obreshkoff [31], see also [26].
To estimate the number of roots in the Obreshkoff areas we use
complex analytic techniques. In short, we bound the number of
complex roots in a certain region to obtain an instance-based esti-
mate for the width of the subdivision tree of DESCARTES. Overall,
by controlling both the depth—through the condition number—and
the width—through the number of complex roots—we estimate the
size of the subsdivision tree of DESCARTESs and so its bit complexity.

Finally, we perform the expected/smoothed analysis of the algo-
rithm DESCARTES by performing probabilistic analyses of the num-
ber of complex roots and the condition number. Expected/smoothed
analysis results in computational algebraic geometry are rare and
mostly restricted to continuous random variables, with few excep-
tions [8]; see also [16, 36, 51]. To the best of our knowledge, we
present the first known result for the expected complexity of root
finding for random polynomials with integer coefficients. Our re-
sults rely on the strong toolbox developed by Rudelson, Vershynin,
and others in random matrix theory [27, 40].

Organization. We treat in detail condition numbers, separation
bounds and their probabilistic estimates in Section 2, we deal with
the estimates of the number of complex roots in Section 3, and we
show how these quantities control the complexity of DESCARTES
obtaining the final complexity estimate in Section 4.

Notation. We denote by O, resp. Op, the arithmetic, resp. bit,
complexity and we use 0, resp. Og, to ignore (poly-)logarithmic
factors of d. We denote by P the space of univariate polynomials
of degree at most d with real coefficients and by 7’? the subset of
integer polynomial. If f = Zg:o fiX ke 7’?, then the bitsize of f
is the maximum bitsize of its coefficients. The set of complex roots
of f is Z(f). We denote by vAR(f) the number of sign changes
in the coefficient list. The separation bound of f, A(f) or A if f
is clear from the context, is the minimum distance between the
roots of f, see [9, 15, 19]. We denote by D the unit disc in the
complex plane, by D(x, r) the disk x + rD, and by I the interval
[-1,1]. For a real interval J = (a, b), we consider mid(J) := %”
and wid(J) := b — a. For a n € N, we use [n] to signify the set
{1,...,n} and p(n) = Op(nlgn) for the complexity of multiplying
two integers of bitsize n, where lg is the logarithm with base 2.

2 CONDITION NUMBERS, SEPARATION
BOUNDS, AND RANDOMNESS

We use various condition numbers for univariate polynomials
from [49], cf. [48], to control the separation bound of random
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polynomials. However, our probabilistic analysis differs from [49]
because we consider discrete random coefficients.

2.1 Condition numbers for univ. polynomials
The local condition number of f € Py atz € D [49] is

£ 1
max{|f (), 1f"(2)l/d}’
where || f|l1 := X | fal is the I-norm of f. important for obtaining
bit complexity results. The same definition using the {2-norm is
standard in numerical analysis literature, e.g., [22].
We also define the (real) global condition number of f as

Cr(f) = max C(f,x).

C(f,2) = (2.1)

(2.2)

We note that as Cr(f) becomes bigger, f is closer to have a
singular real zero inside I. This can be made precise through the
so-called condition number theorem (see [49, Theorem 4.4]). There
are many interesting properties of Cr(f), but let us state the only
one we will use—see [49, Theorem 4.2] for more.

THEOREM 2.1 (2ND LIPSCHITZ PROPERTY). [49] Let f € P;. The
mapD > z — 1/C(f, z) € [0, 1] is well-defined and d-Lipschitz. O

2.2 Condition-based estimates for separation

The quantity that follows is the separation bound of polynomials
and polynomial systems, e.g., [15], suitably adjusted in our setting.
This quantity and its condition-based estimate below will play a
fundamental role in our complexity estimates.

Definition 2.2. For¢ € [O, %) we set I, := {z € C | dist(z,]) < ¢}.

If f € Py, then the e-real separation of f, Ax(f), is
NE(f) = min{le =) 168 e 1 £ = FD) = 0}
if f has no double roots in I, and AR(f) := 0 otherwise.

THEOREM 2.3 ([49, THEOREM 6.3]). Let f € Py and assume ¢ €
1 R 1
|0, sty ), then A2 () 2 by o

2.3 Probabilistic bounds for condition numbers
In this section we present our probabilistic framework. The main
technical tools are the anti-concentration results by Rudelson and
Vershynin [40]. We do not apply these results as a black box, but
we develop suitable variants for our setting (Proposition 2.7).

THEOREM 2.4. Letf € 7’5 be a random bit polynomial and x € I.
Then, fort < 270, P(C(f,x) > 1) < 16 d%zu(ﬂ%z.

THEOREM 2.5. Letf € 7’? be a random bit polynomial. Then, for
t < 27D+,

P(Cr(f) > 1) < 32 d4e2u<f)%_

The following corollary looks somewhat different than Thm. 2.4
and Thm. 2.5, but it has the same essence. Unlike the continuous
case, in the discrete case we have a worst-case estimate that we can
exploit to bound when the condition number is too large.
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COROLLARY 2.6. Letf € Sog be a random bit polynomial, { € N
1
andc > 1. If t(f) > 41n(ed) + 2u(F), then (Ef (min{In Cg(f), c})[) !
is at most
16 d4et(®\ 1
27() )
In particular, if () > 41n(ed) + 2u(f) + 2€1nc, then

(€ + 1) (41n(ed) + 2u(7)) + (

(Ef (min{In Cx(f), c}) ) © < 0(tnd + u(h))).

We would like to understand the limitations of the two theorems
and the corollary above. First, note that Theorem 2.4 is meaningful
when 7(f) > 2+ % lg(d)+2u(f) and Theorem 2.5 is meaningful when
7(f) = 5 + 41g(2) + 3u(f). Intuitively, the randomness model needs
some wiggling room to differ from the worst-case analysis. In our
case this translates to assume that the bit-size z(f) is bigger than
(roughly) lg(d) + u(f). This is a reasonable assumption because for
most cases of interest, u(f) is bounded above by a constant. Thus,
the second condition in Corollary 2.6 becomes

z(f) = Q(L1g(d) + lg(c)).

Moreover, in the case of application of Corollary 2.6, we will have

¢ = d9)_Hence we are only imposing that the bit-size z(f) is lower

bounded by (roughly) In d, which is not uncommon in practice.
For proving the above results, we need the following propo-

sition. Recall that for A € RFXN, |Alloo, 00 := lAvlls

SUPv#0 o
max;ck ||A']l1, where A’ is the i-th row of A.

lleo

PROPOSITION 2.7. Letx € ZN be a random vector with indepen-
dent coordinates. Assume that there is w > 0 so that for all i and
x € Z, P(x; = x) < w. Then for every linear map A € RF*N b e Rk
and ¢ € [||A]lco, 00, ©0),

k
P(||Ax + blloo <€) < 2(2\/'_ws)'

2
Vdet AA*

Proor oF THEOREM 2.4. P(C(f, x) > t) equals

Z P(CH,x) >t | cp = ay, ..

az,...,aq-2

d—2
sCd_p = a4_3) HP(C:‘ = a;).
i=2

where | = ZZ:O cka. So it is enough to prove the bound for a
random bit polynomial f of the form

d-2 _
f=c+aX+ Zk:z aka + Cd_IXd Ty CdXd,

where ay, ...,ag_5 € ZN[-27,27] are arbitrary fixed integers.
Let Py(az, .. .,aq_y) be the affine subspace of P, given by the
equations fr = ag fork € {2,...,d — 2}. And let
f—Af+b
be the affine mapping given by

Palaz,....a4) 3 f = (f(x), f'(x)/d) € R,
In the coordinates we are working on (those of the base {1,X,
X9-1, X4}, A has the form
xd—l xd
(1-1/d)x-2 xd-1]"

1 X
0 1/d
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So, by an elementary estimation we have ||A|lc,c0 < d + 1, and as
a direct result of Cauchy-Binet formula we have Vdet AA* > 1/d.
Now, since ||flli < (d + 1)27°®, we have that P(C(f,x) > t) =
P(IAT + blloo < [lfll1/1) < B(IAT + blleo < (d +1)27D /1) ‘

To be able to use Proposition 2.7, we need to assume M

d+1 2 ||Allco, 0. Then, for ¢ < 27N, Proposition 2.7 implies

P(C(f,x) > t) < 16d(d + 1)*(w2" D /)2,

m}

Thus the proof is completed by the definition of u(f).

Proor oF THEOREM 2.5. We will use a covering/union bound
argument. For any finite set G C [-1, 1] such that {[x — §,x +
d] | x € G} covers [—1,1], using the 2nd Lipschitz property
(Theorem 2.1), we have 1/maxyeg C(f,x) < 1/Cr(f) + d&. Let
§ = 1/dt, then P(Cr(f) > t) < P (maxyegCr(f,x) >1/2) <
#G maxyc(_1,1] P(C(f,x) > t/2). We can construct such G such
that #G < 2dt. Hence the claim follows from Theorem 2.4. o

Proor oF COROLLARY 2.6. Let
U = In(32 d*?*D) < 41n(ed) + 2u(f) and V := In(27D*1).

By assumption, U < V and U > 1, since u(f) > 0. So without loss
of generality, we assume 0 < U < V < c. If ¢ < V, then similar
arguments imply that the claimed upper bound still holds. Thus

E; (min{In Cg(f), Nl = ‘/Oc " "P(min{In Cr(f), ¢} > s) ds.

We divide the integral into three summands using the intervals
[0,U], [U,V]and [V,c].
In [0, U], we have that P(min{In Cg(f),c} > s) < 1, and so

U
/ {’sg_lP(min{ln Cr(f),c} = s)ds < ut.
0

In [U, V], by Theorem 2.5 we have that

P(min{In Cg(f),c} > s) < P(InCg(f) > s) < eV,
and so the integral f(}/ £st1P(min{ln Cg (f), ¢} > s)ds is bounded
by f(}/ £s=1eV =S ds. By performing a change of variables and ex-
tending the domain, we get fom (s + U)t~1e™ ds. The latter, ex-
panding the binomial (s + U) -1 and using that I'(k + 1) = k!, is

bounded by fzf 1([ HkWw=1-k Hence, as ([kl)' < 671 we
get

14
/ £ "P(min{In Cr(f), ¢} > s)ds < CUC.
U
In [V, ¢], we have that
P(min{In Cp (f),c} > s) < P(InCr(f) > V) < V7V,
Therefore, since eV =V fVC tst71ds < V-V /OC £st-1 ds,
c
/ s 'P(min{In Cr(f), ¢} > s)ds < eVl
|4
To obtain the final estimate, we add the three upper bounds obtain-

ing the uper bound U? + £fU ™ + U=Vl After substituting the
values of U and V and some easy estimations, we conclude. m]
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PROOF OF PROPOSITION 2.7. Let 1 € RN be such that the v; are
independent and uniformly distributed in (—1/2, 1/2). Now, a simple
computation shows that ¥ + 1 is absolutely continuous and each
component has density given by

5xi+1)i(t) = ZSEZ

Thus each component of ¥ + 1) has density bounded by w. We have
P(||Ax + blleo < &) < P(JAG + 1) + blleo < 26)/P(||Ap]leo < &),

P(x; = s)dy,(t —s).

since ¥ and 1 are independent, and by the triangle inequality.

On the one hand, we apply [48, Proposition 5.2] (which is nothing
more than [40, Theorem 1.1] with the explicit constants of [27]).
The latter states that for a random vector 3 € RN with independent
coordinates with density bounded by p and A € RN we have
that A3 has density bounded by ( \/ip)k /Vdet AA*. Thus

P(|AGx + 1) + blleo < 2¢) < (2V2we)* /Vdet AA*.
On the other hand,
P(lAy|leo < €) = 1 =P(||AY|lco =€) > 1 — E||Ap||oo/e.

by Markov’s inequality. Now, by our assumption on ¢, we only need
to show that E||An||eo < [|A[lco, 00 /2
By Jensen’s inequality,

1
. . 22
Bll Ayl = B lim |Avllze < lim (Eflv|Z)* .
£—00 {—o0
Expanding the interior and computing the moments of 1), we obtain

EllAy]l < lim (Z >,

1|a|=¢

1

2t

(25) l_[ ( Zaj(l/z)Zaj/(zaJ + l))) .

since the odd moments disappear. Thus

BlAfe < > lim (Z 2

i=1 |a|=2¢

1

20
2L . ”A”oo )
| | A i|Y = —,
( ) j=1 | l’Jl )) 2

where we obtained the bound of || Al|c, 0 /2 after doing the binomial
sum and taking the limit. O

3 NUMBER OF COMPLEX ROOTS

To control the number of complex roots, we will use results from
complex analysis and the probabilistic bounds from Section 2. Note
that we cannot bound the number of complex roots inside D, be-
cause the symmetry on our randomness model forces any bound
on the number of roots in D to be of the form O(d). For of this, we
consider a family of disks {D(&,, N, p"’N)}nN:—N’ inspired by the
one in [30], where we will specify N in the sequel. In particular,

sgn(n) (1— %%), ifln] < N-1

N = (3.1)
" e (1- k). ifinl =
3.1 :
ECTE 1f|n| <N-1
Pn.N = {éi if | = (32
22N> -

We will abuse notation and write £, and p,, instead of &, n and
pn, N since we will not be working with different N’s at the same
time, but only with one N which might not have a prefixed value.
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For this family of disks, we will give a deterministic and a probabilis-
tic bound for the number of roots in their union, when N = [lgd],

log d1

U

n=—[logd]

o(f) = #{Z €Qq = D(én. pn) | f(2) = 0}, (3.3)

where f € ;. We use these bounds to estimate the number of
steps of DESCARTES(f).

3.1 Deterministic bound
THEOREM 3.1. Let f € Py. Then
Mlogd]

ell f1h
o(f) < log )
VST
LEMMA 3.2. Let f € Py, E €D, andp > 0. If|€| + 2p < 1+ 1/d,
then #(Z(f) N D(E, p)) < log(ell fll1/1f(E)D-

Proor or THEOREM 3.1. We only have to apply subadditivity
and Lemma 3.2. Note that the condition of the Lemma 3.2 holds for
every disk D(&,, pn) in Q. O

ProoF oF LEMMA 3.2. We use a classic result of Titchmarsh [47,
p- 171] that bounds the number of roots in a disk. For § € (0,1),
we have that #(Z(f) N D(&, p)) < (In(1/8))~! In(max,p | f(€ +

pz[S)I/1f ().
Take § = 1/2. By our assumption, ¢ + 2pD € (1 + 1/d)D,

so maxzep |f(§ + pz/6)| < maxzc1/ap [f(2)] < ellfll1, since
|f(2)| < ellfll1, for z € (1 + 1/d)D [49, Proposition 3.9.]. O
3.2 Probabilistic bound
THEOREM 3.3. Letf € P? be a random bit polynomial. Then for
allt < r(f)(2[lgd] + 1),
P (o(f) > 1) < 44d®(2g d] + 1)etDe TEaT
COROLLARY 3.4. Let | € 505 be a random bit polynomial and
¢ € N. Suppose that 7(f) > 101In(ed) + 2u(f). Then
1 3426 u(f) | 1
NAYE 44d e 3
(EQ(T) ) < 2(1 + £)(6 In(ed) + u(f)) In(ed) + (—zr - )

In particular, if () > (9 + 30) In(ed) + 2u(F), then
(Eg(f)" ) * <0 t(nd +u(f)Ind).

Proor oF THEOREM 3.3. If #(Z(f) N Qy) > t, then, by Theo-
rem 3.1, there is an n such that log(e|| f |1 /17(x)]) > t/(2[1lgd] + 1).
Hence

P(o(f) > t) < “gzd] P(l ellfllx . t )
s _n:_ngd] g|f(§n)|_2[lgd]+l :

Now, fix x € I. We argue as in the proof of Theorem 2.4, but we
consider that map mapping f to f(x) instead of the map mapping
f to (f(x), f'(x)/d), so that our matrix A takes the form

(1 x  x4-1 xd).

Note that this A has ||Allc,c0 < d + 1. So, we can apply Proposi-
tion 2.7 to show that for any s < ZT(T),

P (ellflli/If(x)] > 5) < 44d%eDs.
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Algorithm 1: DEscARTES(f)

Input: A square-free polynomial f € 7)‘%
Output: A list, S, of isolating intervals for the real roots of f in Jo = (=1, 1)
Jo—(-1,1),S < 0, Q « 0,0 « rusu(Jy)
while Q # 0 do
J =(a, b) «< ror(Q) V « var(f, J)
switch V do
case V =0 continue
case V=1 S « app(I)
case V > 1
m e«
if f(m) = 0 then S < app([m, m])
Jp < la, m]; Jgr « [m, b]
Q —rusu(Q, Jp). Q « rusu(Q, Jr)

atb
2

O VXN GR WN =

=

RETURN S

=
1Y)

Ifs = e!/N, with N = 2[lg(d)] + 1, then the bound follows. O

PRrROOF OF COROLLARY 3.4. In the proof of Corollary 2.6 we only
used the fact that the tail bound is of the form Ue™? for t < V with
U < V. We will use a similar idea in this proof. Let 0 < U <V,
¢ > 0,and ¥ € [0,0) a random variable. If P(x > t) < eV~ for
s <V, then E(min{x, c})! < U? + ¢fU1 + UVl

By Theorem 3.3, the random variable o(f)/(2[lgd] + 1) satisfies
the conditions to be a random variable x with U = In(44d?(2[lg d] +
1etD) < 41n(ed) +1In(2[lgd] +1)+u(f), V = In(27D /(2[1g d] + 1)),
andc = m; since the roots are at most d. By our assumptions
U <V, that concludes the proof. O

4 THE DESCARTES SOLVER

The DESCARTES solver is an algorithm that is based on Descartes’
rule of signs.

THEOREM 4.1 (DESCARTES’ RULE OF SIGNS). The number of sign
variations in the coefficients’ list of a polynomial f = Z?:o fixt e
P4 equals the number of positive real roots (counting multiplicities)
of f, sayr, plus an even number; that isr = vAR(f) mod 2. O

In general, Theorem 4.1 provides an overestimation on the num-
ber of positive real roots. It counts exactly when the number of sign
variations is 0 or 1 and if the polynomial is hyperbolic, that is it has
only real roots. To count the real roots of f in an interval J = (a, b)

we use the transformation x — “;‘flb that maps J to (0, o). Then
vaR(f, J) = var((X + 1) F(5E)

bounds the number of real roots of finI = J.

Therefore, to isolate the real roots of f in an interval, say Jy =
(-1, 1), we count (actually bound) the number of roots of f in Jp
using V = var(f, Jo). If V. = 0, then we discard the interval. If
V =1, then we add Jj to the list of isolating intervals. If V' > 1, then
we subdivide the interval to two intervals J; and Jg and we repeat
the process. The pseudo-code of DESCARTES appears in Algorithm 1.

The recursive process of the DESCARTES defines a binary tree.
Every node of the tree corresponds to an interval. The root corre-
sponds to the initial interval Jy = (-1, 1). If anode corresponds to an
interval J = (a, b), then its children correspond to the open left and
right half intervals of J, that is J; = (a,mid(J)) and Jg = (mid()), b)
respectively. The internal nodes of the tree correspond to intervals
J, such that var(f, J) > 2. The leafs correspond to intervals that
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contain 0 or 1 real roots of f. Overall, the number of nodes of the
tree correspond to the number of steps, i.e., subdivisions, that the
algorithm performs. We control the number of nodes by controlling
the depth of tree and the width of every layer. Hence, to obtain the
final complexity estimate it suffices to multiple the number of steps
(width times height) with the worst case cost of each step.

The following proposition helps to control the cost of each step.
Note that at each step, we do changes of variables to obtain the
desired polynomial to perform the sign count.

PROPOSITION 4.2. Let f = Zflzo fixte Pf of bit-size T.

o Thereciprocal transformation isR(f) := de(§) = Zi:o fd_ka.

Its cost is Og(1) and it does not alter neither the degree nor the
bit-size of the polynomial.

o The homothetic transformation of f by 2k, for a positive integer
k. is Hi(f) = 29k (%) = 2, 2K@d=D £ XTIt costs Op(d p(r +
dk)) = 5B(dr + d?k) and the resulting polynomial has bit-size
O(t + dk). Notice that H_;. = RHiR.

o The Taylor shift of f by in integer ¢ is To(f) = f(x +¢) =
ZZ:O apx®, where a; = Z]”.l:i (jl:)fjcj_i for0 < i < d. It costs
Op(u(d*o+dr)lgd) = 5B(d20'+dr) [53, Corollary 2.5], where o is
the bit-size of c. The resulting polynomial has bit-size O(t+dc). O

Remark 4.3. There is no restriction on working with open intervals
since we consider an integer polynomial and we can always evaluate
it at the endpoints. Also to isolate all the real roots of f it suffices
to have a routine to isolate the real roots in (-1, 1). Using the map
x — 1/x we can isolate the roots in (-0, —1) and (1, o).

4.1 Bounds on the number of sign variations

For this subsection we consider f = Zflzo fiX! € Py to be a poly-
nomial with real coefficients, not necessarily integers. To establish
the termination and estimate the bit complexity of DESCARTES we
need to introduce the Obreshkoff area and lens. Our presentation
follows closely [17, 26, 42].

Consider 0 < p < d and a real open interval J = (a, b). The
Obreshkoff discs 5@ and D o are discs the boundaries of which go
through the endpoints of J. Their centers are above, respectively
below, J and they form an angle ¢ = ﬁ with the endpoints of I.
Its diameter is wid(])/sin(ﬁ).

The Obreshkoff area is Ay(J) = interior(ﬁg U Qg); it ap-
pears with grey color in Fig. 1. The Obreshkoff lens is Ly(J) =
interior(EQ N 29); it appears in light-grey color in Fig. 1. If it is
clear from the context, then we omit I and we write Ao and LQ,
instead of Ay(J) and L, (J). It holds that L; ¢ Ly_; € --- C
Ll C.E()and.ﬂo CA C--- Cﬂd—l C.ﬂd.

The following theorem shows the role of the number of complex
roots in the control of the number of variation signs.

THEOREM 4.4 ([31]). Consider f € P4 and real open interval
J = (a,b). If the Obreshkoff lens L;_ contains at least k roots
(counted with multiplicity) of f, then k < var(f, J). If the Obreshkoff
area Ay contains at most k roots (counted with multiplicity) of f,
then VAR(f, J) < k. Especially

#{roots of f in Ly} < var(f,]) < #{roots of f in Ay}. O

145

ISSAC °22, July 4-7, 2022, Villeneuve-d’Ascq, France

This theorem together with the subadditive property of Descartes’
rule of signs (Thm. 4.5) shows that the number of complex roots in
the Obreshkoff areas controls the width of the subdivision tree of
DESCARTES.

THEOREM 4.5. Consider a real polynomial f € P,. Let J be a real
interval and Ji, ..., ], be disjoint open subintervals of J. Then, it
holds 31| var(f,J;) < var(f,]). O

Finally, to control the depth of the subdivision tree of DESCARTES
we use the one and two circle theorem [1, 26]. We present a variant
based on the ¢-real separation of f, A]§(f) (Definition 2.2).

THEOREM 4.6. Let f € Py, an interval ] C (-1,1) and e > 0. If
2wid(J) < min{AR(f), ¢},

then either VAR(f, J) = 0 (and J does not contain any real root), or
VAR(f,]) = 1 (and ] contains exactly one real root).

Proor. The proof follows the same application of the one and
two circle theorems as in the proof of [49, Proposition 6.4]. O

4.2 Complexity estimates for DESCARTES

We give a high-level overview of the proof ideas of this section
before going into technical details. The process of DESCARTES cor-
responds to a binary tree and we control its depth using the real
condition number and Theorems 2.3 and 4.6. To bound the width
of the DESCARTES’ tree we use the Obreskoff areas and the num-
ber of complex roots in them (Theorem 4.4). By combining these
two bounds, we control the size of the tree and so we obtain an
instance-based complexity estimate. To turn this instance-based
complexity estimate into an expected one, we use Theorems 2.5
and 3.3 (and their Corollaries 2.6 and 3.4).

4.2.1 Instance-based estimates.

THEOREM 4.7. If f € PZ, then, using DESCARTES, the number of
subdivision steps to isolate the real roots in I = (—1,1) is

O(e(f P lg(Ca(f)).
The bit complexity of the algorithm is

Op(dro(f)* g Cr(f) + d’e(f)* 1g” Cr(f)).
Recall that Cr(f) appears in (2.2) and o(f) in (3.3).

Proor. We consider the number of steps to isolate the real
roots in I = (=1,1). Let N = [logd] and ¢ = o(f) the number
of complex roots in Q. Recall that Q is the union of the discs
Dy, := D(én, pn) := &En + pnD, where |n| < N; see (3.1) and (3.2) for
the concrete formulas, and that it contains the interval I.

The discs partition I into the 2N + 1 subintervals Jy, := [&g, En+1]
(or Jn := [&n, En—1] if n < 0). Note that J, is the union of 3 intervals
of size 1/2™*3. Because of this, there is a binary subdivision tree of T
of size O(lg? d) such that every of its intervals is contained in some
Jn. Thus, if we bound the width of the subdivision tree of DESCARTES
starting at each J, by w, then the width of the subdivision tree of
DESCARTES starting at I is bounded by O(wlg? d + 1g? d).

We focus on intervals J, for n > 0; similar arguments apply for
n > 0. We consider two cases: n < N andn = N.

Casen < N. Tt holds wid(J,) = pn = 3/2™*3. For each J,, assume
that we perform a number of subdivision steps to obtain intervals,
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say Ju, ¢, withwid(J,, ¢) = 2~¢. We choose ¢ so that the correspond-
ing Obreshkoff areas, Ay(Jy,¢), are inside Q4. In particular, we
ensure that the Obreshkoff areas related to J, ¢ lie in Dj41.

The diameter of the Obreshkoff discs, 59( Jn,¢) and D g( Jn,0)s
is wid(J,,¢)/sin ﬁ. For every Ay (Jy,¢) to be in Dy and hence
inside Qg, it suffices that a disc with diameter 2wid(J,, ¢)/sin ﬁ,
that has its center in the interval [&,, £,+1] and touches the right
endpoint of J, to be inside Dy41 \ Dj. This is the worst case
scenario: a disc big enough that contains Ay (Jp, ¢) and lies Dy41.
This auxiliary disc is the dotted (red) disc in Fig. 2 (left). It should
be that

Z_

o+2 <2pny1 = 3/2n+3-

2wid(Jy,,¢)/sin
Taking into account that wid(J, ¢) = 27¢ and

T
o+2

L

1
_ZZQ’

. 1
sin > sin = > 1+
° / e

o=

—e+1 +3 2%
we deduce 2 20 <3/2"" andso £ > Ig —5—~.

Hence, wid(Jp, ¢) = 3/(2"*30) and so J,, is partitioned to at most

wid(Jn) _
wid(Jn,e) ~
starting from (each) J,,, we obtain the intervals J, ¢ after performing

at most 8p subdivision steps (this is the size of the complete binary
tree starting from J,). To say it differently, the subdivision tree
that has J, as its root and the intervals J, ; as leaves has depth
¢ = [lg(40)]. The same hold for Jn_; because p, < pn, for all
0<n<N-1

Thus, the width of the tree starting at J,, is at most O(g?), because
we have O(p) subintervals J,, , and for each VAR(f, ], ¢) < o.
Casen = N.Now wid(Jy) = 3/2N*1. We need a slightly different
argument to account for the number of subdivision steps for the
last disc Dy . To this disc we assign the interval Jy = [1 —1/2N,1]
with wid(Jy) = 1/2N; see Figure 2.

We need to obtain small enough intervals Jy; ¢ of width 1/ 2 so
that corresponding Obreskoff areas, Ay (Jn,¢), to be inside Dy . So,
we require that an auxiliary disc of diameter 2wid(Jn,¢)/sin ﬁ,
that has ts center in the interval [1,1/2N*1] and touches 1 to be
inside Dy; actually inside Dy N {x > 1}; see Figure 2. And so

4o (sub)intervals. So, during the subdivision process,

2wid(JN, ¢)/sin g < pns1 = 1/2N*1,

This leads to £ > lg(e 2N*3). Working as previously, we estimate
that the number of subdivisions we perform to obtain the interval
JN, ¢ is 80. Also repeating the previous arguments, the width of the
tree of DESCARTES starting at [y is at most O(g?).

By combining all the previous estimates, we conclude that the
subdivision tree of DESCARTES has width O(o? 1g? d + 1g% d).

To bound the depth of the subdivision tree of DESCARTES, con-
sider an interval J; of width 1/2¢ obtained after £ + 1 subdivisions.
By theorem 4.6, we can guarantee termination if for some ¢ > 0,

17271 < min{AR(f), ¢}.
Fix ¢ = 1/(ed Cr(f)). Then, by Theorem 2.3, it suffices to hold
€ > 1+1g(12d Cr(f)).
Hence, the depth of the subdivision tree is at most O(lg(d Cr(f))).
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Therefore, since the subdivision tree of DESCARTES has width
O(0? log d + log? d) and depth O(lg(d Cr(f))), the size bound fol-
lows. For the bit complexity, by [14], see also [17, 26, 41, 42] and
Proposition 4.2, the worst case cost of each step of DESCARTES is
53((11' + d?6), where § is the logarithm of the highest bitsize that
we compute with, or equivalently the depth of the subdivision tree.
In our case, § = O(lg(d Cr(f)). O

4.2.2  Expected complexity estimates.

THEOREM 4.8. Let f € P‘% be a random bit polynomial with
7(f) = Q(lgd + u(f)). Then, using DESCARTES, the expected number
of subdivision steps to isolate the real roots inI = (—1,1) is

O +u(m?).
The expected bit complexity of DESCARTES is
OB ()1 +u()’ +d*(1 + u(D)).

Iff is a uniform random bit polynomial of bitsize r and t = Q(lgd +
u(f)),en the expected number of subdivision steps to isolate the real
rinI = (—1,1) is O(1) and the expected bit complexity becomes

Op(dr + d).

Proor. We only bound the number of bit operations; the bound
for the number of steps is analogous. By Theorem 4.7 and the
worst-case bound 53 (d*z?) for DESCARTES [14], the bit complexity
of DESCARTES at f is at most

Op (min{dr(De(f)? 1g Ca () + de(1)* Ig? Ca (7). d*r(7)?})
that in turn we can bound by
Os (dr(fe()? min{lg Cx (7). *r()}
+d%o(f)? min{lg Cr (). dz()}} )
Now, we take expectations, and, by linearity, we only need to bound
2
B o(()? min{lg Cr (1), d*r(7)} and E(f)? (min{lg Ca (), d*r(7)?})

Let us show how to bound the first, because the second one is the
same. By the Cauchy-Bunyakovsky-Schwarz inequality,

Eo(f)? min{lg Cg.(7), d*r (1)}
is bounded by

VEe()E (min{lg ca(). d*r(i)})°.

Finally, Corollaries 2.6 and 3.4 give the estimate. Note that 7(f) >
Q(lgd + u(f)) implies 7(f) > Q(lgd + u(f) +In c) (for the worst-case
separation bound ¢ [9]) so we can apply Corollary 2.6. O
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Figure 1 Obreshkoff discs, lens (light grey), and area (light grey
and grey) for an interval I.

n

Figure 2 Covering discs of the interval I = (0, 1).

(left) Three covering discs, Dy, Dpt1, Dp2.

(right) The (red) dotted circle is the auxiliary disc that we ensure is
contained in Dy41 \ Dj,.
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