
Beyond Worst-Case Analysis for Root Isolation Algorithms
Alperen Ergür

alperen.ergur@utsa.edu
The Univ. of Texas at San Antonio

San Antonio, Texas, USA

Josué Tonelli-Cueto
josue.tonelli.cueto@bizkaia.eu

Inria Paris & IMJ-PRG
Paris, France

Elias Tsigaridas
elias.tsigaridas@inria.fr

Inria Paris & Sorbonne Université
Paris, France

ABSTRACT

Isolating the real roots of univariate polynomials is a fundamental
problem in symbolic computation and it is arguably one of the most
important problems in computational mathematics. The problem
has a long history decorated with numerous ingenious algorithms
and furnishes an active area of research. However, the worst-case
analysis of root-finding algorithms does not correlate with their
practical performance. We develop a smoothed analysis framework
for polynomials with integer coefficients to bridge the gap between
the complexity estimates and the practical performance. In this
setting, we derive that the expected bit complexity of Descartes
solver to isolate the real roots of a polynomial, with coefficients
uniformly distributed, is ÕB (d2 + dτ), where d is the degree of the
polynomial and τ the bitsize of the coefficients.

CCS CONCEPTS

• Theory of computation → Numeric approximation algo-

rithms; Randomness, geometry and discrete structures; Complexity

theory and logic; •Computingmethodologies→ Symbolic and

algebraic algorithms.

KEYWORDS

univariate polynomials, root-finding, Descartes solver, condition-
based complexity, average complexity, beyond worst-case analysis
ACM Reference Format:

Alperen Ergür, Josué Tonelli-Cueto, and Elias Tsigaridas. 2022. Beyond
Worst-Case Analysis for Root Isolation Algorithms. In Proceedings of the
2022 Int’l Symposium on Symbolic and Algebraic Computation (ISSAC ’22),
July 4–7, 2022, Villeneuve-d’Ascq, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3476446.3535475

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8688-3/22/07. . . $15.00
https://doi.org/10.1145/3476446.3535475

1 INTRODUCTION

The interactions between the ways we design and the ways we
analyze algorithms are transformative on both ends: Unreasonably
effective algorithms transform our complexity analysis frameworks,
where else the discovery of essential complexity parameters trans-
forms the ways we design algorithms. In numerical computation,
the use of the condition numbers illustrate emphatically this phe-
nomenon: condition numbers are a way of explaining the success
of certain numerical algorithms1, a guiding complexity parameter
for the design of new algorithms, and a foundation for average and
smoothed analysis of numerical algorithms [5, 6]. In discrete com-
putation, this two-sided interaction between complexity analysis
frameworks and algorithms’ design forms a dynamic and excit-
ing area of current research [11, 37] with a rich history rooted at
the beginnings of complexity theory [2, Ch. 18]. Inspired by these
developments, we aim to take a first step for bringing different
modalities of algorithmic analysis into symbolic computation. To
the best of our knowledge, this large field almost entirely relies on
the worst-case analysis.

We consider one of the most basic problems in symbolic com-
putation: computing the roots of univariate polynomials. This is a
singularly important problem with applications in the whole range
of computer science and engineering. It is extensively studied from
theoretical and practical perspectives for decades and keeps attract-
ing plenty of attention [18, 28, 32, 35]. We focus on the real root
isolation problem: to compute intervals with rational endpoints that
contain only one real root of the polynomial and each real root is
contained in an interval. Besides its countless direct applications,
this problem is omnipresent in symbolic computation; among its
numerous uses it stands out as a crucial subroutine for elimination
based multivariate polynomial systems solvers, e.g., [18].

Despite the ubiquity of real root isolation in engineering and its
relatively long history in theoretical computer science, the state-
of-the-art complexity analysis falls short of providing guidance for
practical computations. Pan’s algorithm [34] has the best worst-case
complexity since nearly two decades and is colloquially referred
to as the “optimal” algorithm. However, Pan’s algorithm is rather
sophisticated and has only a prototype implementation in PARI/GP
[46]. In contrast, other algorithms with inferior worst-case complex-
ity estimates have excellent practical performance, e.g., [21, 25, 51].
In our view, this lasting discrepancy between theoretical complex-
ity analyses and practical performance is related to the insistence
on using the worst-case framework in the symbolic computation
community. However, let us mention the exceptions of [16], that
provides estimates for the expected complexity of sturm algorithm
for real solving, [51], that provides (conditional) expected case

1According to Wilkinson [54], Turing [52] introduced condition numbers to explain
the practical success of Gaussian elimination despite the existing worst-case analyses.

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

139

https://doi.org/10.1145/3476446.3535475
https://doi.org/10.1145/3476446.3535475

bounds for the continued fraction algorthm, and [36] that considers
the expected number steps for the problem of real root refinement.

We demonstrate how average/smoothed analysis frameworks
can help to predict the practical performance of symbolic real root
isolation algorithms. In particular, we show that in our data model
the descartes solver has a bit complexity quasi-linear in the input
size, when we consider the dense representation. This provides an
explanation for the excellent practical performance of descartes
that even outperforms its numerical alternatives. See §1.2 for a
simple statement and §1.3 for the full technical statement.

1.1 Synopsis of real root isolation algorithms

We can (roughly) characterize the various algorithms for (real) root
isolation as numerical or symbolic algorithms; the recent years
there are also efforts to combine the best of the two worlds.

The numerical algorithms are, in almost all the cases, iterative
algorithms that approximate all the roots (real and complex) of a
polynomial up to any desired precision. Their main common tool
is (a variant of) a Newton operator. The algorithm with the best
worst-case complexity due to Pan [34] is based on Schönhage’s
splitting circle divide-and-conquer technique [44]. It recursively
factors the polynomial until we obtain linear factors that approxi-
mate, up to any desired precision, all the roots of the polynomial
and it has nearly optimal arithmetic complexity. We can turn this
algorithm, and also any other numerical algorithm, to an exact one,
by approximating the roots up to the separation bound; that is the
minimum distance between the roots. In this way Pan obtained
the record worst case bit complexity bound ÕB (d2τ) for a degree
d polynomial with maximum coefficient bitsize τ [34]; see also
[3, 24, 29]. Besides the algorithms already mentioned, there are also
several seemingly practically efficient numerical algorithms, e.g.,
mpsolve [4] and eigensolve [20], that lack convergence guarantees
and/or precise bit complexity bounds.

Regarding symbolic algorithms, themajority is subdivision-based.
These algorithms mimic binary search. Given an initial interval that
contains all (or some) of the real roots, they repeatedly subdivide it
until we obtain intervals containing zero or one real root. Prominent
representatives of this approach are sturm and descartes. sturm
depends on Sturm sequences to count exactly the number of distinct
roots in an interval, even when the polynomial is not square-free.
Its complexity is ÕB (d4τ 2) [9, 12] and it is not so efficient in prac-
tice; the bottleneck seems to be the high cost of computing the
Sturm sequence. descartes is based on Descartes’ rule of signs
to bound the number of real roots of a polynomial in an interval.
Its worst case complexity is ÕB (d4τ 2) [14]. Even though its worst
case bound is similar to sturm, the descartes solver has excel-
lent practical performance and it can routinely solve polynomials
of degree several thousands [21, 23, 38, 50]. There are also other
algorithms based on the continued fraction expansion of the real
numbers [45, 51] and on point-wise evaluation [7, 43].

Let us also mention the bitstream version of descartes [13],
where we assume that there is an oracle that for each coefficient
of the polynomial returns an approximation to any absolute error.
This approach, by also incorporating several tools from numerical
algorithms, leads to improved variants of descartes [42]. In the
end, this variant yields the record worst case complexity bounds

and efficient implementation [25] especially when there are clusters
of roots. Even more, there is also a subdivision algorithm [3] that
applies several improvements to the modified Weyl algorithm by
Pan [33] and achieves the (record) complexity bound ÕB (d3 +d2τ).

1.2 Warm-up: A simple form of the main result

The main complexity parameters for univariate polynomials with
integer (or rational) coefficients is the degree d and the bitsize τ ;
the latter refers to the maximum bitsize of the coefficients. We
aim for a data model that resembles a “typical” polynomial with
exact coefficients. The first natural candidate is the following: fix a
bitsize τ , let c0, c1, . . . , cd be independent copies of the uniformly
distributed integer in [−2τ , 2τ] ∩ Z, and let f =

∑d
i=0 ciX

i which
we call the uniform random bit polynomial with bitsize τ . Recall that
O, resp. OB , denote the arithmetic, resp. bit, complexity and that
we use Õ, resp. ÕB , to ignore (poly-)logarithmic factors of d . For
uniform random bit polynomials, our result has the following form.

Theorem 1.1. For a degree d uniform random bit polynomial

f with bit size τ (f), descartes solver isolates the real roots of f in

expected time ÕB (d τ + d
2).

Notice that the expected time complexity of descartes solver
in this simple model is better by a factor of d than the record worst-
case complexity bound of Pan’s algorithm.

1.3 Statement of main results in full detail

We develop a general model of randomness that provides the frame-
work of smoothed analysis for polynomials with integer coeffi-
cients.

Definition 1.2. Letd ∈ N. A random bit polynomial with degreed is
a random polynomial f :=

∑d
i=0 ciX

i , where the ci are independent
discrete random variables with values in Z. Then,

(1) the bitsize of f, τ (f), is the minimum integer τ so that for all
i ∈ {0, 1, 2, . . . ,d}, P(|ci | ≤ 2τ) = 1.

(2) the weight of f,w(f), is the maximum probability that c0, c1,
cd−1, and cd can take a value, i.e.,

w(f) := max{P(ci = k) | i ∈ {0, 1,d − 1,d}, k ∈ R}.

Remark 1.3. Note that we only impose restrictions on the size of the
probabilities of the coefficients of 1, X , Xd−1 and Xd . This might
look odd at the first sight. We set our randomness model this way to
be able to consider the most flexible data-model that can be handled
by our proof techniques. We provide examples below to justify this
technical assumption.

Example 1.4. The uniform random bit polynomial of bitsize τ we
introduced is the main example of a random bit polynomial f. Note
that in this case we havew(f) = 1

1+2τ+1 and τ (f) = τ .

As we will see in the examples below, our randomness model is
very flexible. However, this flexibility comes at a cost. In principle,
we could havew(f) = 1 which would make our randomness model
equivalent to the worst-case model. To control the effect of large
w(f) we introduce the following quantity, which measures how far
we are from a uniform random bit polynomial.

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

140

Definition 1.5. The uniformity of a random bit polynomial f is

u(f) := ln
(
w(f)(1 + 2τ (f)+1)

)
.

Remark 1.6. Note that u(f) = 0 if and only if the coefficients of 1,
X , Xd−1 and Xd in f are uniformly distributed in [−2τ , 2τ] ∩ Z.

The following three examples illustrate the flexibility of our
randommodel by specifying the support, the sign of the coefficients,
and their exact bitsize. Although we specify them separately, any
combination of specifications is also possible.

Example 1.7 (Support). Let A ⊆ {0, 1, . . . ,d − 1,d} with 0, 1,d −
1,d ∈ A. Then f :=

∑
i ∈A ciX

i , where the ci ’s are independent and
uniformly distributed in [−2τ , 2τ] is a random bit polynomial with
u(f) = 0 and τ (f) = τ .

Example 1.8 (Sign of the coefficients). Let s ∈ {−1,+1}d+1. The ran-
dom polynomial f :=

∑d
i=0 ciX

i , where the ci ’s are independent and
uniformly distributed in si ([1, 2τ] ∩N), is a random bit polynomial
with u(f) ≤ ln(3) and τ (f) = τ .

Example 1.9 (Exact bitsize). Let f :=
∑d
i=0 ciX

i be the random poly-
nomial, where the ci ’s are independent random integers of exact
bitsize τ , i.e., ci is uniformly distributed in Z ∩ ([−2τ + 1,−2τ−1] ∪
[2τ−1, 2τ − 1]). Then f is a random bit polynomial with u(f) ≤ ln(3)
and τ (f) = τ .

We consider a smoothed random model for polynomials, where
a deterministic polynomial is perturbed by a random one. In this
way our random bit polynomial model includes smoothed analysis
over integer coefficients as a special case.

Example 1.10 (Smoothed analysis). Let f ∈ Pd be a fixed integer
polynomial with coefficients in [−2τ , 2τ], σ ∈ Z \ {0} and f ∈
Pd a random bit polynomial. Then fσ := f + σ f is a random bit-
polynomial with bitsize τ (fσ) ≤ max{τ ,τ (f) + τ (σ)} + 1, where
τ (a) denotes the bitsize of a, and uniformity u(fσ) ≤ 1 +max{τ −
τ (f),τ (σ)} + u(f). By combining the smoothed random model with
the previous examples, we can obtain structured perturbations.

Our main result is the following:

Theorem 1.11. Let f be random bit polynomial, of degree d , bitsize
τ (f), and uniformity parameter u(f), such that τ (f) = Ω(lgd + u(f)),
then descartes solver isolates the real roots of f in expected time

ÕB (d τ (1 + u(f))3 + d2 (1 + u(f))4).

Remark 1.12. Note that if f is not square-free, descartes will com-
pute its square-free part and then proceed as usual. The probabilistic
complexity estimate covers this case.

Remark 1.13. Onemight further optimize the probabilistic estimates
present in Section 2.3 by employing strong tools from Littlewood-
Offord theory [39]. However, the complexity analysis depends on
the random variables in a logarithmic scale and so further im-
provements on probabilistic estimates will not make any essential
improvement on our main result. Therefore, we prefer to use more
transparent proofs with slightly less optimal dependency on the
uniformity parameter u(f).

1.4 Overview of main ideas

The important quantities in analyzing descartes are the separation
bound and the number of complex roots nearby the real axis.

The separation bound is the minimum distance between the
distinct (complex) roots of a polynomial. [15]. This quantity con-
trols the depth of the subdivision tree of descartes. To estimate
this quantity we use condition numbers [5, 6, 10], following [49].
In short, we use condition numbers to obtain an instance-based
estimate for the depth of the subdivision tree of descartes. Even
though the descartes algorithm isolates the real roots, complex
roots near the real axis control the width of the subdivision tree.
This fact follows from the work of Obreshkoff [31], see also [26].
To estimate the number of roots in the Obreshkoff areas we use
complex analytic techniques. In short, we bound the number of
complex roots in a certain region to obtain an instance-based esti-
mate for the width of the subdivision tree of descartes. Overall,
by controlling both the depth—through the condition number—and
the width—through the number of complex roots—we estimate the
size of the subsdivision tree of descartes and so its bit complexity.

Finally, we perform the expected/smoothed analysis of the algo-
rithm descartes by performing probabilistic analyses of the num-
ber of complex roots and the condition number. Expected/smoothed
analysis results in computational algebraic geometry are rare and
mostly restricted to continuous random variables, with few excep-
tions [8]; see also [16, 36, 51]. To the best of our knowledge, we
present the first known result for the expected complexity of root
finding for random polynomials with integer coefficients. Our re-
sults rely on the strong toolbox developed by Rudelson, Vershynin,
and others in random matrix theory [27, 40].

Organization. We treat in detail condition numbers, separation
bounds and their probabilistic estimates in Section 2, we deal with
the estimates of the number of complex roots in Section 3, and we
show how these quantities control the complexity of descartes
obtaining the final complexity estimate in Section 4.

Notation. We denote by O, resp. OB , the arithmetic, resp. bit,
complexity and we use Õ, resp. ÕB , to ignore (poly-)logarithmic
factors of d . We denote by Pd the space of univariate polynomials
of degree at most d with real coefficients and by PZd the subset of
integer polynomial. If f =

∑d
k=0 fkX

k ∈ PZd , then the bitsize of f
is the maximum bitsize of its coefficients. The set of complex roots
of f is Z(f). We denote by var(f) the number of sign changes
in the coefficient list. The separation bound of f , ∆(f) or ∆ if f
is clear from the context, is the minimum distance between the
roots of f , see [9, 15, 19]. We denote by D the unit disc in the
complex plane, by D(x , r) the disk x + rD, and by I the interval
[−1, 1]. For a real interval J = (a,b), we consider mid(J) := a+b

2
and wid(J) := b − a. For a n ∈ N, we use [n] to signify the set
{1, . . . ,n} and µ(n) = OB (n lgn) for the complexity of multiplying
two integers of bitsize n, where lg is the logarithm with base 2.

2 CONDITION NUMBERS, SEPARATION

BOUNDS, AND RANDOMNESS

We use various condition numbers for univariate polynomials
from [49], cf. [48], to control the separation bound of random

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

141

polynomials. However, our probabilistic analysis differs from [49]
because we consider discrete random coefficients.

2.1 Condition numbers for univ. polynomials

The local condition number of f ∈ Pd at z ∈ D [49] is

C(f , z) := ∥ f ∥1
max{| f (z)|, | f ′(z)|/d} , (2.1)

where ∥ f ∥1 :=
∑
| fa | is the 1-norm of f . important for obtaining

bit complexity results. The same definition using the ℓ2-norm is
standard in numerical analysis literature, e.g., [22].

We also define the (real) global condition number of f as

CR(f) := max
x ∈I

C(f ,x). (2.2)

We note that as CR(f) becomes bigger, f is closer to have a
singular real zero inside I . This can be made precise through the
so-called condition number theorem (see [49, Theorem 4.4]). There
are many interesting properties of CR(f), but let us state the only
one we will use—see [49, Theorem 4.2] for more.

Theorem 2.1 (2nd Lipschitz property). [49] Let f ∈ Pd . The
map D ∋ z 7→ 1/C(f , z) ∈ [0, 1] is well-defined and d-Lipschitz. □

2.2 Condition-based estimates for separation

The quantity that follows is the separation bound of polynomials
and polynomial systems, e.g., [15], suitably adjusted in our setting.
This quantity and its condition-based estimate below will play a
fundamental role in our complexity estimates.

Definition 2.2. For ε ∈
[
0, 1d

)
we set Iε := {z ∈ C | dist(z, I) ≤ ε}.

If f ∈ Pd , then the ε-real separation of f , ∆Rε (f), is

∆Rε (f) := min
{���ζ − ζ̃ ��� | ζ , ζ̃ ∈ Iε , f (ζ) = f (ζ̃) = 0

}
,

if f has no double roots in Iε , and ∆Rε (f) := 0 otherwise.

Theorem 2.3 ([49, Theorem 6.3]). Let f ∈ Pd and assume ε ∈[
0, 1

ed CR(f)

)
, then ∆Rε (f) ≥

1
12d CR(f)

. □

2.3 Probabilistic bounds for condition numbers

In this section we present our probabilistic framework. The main
technical tools are the anti-concentration results by Rudelson and
Vershynin [40]. We do not apply these results as a black box, but
we develop suitable variants for our setting (Proposition 2.7).

Theorem 2.4. Let f ∈ PZd be a random bit polynomial and x ∈ I .

Then, for t ≤ 2τ (f), P(C(f,x) ≥ t) ≤ 16d3e2u(f) 1t 2 .

Theorem 2.5. Let f ∈ PZd be a random bit polynomial. Then, for

t ≤ 2τ (f)+1,

P(CR(f) ≥ t) ≤ 32d4e2u(f) 1
t
.

The following corollary looks somewhat different than Thm. 2.4
and Thm. 2.5, but it has the same essence. Unlike the continuous
case, in the discrete case we have a worst-case estimate that we can
exploit to bound when the condition number is too large.

Corollary 2.6. Let f ∈ PZd be a random bit polynomial, ℓ ∈ N

and c ≥ 1. If τ (f) ≥ 4 ln(ed) + 2u(f), then
(
Ef (min{ln CR(f), c})ℓ

) 1
ℓ

is at most

(ℓ + 1) (4 ln(ed) + 2u(f)) +
(16d4eu(f)

2τ (f)
) 1
ℓ
c .

In particular, if τ (f) ≥ 4 ln(ed) + 2u(f) + 2ℓ ln c , then(
Ef (min{ln CR(f), c})ℓ

) 1
ℓ
≤ O(ℓ(lnd + u(f))).

We would like to understand the limitations of the two theorems
and the corollary above. First, note that Theorem 2.4 is meaningful
when τ (f) ≥ 2+ 3

2 lg(d)+2u(f) and Theorem 2.5 is meaningful when
τ (f) ≥ 5 + 4 lg(2) + 3u(f). Intuitively, the randomness model needs
some wiggling room to differ from the worst-case analysis. In our
case this translates to assume that the bit-size τ (f) is bigger than
(roughly) lg(d) + u(f). This is a reasonable assumption because for
most cases of interest, u(f) is bounded above by a constant. Thus,
the second condition in Corollary 2.6 becomes

τ (f) = Ω(ℓ lg(d) + lg(c)).

Moreover, in the case of application of Corollary 2.6, we will have
c = dO(1). Hence we are only imposing that the bit-size τ (f) is lower
bounded by (roughly) lnd , which is not uncommon in practice.

For proving the above results, we need the following propo-
sition. Recall that for A ∈ Rk×N , ∥A∥∞,∞ := supv,0

∥Av ∥∞
∥v ∥∞

=

maxi ∈k ∥Ai ∥1, where Ai is the i-th row of A.

Proposition 2.7. Let x ∈ ZN be a random vector with indepen-

dent coordinates. Assume that there is w > 0 so that for all i and

x ∈ Z, P(xi = x) ≤ w . Then for every linear map A ∈ Rk×N , b ∈ Rk

and ε ∈ [∥A∥∞,∞,∞),

P(∥Ax + b∥∞ ≤ ε) ≤ 2 (2
√
2wε)k

√
detAA∗

.

Proof of Theorem 2.4. P(C(f,x) ≥ t) equals∑
a2, ...,ad−2

P(C(f,x) ≥ t | c2 = a2, . . . , cd−2 = ad−2)
d−2∏
i=2
P(ci = ai).

where f =
∑d
k=0 ckX

k . So it is enough to prove the bound for a
random bit polynomial f of the form

f = c0 + c1X +
∑d−2

k=2 akX
k + cd−1X

d−1 + cdX
d ,

where a2, . . . ,ad−2 ∈ Z ∩ [−2τ , 2τ] are arbitrary fixed integers.
Let Pd (a2, . . . ,ad−2) be the affine subspace of Pd given by the

equations fk = ak for k ∈ {2, . . . ,d − 2}. And let

f 7→ Af + b

be the affine mapping given by

Pd (a2, . . . ,ad−2) ∋ f 7→ (f (x), f ′(x)/d) ∈ R2.

In the coordinates we are working on (those of the base {1,X ,
Xd−1,Xd }), A has the form(

1 x xd−1 xd

0 1/d (1 − 1/d)xd−2 xd−1

)
.

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

142

So, by an elementary estimation we have ∥A∥∞,∞ ≤ d + 1, and as
a direct result of Cauchy-Binet formula we have

√
detAA∗ ≥ 1/d .

Now, since ∥f∥1 ≤ (d + 1)2τ (f), we have that P(C(f,x) ≥ t) =
P(∥Af + b∥∞ ≤ ∥f∥1/t) ≤ P(∥Af + b∥∞ ≤ (d + 1)2τ (f)/t).

To be able to use Proposition 2.7, we need to assume (d+1)2
τ (f)

t ≥

d + 1 ≥ ∥A∥∞,∞. Then, for t ≤ 2τ (f), Proposition 2.7 implies

P(C(f,x) ≥ t) ≤ 16d(d + 1)2(w2τ (f)/t)2.

Thus the proof is completed by the definition of u(f). □

Proof of Theorem 2.5. We will use a covering/union bound
argument. For any finite set G ⊂ [−1, 1] such that {[x − δ ,x +
δ] | x ∈ G} covers [−1, 1], using the 2nd Lipschitz property
(Theorem 2.1), we have 1/maxx ∈G C(f ,x) ≤ 1/CR(f) + dδ . Let
δ = 1/dt , then P(CR(f) ≥ t) ≤ P

(
maxx ∈G CR(f,x) ≥ t/2

)
≤

#G maxx ∈[−1,1] P(C(f,x) ≥ t/2). We can construct such G such
that #G ≤ 2dt . Hence the claim follows from Theorem 2.4. □

Proof of Corollary 2.6. Let

U := ln(32d4e2u(f)) ≤ 4 ln(ed) + 2u(f) and V := ln(2τ (f)+1).

By assumption, U ≤ V and U > 1, since u(f) ≥ 0. So without loss
of generality, we assume 0 < U < V < c . If c ≤ V , then similar
arguments imply that the claimed upper bound still holds. Thus

Ef (min{ln CR(f), c})ℓ =
∫ c

0
ℓsℓ−1P(min{ln CR(f), c} ≥ s) ds .

We divide the integral into three summands using the intervals
[0,U], [U ,V] and [V , c].

In [0,U], we have that P(min{ln CR(f), c} ≥ s) ≤ 1, and so∫ U

0
ℓsℓ−1P(min{ln CR(f), c} ≥ s) ds ≤ U ℓ .

In [U ,V], by Theorem 2.5 we have that

P(min{ln CR(f), c} ≥ s) ≤ P(ln CR(f) ≥ s) ≤ eU−s ,

and so the integral
∫ V
U ℓs

ℓ−1P(min{ln CR(f), c} ≥ s) ds is bounded
by

∫ V
U ℓs

ℓ−1eU−s ds . By performing a change of variables and ex-
tending the domain, we get

∫ ∞
0 ℓ(s + U)

ℓ−1e−s ds . The latter, ex-
panding the binomial (s +U)ℓ−1 and using that Γ(k + 1) = k!, is
bounded by ℓ

∑ℓ−1
k=0

(ℓ−1
k
)
k!U ℓ−1−k . Hence, as

(ℓ−1
k
)
! ≤ ℓℓ−1, we

get ∫ V

U
ℓsℓ−1P(min{ln CR(f), c} ≥ s) ds ≤ ℓℓU ℓ−1.

In [V , c], we have that

P(min{ln CR(f), c} ≥ s) ≤ P(ln CR(f) ≥ V) ≤ eU−V .

Therefore, since eU−V
∫ c
V ℓs

ℓ−1 ds ≤ eU−V
∫ c
0 ℓs

ℓ−1 ds ,∫ c

V
ℓsℓ−1P(min{ln CR(f), c} ≥ s) ds ≤ eU−V cℓ .

To obtain the final estimate, we add the three upper bounds obtain-
ing the uper bound U ℓ + ℓℓU ℓ−1 + eU−V cℓ . After substituting the
values ofU and V and some easy estimations, we conclude. □

Proof of Proposition 2.7. Let y ∈ RN be such that the yi are
independent and uniformly distributed in (−1/2, 1/2). Now, a simple
computation shows that x + y is absolutely continuous and each
component has density given by

δxi+yi (t) =
∑

s ∈Z
P(xi = s)δyi (t − s).

Thus each component of x + y has density bounded byw . We have

P(∥Ax + b∥∞ ≤ ε) ≤ P(∥A(x + y) + b∥∞ ≤ 2ε)/P(∥Ay∥∞ ≤ ε),

since x and y are independent, and by the triangle inequality.
On the one hand, we apply [48, Proposition 5.2] (which is nothing

more than [40, Theorem 1.1] with the explicit constants of [27]).
The latter states that for a random vector z ∈ RN with independent
coordinates with density bounded by ρ and A ∈ Rk×N , we have
that Az has density bounded by (

√
2ρ)k/

√
detAA∗. Thus

P(∥A(x + y) + b∥∞ ≤ 2ε) ≤ (2
√
2wε)k/

√
detAA∗.

On the other hand,

P(∥Ay∥∞ ≤ ε) = 1 − P(∥Ay∥∞ ≥ ε) ≥ 1 − E∥Ay∥∞/ε .

by Markov’s inequality. Now, by our assumption on ε , we only need
to show that E∥Ay∥∞ ≤ ∥A∥∞,∞/2.

By Jensen’s inequality,

E∥Ay∥∞ = E lim
ℓ→∞

∥Ay∥2ℓ ≤ lim
ℓ→∞

(
E∥Ay∥2ℓ2ℓ

) 1
2ℓ
.

Expanding the interior and computing the moments of y, we obtain

E∥Ay∥∞ ≤ lim
ℓ→∞

©­«
k∑
i=1

∑
|α |=ℓ

(
2ℓ
2α

) n∏
j=1

(
A
2α j
i, j (1/2)

2α j /(2α j + 1)
)ª®¬

1
2ℓ

,

since the odd moments disappear. Thus

E∥Ay∥∞ ≤
1
2 lim
ℓ→∞

©­«
k∑
i=1

∑
|α |=2ℓ

(
2ℓ
α

) n∏
j=1

(
|Ai, j |

α j)ª®¬
1
2ℓ

=
∥A∥∞,∞

2 ,

where we obtained the bound of ∥A∥∞,∞/2 after doing the binomial
sum and taking the limit. □

3 NUMBER OF COMPLEX ROOTS

To control the number of complex roots, we will use results from
complex analysis and the probabilistic bounds from Section 2. Note
that we cannot bound the number of complex roots inside D, be-
cause the symmetry on our randomness model forces any bound
on the number of roots in D to be of the form O(d). For of this, we
consider a family of disks {D(ξn,N , ρn,N)}Nn=−N , inspired by the
one in [30], where we will specify N in the sequel. In particular,

ξn,N =


sgn(n)

(
1 − 3

4
1

2|n |
)
, if |n | ≤ N − 1

sgn(n)
(
1 − 1

2N
)
, if |n | = N

(3.1)

ρn,N =

{
3
8

1
2|n | , if |n | ≤ N − 1

3
2

1
2N , if |n | = N

. (3.2)

We will abuse notation and write ξn and ρn instead of ξn,N and
ρn,N since we will not be working with different N ’s at the same
time, but only with one N which might not have a prefixed value.

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

143

For this family of disks, we will give a deterministic and a probabilis-
tic bound for the number of roots in their union, when N = ⌈lgd⌉,

ϱ(f) := #
{
z ∈ Ωd :=

⌈logd ⌉⋃
n=−⌈logd ⌉

D(ξn , ρn) | f (z) = 0
}
, (3.3)

where f ∈ Pd . We use these bounds to estimate the number of
steps of Descartes(f).

3.1 Deterministic bound

Theorem 3.1. Let f ∈ Pd . Then

ϱ(f) ≤

⌈logd ⌉∑
n=−⌈logd ⌉

log e∥ f ∥1
| f (ξn)|

.

Lemma 3.2. Let f ∈ Pd , ξ ∈ D, and ρ > 0. If |ξ | + 2ρ < 1 + 1/d ,
then #(Z(f) ∩ D(ξ , ρ)) ≤ log(e∥ f ∥1/| f (ξ)|).

Proof of Theorem 3.1. We only have to apply subadditivity
and Lemma 3.2. Note that the condition of the Lemma 3.2 holds for
every disk D(ξn , ρn) in Ωd . □

Proof of Lemma 3.2. We use a classic result of Titchmarsh [47,
p. 171] that bounds the number of roots in a disk. For δ ∈ (0, 1),
we have that #(Z(f) ∩ D(ξ , ρ)) ≤ (ln(1/δ))−1 ln(maxz∈D | f (ξ +
ρz/δ)|/| f (ξ)|).

Take δ = 1/2. By our assumption, ξ + 2ρD ∈ (1 + 1/d)D,
so maxz∈D | f (ξ + ρz/δ)| ≤ maxz∈(1+1/d)D | f (z)| ≤ e∥ f ∥1, since
| f (z)| ≤ e∥ f ∥1, for z ∈ (1 + 1/d)D [49, Proposition 3.9.]. □

3.2 Probabilistic bound

Theorem 3.3. Let f ∈ PZd be a random bit polynomial. Then for

all t ≤ τ (f)(2⌈lgd⌉ + 1),

P (ϱ(f) ≥ t) ≤ 44d2(2⌈lgd⌉ + 1)eu(f)e−
t

2⌈lgd⌉+1 .

Corollary 3.4. Let f ∈ PZd be a random bit polynomial and

ℓ ∈ N. Suppose that τ (f) ≥ 10 ln(ed) + 2u(f). Then(
Eϱ(f)ℓ

) 1
ℓ
≤ 2(1 + ℓ)(6 ln(ed) + u(f)) ln(ed) +

(44d3+2ℓeu(f)
2τ (f)

) 1
ℓ
.

In particular, if τ (f) ≥ (9 + 3ℓ) ln(ed) + 2u(f), then(
Eϱ(f)ℓ

) 1
ℓ
≤ O (ℓ(lnd + u(f)) lnd) .

Proof of Theorem 3.3. If # (Z(f) ∩ Ωd) ≥ t , then, by Theo-
rem 3.1, there is an n such that log(e∥ f ∥1/|f(ξn)|) ≥ t/(2⌈lgd⌉ + 1).
Hence

P (ϱ(f) ≥ t) ≤

⌈lgd ⌉∑
n=−⌈lgd ⌉

P

(
lg e∥ f ∥1
|f(ξn)|

≥
t

2⌈lgd⌉ + 1

)
.

Now, fix x ∈ I . We argue as in the proof of Theorem 2.4, but we
consider that map mapping f to f (x) instead of the map mapping
f to (f (x), f ′(x)/d), so that our matrix A takes the form(

1 x xd−1 xd
)
.

Note that this A has ∥A∥∞,∞ ≤ d + 1. So, we can apply Proposi-
tion 2.7 to show that for any s ≤ 2τ (f),

P (e∥f∥1/|f(x)| ≥ s) ≤ 44d2eu(f)/s .

Algorithm 1: Descartes(f)
Input: A square-free polynomial f ∈ PZd
Output: A list, S , of isolating intervals for the real roots of f in J0 = (−1, 1)
J0 ← (−1, 1), S ← ∅, Q ← ∅,Q ← push(J0)1

while Q , ∅ do2

J = (a, b) ← pop(Q)V ← var(f , J)3

switch V do4

case V = 0 continue5

case V = 1 S ← add(I)6

case V > 17

m ← a+b
28

if f (m) = 0 then S ← add([m,m])9

JL ← [a,m] ; JR ← [m, b]10

Q ← push(Q, JL),Q ← push(Q, JR)11

return S12

If s = et/N , with N = 2⌈lg(d)⌉ + 1, then the bound follows. □

Proof of Corollary 3.4. In the proof of Corollary 2.6 we only
used the fact that the tail bound is of the formU e−t for t ≤ V with
U ≤ V . We will use a similar idea in this proof. Let 0 ≤ U ≤ V ,
c > 0, and x ∈ [0,∞) a random variable. If P(x ≥ t) ≤ eU−s for
s ≤ V , then E(min{x, c})ℓ ≤ U ℓ + ℓℓU ℓ−1 + eU−V cℓ .

By Theorem 3.3, the random variable ϱ(f)/(2⌈lgd⌉ + 1) satisfies
the conditions to be a random variable x withU = ln(44d2(2⌈lgd⌉+
1)eu(f)) ≤ 4 ln(ed)+ ln(2⌈lgd⌉+1)+u(f),V = ln(2τ (f)/(2⌈lgd⌉+1)),
and c = d

(2 ⌈lgd ⌉+1) ; since the roots are atmostd . By our assumptions
U ≤ V , that concludes the proof. □

4 THE DESCARTES SOLVER

The descartes solver is an algorithm that is based on Descartes’
rule of signs.

Theorem 4.1 (Descartes’ rule of signs). The number of sign

variations in the coefficients’ list of a polynomial f =
∑d
i=0 fiX

i ∈

Pd equals the number of positive real roots (counting multiplicities)

of f , say r , plus an even number; that is r ≡ var(f) mod 2. □

In general, Theorem 4.1 provides an overestimation on the num-
ber of positive real roots. It counts exactly when the number of sign
variations is 0 or 1 and if the polynomial is hyperbolic, that is it has
only real roots. To count the real roots of f in an interval J = (a,b)
we use the transformation x 7→ ax+b

x+1 that maps J to (0,∞). Then

var(f , J) := var((X + 1)d f (aX+bX+1))

bounds the number of real roots of f in I = J .
Therefore, to isolate the real roots of f in an interval, say J0 =

(−1, 1), we count (actually bound) the number of roots of f in J0
using V = var(f , J0). If V = 0, then we discard the interval. If
V = 1, then we add J0 to the list of isolating intervals. IfV > 1, then
we subdivide the interval to two intervals JL and JR and we repeat
the process. The pseudo-code of descartes appears in Algorithm 1.

The recursive process of the descartes defines a binary tree.
Every node of the tree corresponds to an interval. The root corre-
sponds to the initial interval J0 = (−1, 1). If a node corresponds to an
interval J = (a,b), then its children correspond to the open left and
right half intervals of J , that is JL = (a, mid(J)) and JR = (mid(J),b)
respectively. The internal nodes of the tree correspond to intervals
J , such that var(f , J) ≥ 2. The leafs correspond to intervals that

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

144

contain 0 or 1 real roots of f . Overall, the number of nodes of the
tree correspond to the number of steps, i.e., subdivisions, that the
algorithm performs. We control the number of nodes by controlling
the depth of tree and the width of every layer. Hence, to obtain the
final complexity estimate it suffices to multiple the number of steps
(width times height) with the worst case cost of each step.

The following proposition helps to control the cost of each step.
Note that at each step, we do changes of variables to obtain the
desired polynomial to perform the sign count.

Proposition 4.2. Let f =
∑d
i=0 fiX

i ∈ PZd of bit-size τ .

• The reciprocal transformation isR(f) := Xd f (1X) =
∑d
k=0 fd−kX

k
.

Its cost is OB (1) and it does not alter neither the degree nor the

bit-size of the polynomial.

• The homothetic transformation of f by 2k , for a positive integer
k , is Hk (f) = 2dk f (X2k) =

∑d
i=0 2

k (d−i) fi X
i
. It costs OB (d µ(τ +

dk)) = ÕB (dτ + d
2k) and the resulting polynomial has bit-size

O(τ + dk). Notice that H−k = RHkR.
• The Taylor shift of f by in integer c is Tc (f) = f (x + c) =∑d

k=0 akx
k
, where ai =

∑d
j=i

(j
i
)
fjc

j−i
for 0 ≤ i ≤ d . It costs

OB (µ(d
2σ+dτ) lgd) = ÕB (d2σ+dτ) [53, Corollary 2.5], whereσ is

the bit-size of c . The resulting polynomial has bit-sizeO(τ+dσ). □

Remark 4.3. There is no restriction on working with open intervals
sincewe consider an integer polynomial andwe can always evaluate
it at the endpoints. Also to isolate all the real roots of f it suffices
to have a routine to isolate the real roots in (−1, 1). Using the map
x 7→ 1/x we can isolate the roots in (−∞,−1) and (1,∞).

4.1 Bounds on the number of sign variations

For this subsection we consider f =
∑d
i=0 fiX

i ∈ Pd to be a poly-
nomial with real coefficients, not necessarily integers. To establish
the termination and estimate the bit complexity of descartes we
need to introduce the Obreshkoff area and lens. Our presentation
follows closely [17, 26, 42].

Consider 0 ≤ ϱ ≤ d and a real open interval J = (a,b). The
Obreshkoff discs Dϱ and Dϱ are discs the boundaries of which go
through the endpoints of J . Their centers are above, respectively
below, J and they form an angle φ = π

ϱ+2 with the endpoints of I .
Its diameter is wid(J)/sin(π

ϱ+2).
The Obreshkoff area is Aϱ (J) = interior(Dϱ ∪ Dϱ); it ap-

pears with grey color in Fig. 1. The Obreshkoff lens is Lϱ (J) =
interior(Dϱ ∩ Dϱ); it appears in light-grey color in Fig. 1. If it is
clear from the context, then we omit I and we write Aϱ and Lϱ ,
instead of Aϱ (J) and Lϱ (J). It holds that Ld ⊂ Ld−1 ⊂ · · · ⊂
L1 ⊂ L0 and A0 ⊂ A1 ⊂ · · · ⊂ Ad−1 ⊂ Ad .

The following theorem shows the role of the number of complex
roots in the control of the number of variation signs.

Theorem 4.4 ([31]). Consider f ∈ Pd and real open interval

J = (a,b). If the Obreshkoff lens Ld−k contains at least k roots

(counted with multiplicity) of f , then k ≤ var(f , J). If the Obreshkoff
area Ak contains at most k roots (counted with multiplicity) of f ,
then var(f , J) ≤ k . Especially

#{roots of f in Ld } ≤ var(f , J) ≤ #{roots of f in Ad }. □

This theorem togetherwith the subadditive property of Descartes’
rule of signs (Thm. 4.5) shows that the number of complex roots in
the Obreshkoff areas controls the width of the subdivision tree of
descartes.

Theorem 4.5. Consider a real polynomial f ∈ Pd . Let J be a real
interval and J1, . . . , Jn be disjoint open subintervals of J . Then, it
holds

∑n
i=1 var(f , Ji) ≤ var(f , J). □

Finally, to control the depth of the subdivision tree of descartes
we use the one and two circle theorem [1, 26]. We present a variant
based on the ε-real separation of f , ∆Rε (f) (Definition 2.2).

Theorem 4.6. Let f ∈ Pd , an interval J ⊆ (−1, 1) and ε > 0. If
2 wid(J) ≤ min{∆Rε (f), ε},

then either var(f , J) = 0 (and J does not contain any real root), or

var(f , J) = 1 (and J contains exactly one real root).

Proof. The proof follows the same application of the one and
two circle theorems as in the proof of [49, Proposition 6.4]. □

4.2 Complexity estimates for descartes

We give a high-level overview of the proof ideas of this section
before going into technical details. The process of descartes cor-
responds to a binary tree and we control its depth using the real
condition number and Theorems 2.3 and 4.6. To bound the width
of the descartes’ tree we use the Obreskoff areas and the num-
ber of complex roots in them (Theorem 4.4). By combining these
two bounds, we control the size of the tree and so we obtain an
instance-based complexity estimate. To turn this instance-based
complexity estimate into an expected one, we use Theorems 2.5
and 3.3 (and their Corollaries 2.6 and 3.4).

4.2.1 Instance-based estimates.

Theorem 4.7. If f ∈ PZd , then, using descartes, the number of

subdivision steps to isolate the real roots in I = (−1, 1) is

Õ(ϱ(f)2 lg(CR(f)).
The bit complexity of the algorithm is

ÕB (dτϱ(f)
2 lg CR(f) + d2ϱ(f)2 lg2 CR(f)).

Recall that CR(f) appears in (2.2) and ϱ(f) in (3.3).

Proof. We consider the number of steps to isolate the real
roots in I = (−1, 1). Let N = ⌈logd⌉ and ϱ = ϱ(f) the number
of complex roots in Ωd . Recall that Ωd is the union of the discs
Dn := D(ξn , ρn) := ξn + ρnD, where |n | ≤ N ; see (3.1) and (3.2) for
the concrete formulas, and that it contains the interval I .

The discs partition I into the 2N +1 subintervals Jn := [ξn , ξn+1]
(or Jn := [ξn , ξn−1] if n ≤ 0). Note that Jn is the union of 3 intervals
of size 1/2n+3. Because of this, there is a binary subdivision tree of I
of size O(lg2 d) such that every of its intervals is contained in some
Jn . Thus, if we bound thewidth of the subdivision tree of descartes
starting at each Jn byw , then the width of the subdivision tree of
descartes starting at I is bounded by O(w lg2 d + lg2 d).

We focus on intervals Jn for n ≥ 0; similar arguments apply for
n ≥ 0. We consider two cases: n < N and n = N .
Case n < N . It holds wid(Jn) = ρn = 3/2n+3. For each Jn , assume
that we perform a number of subdivision steps to obtain intervals,

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

145

say Jn, ℓ , with wid(Jn, ℓ) = 2−ℓ . We choose ℓ so that the correspond-
ing Obreshkoff areas, Aϱ (Jn, ℓ), are inside Ωd . In particular, we
ensure that the Obreshkoff areas related to Jn, ℓ lie in Dn+1.

The diameter of the Obreshkoff discs, Dϱ (Jn, ℓ) and Dϱ (Jn, ℓ),
is wid(Jn, ℓ)/sin π

ϱ+2 . For every Aϱ (Jn, ℓ) to be in Dn+1 and hence
inside Ωd , it suffices that a disc with diameter 2 wid(Jn, ℓ)/sin π

ϱ+2 ,
that has its center in the interval [ξn , ξn+1] and touches the right
endpoint of Jn , to be inside Dn+1 \ Dn . This is the worst case
scenario: a disc big enough that contains Aϱ (Jn, ℓ) and lies Dn+1.
This auxiliary disc is the dotted (red) disc in Fig. 2 (left). It should
be that

2 wid(Jn, ℓ)/sin π
ϱ+2 ≤ 2 ρn+1 = 3/2n+3.

Taking into account that wid(Jn, ℓ) = 2−ℓ and

sin π
ϱ+2 > sin 1

ϱ ≥
1
ϱ /

√
1 + 1

ϱ2 ≥
1
2ϱ ,

we deduce 2−ℓ+12ϱ ≤ 3/2n+3 and so ℓ ≥ lg 2n+5ϱ
3 .

Hence, wid(Jn, ℓ) = 3/(2n+5ϱ) and so Jn is partitioned to at most
wid(Jn)
wid(Jn, ℓ)

= 4ϱ (sub)intervals. So, during the subdivision process,
starting from (each) Jn , we obtain the intervals Jn, ℓ after performing
at most 8ϱ subdivision steps (this is the size of the complete binary
tree starting from Jn). To say it differently, the subdivision tree
that has Jn as its root and the intervals Jn, ℓ as leaves has depth
ℓ = ⌈lg(4ϱ)⌉. The same hold for JN−1 because ρn ≤ ρN , for all
0 ≤ n ≤ N − 1.

Thus, the width of the tree starting at Jn is at mostO(ϱ2), because
we have O(ϱ) subintervals Jn, ℓ and for each var(f , Jn, ℓ) ≤ ϱ.
Case n = N . Now wid(JN) = 3/2N+1. We need a slightly different
argument to account for the number of subdivision steps for the
last disc DN . To this disc we assign the interval JN = [1 − 1/2N , 1]
with wid(JN) = 1/2N ; see Figure 2.

We need to obtain small enough intervals JN , ℓ of width 1/2ℓ so
that corresponding Obreskoff areas,Aϱ (JN , ℓ), to be inside DN . So,
we require that an auxiliary disc of diameter 2 wid(JN , ℓ)/sin π

ϱ+2 ,
that has ts center in the interval [1, 1/2N+1] and touches 1 to be
inside DN ; actually inside DN ∩ {x ≥ 1}; see Figure 2. And so

2 wid(JN , ℓ)/sin π
ϱ+2 ≤ ρn+1 = 1/2N+1.

This leads to ℓ ≥ lg(ϱ 2N+3). Working as previously, we estimate
that the number of subdivisions we perform to obtain the interval
JN , ℓ is 8ϱ. Also repeating the previous arguments, the width of the
tree of descartes starting at JN is at most O(ϱ2).

By combining all the previous estimates, we conclude that the
subdivision tree of descartes has width O(ϱ2 lg2 d + lg2 d).

To bound the depth of the subdivision tree of descartes, con-
sider an interval Jℓ of width 1/2ℓ obtained after ℓ + 1 subdivisions.
By theorem 4.6, we can guarantee termination if for some ε > 0,

1/2ℓ−1 ≤ min{∆Rε (f), ε}.

Fix ε = 1/(ed CR(f)). Then, by Theorem 2.3, it suffices to hold

ℓ ≥ 1 + lg(12d CR(f)).

Hence, the depth of the subdivision tree is at most O(lg(d CR(f))).

Therefore, since the subdivision tree of descartes has width
O(ϱ2 logd + log2 d) and depth O(lg(d CR(f))), the size bound fol-
lows. For the bit complexity, by [14], see also [17, 26, 41, 42] and
Proposition 4.2, the worst case cost of each step of descartes is
ÕB (dτ + d

2δ), where δ is the logarithm of the highest bitsize that
we compute with, or equivalently the depth of the subdivision tree.
In our case, δ = O(lg(d CR(f)). □

4.2.2 Expected complexity estimates.

Theorem 4.8. Let f ∈ PZd be a random bit polynomial with

τ (f) ≥ Ω(lgd + u(f)). Then, using descartes, the expected number

of subdivision steps to isolate the real roots in I = (−1, 1) is

Õ((1 + u(f))3).
The expected bit complexity of descartes is

ÕB (d τ (f)(1 + u(f))3 + d2(1 + u(f))4).
If f is a uniform random bit polynomial of bitsize τ and τ = Ω(lgd +
u(f)),en the expected number of subdivision steps to isolate the real

rin I = (−1, 1) is Õ(1) and the expected bit complexity becomes

ÕB (dτ + d
2).

Proof. We only bound the number of bit operations; the bound
for the number of steps is analogous. By Theorem 4.7 and the
worst-case bound ÕB (d4τ 2) for descartes [14], the bit complexity
of descartes at f is at most

ÕB

(
min{dτ (f)ϱ(f)2 lg CR(f) + d2ϱ(f)2 lg2 CR(f)),d4τ (f)2}

)
,

that in turn we can bound by

ÕB

(
dτ (f)ϱ(f)2min{lg CR(f),d3τ (f)}

+d2ϱ(f)2min{lg CR(f),d2τ (f)2)}}
)
.

Now, we take expectations, and, by linearity, we only need to bound

E ϱ(f)2min{lg CR(f),d3τ (f)} and E ϱ(f)2
(
min{lg CR(f),d2τ (f)2}

)2
.

Let us show how to bound the first, because the second one is the
same. By the Cauchy-Bunyakovsky-Schwarz inequality,

E ϱ(f)2min{lg CR(f),d3τ (f)}
is bounded by√

E ϱ(f)4
√
E

(
min{lg CR(f),d3τ (f)}

)2
.

Finally, Corollaries 2.6 and 3.4 give the estimate. Note that τ (f) ≥
Ω(lgd +u(f)) implies τ (f) ≥ Ω(lgd +u(f)+ ln c) (for the worst-case
separation bound c [9]) so we can apply Corollary 2.6. □

ACKNOWLEDGEMENTS.

J.T-C. is supported by a postdoctoral fellowship of the 2020 “Inter-
action” program of the Fondation Sciences Mathématiques de Paris.
He is grateful to Evgenia Lagoda for moral support and Gato Suchen
for useful suggestions regarding Proposition 2.7. A.E. is supported
by NSF CCF 2110075, J.T-C. and E.T. are partially supported by ANR
JCJC GALOP (ANR-17-CE40-0009).

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

146

D%

D%

2ϕ

I

Figure 1 Obreshkoff discs, lens (light grey), and area (light grey
and grey) for an interval I .

Jn
Jn+1

Dn Dn+1

Dn+2

ξn ξn+1 ξn+2
1

1− 1
2N

1 + 1
2

1
2NJN

DN

Figure 2 Covering discs of the interval I = (0, 1).
(left) Three covering discs, Dn ,Dn+1,Dn+2.
(right) The (red) dotted circle is the auxiliary disc that we ensure is
contained in Dn+1 \ Dn .

REFERENCES

[1] Alberto Alesina and Massimo Galuzzi. 1998. A new proof of Vincent’s theorem.
Enseign. Math. (2) 44, 3-4 (1998), 219–256.

[2] S. Arora and B. Barak. 2009. Computational complexity: a modern approach.
Cambridge University Press, Cambridge. xxiv+579 pages. https://doi.org/10.
1017/CBO9780511804090

[3] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. 2018. A near-
optimal subdivision algorithm for complex root isolation based on the Pellet test
and Newton iteration. J. Symbolic Comput. 86 (2018), 51–96. https://doi.org/10.
1016/j.jsc.2017.03.009

[4] Dario Andrea Bini and Giuseppe Fiorentino. 2000. Design, analysis, and imple-
mentation of a multiprecision polynomial rootfinder. Numer. Algorithms 23, 2-3
(2000), 127–173. https://doi.org/10.1023/A:1019199917103

[5] L. Blum, F. Cucker, M. Shub, and S. Smale. 1998. Complexity and real computation.
Springer-Verlag, New York. xvi+453 pages. https://doi.org/10.1007/978-1-4612-
0701-6

[6] Peter Bürgisser and Felipe Cucker. 2013. Condition: The geometry of numerical

algorithms. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], Vol. 349. Springer, Heidelberg. xxxii+554
pages. https://doi.org/10.1007/978-3-642-38896-5

[7] Michael A. Burr and Felix Krahmer. 2012. SqFreeEVAL: an (almost) optimal
real-root isolation algorithm. J. Symbolic Comput. 47, 2 (2012), 153–166. https:
//doi.org/10.1016/j.jsc.2011.08.022

[8] D. Castro, J. L. Montaña, L. M. Pardo, and J. San Martín. 2002. The distribution of
condition numbers of rational data of bounded bit length. Found. Comput. Math.

2, 1 (2002), 1–52. https://doi.org/10.1007/s002080010017
[9] J. H. Davenport. 1988. Cylindrical algebraic decomposition. Technical Report

88–10. University of Bath. http://www.bath.ac.uk/masjhd/
[10] Jean-Pierre Dedieu. 2006. Points fixes, zéros et la méthode de Newton. Mathéma-

tiques & Applications (Berlin) [Mathematics & Applications], Vol. 54. Springer,
Berlin. xii+196 pages.

[11] R. G. Downey and M. R. Fellows. 2013. Fundamentals of parameterized complexity.
Springer, London. xxx+763 pages. https://doi.org/10.1007/978-1-4471-5559-1

[12] Zilin Du, Vikram Sharma, and Chee K. Yap. 2007. Amortized bound for root
isolation via Sturm sequences. In Symbolic-numeric computation (Trends Math.).
Birkhäuser, Basel, 113–129. https://doi.org/10.1007/978-3-7643-7984-1_8

[13] Arno Eigenwillig, Lutz Kettner, Werner Krandick, Kurt Mehlhorn, Susanne
Schmitt, and Nicola Wolpert. 2005. A Descartes algorithm for polynomi-
als with bit-stream coefficients. In Computer algebra in scientific computing

(Lecture Notes in Comput. Sci., Vol. 3718). Springer, Berlin, 138–149. https:

//doi.org/10.1007/11555964_12
[14] Arno Eigenwillig, Vikram Sharma, and Chee K. Yap. 2006. Almost tight recursion

tree bounds for the Descartes method. In ISSAC 2006. ACM, New York, 71–78.
https://doi.org/10.1145/1145768.1145786

[15] Ioannis Emiris, Bernard Mourrain, and Elias Tsigaridas. 2020. Separation bounds
for polynomial systems. J. Symbolic Comput. 101 (2020), 128–151. https://doi.
org/10.1016/j.jsc.2019.07.001

[16] Ioannis Z. Emiris, André Galligo, and Elias P. Tsigaridas. 2010. Random polyno-
mials and expected complexity of bisection methods for real solving. In ISSAC

2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic

Computation. ACM, New York, 235–242. https://doi.org/10.1145/1837934.1837980
[17] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. 2008. Real Algebraic Numbers:

Complexity Analysis and Experimentation. In Reliable Implementations of Real

Number Algorithms: Theory and Practice (LNCS, Vol. 5045), P. Hertling, C. Hoff-
mann, W. Luther, and N. Revol (Eds.). Springer, Berlin, Heidelberg, 57–82.

[18] Ioannis Z. Emiris, Victor Y. Pan, and Elias P. Tsigaridas. 2012. Algebraic algorithms.
In Computing Handbook Set - Computer Science (3nd ed.), Teofilo Gonzalez (Ed.).
Vol. I. CRC Press Inc., Boca Raton, Florida, Chapter 10, 10–1–10–30.

[19] Paula Escorcielo and Daniel Perrucci. 2017. On the Davenport-Mahler bound. J.
Complexity 41 (2017), 72–81. https://doi.org/10.1016/j.jco.2016.12.001

[20] Steven Fortune. 2002. An iterated eigenvalue algorithm for approximating roots
of univariate polynomials. J. Symbolic Comput. 33, 5 (2002), 627–646. https:
//doi.org/10.1006/jsco.2002.0526 Computer algebra (London, ON, 2001).

[21] Michael Hemmer, Elias P. Tsigaridas, Zafeirakis Zafeirakopoulos, Ioannis Z.
Emiris, Menelaos I. Karavelas, and Bernard Mourrain. 2009. Experimental
Evaluation and Cross-Benchmarking of Univariate Real Solvers. In Proceed-

ings of the 2009 Conference on Symbolic Numeric Computation (Kyoto, Japan)
(SNC ’09). Association for Computing Machinery, New York, NY, USA, 45–54.
https://doi.org/10.1145/1577190.1577202

[22] Nicholas J. Higham. 2002. Accuracy and stability of numerical algorithms (second
ed.). Society for Industrial and Applied Mathematics (SIAM, Philadelphia, PA.
xxx+680 pages. https://doi.org/10.1137/1.9780898718027

[23] Jeremy R. Johnson, Werner Krandick, Kevin Lynch, David G. Richardson, and
Anatole D. Ruslanov. 2006. High-performance implementations of the Descartes
method. In ISSAC 2006. ACM, New York, 154–161. https://doi.org/10.1145/
1145768.1145797

[24] Peter Kirrinnis. 1998. Partial fraction decompostion in C(z) and simultaneous
Newton iteration for factorization in C[z]. J. Complexity 14, 3 (1998), 378–444.
https://doi.org/10.1006/jcom.1998.0481

[25] Alexander Kobel, Fabrice Rouillier, and Michael Sagraloff. 2016. Computing real
roots of real polynomials . . . and now for real!. In Proceedings of the 2016 ACM

International Symposium on Symbolic and Algebraic Computation. ACM, New
York, 303–310. https://doi.org/10.1145/2930889.2930937

[26] Werner Krandick and KurtMehlhorn. 2006. New bounds for the Descartesmethod.
J. Symbolic Comput. 41, 1 (2006), 49–66. https://doi.org/10.1016/j.jsc.2005.02.004

[27] G. Livshyts, G. Paouris, and P. Pivovarov. 2016. On sharp bounds for marginal
densities of product measures. Israel Journal of Mathematics 216, 2 (2016), 877–889.
https://doi.org/10.1007/s11856-016-1431-5

[28] John M. McNamee and Victor Y. Pan. 2013. Numerical methods for roots of polyno-

mials. Part II. Studies in Computational Mathematics, Vol. 16. Elsevier/Academic
Press, Amsterdam. xxii+726 pages.

[29] Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang. 2015. From approximate
factorization to root isolation with application to cylindrical algebraic decompo-
sition. J. Symbolic Comput. 66 (2015), 34–69. https://doi.org/10.1016/j.jsc.2014.
02.001

[30] G. Moroz. 2021. New data structure for univariate polynomial approximation
and applications to root isolation, numerical multipoint evaluation, and other
problems. arXiv:2106.02505.

[31] N. Obreshkoff. 2003. Zeros of polynomials. Marin Drinov Academic Publishing
House, Sofia, Bulgaria. Translation from the Bulgarian..

[32] Victor Y Pan. 1997. Solving a polynomial equation: some history and re-
cent progress. SIAM review 39, 2 (1997), 187–220. https://doi.org/10.1137/
S0036144595288554

[33] Victor Y. Pan. 2000. Approximating complex polynomial zeros: modified Weyl’s
quadtree construction and improved Newton’s iteration. J. Complexity 16, 1
(2000), 213–264. https://doi.org/10.1006/jcom.1999.0532 Real computation and
complexity (Schloss Dagstuhl, 1998).

[34] Victor Y. Pan. 2002. Univariate polynomials: nearly optimal algorithms for
numerical factorization and root-finding. J. Symbolic Comput. 33, 5 (2002), 701–
733. https://doi.org/10.1006/jsco.2002.0531 Computer algebra (London, ON,
2001).

[35] Victor Y. Pan. 2021. New Progress in Polynomial Root-finding. http://arxiv.org/
abs/1805.12042 arXiv: 1805.12042.

[36] Victor Y. Pan and Elias P. Tsigaridas. 2013. On the Boolean complexity of real
root refinement. In ISSAC 2013—Proceedings of the 38th International Symposium

on Symbolic and Algebraic Computation. ACM, New York, 299–306. https://doi.
org/10.1145/2465506.2465938

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

147

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1023/A:1019199917103
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-3-642-38896-5
https://doi.org/10.1016/j.jsc.2011.08.022
https://doi.org/10.1016/j.jsc.2011.08.022
https://doi.org/10.1007/s002080010017
http://www.bath.ac.uk/masjhd/
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-7643-7984-1_8
https://doi.org/10.1007/11555964_12
https://doi.org/10.1007/11555964_12
https://doi.org/10.1145/1145768.1145786
https://doi.org/10.1016/j.jsc.2019.07.001
https://doi.org/10.1016/j.jsc.2019.07.001
https://doi.org/10.1145/1837934.1837980
https://doi.org/10.1016/j.jco.2016.12.001
https://doi.org/10.1006/jsco.2002.0526
https://doi.org/10.1006/jsco.2002.0526
https://doi.org/10.1145/1577190.1577202
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/1145768.1145797
https://doi.org/10.1145/1145768.1145797
https://doi.org/10.1006/jcom.1998.0481
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.1016/j.jsc.2005.02.004
https://doi.org/10.1007/s11856-016-1431-5
https://doi.org/10.1016/j.jsc.2014.02.001
https://doi.org/10.1016/j.jsc.2014.02.001
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1006/jcom.1999.0532
https://doi.org/10.1006/jsco.2002.0531
http://arxiv.org/abs/1805.12042
http://arxiv.org/abs/1805.12042
https://doi.org/10.1145/2465506.2465938
https://doi.org/10.1145/2465506.2465938

[37] T. Roughgarden. 2021. Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, Cambridge. https://doi.org/10.1017/9781108637435

[38] Fabrice Rouillier and Paul Zimmermann. 2004. Efficient isolation of polynomial’s
real roots. J. Comput. Appl. Math. 162, 1 (2004), 33–50. https://doi.org/10.1016/j.
cam.2003.08.015

[39] M. Rudelson and R. Vershynin. 2008. The Littlewood-Offord problem and
invertibility of random matrices. Adv. Math. 218, 2 (2008), 600–633. https:
//doi.org/10.1016/j.aim.2008.01.010

[40] M. Rudelson and R. Vershynin. 2015. Small ball probabilities for linear images of
high-dimensional distributions. Int. Math. Res. Not. IMRN 19 (2015), 9594–9617.
https://doi.org/10.1093/imrn/rnu243

[41] Michael Sagraloff. 2014. On the complexity of the Descartes method when
using approximate arithmetic. J. Symbolic Comput. 65 (2014), 79–110. https:
//doi.org/10.1016/j.jsc.2014.01.005

[42] Michael Sagraloff and Kurt Mehlhorn. 2016. Computing real roots of real poly-
nomials. J. Symbolic Comput. 73 (2016), 46–86. https://doi.org/10.1016/j.jsc.2015.
03.004

[43] Michael Sagraloff and Chee K. Yap. 2011. A simple but exact and efficient algo-
rithm for complex root isolation. In ISSAC 2011—Proceedings of the 36th Inter-

national Symposium on Symbolic and Algebraic Computation. ACM, New York,
353–360. https://doi.org/10.1145/1993886.1993938

[44] Arnold Schönhage. 1982. The Fundamental Theorem of Algebra in Terms of
Computational Complexity. Manuscript. Univ. of Tübingen, Germany.

[45] Vikram Sharma. 2008. Complexity of real root isolation using continued fractions.
Theoret. Comput. Sci. 409, 2 (2008), 292–310. https://doi.org/10.1016/j.tcs.2008.09.

017
[46] The PARI Group 2019. PARI/GP version 2.11.2. The PARI Group, Univ. Bordeaux.

available from http://pari.math.u-bordeaux.fr/.
[47] E. C. Titchmarsh. 1939. The theory of functions (second ed.). Oxford University

Press, Oxford. x+454 pages.
[48] J. Tonelli-Cueto and E. Tsigaridas. 2020. Condition Numbers for the Cube. I:

Univariate Polynomials andHypersurfaces. In Proceedings of the 45th International
Symposium on Symbolic and Algebraic Computation (Kalamata, Greece) (ISSAC
’20). Association for Computing Machinery, New York, NY, USA, 434–441. https:
//doi.org/10.1145/3373207.3404054

[49] J. Tonelli-Cueto and E. Tsigaridas. 2021. Condition Numbers for the Cube. I:
Univariate Polynomials and Hypersurfaces. To appear in the special issue of the
Journal of Symbolic Computation for ISSAC 2020. Available at arXiv:2006.04423.

[50] Elias Tsigaridas. 2016. SLV: a software for real root isolation. ACM Commun.

Comput. Algebra 50, 3 (2016), 117–120.
[51] Elias P. Tsigaridas and Ioannis Z. Emiris. 2008. On the complexity of real root

isolation using continued fractions. Theoret. Comput. Sci. 392, 1-3 (2008), 158–173.
https://doi.org/10.1016/j.tcs.2007.10.010

[52] A. M. Turing. 1948. Rounding-off errors in matrix processes. Quart. J. Mech. Appl.

Math. 1 (1948), 287–308. https://doi.org/10.1093/qjmam/1.1.287
[53] Joachim von zur Gathen and Jürgen Gerhard. 2003. Modern computer algebra

(second ed.). Cambridge University Press, Cambridge. xiv+785 pages.
[54] J. H.Wilkinson. 1971. Some comments from a numerical analyst. J. Assoc. Comput.

Mach. 18 (1971), 137–147. https://doi.org/10.1145/321637.321638

Session 4: Algorithms and Complexity ISSAC ’22, July 4–7, 2022, Villeneuve-d’Ascq, France

148

https://doi.org/10.1017/9781108637435
https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/10.1016/j.aim.2008.01.010
https://doi.org/10.1016/j.aim.2008.01.010
https://doi.org/10.1093/imrn/rnu243
https://doi.org/10.1016/j.jsc.2014.01.005
https://doi.org/10.1016/j.jsc.2014.01.005
https://doi.org/10.1016/j.jsc.2015.03.004
https://doi.org/10.1016/j.jsc.2015.03.004
https://doi.org/10.1145/1993886.1993938
https://doi.org/10.1016/j.tcs.2008.09.017
https://doi.org/10.1016/j.tcs.2008.09.017
http://pari.math.u-bordeaux.fr/
https://doi.org/10.1145/3373207.3404054
https://doi.org/10.1145/3373207.3404054
https://doi.org/10.1016/j.tcs.2007.10.010
https://doi.org/10.1093/qjmam/1.1.287
https://doi.org/10.1145/321637.321638

	Abstract
	1 Introduction
	1.1 Synopsis of real root isolation algorithms
	1.2 Warm-up: A simple form of the main result
	1.3 Statement of main results in full detail
	1.4 Overview of main ideas

	2 Condition numbers, separation bounds, and randomness
	2.1 Condition numbers for univariate polynomials
	2.2 Condition-based estimates for separation
	2.3 Probabilistic bounds for condition numbers

	3 Number of complex roots
	3.1 Deterministic bound
	3.2 Probabilistic bound

	4 The Descartes solver
	4.1 Bounds on the number of sign variations
	4.2 Complexity estimates for descartes

	References

