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1 | INTRODUCTION

1.1 | Background and motivation

The theory of random matrices, which commenced with the nuclear physics-inspired work of Wigner
in the 1950s [56], has been one of the great success stories at the junction of probability, mathematical
physics and combinatorics. Nevertheless, quite a few basic questions remain open to this day. For
instance, while dense random matrices such as the Gaussian Orthogonal Ensemble are reasonably well
understood (e.g., [30]), far less is known about sparse random matrices where the expected number
of nonzero entries per row or column is bounded. Yet over the last two or three decades such sparse
random matrices, with entries from finite or infinite fields, have emerged to play a pivotal role in several
exciting applications. Modern error-correcting codes are a case in point. For instance, the codebook of
alow-density parity check code (“ldpc code™), a class of codes that has been at the centre of tremendous
recent developments in coding theory [20, 27, 34], comprises the kernel of a sparse random matrix over
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a finite field drawn from a carefully tailored distribution. In addition, sparse random matrices occur in
randomised constructions of Ramanujan graphs [6, 13, 19], statistical inference [26], the analysis of
algorithms [16], and the theory of random constraint satisfaction problems [1, 23].

Among the fundamental questions about such random matrices that have remained open, perhaps
the most conspicuous one concerns the rank. Although this parameter was already studied in early
contributions [8, 9, 37], there has been no comprehensive rank formula for sparse random matrices.
The present paper furnishes one. To be precise, we will determine the asymptotic rank of a sparse
random matrix with prescribed numbers of nonzero entries in the rows and columns. Among other
applications, important classes of Idpc codes are based on precisely such random matrices as a diligent
choice of the degrees greatly boosts the code’s performance [34]. Moreover, the rank is linearly related
to the rate of the code, arguably the code’s most basic parameter.

Lelarge [41] noticed that an upper bound on the rank of a sparse random matrix can be derived from
the matching number of random bipartite graphs, which was determined by Bordenave, Lelarge, and
Salez [14]. Lelarge went on to conjecture that this bound be tight for sparse random matrices over the
binary field IF,. We prove this conjecture. In fact, we prove a much stronger result. Namely, we show
that Lelarge’s conjectured formula holds for sparse random matrices over any field, finite or infinite,
regardless the distribution of the nonzero matrix entries. Thus, the rank is governed by the location of
the nonzero entries rather than the distribution of the matrix entries.

The proof of the rank formula evinces an interesting connection to statistical physics. Indeed,
Lelarge already observed that a sophisticated but mathematically nonrigorous physics approach called
the “cavity method” renders a wrong prediction as to the rank for certain degree distributions.! This
discrepancy merits attention because the cavity method has been brought to bear on a panoply of
theoretical as well as real-world problems, ranging from spin glasses to machine learning [57]. We
manage to shed light on the issue. Specifically, the “replica symmetric” version of the cavity method
predicts that the rank of a random matrix over a finite field can be expressed analytically as the maxi-
mum of a variational problem. A priori, this variational problem asks to optimize a functional called
the Bethe free entropy over an infinite-dimensional space of probability measures. Such optimization
problems have been tackled in the physics literature numerically by means of a heuristic called pop-
ulation dynamics. For the rank problem this was carried out by Alamino and Saad [3]. But thanks to
the algebraic nature of the problem we can show that the rank actually comes out as the solution to a
variational problem on a restricted domain. We are thus left with a dramatically simplified variational
problem, which ultimately boils down to a humble one-dimensional optimization task. We will see
that the optimal solution to this one-dimensional problem does indeed yield the rank (over any field).
Furthermore, the solution can be lifted to a solution to the original infinite-dimensional problem. As
an aside, we do not know if the original infinite-dimensional variational problem may possess spuri-
ous maximizers that boost its value beyond the optimal value of the restricted version, thereby spoiling
the accuracy of the original physics formula. We will return to this question, and to the physics slant
on the problem, in Section 2.3.3. In any case, for certain degree distributions the maximum values
that we obtain by way of the restricted variational problem actually exceed those that surfaced in the
experiments from [3] or the heuristic derivations from [31] for the unrestricted formula; hence the
discrepancy between the physics predictions and mathematical reality.

Apart from remedying the discrepancy, we prove the rank formula by effectively turning the physi-
cists’ cavity calculations into a rigorous mathematical argument. The crucial tool that makes this
possible is a novel perturbation, applicable to any matrix, that diminishes the number of short linear
relations (see Proposition 2.4 below). We expect that this perturbation will find future applications. Let

'The derivation of this erroneous prediction was posed as an exercise in [31, Chapter 19].
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us proceed to introduce the random matrix model and state the main results. A discussion of related
work and a detailed comparison with the physics work follow in Section 2, once we have the necessary
notation in place.

1.2 | The rank formula

Let IF be a field equipped with a c-algebra that turns I into a standard Borel space and let y : [0, 1]> —
F* = F \ {0} be a measurable map. Let ({;, &;)i>1 be mutually independent uniformly distributed
[0, 1]-valued random variables. Moreover, let d,k > 0 be integer-valued random variables such that
0 <E[d]+E[k"] < o forareal r > 2 and set d = E[d], k = E[k]. Let n > 0 be an integer divisible
by the greatest common divisor of the support of k and let m ~ Po(dn/k) be independent of the ¢, &;.
Further, let (d;, k;);>1 be copies of d, k, mutually independent and independent of m, {;, &;. Given

id,‘zik,‘, (11)
i=1 i=1

draw a simple bipartite graph G comprising a set {ay, ... ,a;} of check nodes and a set {xi, ... ,x,}
of variable nodes such that the degree of g; equals k; and the degree of x; equals d; for all i, j uniformly
at random. Then let A be the m X n-matrix with entries

Aij = l{aix.i € EG)} - X¢og

Thus, the ith row of A features precisely k; nonzero entries and the jth column contains precisely d;
nonzero entries. Moreover, the nonzero entries of A are drawn in the vein of an exchangeable array by
evaluating the function y at a random poisition (¢, ;). Routine arguments show that A is well-defined
for large enough n, that is, (1.1) is satisfied and there exists a simple G with the desired degrees with
positive probability; see Proposition 1.10 below. We call G the Tanner graphof A. Also recall that the
rank rk A of the matrix A is defined as the maximal number of linear independent rows (or columns).
In addition, nul A is the dimension of the kernel of A and the sum rk A + nul A equals the number of
columns of A.

The following theorem, the main result of the paper, provides an asymptotic formula for the rank
of A. Let D(x) and K(x) denote the probability generating functions of d and k, respectively. Since
E[dz] + E[kz] < oo, the functions D(x), K(x) are continuously differentiable on the unit interval.
Therefore, the function

®:[0,1] > Ra—D(1-K'(a)/k) - % (1-K(@) - (1 -a)K'(2)). (1.2)

is continuous.

Theorem 1.1.  For any d, k we have, uniformly for all y,

limM =1— max ®(a) in probability. (1.3)
n—-oo n a€l0,1]

Perhaps surprisingly, the r.h.s. of (1.3) depends only on the degree distributions d, k but not in any
way on the field F or the choice of nonzero entries (within the aforementioned model). Furthermore,
let us emphasize that the function @, being continuous on the unit interval, is guaranteed to attain a
maximum. However, this maximum need not be unique, and nonuniqueness of the maximizer may
have interesting combinatorial repercussions [16].
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A second point that may seem surprising at first glance is that the rank converges to any nonrandom
value at all, as provided by (1.3). A heuristic explanation can be given on grounds of physics reason-
ing. Indeed, the nullity of A (dimension of the kernel) corresponds to the logarithm of the partition
function of a natural Boltzmann distribution, namely the uniform distribution on the kernel of A. Com-
monly the normalized logarithm of such a partition functions (known as the “free entropy” in physics
jargon) converges to a constant for random systems that are “self-averaging.” Here “self-averaging”
means that a small perturbation to the system, that is, the matrix in our case, cannot cause dispropor-
tionate tremors in logarithm of the partition function. In the random matrix model that we consider
here the self-averaging condition is clearly satisfied because changing a single matrix entry can at
most alter the nullity by one. Therefore, the Azuma—Hoeffding inequality easily implies that nul A
concentrates about its mean. That said, there is no general theorem that guarantees convergence to a
deterministic value in self-averaging systems, so even this aspect of Theorem 1.1 is not in any way a
triviality.

Theorem 1.1 establishes a generalised version of Lelarge’s rank conjecture [41] with a tighter
conditions on the moments of d, k. Specifically, Lelarge only considered matrices over the field F,,
while here we consider general fields and allow for a very general choice of nonzero entries. That said,
while here we assume that E[d"], E[k"] < oo for a real r > 2, Lelarge considered degree distributions
with ]E[dz], E[kz] < oo. We did not undertake a serious attempt to weaken the moment condition to
r = 2, but this may conceivably introduce significant new techical difficulties.

The theorem covers a very general class of sparse random matrices. Indeed, since d, k have finite
means the matrix A is sparse, that is, the expected number of nonzero entries is O(n) as n — 0. Yet
because the degree distributions are subject only to the condition E[d"] + E[k"] < oo, the typical max-
imum number of nonzero entries per row or column may approach \/ﬁ Furthermore, the choice of the
nonzero entries of the matrix by way of the measurable map y, reminiscent of an exchangeable array,
allows for rather general choices of nonzero matrix entries. To elaborate, recall that an exchangeable
array is an infinite matrix (¥ ;)i >1 of F*-valued random variables such that the distribution of any finite
top-left submatrix is invariant under row and column permutations [35]. The Aldous—Hoover repre-
sentation theorem shows that any such array can be described by a function & : [0, 1]* — F* [4, 31].
Specifically, any finite submatrix of y;; can be obtained by substituting suitable independent random
variables that are uniformly distributed on the unit interval [0, 1] into & . Theorem 1.1 therefore implies
the rank formula for a Hadamard product of the biadjacency matrix of the random bipartite graph
G and the commensurately dimensioned top-left bit of the exchangeable array (x)i;. Of course, an
immediate special case is the random matrix whose nonzero entries are drawn mutually independently
from an arbitrary distribution on F*. 2

The lower bound on the rank constitutes the principal contribution of Theorem 1.1. Indeed, the
upper bound rk(A)/n < 1 — maxqepo,1] (@) + o(1) as n — oo a.a.s. was already derived in [41] from
the Leibniz determinant formula and the formula for the matching number of a random bipartite graph
from [14].> Nonetheless, in the appendix we give an independent proof of the upper bound, which is
shorter than the combination [14, 41].

Theorem 1.1 implies a formula for the rate of a common class of Idpc codes. Such codes are
based on random matrices A over finite fields I, with suitable degree distributions d, k. Specifically,
a common construction of ldpc codes involves an optimisation over the degree distributions d,k of

2To see this, assume that y is an F*-valued random variable. Then given n pick a large integer N > n?. Let y : [0, 1]> — F* be
a step function obtained by chopping [0, 1] into N subintervals of size 1 /N and assigning a value drawn from y independently
to each of the N? resulting rectangles. Because Theorem 1.1 provides uniform convergence in y, we obtain the rank of a matrix

with nonzero entries drawn from y.
3While [41] only dealt with matrices over IF,, the argument extends to other fields without further ado.
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the variables/checks so as to maximise the probability that the Belief Propagation message passing
algorithm (or a variant thereof) recovers the original codeword from the received, noisy data [52]. The
codebook consists of the kernel of the random matrix A. Hence, the rate of the code equals nul A /n.
Since Theorem 1.1 implies that

1nulA — max ®(a) in probability,
n a€(0,1]

we thus obtain the rate.

1.3 | The 2-core bound

There is a simple graph-theoretic upper bound on the rank, and Theorem 1.1 puts us in a position to
investigate if and when this bound is tight. To state this bound, we recall that the 2-core of G is the
subgraph G, obtained by repeating the following operation.

While there is a variable node x; of degree one or less, remove that variable node along
with the adjacent check node (if any).*

Of course, the 2-core may be empty, that is, with no variable or check nodes. In the case that
Ptk = 0) > 0 it is possible to have a 2-core without any variable node but with a non-empty set of
check nodes whose degrees are all zero. Extending prior results that dealt with the degrees of all check
nodes coinciding [19, 47], we compute the likely number of variable and check nodes in the 2-core. Let

pl@)=1—a-D' (1-K'(a)/k) /d. (1.4)

Note that ®'(«) = dK" (a)p(a)/k. Since d, k have finite second moments and ¢(0) > 0 while ¢(1) < 0,
we can define

p=max{x €[0,1] : ¢p(x) = 0}. (1.5)

Theorem 1.2.  Assume that ¢'(p) < 0 and let n* and m* be the number of variable and check nodes
in the 2-core, respectively. Then

* !/ !/ ! *
im® =1-D (1 - K(”)> _ K0y <1 - Ké’”) , lim™ = %K(p) in probability. (1.6)

n—-oo n k k n—-oo n

Remark 1.3.

(@) f Pk =1)=0then1-D (1 - @) - @D’ (1 - @) evaluates to zero, and a.a.s. dK(0)/k

is the number of check nodes with degree zero in G divided by n, up to an o(1) error.

(b) If d < 1 then we observe that ¢p(a) = —a and thus p = 0. In this case, 1 — D (1 - @) -

@D’ (1 - @) evaluates to zero. This agrees with the trivial fact that n* = 0, and '"7 -
dK(0)/k a.a.s. in this case.

“Strictly speaking, what we describe here is the 2-core of the hypergraph whose vertices are the variable nodes and whose edges
are the neighborhoods of the check nodes.
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(¢) If P(k =1)> 0and P(d > 2) > 0 then ¢(0) > 0, which implies that p > 0. Thus the right-hand
sides of (1.6) are both positive.

Theorem 1.2 yields an elementary upper bound on the rank of A, as follows, which we refer to as
the 2-core bound:

rk(A)/n < 1 — max{®(0), D(p)} + o(1) a.a.s. .7

To see that tk(A)/n < 1 —®(0)+0(1) a.a.s., let A’ be the matrix comprising the rows of A that contain at
most one nonzero entry and let m’ be the number of such rows. Thentk(A) < m—m’+1k(A”). Moreover,
routine arguments reveal that (m —m')/n ~ d(1 — K(0) — K’(0))/k and rk(A") /n ~ 1 —D(1 — K'(0)/k)
a.a.s. (see Appendix D for a proof), deducing the desired upper bound for rk(A).

The other upper bound in (1.7) can be deduced by considering the 2-core and lower bounding the
nullity. Counting only solutions to Ax = 0 where x; = 0 for all variables that belong to the 2-core G,,
we obtain nul(A) > n — n* — (m — m*). Invoking Theorem 1.2, we thus find that as n — oo,

k@Ad) _ ., _ K\, d,. KO, _ K
=< D(l p >+k(1 K==, D<1 p )

Now ¢(p) = 0 implies D’ (1 - @) = d(1 — p). Substituting this into the inequality above yields

k(A)/n <1 -D(p)+0(1) a.as. (1.8)

The following theorem shows that the 2-core bound is tight in several cases of interest.

Theorem 1.4. Assume that

(i) either Var(d) = 0 ord ~ Poss(A) for an integer £ > 0 and A > 0, and
(ii) either Var(k) = 0 or k ~ Posz /() for an integer £' > 0 and A' > 0.

Then

limrk(A)/n = 1 — max{®(0), ®(p)} in probability.
Remark1.5. Under either condition of Theorem 1.4 (i) or (ii), the condition ¢’ (p) < 0 of Theorem 1.2
is satisfied, unless P(d = 1) = 0 and 2(k — 1)P(d = 2) > d. We will prove this in the proof of
Theorem 1.4.

On the basis of a canny but nonrigorous statistical physics approach called the cavity method sev-
eral authors predicted that (over finite fields) the 2-core bound (1.7) is universally tight for all 4, k.
Alamino and Saad reached this conclusion by way of numerical experiments [3], while Mézard and
Montanari [46] posed a nonrigorous but analytical derivation as an exercise. However, the predic-
tion turns out to be erroneous. Indeed, Lelarge [41] produced an example of d, k whose function ®(«)
attains its unique maximum at a value 0 < a < p. We will see another counter-example momentarily.
On the positive side, Theorem 1.4 verifies that the 2-core bound actually is tight in all the cases for
which Alamino and Saad [3] conducted numerical experiments.
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1.4 | Examples

Let us conclude this section by investigating a few examples of degree distributions d,k and their
resulting rank formulas.

Example 1.6 (the identity matrix). As was brought to our attention by an anonymous reviewer, in
the case d = k = 1 deterministically the matrix A is just a permutation matrix, which clearly has full
rank. Accordingly, we find D(x) = K(x) = x and ®(x) = 0. Hence, (1.3) boils down to the trivial fact
kA ~n.

Example 1.7 (the adjacency matrix of random bipartite graphs). Let G = G(n, n, p) be a random
bipartite graph on vertices vy, ... , v, v’l, ... , vy such that for any i,j € [n] the edge {v;, v; } is present
with probability p independently. With p = A/n for a fixed A > 0 for large n the vertex degrees
asymptotically have distribution Po(A). Indeed, with the choice d ~ Po(A) and k ~ Po(A) the
adjacency matrix A(G(n, n, p)) and the random matrix A can be coupled such that tk A(G(n, n, p)) =
rk(A) + o(n) a.a.s. Hence, Theorem 1.1shows that over any field F,

tim TKAG (1. p)

n—oo n

=2 — max{exp(—A exp(A(a — 1))

+(1+1-a)A)exp(Ala—1)) : a €[0,1]},
in probability. Theorem 1.4 implies that the 2-core bound is tight in this example.

Example 1.8 (fixed row sums). Motivated by the minimum spanning tree problem on weighted
random graphs, Cooper, Frieze and Pegden [20] studied the rank of the random matrix with degree
distributions k = k > 3 fixed and d ~ Po(d) over the field IF,. The same rank formula was obtained
independently in [7] for arbitrary finite fields. Extending both these results, Theorem 1.1 shows that
the rank of the random matrix with these degrees over any field IF with any choice y of nonzero entries
is given by

lim XA — 1~ max {exp(—dak_l) - % (1-ka*™' + (k= 1)a*) : a €10, 1]} .

n—o n

Once more Theorem 1.4 shows that the 2-core bound is tight.

Example 1.9 (nonexact 2-core bound). There are plenty of choices of d,k where the 2-core bound
fails to be tight. Degree distributions that render graphs G with an unstable 2-core furnish particularly
egregious offenders. In such graphs the removal of a small number of randomly chosen checks a; likely
causes the 2-core to collapse. Analytically, the instability manifests itself in p from (1.5) being a local
minimum of ®(x). For instance, letting d,k be the distributions with D(x) = (22x> + 3x'!)/25 and
K(x) = x3, we obtain

3 29 33 50 33 8.9 6 198 14 1386 o 1386 o 198 ¢
P(x) = - 22 20 _ 22 ZZ yl6 _ 228 200,12 0% 0
(x) 25x +25x Sx +5x 5x+25x 25x+5x
99 187 154 5 2
- = — X=X - =. 1.
FER T TR T (1.9)

Hence, p = 1 and ®"(1) > 0, while the global maximum is attained at a = 0.75.
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FIGURE 1  Left: the function A +— 2 — maXx,¢o 1) exp(—A exp(A(a — 1))) + (1 + (1 — @)A) exp(A(a — 1)) for Example 1.7.
Middle: the function d — 1 — max,epoj exp(—da*~1) — d(1 — ka*! + (k — 1)a*) /k from Example 1.8 with k = 3. Right: the
function ®(x) from (1.9) for Example 1.9

1.5 | Preliminaries

Throughout the paper we consistently keep the assumptions on the distributions d, k listed in Section 1.
In particular, E[d" ]+ E[k"] < oo for some real » > 2. Because all-zero rows and columns do not add to
the rank, we may assume thatd > 1,k > 1. We write gcd(k) and gcd(d) for the greatest common divisor
of the support of d and k, respectively. When working with A we tacitly assume that gcd(k) divides
n. In order to highlight the number of columns we write A, = A and G,, = G for the corresponding
Tanner graph. The following proposition, whose proof can be found in Section 4.2, shows that A, is
well-defined (Figure 1).

Proposition 1.10.  With probability Q(n="/%) over the choice of m, (d;);>1, (ki)>1 the condition (1.1)
is satisfied and there exists a simple Tanner graph G with variable degrees di, ... ,d, and check
degreesk, ... ,kp.

We introduce the size-biased random variables

P[&: f] =¢P|d="¢] /d,[P[l%: f] =¢Plk=7¢|/k (¢ >0). (1.10)

Throughout the paper we let (ki,d,-,l}i, 30,21 denote mutually independent copies of k, d, k,d. Unless
specified otherwise, all these random variables are assumed to be independent of any other sources of
randomness.

We use common notation for graphs and multigraphs. For instance, for a vertex v of a multigraph
G we denote by dgv the set of neighbors of v. More generally, for an integer £ > 1 we let 0{;\} be the
set of vertices at distance precisely £ from v. We omit the reference to G where possible.

The proofs of the main results rely on taking a double limit where we first take the number n of
columns to infinity and subsequently send an error parameter ¢ to zero. We use the asymptotic symbols
with an index n such as O,(-), 0,(-) to refer to the inner limit n — oo only. Thus, for functions
f(g,n), g(e, n) we write

f(e,n) = 0,(g(n,e)) if pointwise for every € > 0, lim sup fle.m) ,
n—co | 8(€,1)
f(e,n) = 0,(g(n,e)) if pointwise for every € > 0, lim sup fE‘C" n; =
n—oo glE,n

For example, 1/(en) = 0,(1). Additionally, we will use the symbols O ,,, o, ,, etc. to refer to the double
limit e — O after n — oo. Thus,



COJA-OGHLAN ET AL. WI LEY_|_9

f(en) = Ocn(gle,m) if tim sup lim sup [LE2 | < o
e—0 n—oo g(e, n)
fe.n)

f(e,n) = o, ,(g(e,n)) if lim suplim sup

e—0 n—oo

g(e,n)

For instance, € + 1/(en) = 0, ,(1).
Finally, we need the following basic lemma on sums of independent random variables.

Lemma 1.11. Letr > 2, 6 > 0 and suppose that (4;);>1 are independent copies of a random variable
A > 0 withE[A"] < co. Further, let s = ©,(n). Then P [|X;_, (4; — E[4])| > 6n] = 0,(1/n).

For the sake of completeness the proof of Lemma 1.11 is included in the appendix.

2 | OVERVIEW

We survey the proof of Theorem 1.1 and subsequently compare these techniques with those employed
in prior work. The main contribution of the paper is the “>"-part of (1.3), that is, the lower bound
on the rank. We prove this lower bound via a technique inspired by the physicists’ cavity method.
The scaffolding of the proof is provided by a coupling argument reminiscent of a proof strategy
known in mathematical physics jargon under the name “Aizenman-Sims-Starr scheme” [2] or “cavity
ansatz” [31]:

To calculate the mean of a random variable X,, on a random system of size # in the limit
n — oo, calculate the difference E[X,.] — [E[X},] upon going to a system of size n + 1.
Perform this calculation by coupling the systems of sizes n and n + 1 such that the latter
results from the former by adding only a bounded number of elements.

We will apply this approach to X;, = nul A,,. The coupling will be such that X,,;; is the nullity
of a random matrix obtained from A, obtained by adding a few rows and columns. Thus, we need to
calculate the ensuing change in nullity upon adding to a matrix several rows/columns whose number
is random and bounded in expectation.

In general, such a calculation hardly seems possible. To carry it out we would need to understand
the linear dependencies among the coordinates where the new rows sport nonzero entries, an exceed-
ingly complicated task. Two facts deliver us from this complexity. First, the positions of the nonzero
entries of the new rows are (somewhat) random. Second, we develop a random perturbation, appli-
cable to any matrix, that diminishes the number of short linear relations (Proposition 2.4 below). To
be precise, we will conclude that by applying the perturbation, for any fixed £ the probability that a
set of £ coordinates forms a proper relation in the sense of Definition 2.1 below can be made negli-
gibly small without substantially altering the nullity. In effect, the probability that there will be linear
dependencies among the positions of the nonzero entries of the new rows will turn out to be negligi-
ble. Since this perturbation argument is the linchpin of the entire proof, this is what we shall begin
with. Subsequently we will explain how this general perturbation renders the desired lower bound on
the rank.

2.1 | Short linear relations

Define the support of a vector & € FY as supp(é) = {i € U : & # 0}.
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Definition 2.1. Let A be an m X n-matrix over a field IF.

A set@ # I C [n]is arelation of A if there exists a row vector y € F such that § # supp(yA) C 1.
If I = {i} is arelation of A, then we call i frozen in A. Let (A) be the set of all frozen i € [n].

A set I C [n] is a proper relation of A if I \ §(A) is a relation of A.

For 6 > 0, ¢ > 1 we say that A is (6, £)-free if there are no more than sn’ proper relations I C [n]
of size |I| = 7.

Thus, if I C [n] is a relation of A, then by adding up suitable multiples of the rows of the homoge-
neous linear system Ax = 0 we can infer a nontrivial linear relation involving the variables (x;);c; only.
In the simplest case the set I = {i} may be a singleton. Then the equation x; = 0 is implicit in Ax = 0
and we call coordinate i frozen. In particular, i is frozen if A contains a row whose only nonzero entry
appears in column i. However, this is not the only possibility. For instance, in the following F,-matrix
variable x; is frozen because the sum of all three rows equals (1 0 0):

1 01 1
1 1 0 1 2.1
1 110

In effect, for any vector £ in the kernel of (2.1) we have

0 1 0 1 1 1 01 1
O=ar1nljof=a1D1 1 0 1|&|=(ATIDfT 1 0 1[{E=A005=¢. (2.2
0 1 1 10 1 110

Generally, a linear number Q(7) of rows may have to collude to cause freezing. Moreover, although the
proof is just a bit of routine linear algebra, it is worthwhile including the following characterization of
frozen coordinates.

Fact 2.2. A coordinate i is frozen in the matrix A iff & = 0 for all £ € ker A.

Proof.  LetA be an mXn matrix over an arbitrary field. The calculation from (2.2) readily generalizes
to arbitrary matrices and implies that & = O for any frozen coordinate i € [r] and any & € ker A.
Conversely, assume that for coordinate i € [n] we have & = 0 for all £ € ker A. Let e € F'*" be
the vector whose ith coordinate equals one and whose other coordinates are equal to zero. Moreover,
obtain A* from A by adding e as an extra row. Because & = O forall & € ker A we have ker A™ = ker A.
Therefore, tk A = rkA* and thus e is a linear combination of the rows of A. Hence, i € F(A). n

Furthermore, excluding frozen coordinates, a proper relation / of A renders a nontrivial linear
relation among at least two of the variables (x;);e;. Finally, A is (6, £)-free if only few £-subsets I C [n]
are proper relations.

We proceed to put forward a small random perturbation that will mostly rid a given matrix of short
proper relations, an observation that we expect to be of independent interest.

Definition 2.3. Let A be an m X n matrix and let & > 0 be an integer. Let i},i,, ... ,iy € [n] be
uniformly random and mutually independent column indices. Then the matrix A[6] is obtained by
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adding 6 new rows to A such that for each j € [6] the jth new row has precisely one nonzero entry,
namely a one in the i;th column.

In other words, in A[0] we expressly peg 6 randomly chosen variables x;,, ... , x;, of the linear system
Ax = 0to zero. The proof of the following proposition is based on a blend of algebraic and probabilistic
ideas.

Proposition 2.4. Forany 6 > 0, £ > 0 there exists T = T (6,¢) > 0 such that for any matrix A
over any field T the following is true. With @ € [ | chosen uniformly at random we have

P[A[6] is (5,7) — free] > 1 — 6. (2.3)

The key feature of Proposition 2.4 is that the maximum number J of variables that get pegged to zero
does not depend on the matrix A or its size but on 6 and £ only. Moreover, since adding a single row can
change the nullity by at most one, we obtain |nul(A) —nul A[0]| < . Hence, while eliminating short
proper relations, the perturbation does not shift the nullity significantly. Proposition 2.4 is a sweeping
generalisation of a probabilistic result from [7], where the perturbation from Definition 2.3 was applied
to matrices over finite fields to diminish stochastic dependencies among entries of randomly chosen
vectors in the kernel. That argument, in turn, was inspired by ideas from information theory [17, 48,
51]. We will come back to this in Section 2.3.

We will incorporate the perturbation from Proposition 2.4 into the Aizenman—Sims—Starr coupling
argument, which reduces the rank calculation to studying the impact of a few additional rows and
columns on the rank. The following lemma, whose proof consists of a few lines of linear algebra, shows
how the impact of such operations can be tracked in the absence of proper relations. Specifically, the
lemma shows that all we need to know about the matrix A to which we add rows/columns is the set
B (A) of frozen variables.

Lemma 2.5. Let A, B, C be matrices of sizem X n, m’ X nand m' X n’, respectively, and let I C [n]
be the set of all indices of nonzero columns of B. Moreover, obtain B, from B by replacing for each
i € InF(A) the ith column of B by zero. Unless 1 is a proper relation of A we have

A 0
nul —nul A =n' —1k(B. O). 2.4)
B C

Observe that the quantity on the L.h.s. of (2.4) (and thus the one on the r.h.s. as well) may be either
positive or negative, depending on A, B, C.

To put Proposition 2.4 and Lemma 2.5 to work, we need to explain the construction of the tele-
scoping series of random variables upon which the Aizenman—Sims—Starr argument is based. That is
our next step.

2.2 | The Aizenman-Sims-Starr scheme

In order to derive the desired lower bound on the rank we need to bound the nullity of A,, from above.
In line with the Aizenman—Sims—Starr scheme [2, 49], a first stab at this problem might be to write a
telescoping sum

N-1
lim sup%E[nul(An)] = lim sup% 3 Elnul(d,.)] - Efnul(d,)] 2.5)
N—-oo

N
n—eo n=1
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Providing that E[nul(A,,+,)] — E[nul(A,)] is bounded, the lim sup of the sequence of summands exists.
In this case, due to the normalizing factor 1/N on the r.h.s. of (2.5), we obtain

N-1
Z]E[nul(A,,H)] — E[nul(A,)] < lim sup E[nul(4,+;)] — E[nul(4,)]. 2.6)

n—-oo

lim su 1
N—»oopN

n=1

Hence, combining (2.5) and (2.6), we obtain the bound

lim supl]E[nul(A,,)] < lim sup E[nul(4,+)] — E[nul(4,)].

n—oo n—oo

To obtain an explicit estimate, we should thus attempt to couple A,+; and A,, so that we can write a
single expectation

E[nul(4,+1)] — E[nul(4,)] = E [nul(A,) — nul(4,)]. 2.7)

Ideally, to bring the tools from Section 2.1 to bear, under this coupling A,,+; should be obtained from
A, by adding one column and a few rows.

Unfortunately, this direct approach flounders for obvious reasons. For instance, depending on the
distributions d, k, due to divisibility issues A,.; may not even be defined for all n.> To deal with
this issue we introduce a more malleable version of the random matrix model, without significantly
altering the rank. Specifically, we introduce a parameter € > 0, for which we choose a large enough
I =T (¢) > 0. Then for integers n > I we construct a random matrix A, , as follows. Like in

Section 1.2 let y : [0,1]> — F* be a measurable map and let ({;, &;)i>1 be uniformly distributed
[0, 1]-valued random variables. Further, let

me, ~ Po((1 —€)dn/k).

Additionally, choose 8 € [ ] uniformly at random and, as before, let (d;);>1, (k;)i>1 be copies of d,
k. All of these random variables are mutually independent. Further, let I', , be a uniformly random
maximal matching of the complete bipartite graph with vertex classes

U e xtki and | {5} x ).
i=1 J=1

As in the well known configuration model of random graphs, we think of {a;} X [k;] as a set of clones of
a; and of {x;} X [d;] as a set of clones of x;. We obtain a random Tanner graph G, ,, with variable nodes
X1, ... , X, and check nodes ai, ... ,@m_,,p1, ... ,pe by inserting an edge between ¢; and x; for each
matching edge that joins the sets {a;} X [k;] and {x;} X [d;]. Additionally, check node p; is adjacent to
x; for each i € [0]. To be clear, we do not need to set aside any unmatched variable clones as partners
of the p;. We simply add the x;-p;-edges on top of the configuration model. Since ultimately & will
be chosen to be of order o(n), the number of these additional edges is relatively small.

Since there may be several edges joining clones of the same variable and check node, G, , may

be a multigraph. Finally, we construct a random matrix A, , whose rows are indexed by the check

SFor instance, suppose that d = 3 and k = 4 deterministically. Then (1.1) boils down to 4m = 3n, and thus A, is well-defined
only if n is divisible by four.
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nodes ay, ... ,an,_, and whose columns are indexed by xi, ... ,x, such that the nonzero entries of A, ,
represent the edges of the matching I'¢ ,. Specifically, the matrix entries read

Aelp,x, = 1{i =]} (i €16],j € [nD),
k. d

i

Aendas, = Xt 0 XA {{(@:9), (4,0} €Tey} (i € Ime,l.j € [n)).

s=1 t=1

Morally, A, , mimics the matrix obtained from the original model A, by deleting every row with prob-
ability € independently (which, of course, would be unworkable because still the model is not generally
defined for all n). Furthermore, the purpose of the check nodes py, ... ,pg is to ensure that A, is
(6, ©)-free for a small enough 6 = 6(¢) and a large enough £ = £(¢). Indeed, while Proposition 2.4
requires that a random set of @ variables be pegged, the checks py, ... , pg just freeze the first 0 vari-
ables. But since the distribution of the Tanner graph G, ,—{p1., ... , pe} is invariant under permutations
of the variable nodes, both constructions are equivalent. The following proposition shows that going
to A, , does not shift the rank significantly.

Proposition 2.6. For any any 0 < C < C' and any function I = T (€) > 0 the following is true. If

lim sup lim suplE[nul(Ag,,,)] <C then lim P [nul(A,,) < C'n] =1. (2.8)
n n—oo

=0 n—o0o

Analogously, if
lim ionflim inflIE[nul(A&,,)] >C' then lim P[nul4,)>Cn]=1.
E—> n—oo n n—oo

By construction, the degrees of the checks a; and the variables x; in G., — {pi, ... ,pg} are
upper-bounded by k; and d;, respectively. We thus refer to k; and d; as the target degrees of a; and x;.
Indeed, since G, , will turn out to feature few if any multi-edges and m, , is significantly smaller than
dn/k and thus

P lz ke, di] = 1-0,(1)
i=1 i=1

most check nodes a; have degree precisely k; a.a.s. But we expect that about edn variable nodes x; will
have degree less than d;. In fact, a.a.s. I', , fails to cover about edn “clones” from the set U;lzl {x;} x[d;].
Let us call such unmatched clones cavities.

The cavities provide the wiggle room that we need to couple A, , and A, ,+1. An instant idea might
be to couple G¢ »+1 and G, , such that the former is obtained by adding one variable node x,.; along
with d,,11 new adjacent check nodes. Additionally, the new checks get connected with some random
cavities of G, ,,. In effect, the coupling takes the form

A, O
nul A, ;41 = nul ’ R 2.9)
B C

where B has n columns and d,,+; rows and C is a column vector of size d,,,; a.a.s. But this direct attempt
has a subtle flaw. Indeed, going from A, to A¢ n+1, (2.9) adds E[d,.+1] = d rows on the average. Yet
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actually we should be adding merely E[m, ,1 — m.,] = (1 — €)d /k rows. To remedy this problem
we borrow a trick from prior applications of the Aizenman—Sims—Starr scheme in combinatorics [7,
17, 18]. Namely, we set up a coupling under which both A, ,,A. .41 are obtained by adding a few
rows/columns to a common “base matrix” A’. Thus, instead of (2.9) we obtain

A A0
nul A, , = nul , nulA.,4; =nul . (2.10)
B B C

To be precise, C’' above is a column vector with an expected (1 — £)d nonzero entries and B, B’ are
matrices whose numbers of nonzero entries are bounded in expectation. Furthermore, the base matrix
A’ itself is quite similar to A ,, except that A has a slightly smaller number of rows. In Section 5 we will
present the construction in full detail and apply Proposition 2.4 and Lemma 2.5 to prove the following
upper bound on the change in nullity. Recall the function @ from (1.2) and recall that 8 € [J ] with
J =T (¢e) dependent on € only is the number of pinned variables in the construction of A ,.

Proposition 2.7.  There exists a function I = T (e) > 0 such that

lim sup lim sup E[nul(A; ,+1)] — E[nul(A¢,)] < m[%)%] O(a).
agll,

e—0 n—oo

As an immediate consequence of Proposition 2.7 we obtain the desired upper bound on the nullity.

Corollary 2.8. We have

lim sup lim suplE[nul(Aé,n)] < max ®(a).
n a€l0,1]

e—0 n—oo
Proof.  Proposition 2.7 yields

n—1

Lpmua, )1 =1 |Emu@,)+ Y (ElnulAy4)] - ElnulAcp)]) | < max @(@) + 0ca(1),
n n el a€l0,1]

as claimed. n

Proof of Theorem 1.1.  The desired lower bound on the rank of A, is an immediate consequence of
Proposition 2.6 and Corollary 2.8. [

2.3 | Discussion

Before delving into the technical details of the proofs of the various propositions, we compare the proof
strategy and the results with previous work. We begin with a discussion of related work on the rank
problem. Roughly speaking, prior work on the rank of random matrices relies on separate strands of
techniques, depending on whether the average number of nonzero entries per row/column is bounded
or unbounded. Subsequently we discuss the physicists’ (nonrigorous) cavity method and explain how
it led to an erroneous prediction.

2.3.1 | Dense matrices

The difficulty of the rank problem for dense random matrices strongly depends on the distribution of
the matrix entries. For instance, a square matrix with independent Gaussian entries in each row has full
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rank with probability one simply because the submanifold of singular matrices has Lebesgue measure
zero. By contrast, the case of matrices with independent uniform +1 entries is more subtle. Komlés [36]
proved that such matrices are regular a.a.s. Vu [55] subsequently presented a simpler proof, based on
collision probabilities and Erdds’ Littlewood-Offord inequality. An intriguing conjecture, which has
inspired a distinguished line of research [33, 34, 44, 53-54], asserts that the dominant reason for a
random =+1-matrix being singular is the existence of a pair of identical rows or columns.

Interesting enough, the limiting probability that a dense square matrix with entries drawn uniformly
from a finite field is singular lies strictly between zero and one. Kovalenko and Levitskaya [37, 38, 42,
43] obtained a precise formula for the distribution of the rank of dense random matrices with indepen-
dent entries over finite fields via the method of moments. For more recent improvements see [27] and
the references therein.

A further line of work deals with random m Xn matrices in which the number of nonzero entries per
row diverges in the limit of large n but is of order o,(n). Relating the permanent and the determinant,
Balakin [9] and, using delicate moment calculations, Blomer, Karp and Welzl [12] dealt with the rank
of such matrices over finite fields. Moreover, using expansion arguments, Costello and Vu [21, 22]
studied the real rank of random symmetric matrices of a similar density. They find that such matrices
essentially have full rank a.a.s., apart from a small defect based on local phenomena. In the words
of [22], “dependency [comes] from small configurations”.

2.3.2 | Sparse matrices

Matters are quite different in the sparse case where the average number of nonzero entries per row is
bounded. In fact, as we will discover in due course the formula from Theorem 1.1 is driven by “depen-
dency coming from large configurations,” that is, by minimally linearly dependent sets of unbounded
size.

The first major contribution dedicated to sparse matrices was a paper by Dubois and Mandler [24]
on the random 3-XORSAT problem. Translated into random matrices, this problem asks for what
ratios m/n a random m X n-matrix over [, with precisely three one-entries in each row has full rank
(i.e., equal to m A n) a.a.s. Thus, the random matrix model is just the one from Example 1.8 with
k = 3. Dubois and Mandler pinpointed the precise full row rank threshold m/n =~ 2.75. The proof
relies on the first moment method applied to | ker A |, which boils down to a one-dimensional calcu-
lus problem. Matters get more complicated when one considers a greater number k£ > 3 of nonzero
entries per row. This more general problem, known as random k-XORSAT, was solved independently
by Dietzfelbinger et al. [23] and by Pittel and Sorkin [50] via technically demanding moment calcu-
lations. Unfortunately, considering fields IF, with ¢ > 2 complicates the moment calculation even
further. Yet undertaking a computer-assisted tour-de-force Falke and Goerdt [29] managed to extend
the method to 5. However, extending this strategy to infinite fields is a nonstarter as | ker A| may be
infinite.

In a previous paper Ayre, Coja-Oghlan, Gao and Miiller [7] applied the Aizenman—Sims—Starr
scheme to the study of sparse random matrices with precisely k nonzero entries per row as in
Example 1.8, over finite fields. The present paper goes beyond that earlier contribution in two cru-
cial ways. First, we develop a far more delicate coupling scheme that accommodates general degree
distributions d, k rather than just the Poisson-constant degrees from Example 1.8, including degree
sequences for which the 2-core bound fails to be tight (in contrast to Example 1.8). Apart from render-
ing a proof of Lelarge’s conjecture, we expect that this more general coupling scheme will find further
uses in the theory of random factor graphs; for instance, it seems applicable to generalizations of the
models from [17].
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Second, the rank calculation in [7] is based on a probabilistic view that does not extend to infinite
fields. Indeed, the proof there is based on a close study of a uniformly random element o of the kernel
of the random matrix A. Specifically, [7, lemma 3.1] analyzes the impact of the perturbation from
Definition 2.3 on a matrix A € F™" for a finite field F. With ¢ = (64, ... ,0,) € ker(A) a uniformly
random element of the kernel, the lemma shows that for a large enough = 7 (6,F) > 0 and a
uniformly random 0 <0 < T,

Y, E|P[oi = .0 = o/|AI6]] - Plo; = wlAl0]] - P [o; = o/ |A[0] | < 60, @.11)
S
As in Proposition 2.4, the necessary value of J is independent of n,m, and A. Thus, the random
perturbation renders the vector entries (6;, 6;) nearly stochastically independent, for most i, j. Thanks
to general results from [10], (2.11) extends from pairwise independence to £-wise independence, albeit
with a weaker error bound 6. The result [7, lemma 3.1] was inspired by general statements about
probability measures on discrete cubes from [17, 48, 51].

Inherently, this stochastic approach does not generalize to infinite fields, where, for starters, it does
not even make sense to speak of a uniformly random element of the kernel. That is why here we replace
the stochastic approach from the earlier paper by the more versatile algebraic approach summarized
in Proposition 2.4, which are applicable to any field—say, the reals, the field Q, of p-adic numbers,
the algebraic closure of a finite field or a structure as complex as a function field. Instead of show-
ing stochastic independence, Proposition 2.4 renders linear independence amongst most bounded-size
subsets of coordinates. Apart from being more general, this algebraic viewpoint allows for a cleaner,
more direct proof of the rank formula. Additionally, on finite fields the stochastic independence (2.11)
follows from the linear independence provided by Proposition 2.4, with a significantly improved bound
on I (6). We work this out in detail in Appendix B.

The single prior contribution on the rational rank of sparse random matrices is due to Bordenave,
Lelarge and Salez [13], who computed the rational rank of the (symmetric) adjacency matrix of a
random graph with a given vertex degree distribution. The proof is based on local weak convergence
and the “objective method” [5]. An intriguing question for future research is to extend the techniques
from the present paper to symmetric random matrices.

2.3.3 | The cavity method (and its caveats)

On the basis of the cavity method, an analytic but nonrigorous technique inspired by the statistical
mechanics of disordered systems, it had been predicted erroneously that over finite fields the 2-core
bound (1.7) on the rank of A is universally tight for general degree distributions d, k [3, 46]. Where
did the cavity method go astray?

The method comes in two instalments, the simpler replica symmetric ansatz and the more elab-
orate one-step replica symmetry breaking ansatz (“1RSB”). The former predicts that the rank of
A over a finite field IF, converges in probability to the solution of an optimization problem on an
infinite-dimensional space of probability measures. To be precise, let P (IF,) be the space of prob-
ability measures on F,. Identify this space with the standard simplex in R?. Further, let & *(F,) be
the space of all probability measures on & (F,). Given # € & 2(Fq) let (Ilf-f,-)i j>1 be a sequence of
independent samples from 7. Recalling (1.10), the Bethe free entropy is defined by

d iff i‘i
B(x) =E|log, Z H Z 1 Z oixij =0 H Hij(o))
p= j=2

o‘lqu i=1 o0,,... ,oi‘iEIFq
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k k
—%IE (k —1)log, Z 1{; Gill,i=0}HM’f,,-(0i)-

oy, ... ,04EF, i=1

(cf. [73, chapter 14]).

The replica symmetric ansatz predicts that

lim 1nulA = sup JB(x) in probability. (2.12)

n—oo n r€P2(F,)

For a detailed (heuristic) derivation of the Bethe free entropy and the prediction (2.12) we refer to [3].
But let us briefly comment on the intended semantics of z. Consider the Tanner graph G representing
A. Suppose that variable node x; and check node g; are adjacent. Then for o € I, we define the Belief
Propagation message ,uA,x/,_,ai(a) from x; to a; as follows. Obtain ij—wf from A by changing the ijth
matrix entry to zero; this corresponds to deleting the x;-a;-edge from the Tanner graph. Then 4 v, —.q,(0)
is the probability that in a uniformly random vector ¢ € kerA, ., we have 6; = ¢. Further, define 74
as the empirical distribution of the i v, .4, over the edges of the Tanner graph:

n

1 m
NS 2 O, € P
i=1 "1 j=1 i=

Then the replica symmetric ansatz predicts that x4 is asymptotically a maximiser of the Bethe free
energy, that is, sup_ .z 2(F,) RB(r) = B(ra) + 0,(1) a.a.s. Thus, the maximizer z in (2.12) is deemed
to encode the Belief Propagation messages on the edges of the Tanner graph of A.

A bit of linear algebra that seems to have gone unnoticed in the physics literature reveals that the
messages actually have a very special form [7, lemma 2.3]. Namely, any message piax —q, is either the
uniform distribution g~'1 on IF, or the atom & on 0. In effect, the rank should come out as the Bethe
free entropy 9 (x,) of a convex combination

7ty = @b, + (1 —@)s,11  (a €0, 1]). 2.13)

In fact, a simple calculation yields ®(a) = B(n,) for all a € [0, 1]. Thus, Theorem 1.1 shows that

lim kA =1—- sup HB(m,) in probability,

n-o n agl0,1]

vindicating the cavity method to an extent. However, we do not know whether the Bethe free entropy
possesses other spurious maximizers 7 € & 2(IE‘q) with B(x) > sup,e(o.1] B(7a)-

Alamino and Saad [3] tackled the optimisation problem (2.12) by means of a numerical heuristic
called population dynamics, without noticing the restriction to (74 )aei0,1]. In all the examples that they
studied they found that # € {=y,7x,}, with p from (1.5); in fact, all their examples fall within the
purview of Theorem 1.4. © This led Alamino and Saad to conjecture that the maximiser z is generally
of this form, although they cautioned that further evidence seems necessary. Example 1.9 and [41]

%Strictly speaking, Alamino and Saad, who worked numerically with n in the hundreds, reported # € {, x, }. Indeed, p € {0, 1}
in the first class of examples that they studied, but not in the other two. For instance, in their example (3) the actual value of p
is either 0 or a number strictly smaller than one, although p > 0.97 whenever ®(p) > ®(0).
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provide counterexamples. The more sophisticated 1RSB cavity method is presented in [46, chapter 19],
where an exercise asks the reader to verify that the 2-core bound is tight (over finite fields). While
Theorem 1.4 gives sufficient conditions for this to be correct, the aforementioned counterexamples

apply.

2.4 | Organization

We proceed to prove Proposition 2.4, the “key lemma” upon which the proof of Theorem 1.1 rests,
in Section 3. Subsequently in Section 4 we use concentration inequalities and the local limit theorem
for sums of independent random variables to prove Proposition 2.6. Additionally, Section 4 contains
Proposition 1.10, which shows that the random matrix model (1.1) is well defined, a standard argument
that we include for the sake of completeness. Dealing with the full details of the coupling scheme,
Section 5 contains the proof of Proposition 2.7. Further, Section 6 deals with the proof of Theorem 1.2
and in Section 7 we prove Theorem 1.4. For the sake of completeness a proof of Lemma 1.11 is
included in Appendix A. Moreover, in Appendix B we elaborate on the relation between the algebraic
perturbation from Proposition 2.4 and the stochastic version from [7]. Finally, Appendix C contains
a self-contained proof of the upper bound on the rank for Theorem 1.1 via the interpolation method
from mathematical physics.

3 | LINEAR RELATIONS: PROOF OF PROPOSITION 2.4

In this section we prove Proposition 2.4 and Lemma 2.5. The somewhat delicate proof of the former
is based on a blend of probabilistic and algebraic arguments. The proof of the latter is purely algebraic
and fairly elementary.

3.1 | Proof of Proposition 2.4

Observe that Proposition 2.4 is not an asymptotic statement to the extent that we need to exhibit a
function I = T (6, ¢) such that (2.3) holds for all matrices A (ultimately in (3.12) we will see that
T (8,¢) scaling as #3/6* does the trick). Nevertheless, letting n denote the number of columns of A,
we may safely assume that n > ng = no(6, £) for any specific ng that depends on 6, £ only. Indeed, to
deal with n < ng for any fixed value ny we could just pick I > T (6, £) for alarge enough T (6, £) so
that with probability at least 1 — & we have {i}, ... ,ig} = [n]. Note that we do not need to worry about
the possibility that > n because the i; are drawn with replacement. Further, if {i}, ... ,ig} = [n],
then a glimpse at Definition 2.1 shows that all coordinates are frozen. Therefore, A[0] is (8, £)-free.
Hence, from now on we assume that n > ny = ny(6, £) for a sufficiently large ny.

Given any matrix M we define a minimal h-relation of M as a relation I of M of size |I| = h that
does not contain a proper subset that is a relation of M. Let #,(M) be the set of all minimal A-relations
of M and set Ry,(M) = |%,(M)|. Thus, Ri{(M) = |F(M)]| is just the number of frozen variables of
M. Additionally, let Z<,(M) = |, Zi(M) and R<;,(M) = |R<4(M)|. Let iy,ip,i3, ... € [n] be
uniformly distributed independent random variables.

The proof of Proposition 2.4 is based on a potential function argument. To get started we observe
that

Ri(Alt]) € £i1(A[t+1]) forallr>0. 3.1
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This inequality implies that the random variable

_ E[RiA[z + ZDIAL1]] — Ri(A[#])
n

A

is nonnegative. The random variable A; gauges the increase in frozen variables upon addition of
more rows that expressly freeze specific variables. Thus, “big” values of A,, say A, = Q, (1), witness
a kind of instability as pegging a few variables to zero entails that another Q,(n) variables get frozen
to zero due to implicit linear relations. We will exploit the observation that, since A, € [0, 1] and
E[A,] is monotonically increasing in ¢, such instabilities cannot occur for many ¢. Thus, the expectation
[E[Ag] will serve as our potential. A similar potential was used in [7] to study stochastic dependencies
in the case of finite fields F. But in the present more general context the analysis of the potential is
significantly more subtle. The following lemma puts a lid on the potential.

Lemma 3.1. We have E[Ag] £ ¢/T .

Proof. Foranyre {0,1,...,7 — 1} we have

> Elyiel = - 2 EIR(AL + G+ DED] = EIR AL + 6] < %Jlirg EIR (Al +j¢D]. - (3.2)

Jj20 Jj20

Observe that there is no problem here taking the limit j — oo as the coordinates i; from Definition 2.3
are chosen independently with replacement. In the case that j > n the likely outcome is thus that all
coordinates of A[r + j£] are frozen, which is why lim;_,o, E[R{(A[r + j£])] = n. Hence, (3.2) yields

Y ElAne] < 1. (3.3)
720
Summing (3.3) on r, we obtain
-1
D, Eldl< ) Y ElA <. (3:4)
0e(T ] r=0 j>0

Since 0 € [T ] is chosen uniformly and independently of everything else, dividing (3.4) by I yields

-1
1 1 4
ElAgl= o= D) ElAgl < 3 ¥ BlAnel < o (3.5)
0elT ] r=0 j>0
as desired. .

Remark 3.2. Lemma 3.1 provides a bound on the mean of E[Ag] for a random 6. The requirement
that 6 be random stems from the fact that the proof is based on an averaging argument. It is an open
question whether this random value could be replaced by a deterministic value, and whether the choice
of such a deterministic value would have to depend on A.

The following lemma shows that unless A[f] is (6, £)-free, there exist many minimal A-relations for
some2 <h</?.
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Lemma 3.3.  If A[] fails to be (6, €)-free then there exists 2 < h < ¢ such that Ry(A[f]) > én" /€.

Proof.  Assume that
Ry(A[f]) < 6n" /¢ forall 2<h<?. (3.6)

Since every proper relation / of size |/| = ¢ contains a minimal A-relation J C / forsome 2 < h < 7,
(3.6) implies that A[¢] possesses fewer than on’ proper relations of size £ in total. Hence, if (3.6) holds,
then A[t] is (6, ©)-free. =

As a next step we show that A, is large if A[f] possesses many minimal /-relations for some 2 < h < 7.
Lemma 3.4. If Ry(A[t]) > 6n" /€ for some 2 < h < £, then A, > 62 /¢>.

Proof.  Let R, ,(Alz]) be the set of all relations I € X#;,(A[¢]) that contain v € [n] and set r,;), =
| %, n(Al2])|. Moreover, let 77, be the set of all v € [n] with r,,;, > 5hnh‘1/ (2¢). We assumed
|Ry(A[f])| > n" /¢, and every h-relation is affiliated with an h-element subset of [r]. Consequently,

shn" /¢ < hRyA[H) < |V ipln"™" + (n = |V 1)) - 5hn"" [ (20),

whence
ohn
Vinl > —. 3.7
|7 0] > 7 (3.7)
Consider v € 7/, along with a minimal h-relation I € R, ,(Alt]). If I = {v,is11, ... ,i4n-1}, thatis,

I comprises v and the next & — 1 indices that get pegged, then v € F(A[r + h — 1]). Indeed, since 1
is a minimal h-relation of A[¢] there is a row vector y such that supp(yA[t]) = I. Hence, if I \ {v} =

{ire1s ... »in_1 ), then we can extend y to a row vector y' such that supp(y’A[r + £]) = {v}, and thus
v € F(A[t + h — 1]). Furthermore, since (i1, ... ,imp-1) € [n]" ! is uniformly random, we conclude
that

PU = {(viigs1s o it } AL = (= D/n" > 0! (3.8)

Now, because every v € 7, satisfies r, ), > 6hn"~!/(2¢), (3.8) implies that
P[v e Al +h— IDIA] = ryn/n"" > 8h/(20). (3.9)

We also notice that 77, N F(A[f]) = @ because no minimal A-relation contains a frozen variable.
Therefore, combining (3.1), (3.7), and (3.9) and using linearity of expectation, we obtain

AzL Y Plve§@Al+h-1DIAL] 2
n

VEY ),

212 2
STyl | S 5
2¢n 4¢2 ~ 2

as desired. u
Combining Lemmas 3.3 and 3.4, we immediately obtain the following.

Corollary 3.5.  If A[t] fails to be (8, €)-free then A; > 6% /7.
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We have all the ingredients in place to complete the proof of Proposition 2.4.

Proof of Proposition2.4.  WedefineT = {t € [T ] : P[A[¢] fails to be (6, 7)—free] > 6/2} so that
P[A[O] is (6,¢) —free] > 1—-6/2-P[0 € T]. (3.10)

Hence, we are left to estimate IP [@ € T]. Applying Corollary 3.5, we obtain for every t € T,

3

52 . )
E[A/] > 7 -P[A[f] fails to be (6,7) — free] > 277 (3.11)

Moreover, averaging (3.11) on ¢ € [J ] and applying Lemma 3.1, we obtain

S Poen=2 M JIZT, E[A] < iAol < =
Consequently, choosing
T > 403 )64, (3.12)
ensures P [0 € T] < §/2. Thus, the assertion follows from (3.10). [

Remark 3.6. The proof presented in this section actually renders a slightly stronger statement than
Proposition 2.4. Specifically, let A be an m X N-matrix and let n < N. Obtain A[0, n] by pegging 6
random variables from among the first n variables xj, ... , x, of the linear system Ax = 0 to zero. Then
with @ = (8, £) chosen as in Proposition 2.4 we find that with probability at least 1 — 6, there are no
more than 6n proper relations I C [n]. Thus, in order to rid a subset of the columns of short linear
relations, it suffices to peg 0 random variables from that subset to zero. The proof of this stronger
statement proceeds as above, except that we confine ourselves to minimal relations among the first n
columns.

3.2 | Proof of Lemma 2.5

We are going to derive Lemma 2.5 from the following simpler, deterministic and nonasymptotic
statement.

Lemma3.7. Letm,n,m',n’ > 1 be integers. Let A be an m X n matrix, let B be an m' X n matrix and
let C be an m' X n’ matrix. Let I C [n] be the set of all indices of nonzero columns of B. Unless I is a
relation of A we have

A 0
nul A — nul =rk(BC)-n'.
B C

Proof.  Suppose that I is not a relation of A. We begin by showing that

nul A — nul <2> = 1k(B). (3.13)
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Writing By, ... ,B,y for the rows of B and r = rk(B) for the rank and applying a row permutation
if necessary, we may assume that By, ... , B, are linearly independent. Hence, to establish (3.13) it
suffices to prove that forall 0 <7 < r,

A A
By By
rk 1< rk e (3.14)
B, By
In other words, we need to show that B,; does not belong to the space spanned by By, ... , B¢ and the

rows Ay, ... ,A,, of A. Indeed, assume that B, = ZlilxiBi + X", viAi. Then 0 # Byyy — Zilx,Bi =
>, viA; and thus @ # suppZi.’;my,-A,- C I, in contradiction to the assumption that / is no relation of A.
Hence, we obtain (3.14) and thus (3.13). Finally, to complete the proof of (2.4) we apply (3.13) to the
matrices (A 0) and (B C), obtaining

A 0 A 0
nul(A) +»n’ — nul = nul(A 0) — nul =1k(B C),
B C B C

as desired. n

Proof of Lemma 2.5. Recall that A has size m X n. By Definition 2.1 a coordinate i is frozen iff the
vector ¢®? € F" whose ith entry equals one and whose other entries equal zero can be written as
a linear combination of the rows of A. For every i € $§(A) we can therefore apply elementary row
operations (like in Gaussian elimination) to zero out the entire i-column of B. Since elementary row
operations do not alter the nullity of a matrix, we therefore obtain the identity

The assertion thus follows from Lemma 3.7. n

4 | CONCENTRATION

The principal aim of this section is to prove Proposition 2.6, that is, to argue that the rank of the actual
matrix A, that does not have any cavities and whose Tanner graph is simple is close to the expected
rank of A, a.a.s. In other words, we need to show that the rank of a random matrix is sufficiently
concentrated that conditioning on

and on the event & that the Tanner graph is simple is inconsequential. The main tool will be the
following local limit theorem for sums of independent random variables, which we use in Section 4.1
to calculate the probability of &.
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Theorem 4.1 ([34, p. 130]). Suppose that (X;);>) is a sequence of i.i.d. variables that take values in
7 such that the greatest common divisor of the support of X is one. Also assume that Var[X|] = 6° €
(0, ). Then

n 2 2
lim su P X =z| - exp(—(z — nE[X;])"/(2nc*)) -0

Subsequently, in Section 4.2 we calculate the probability of the event &, proving Proposition 1.10
along the way. Finally, in Section 4.3 we complete the proof of Proposition 2.6.

4.1 | The event &

Because E[d"] + E[k"] < oo for an r > 2, the event

M = {max d; + m[a)ﬁ k; < \/Z/log9n} satisfies Pl =1-o0,1). “.1)
1€(m

i€[n]
As an application of Theorem 4.1 we obtain the following estimate.
Lemma 4.2. If ged(k) divides n, then P [D] = ©,(n""/?) and P [D | M] = O, (n~'/?).

Proof.  For P [D |4 ] there are several cases to consider. First, that Var(d) = Var(k) = 0, thatis, d, k
are both atoms. Since m is a Poisson variable with mean dn/k we find P[D | 4] = P [m = dn/k] =
O, (n~'7?).

Second, suppose that Var(d) > 0 but Var(k) = 0. Then Theorem 4.1 and (4.1) show that

|
Further, given |dn — Y\_ d;| < /n and given k divides Y;_,d;, the event km = Y_ d; has probability
®,(n"'/?) by the local limit theorem for the Poisson distribution.

The case that Var(d) = 0 but Var(k) > 0 can be dealt with similarly. Indeed, pick a large enough
number L > Oandlet/ = {ie[m] :k;>L}, m' = |Im" =m—|I|,S = Y, kiand §” =
Eie[m]\, k;. Then m’,m" are stochastically independent, as are S’, S”. Moreover, since S’ satisfies the
central limit theorem we have

dn — i d,'
i=1

<\nnk divides ) dil | = Qu(1). 4.2)
i=1

P (IS~ ELS' 01| < Valtt | = Qu(D). 4.3)

Further, Theorem 4.1 applies to S, which is distributed as Z:’;lkil{ki < L}. Hence, as n is divisible
by gcd(k), for large enough L we have

P [S’ +8" = dn|S' — ELS'|4]| < \/n. ./%] = Q, (). 4.4)

Thus, (4.3) and (4.4) show that P [2 |.#] = Q,(n"'/?). The upper bound P [D |.#] = O,(n~'/?)
follows from the uniform upper bound from Theorem 4.1.



24_|_W ILEY: COJA-OGHLAN ET AL.

A similar argument applies in the final case Var(d) > 0, Var(k) > 0. Indeed, Theorem 4.1 and (4.1)
yield

P lgcd(k) divides ) d; and

i=1

dn — i d,‘
i=1

Moreover, (4.3) remains valid regardless the variance of d. Hence, applying Theorem 4.1 to S, we
obtain

< \/EV%] = Q,(1). (4.5)

dn — i d,'
i=1

< Vo, I8~ EIS' 01| < v, ] = Q.71 P, (4.6)

P ls’ +8" = Z d; | ged(k) divides 2 d;,
i=1 i=1

Combining (4.5) and (4.6), we see that P [D |.#] = Q,(n~'/?). The matching upper bound P [D |.#] =
0,(n~'/?) follows from the universal upper bound from Theorem 4.1 once more. The treatment of the
unconditional P [9 ] is similar but slightly simpler. n

4.2 | Theevent &

The random matrix A, for Theorem 1.1 is identical in distribution to the random matrix Ay, with
€ = 0 conditioned on the event & and on the event & that the Tanner graph Gy, does not contain any
multi-edges. Therefore, Proposition 1.10 is going to be a consequence of Lemma 4.2and the following
statement.

Lemma4.3. We have P [A, € S|2| = Q,(1).

We proceed to prove Lemma 4.3. Recall the event .# from (4.1). The proof of Lemma 4.3 is essen-
tially based on the routine approach of showing by way of a moment calculation that the number of
multi-edges of Gy, is asymptotically Poisson with a finite mean. This argument has been carried out
illustratively for the case of random regular graphs in [, chapter 9]. But since here we work with very
general degree distributions, technical complications arise. For instance, as a first step we need to
estimate the empirical variance of the degree sequences.

Claim 44 On the event @ N ./ we have + ¥ d; — E[d’], 1 3 ki — dE[k*]/k in probability.

Proof.  We will only prove the statement about the k;; the same (actually slightly simplified) argu-
ment applies to the d;. Thanks to Bennett’s tail bound for the Poisson distribution we may condition
on {m = m} for some integer m with |m — dn/k| < \/ﬁln n. Fix a small 6 > 0 and a large enough
L = L(6) > 0. Given m = m the variables Q; = Zie[m] 1{k; = j} have a binomial distribution.
Therefore, the Chernoff bound yields

P [|Qj — dnP [k = j1/k| < \/nInnjm = m] —1—o,(1/n) foranyj<L.
Hence, (4.1) and Lemma 4.2 yield

P [Vst 210 — dnPlk = jI/k| < \/nlnn|D N M, m=m| =1-o0,(1). A7)
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Further, let

Ry= Y 1{(1+8Y"'L <j < (1+8)LA+/n/In’n}Q;,

=1

R, = le{(l + 6L <j < (14 6)"L A\/n/In°n)P [k = j),

J=1

and let % be the set of all integers & > 1 with (1 +6)""'L < \/;L/ In’n. Then the Chernoff bound
implies that

P [Vh €7 : [Ri=Ri| > 6By +0*n|D 0 A, m = m] = 0,7, (4.8)

Finally, if |Q; — dnlP [k = jl/k| < y/nlnn forall j < L and |R,, - Eh| < R, +In*nforall h € %, then

12 K} < 0,(1) + E[k21{k<L} +f2(1+5)2hL2R
" = he%"

=0+ LEJCIk < )] + L Y (14 5P 112R, < CEDDR) 4 0,1,
he?f

5)

and analogously Z k2 d PRk + o,(1).

i=1

Since this holds true for any fixed 6 > 0, the assertion follows from (4.7) and (4.8). [

Claim 4.5. Let Y be the number of multi-edges of the Tanner graph Gy, and let £ > 1. There is
A > 0 such that on

MND N {2 d; = dn+ o,(n), Z &’ = nE[d*] + on(n)}
i=1 i=1

n {Z K2 = dnE[K*]/k + on(n)} N {m = dn/k + 0,(n)},

i=1

we have
¢
B lHY —i+l | d)iein» (ki)iEm] = 1" + 0a(1).
i=1

Proof.  To estimate the £-th factorial moments of Y for £ > 1, we split the random variable into a
sum of indicator variables. Specifically, let U, be the set of all families (u;, v;, w;)ies With u; € [m],
vi € [n]and 2 < w; <k, Ad,, < \/ﬁ/loggn such that the pairs (u1,vy), ... , (ug, ve) are pairwise
distinct. Moreover, let Y[(u;, vi, w;)ie[¢1] be the number of ordered #-tuples of multi-edges comprising
precisely w; edges between check a,, and variable x,, for each i. Then

¢
HY —h+1= Z Y{(ui, vi, wiiere1]-
hel

(v W)ierr1 €U
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Moreover, letting w = Zi w;, we claim that

¢
E[Y (i, vis wiem 1@ iern kidiem] ~ ! H (k"i> <dvi> wil. 4.9)

(dn) - \ wi wi

Indeed, the factors (‘j:,- > (I;A > w;! count the number of possible matchings between w; clones of the

variable node x,,, whose degree equals d,,, and of the check node a,, of degree k,,. Further, since ¢ is
bounded, the probability that all these matchings are realized in Gy, is asymptotically equal to (dn)™".
Now, for asequencew = (wy, ... ,wy)letY,, = E(u.,v.,w-)»emeuf Y[(ui, vi, wi)icre))- Then (4.9) yields

VWi

14 n m
E[Yy|ddiepn, ki)iem] < 0n(n_W)H (Z dj’ﬂ) <Z k;ﬂ)
=1

i=1 \j=1

< 0,(n™")max d""~ > max k'~ &’ 5
< Oul ),/‘E[n] T jelm) Y ; J ; /

< 0,(n* ™)max d}v_z'fmax k,W_M = 0,(In* "n);
J€E[n] - JE[m] ~

the last bound follows from our conditioning on .Z. As a consequence,

Y. ElYul@iep, Kien] = 0a(1). (4.10)

wiw>2¢

Further, invoking (4.9), we obtain

(Xididi = D) (X kitki = 1))

ElYe....»|@ietn. (iien] ~ A7, where 4~ 2y @.11)
Combining (4.10) and (4.11), we conclude thaton @ N N {m = dn/k + 0,(n)},
E[Y/11d)iem, ki)iem] ~ A7 (4.12)

Finally, on {Y_ d; = dn+ 0,(n), Y1 d; = nE[d*] + 0,(0)} n {3 ki = dnE[k>1/k + 0,(n)} we
have

_ (Bld°] - d)E[K’] — k)

At 2d? ’

4.13)

and the assertion follows from (4.12) and (4.13). [
Claim4.6. Wehave P[S |9 N ] = Q,(1).

Proof.  Claims 4.4 and 4.5 show together with inclusion/exclusion (e.g., [13, theorem 1.22]) that
aas.on/Z/N9D,

P [Y = 01(dietn)> kidiem| = exp(—=2) = Q,(1).

Since & = {Y = 0}, the assertion follows. [
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Proof of Lemma 4.3.  The assertion follows immediately from (4.1), Corollary 4.2 and Corollary 4.6.

Proof of Proposition 1.10.  The proposition is immediate from Lemmas 4.2 and 4.3. [

4.3 | Proof of Proposition 2.6

The random matrix A, has n columns and m ~ Po(dn/k) rows, with the column and row degrees
drawn from the distributions d and k. By comparison, A, has slightly fewer, namely m., ~ Po((1 —
€)dn/k) rows. One might therefore think that the proof of Proposition 2.6 is straightforward, as it
appears that A, is obtained from A, , by simply adding another random Po(edn/k) rows. Since adding
O¢ n(en) rows cannot reduce the nullity by more than O, ,(en), the bound on E[nul(4,)] — E[nul(A, ,)]
appears to be immediate. But there is a catch. Namely, in constructing A,, we condition on the event
9D = {27=1di = Z;’;lki}. Thus, A, does not have the same distribution as the top Bin(m, 1 — €) rows
of A, since the conditioning might distort the degree distribution. We need to show that this distortion
is insignificant. To this end, recall that m,, ~ Po((1 — e)dn/k).

Lemma 4.7. A.a.s. we have
P (1A ) = BnIA e, @it Gdisl] > Vil @dst, (is1 | = 0n(D)

Proof.  Lemma 1.11 shows that Y._,d;, Sk = Ocn(n) and Yoi'k; < > ,d; with probability

1—0,(n~"). Assuming that this is so, consider a filtration (2(,) <3k, that reveals the random matching
Sj=1 M

I'., one edge at a time. Then

|]E[HUI(A£,n)|2[t+l’me,m (di)izl’ (ki)izl - E[HUI(Aé,n)Imn mg, (di)izl, (ki)izl |] < Os,n(l),
for all 7. Therefore, the assertion follows from Azuma’s inequality. [

Let A, o be the conditional version of the random matrix Ao, given &. Thus, given Z:;ld,- =
> ki, we construct a random Tanner multi-graph with variable degreesd, ... ,d, and check degrees
ki, ... ,k,. Hence, the difference between A, and A, o is merely that in the case of A, we also
condition on the event & that the Tanner graph is simple.

Lemma 4.8.  There exists a coupling of Ang and A, , such that with probability at least 1 — € the
two matrices agree in all but O, ,(en) rows.

Proof. Let G, g and G, denote the Tanner graphs corresponding to A, ¢ and A, ,,, respectively. It
suffices to construct a coupling of G, ¢ and G, , such that these graphs differ in edges incident with
at most O, ,(en) check nodes. To construct the coupling we first generate the following parameters
for A.,. Parameter 7 = J (¢) is given. Generate @ € [ ] uniformly at random. Then generate

m ~ Po(dn/k) and m., = Bin(m, 1 — €) and then check nodes ay, ... s Am, - Each check node g; is
associated with an integer k; which is an independent copy of k. To distinguish G, , from G, o, we
colour these check nodes red. Add € check nodes py, ... ,pg to both G, , and G, & .

Next generate n variable nodes where variable node x; is associated with d;, which is an independent
copy of d. Further, letr; = 2;1”:1 1 {k;, = j} denote the prospective number of checks of G, o of degree
J- Applying Azuma’s inequality and (4.1), we see that for any € > 0 there exists L = L(g) > 0 such that



28_|_W ILEY: COJA-OGHLAN ET AL.

mg,

Zl{k,- :j}lﬂ] +P [m > me, + 2£a'n/k] <l1/n.
i=1

Perj>en|/ﬂ] +]P’l5lj§L:rj§

J>L

Hence, Lemma 4.2 implies that
mé.ﬂ

P lz rj > en|9 n/%] +P lﬂst i1 < ZI{kizj} forallj <L |2 n./%]

2L i=1

+Pm>m.,+2edn/k|D n M| <1/n=o0,1). 4.14)

Now condition on the event

mé.n
%:@n%n{ngen}n{Vst : n,>21{ki=j}}n{mgmg,ﬁzedn/k}.

i>L i=1

Uncolour all (red) check nodes a; with k; < L. Moreover, for each j < L, generate r; — Z;";i"l{k,- =j}
additional check nodes of degree j and colour them blue. Finally, for each j > L, generate r; blue check
nodes of degree j.

Now G, is generated by taking a random maximal matching from the clones of all uncoloured
and red check nodes {a;} X [k;] (excluding check nodes py, ... , pg) to the set of variable clones

Utx} x 141,
Jj=1

and then adding an edge between p; and x; for 1 < i < 0. The Tanner graph G, o is generated by
removing all matching edges from the clones of the red check nodes, and removing edges between p;
and g; for 1 < i < 0, and then matching all clones of the blue check nodes to the remaining clones of
the variable nodes. Finally, (4.14) ensures that with probability at least 1 — g, the two Tanner graphs
differ in no more than O, ,(en) check nodes. u

Proof of Proposition 2.6.  Assume that (2.8) is satisfied for C > 0 and fix C’ > C and a small enough
6 > 0. Then we find a small 0 < £ = £(6) < 6 such that

lim sup E[nul(A4,,)]/n < C+6.

n—oo

Hence, combining Lemmas 4.7 and 4.8 and taking into account that changing a single row can alter
the nullity by at most one, we conclude that

P [nul(A,5)/n < C+ O u(e)] > 1 =&+ 04(1). (4.15)
Finally, combining (4.15) and Lemma 4.3, we conclude that
P [nul(4,.5)/n < C+ Ocn(e)|S ] > 1 =6+ 04(1), (4.16)

provided that € = £(6) is small enough. Since A, 5 given & is identical to A,, the desired upper bound
on the nullity of A, follows from (4.16). The same argument renders the lower bound. [
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5 | THE AIZENMAN-SIMS-STARR SCHEME: PROOF OF PROPOSITION 2.7

In this section we prove Proposition 2.7. As set out in Section 2.2, we are going to bound the difference
of the nullities of A, ,+1 and A, via Proposition 2.4 and Lemma 2.5. This requires a coupling of the
random variables nul(A, ,+1) and nul(A, ).

5.1 | The coupling

We begin by introducing a more fine-grained description of the random matrices A, ,, and A, ;4] to
facilitate the construction of the coupling. To this end, let M = (M);>; and A = (A;);>1 be sequences
of Poisson variables with means

EM]=(1-eP [k=jdn/k, E[A]=(1-e)P[k=j|d/k (5.1)

All of these random variables are mutually independent and independent of 8 and the (d;);>;. Further,
let

My =M;+A;, m., =) M, mi,=) M. (5.2)

Since Ziz \M; ~ Po((1 —€)dn/k), (5.2) is consistent with the earlier convention that m, , ~ Po((1 —
e)dn/k).

The random vectors (dy, ... d,), M naturally define a random Tanner (multi-)graph G, yy with vari-
able nodes x, ... ,x, and check nodes py, ... ,pg and a;;, i > 1, j € [M;]. Its edges are induced by a
random maximal matching I',, 3y of the complete bipartite graph with vertex classes

n Mi
Utwd xid] and | Jtai} x L.
h=1

i>1 j=1

Each matching edge (x3, s, a;j, ) € I'yy induces an edge between x;, and g;; in the Tanner graph. In
addition, there is an edge between p; and x; for every i € [0].

To define the random matrix A, 5 to go with G, 5, let y : [0, 11?> - F* be a measurable map and
let (¢, &:)ij>1 be uniformly distributed on [0, 1], mutually independent and independent of all other
randomness. 7 With the rows of A,, 3y indexed by the check nodes of G,, 37 and the columns indexed by
the variable nodes, we define the matrix entries by letting

Ay, = i =J) (i € [6).h € [n]),
i d,
Ay, = Xe,8, D D A1 1), (@ijy )} €Tup} (2 1,j € [Mil,h € [n]).

s=1 t=1

The Tanner graph G, y+ and its associated random matrix A, y+ are defined analogously.

"Unfortunately at this point there does not seem to be an ideal notation for the matrix and its entries. Because the random vector
M depends on n and to preserve the analogy with common random graphs notation, we denote the random Tanner graph by
G,y and its associated random matrix by A, 5. At the same time, in line with linear algebra conventions, when indexing matrix
entries we let the first index refer to the row of the matrix and the second index to the column. Since the variable n nodes
correspond to the columns, a degree of incoherence seems unavoidable.
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Lemma5.1. Forany6 > Owe have E[nul(A, ,)] = E[nul(4, )], E[nul(A, ,+1)] = E[nul(A,4 1 4+)].

Proof. ~ We defined A, ,, as the m,, X n-matrix with target column and row degrees drawn from d
and k independently with a @ X 6 identity matrix affixed at top. In effect, because m, , is a Poisson
variable, the number of rows of with target degree i is distributed as M;, and these numbers are mutually
independent. Hence, nul A, , and nul A, are identically distributed. The same argument applies to
Ae,n+l- | |

Up to this point we merely introduced a new description of A, , and A, ,,1;. To actually couple them
we introduce a third random matrix whose nullity we can easily compare to nul(4,,57) and nul(A,,1 p+).
Specifically, let y; > 0 be the number of checks a;;, j € [M;r], adjacent to the last variable node x4
in G,y 4. Also let y = (y;)i>1 and set

M; = max{M; —y,,0}. 5.3)
In (5.3) the max is necessary because potentially y; might exceed M; as y; might include some of the
“extra” A; checks included in G, y+. Consider the random Tanner graph G’ = G, »- induced by a
random maximal matching I'" of the complete bipartite graph with vertex classes

n M;
Ut x1dil and - (J (Jtay) x 1.
h=1

i>1 j=1

For each variable x;, i = 1, ... ,n, let € be the set of clones from U
unmatched. We call the elements of € cavities.
Now, obtain the Tanner graph G’ from G’ by adding new check nodes

iemm 1%} X [d;] that '), - leaves

/"

a;j with target degree ifor each i > 1, j € [M; — M;]. 64

The new checks are joined by a random maximal matching I’ of the complete bipartite graph with

vertex classes
€ and U U {ai}} x [1],
i1 jelM,~M;

that is, for each matching edge we insert a corresponding variable-check edge.

Analogously, obtain G’ by adding one variable node x,.+1 as well as check nodes @}/, i > 1,/ € [y,]
and b;}’, i>1,j €M —M; —y;]toG The new checks are connected to G’ via a random maximal
matching I'""’ of the complete bipartite graph with vertex classes

€ and U U{a;j;}x[i—uu U (b7} x [i1].

i>1 \j€lr;] JEM;-M; —y;]

For each matching edge we insert the corresponding variable-check edge and in addition each of the
check nodes alf:j’ gets connected to x,4; by exactly one edge.

Finally, we introduce the random matrices A’,A”, A" whose nonzero entries represent the edges
of G',G",G"". Recalling that (¢, ;, ,);>1 are uniform on [0, 1] and independent of everything else,
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we additionally introduce independent random variables ( f o ¢ f;),- j>1, also uniform on [0, 1]. With the
rows and columns indexed by check and variable nodes, respectively, we define

A=Ay, =A =1{i=j} (i€[0],]€ [n)),

Al = AL =A== 06 21{{(xh,r) (@)} €X'} (i>1.j€M].hen)),
s=1 =1
i d,

;’th =, §hz D1 {{Gn0.@s) €T"Y} (> 1.j € [M; — My, h € [n)),
s=1 r=1

i-1 d,
Al = 20,8, 21 (oD @) €T")) (3 Lj€ lynhe .

K s=1 t=1
i d,
A, = xene, 2, 2D Blf.5) €T} (2 1Lj€ M M} —yl.h & [n).

s=1 t=1

In line with the strategy outlined in Section 2, this construction ensures that A” and A" are obtained
from A’ by adding a bounded expected number of rows and, in the case of A", one column. The
following lemma links A”, A" to the random matrices A,pm, A,;1p+ from the beginning of the
section.

Lemma5.2. We haveE[nul(A”)] = E[nul(A,m)]+0,(1) andE[nul(A"")] = E[nul(A,,;1 4+)]+0a(1).

The proof of Lemma 5.2, deferred to Section 5.5, is tedious but relatively straightforward.

As a next step we are going to calculate the differences nul(4”’) — nul(4”) and nul(A"") — nul(A").
We obtain expressions of one parameter of A, namely the fraction of cavities “frozen” to zero. To be
precise, a cavity (x;,h) € € is frozen if x; € FA'). Let F C € be the set of all frozen cavities and
define @ = |F |/|€ |; in the unlikely event that € = @, we agree that & = 0. In Sections 5.3 and 5.4
we are going to establish the following two estimates.

Lemma5.3. We haveE[nul(A”")—nul(A")] = E[D(1—K'(a)/k)+d (K’ (a)+K (@)~ 1)/k]—d +o.(1).
Lemma 5.4. We haveE[nul(A”) — nul(A")] = dE[aK’(a)]/k — d + 0.(1).

We emphasize that the r.h.s. expressions in Lemmas 5.3 and 5.4 involve expectations on the random
variable a. A key feature of the present argument is that we manage to avoid an analysis of a altogether.
This is because, as the following proof of Proposition 2.7 shows, we can just replace the difference of
the expectations by the largest conceivable value.

Proof of Proposition 2.7. ~Combining Lemmas 5.1 and 5.2, we see that

E[nul(A¢ n+1)] — Elnul(A¢ )] = E[nul(A,,1; )] — E[nul(A,,a)]
= E[nul(A”")] — E[nul(4")] + 0,(1)
= (E[nul(A"")] — E[nul4")])
— (E[nulA")] - E[nul(A")]) + oa(1). (5.5)
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Further, combining (5.5) with Lemmas 5.3 and 5.4, we obtain

Enul(A¢,+1)] = E[nul(A,,)] < E[D(1 - K'(@)/k) + d(K'(@) + K(@) = 1)/k — daK'(a)] /k + 0(1)
= E[®(@)] + 0(1) < max D(a) + o: (D). (5.6)

The proposition is an immediate consequence of (5.6). [

While proving Lemmas 5.3 and 5.4 in full detail requires a fair bit of work because we are dealing
with very general degree distributions d, k, it is not at all difficult to fathom where the right hand side
expressions come from. They actually arise naturally from Lemma 2.5 and the scarcity of short proper
relations supplied by Proposition 2.4. Indeed, we can write the matrices A”, A" in the form

A’ A0
A = (B> , A" = <B/ C,> i (5.7)

with B, (B’ C') representing the new rows and, in the case of A", the additional column. To calculate
E[nul(A”[0]) — nul(A’[0])] we basically need to assess the impact of adding a few more checks affi to
the Tanner graph G’ of A’. The new checks connect to randomly chosen cavities of A”. Let ky, ... , kg
denote the degrees of the new checks. Since the distribution k of the check degrees has a finite second
moment, the total degree k; + - - - + kz, is bounded a.a.s. The random matrix B therefore encodes the
non-zero entries corresponding to the edges that connect the a; ; with the cavities of A’ where the new
checks attach. Furthermore, the construction of A’ ensures that a.a.s. the number of cavities is as large
as (1+0,(1))edn, and the d] ; hatch on to randomly chosen cavities. Therefore, Proposition 2.4, applied
with & = 7 (e) large enough, implies that the probability that the set / of nonzero columns of B
forms a proper relation of A’ is o, (1). Consequently, Lemma 2.5 yields

E[nul(A”) — nul(4")] = —E[rk(B.)] + 0,(1), (5.8)

where B, is obtained from B by zeroing out all columns indexed by {(A”). Further, since the number
of cavities of A’ is as large as Q,(n) while ky +- - -+ k; = on(\/ﬁ) a.a.s., the matrix B has the following
form a.a.s.: there are L rows containing ki, ... , k; nonzero entries, respectively, and every column of
B contains at most one nonzero entry. Consequently, once more because there are as many as €,,(n)
cavities out of which an a fraction are frozen to zero, B.. is close in total variation to the matrix obtained
from B by zeroing out every column with probability @ independently. In effect, the probability that
the i-th row of B, gets zeroed out entirely is a® + 0,(1). Thus, a.a.s. we have

L
E[rkB,)|a, ki, ... k1] = Z (1—a") +oc,(D). (5.9)

i=1
Substituting (5.9) into (5.8) and the correct distribution of ki, ... , k; supplied by the coupling into
(5.9), we obtain the expression displayed in Lemma 5.4. To be explicit, the correct degrees &, ... , kL

are provided by (5.4), that is, there are M; — M; checks of degree i for every i. Hence, to obtain the
expression in Lemma 5.3 we need to analyze the random variables y; from (5.3). This analysis will be
conducted in Lemma 5.8 below, which shows that the y; are well approximated by the §; from (5.15),
which in turn come in terms of the reweighted check degree distribution from (1.10). A similar but
slightly more complicated calculation explains the expression in Lemma 5.3. We proceed to prove
Lemmas 5.2-5.4 formally. This requires a bit of groundwork.
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5.2 | Groundwork

Let P = Pg be the distribution on the set V,, = {x, ... ,x,} of variables induced by choosing a cavity
uniformly at random, that is,

Px) =€ n({xi} x [diDI/IE];

in the (unlikely) event that € = @, we use the convention P(x;) = 1. Let x;,x5, ... € V, be
independent samples drawn from P. The following lemma shows that |€ | is linear in n a.a.s.

Lemma 5.5. A.a.s. we have |6 | > edn/2.

Proof.  The choice (5.1) of M ensures that ijl JM; = (1 — €)dn. Moreover, because the M; are
mutually independent Poissons,

Var) jM; =Y VarMy) = Y PEIM;] = (1 — e)dnE[k*1/k = O, (n).

=1 =1 jz1

Consequently, Chebyshev’s inequality shows that

|

Similarly, we have EY_d; = dn and Var),_,d; = >.._, Var(d) = O, ,(n), whence

|

Since |€ | > ZZ; i — ZJ.Z ,JM; by construction, the assertion follows from (5.10) and (5.11). [

Zij—(l—e)dn

j=1

< \/Zlogn] =1-o0,(D. (5.10)

i d,' —dn
i=1

< \/ﬁlogn] =1=o0,(1). (5.11)

Further, letting Z, = [exp(1/&¢*)] and &, = exp(—1/&*), consider the event
& = {P[xi, ... ,x,, form a proper relation of A’|A"] <6.}. (5.12)

The following simple lemma is an application of Proposition 2.4.
Lemma 5.6.  For sufficiently large T = T (¢) > 0 we have P [A' € %] > exp(—1/g%).

Proof.  Lemma 5.5 provides that |€| > en/2 a.a.s. Moreover, since E[d] = O, ,(1) we find L =
L(¢) > Osuch that the event & = {7 di1{d; > L} < £63n/(16¢,) } has probability at least 1 -5, /8.
Thus, we may condition on the event &/ = Z N {|€| > en/2}.

Let %1, ... ,X,_ be a sequence of independently and uniformly chosen variables from xi, ... ,x,.
Consider a set %' C {xi, ... ,x,}%*. How can we estimate the probability that (xy, ... ,xz) € W' ?
Either one of the variables x1, ... ,x,_ has degree greater than L; on the event & this occurs with
probability at most 52 /16. Or all of xq, ... ,X¢, have degree at most L. Then the probability that
(x1, ... ,Xz) € W is not much greater than the probability that (¥, ... &) € # . To be precise,
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since X1, ... ,%,_are chosen uniformly and there are at least en/2 cavities, the probabilities differ by
no more than a factor of (2L/ €)’+. Hence, on the event &/ we have

P (@1, ... .x,) €W |A'] < QL[ PRy, ... &) €W |A'] +62/8. (5.13)
Applying (5.13) to the set 7" of proper relations and invoking Proposition 2.4 completes the proof. m

Further, consider the event
&' = {|%| > edn/2 A max d,-Snl/z}. (5.14)

Lemma5.7. We have P [&'] =1 - 0,(1).
Proof.  This follows from the choice of the parameters in (5.1), Lemma 1.11 and Lemma 5.5. n

To prove Lemmas 5.3 and 5.4 we need an explicit description of the vector y that captures the
degrees of the checks adjacent to the new variable node x;,4;. Since y is defined in terms of the the
“big” Tanner graph G, »+, ¥ and the random variables are stochastically dependent. However, the
next lemma shows that this dependence is very weak. Additionally, the lemma shows that the law of y
can be expressed easily in terms of the sequence (/}5)521 of independent copies of k from (1.10). Indeed,
let

drz+2

?f=21{l?i=j} and 7 = (7)z1- (5.15)
i=1

AlsoletA = (A ;)j>1 be a family random variables, mutually independent and independent of everything
else, with distributions

A; ~ Po((1 — &)P [k = jld /k). (5.16)

Further, let ¥’ be the c-algebra generated by G', A’, M~ and (d);c[n. We write y|X', A|X for the
conditional versions of y, A given ¥'.

Lemma5.8.  With probability 1 —exp(—Q ,(1/€)) over the choice of G', A, M~ and (d;)ic) we have
dry(y1Z,9) + drv(AIZ,A) = O, u(e'?).

Proof.  We begin by studying the unconditional distributions of y and A.

Let { = (Zi>1 iM;’)/(Zf:lld,-). Proceeding as in the proof of Lemma 5.5, we conclude that
Pl -2e<¢ < 1- €/2] = 1 — 0,(1). Further, given 1 —2¢ < { <1 —¢/2 we can think of G| y+
as being generated by the following experiment.

(i) Choose a set C C UZ:{ {x,} X [dy] of size (1 = ¢ )Z:’:lld,- uniformly at random.
(ii) Create a random perfect matching I'* of the complete bipartite graph with vertex classes

n+l M,Jr
<U (x4} X [dh]> \C and | J|J {ay}x1i.
h=1 1

i>1 j=
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(iii) Obtain G* with variable nodes xi, ... ,x,+1 and check nodes a;;, i > 1,j € [M]] by inserting an
edge between x;, and g;; for any edge of I'* that links {x;} X [d,] to {a; i1 X [il.
In other words, in the first step we designate the set of € = C of cavities and in the next two steps
we connect the noncavities randomly.
By way of this alternative description we can easily get a grip on the degree of x,,;;. Indeed, given
that d,,; < £'/2, the probability that one of the clones {n + 1} X [d,4] ends up in C is O,(¢'/?).
Hence, the actual degree d)y,; of x,..1 in G* satisfies

drv (A1 [{dsr < e777),d) = O, (') (5.17)

Regarding the degrees of the checks adjacent to x,4, by the principle of deferred decisions we can
construct I'* by matching one variable clone at a time, starting with the clones {x,;1} X [d,+1]. Clearly,
in this process the probability that a specific clone of x,;; links to a specific check is proportional to
the degree of that check. Therefore, since E ZM iM l+ = O (1), we find a fixed number L such that
with probability 1 — O, ,(¢™!) all checks adjaceﬁt to x,+1 have degree at most L. Further, Chebyshev’s
inequality shows that M;" = (1—€)P [k = ildn/k+o,(n) foralli < Land Y., iM] = (1—¢&)dn+0,(n)
a.a.s. In effect, if d,,, < £7'/2, the d,,4 choices of the checks are asymptotigally independent, and the
distribution of the individual check degrees that x,.; joins is at total variation distance o,(1) of the
distribution k. In summary, given M} = (1 — £)P [k = ildn/k + 0,(n) for all i < L and Y iM =
(1 — &)dn + 0,(n) we have -

drv(y,7) = Oca(e'/?). (5.18)

Moreover, it is immediate from (5.1) that the unconditional A is distributed as A.
To complete the proof we are going to argue that M~ ,d,, ... ,d, and y, A are asymptotically inde-
pendent. Arguing along the lines of the previous paragraph, we find that for large L = L(g) > O the

event
H =3 D iAi+y)<L g,
i>1
occurs with probability P[%# ] > 1 — exp(—1/&2). Consequently, the event

Z ={P* M ,dy, ... ,d,] >1—exp(—1/e)},

satisfies P[Z] > 1 — exp(—1/¢). Moreover, since M comprises independent Poisson variables, the
event

M = {Vi <L:|M; —E[M,]| < \/Zlnn}

N {Z d;=(1 —£)dn+0,,(n)} ) {Z iM; =( —e)dn+0n(n)} s
i=1

i>1
satisfies P[.Z] = 1 — 0,(1). In summary,

P[H]>exp(=1/e%), P[L]>1—exp(=1/e), PLUIF]=1-o0,). (5.19)
Further, we claim that for any outcomes (M ™, dy, ... ,d,) € £ N and (y,A) € H,

Ply=y,A=AM =M",Vi€[n] : d;=d] ~P[y = y]P[A = A]. (5.20)
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Indeed, on the event .# we have M; = E[M;]+ O, <\/ﬁ In n) = Q,(n) for any i < L in the support of
k, the local limit theorem for the Poisson distribution yields

PM =M Vi<n:di=dly=y,A=A=PM=M +yVi<n:d=dly=y,A=A|

_Plr=rA=AM=M +rVi<n:d=d] -P[M=M‘+y]'ﬁP[d~=d‘]

Ply=y.A=A] 11
Ply=yIM=M"+y,Vi<n:di=d,A=A o
=(1+0n(1)) [ P[y—y] ]P[MzM]HP[dlzd,]

- i=1

(5.21)

Finally, given M = M~ +y and A = A we have M] = (1 — €)P [k = ildn/k + o0,(n) for all i < L and
Zi> . iMi+ = (1 — €)dn + o,(n). Therefore, by the principle of deferred decisions, once we condition
ona likely outcomes M~ of M™, d\, ... ,d, and of A, the conditional probability of obtaining y = y is
close to the unconditional probability:

Ply=yIM=M +y.¥i<n:d =d,A=A] =(+0,(1)P[y =7.

Hence, (5.20) follows from (5.19) and (5.21).
Finally, to complete the proof we combine (5.19) and (5.20) to conclude that with probability
1 - eXP(—Qs,n(l/E)),

Ply=r.A=AlL]|=Ply=y,A=AIM dy, ... .d,| = (1 +0,(DP[y =yIP[A = A]. (522)

The assertion follows from (5.18) and (5.22). .

5.3 | Proof of Lemma 5.3

The proof comprises several steps, each relatively simple individually. Let

X=) A, Y=Y i, Y =) iy

i1 i1 i1

Then the total number of new nonzero entries upon going from A’ to A" is bounded by Y + Y’. Let
&' ={XVvYVvY <1/e}.

Claim5.9. Wehave P [&"] = 1= O ,(e).

Proof.  Since (5.1) yields E[X], E[Y] = O (1), Markov’s inequality yields P [X > 1/e] = O, ,(¢)
and P[Y > 1/€] = O, »(¢). Further, we can bound the probability that a check of degree i is adjacent
to x,+1 by id,1 /n, because one of the i clones of the check has to be matched to one of the d,,,; clones
of x,+1 and Y\ d; > n. Hence,

E[Y|=E) iy, <E ) kidui/n=0c,(1).

i>1 i€lm} ]

Thus, the assertion follows from Markov’s inequality. [
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Going from G’ to G" we add checks &}/, i > 1,j € [y ] and b}, i > 1,j € [M{ — M; —y,]. Let

Ve

Yi
7= (U Uaa;;./\{x,,+l}>u U U el

i1 j=1 i1 jelM}-M; ~y,]

comprise all the variable nodes adjacent to the new checks, except for x,,.;. Further, let

@ {|5[| =Y+ )- l)yi}’

i>1
be the event that the variables of G’ where the new checks attach are all distinct.
Claim 5.10. Wehave P ["|&' N &"] =1 — 0,(1).

Proof.  Given &’ there are Q,(n) cavities in total, while the maximum number belonging to any one
variable is On(\/Z). Further, given €” we merely pick a bounded number ¥ + Y’ = O, ,(1/¢) of these
cavities randomly as neighbors of the new checks. Thus, the probability of hitting the same variable
twice is 0,(1). [

Claim 5.11. We have E [|nu1(A’”) -mulA)|(1-18n& ' n&"n %’”)] = 0.,(1).

Proof.  Clearly [nul(A”") — nul(A")| < X+d,.; +1 because going from A" to A"’ we add one column
and at most X + d,,; new rows. Consequently, as E[XZ],]E[dﬁH] = O, (1), the Cauchy—Schwarz
inequality yields

E [|nul(4”") — nuld)| (1 = 18")] < E[(X +dppr + 1] (1P [8"])* = 0,,(1).  (5.23)

Furthermore, Lemma 5.6 and Claims 5.7-5.10 readily imply that

E [|nul(4") — nul(A")| 18" \ &]| < Ocn(e™") exp(—1/€") = 0e4(1), (5.24)
E [|nul(4") - nul(4")| 18"\ &' ,E [|nul(A"") — nulA")| 18" n &'\ "] = 0,(1).  (5.25)

The assertion follows from (5.23)—(5.25). [

We obtain G"’ by adding checks ]/ adjacent to x,4; and b/ not adjacent to x,;. Recall that &

signifies the fraction of frozen cavities. Further, let £ D ¥’ be the c-algebra generated by G', A’, M _,
(d))ien+11> ¥>M and A. The random variable a and the events &, &', &’ are X" -measurable, but &'’
is not. Indeed, given X the specific cavities of G’ that the new checks '/, b}/ join are still random.

i

Claim5.12. Ontheevent & N &' N &' we have

E [(nul4”) — nul4")) 18" |£"]
=0+ ][]0 = @™y = Y A = a Ny = Y (UM - M; - ).

i>1 i>1 i>1
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d ={dff i>1 jelyl}.
be the set of all the new checks connected to x,,; and let
— /2 . + —
B=A{b] i1, jeM -M; —y]},

be the set of all the new checks not connected to x,,4 1. Let B be the {0, 1 }-matrix whose rows are indexed
by & U % and whose columns are indexed by V,, = {xy, ... ,x,} such that for each a € & U B’ and
each x € V, the corresponding entry equals one iff x € dgna. Further, obtain B from B by replacing
each one-entry by the entry supplied by y that represents the respective new edge of the Tanner graph.
If the event &’ occurs, then each column of B contains at most one nonzero entry and each row
contains at least one non-zero entry. In effect, B has full rank, that is,

tk(B) = | UB| =) Mf —M;.

i>1

Further, let B.. be the matrix obtained from B by replacing all entries in the x-column by zero for every
x € FA. Finally, let C € FZY% pe a column vector whose entries C,,, a € o/, are the entries from
x representing the edges of the Tanner graph G”” incident with x,4; and whose remaining entries Cj,
b € A, are equal to zero.

By construction, on the event & N &' N &" N &' we have

"0
nuld”’ = nul )
B C

Moreover, on &’ the set """ of nonzero columns of B has size at most | 2| < Y+ Y < 2/e,
while there are at least edn/2 cavities. As a consequence, even though the sequence of cavities that
the new checks join are drawn without replacement, this sequence is at total variation distance o0,(1)
from a sequence of independent samples from the distribution P. Therefore, on & N &' N &' the
conditional probability given &’ that & "’ forms a proper relation is bounded by O, ,(exp(—1/€*)).
Hence, Lemma 2.5 implies thaton & N &' N &,

E [(nulA"") - nul(4")) 18"|2"] =1 - E [tk B, C) |Z"] + 0 (D). (5.26)

On &’ the matrix @ = (B, C)is a block matrix that decomposes into the & -rows Q, and the %-rows
Q4. Hence, 1k(Q) = rk(Q,) + rk(Q 4). To complete the proof, we claim that

E [tk (Qg) IZ"] = ou(1) + Z (1-a') M —M; —y), (5.27)
i>1
E k@)X =0,(1)+ Y (1—a )y, + 1= [J(1-a™")", (5.28)
i>1 i>1

where, as we recall, a is the probability that a cavity chosen from p( - ) is frozen. Indeed, the probability
that a 8-row of B that contains precisely i nonzero entries gets zeroed out completely in B, equals
a' + 0,(1) and there are M — M; — y, such rows; hence (5.27).
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Similarly, the probability that an &/ -row of B with i — 1 nonzero entries gets zeroed out completely
in B, equals a~! + 0,(1) and there are y; such rows. Hence, the expected rank of the &/ -rows of B,
equals Zizl (1 - ai_l) ¥; + 0,(1), which is the first summand in (5.28). Moreover, the presence of
the C-column adds one to the rank of Q, unless not a single one of the & -rows of B gets zero out,
which occurs with probability Hiz . (1 —ai-! ) v +0,(1). Hence, we obtain (5.28). Finally, the assertion
follows from (5.26)—(5.28). [

Proof of Lemma 5.3. LetG =& N& Nn&" n&". Combining Claims 5.9-5.12, we see that

E ’IE [ul(4”") — nul(A")|£"]

- <H(1 — o= Y (I —a Ty = Y1 - a)Mf - M; - m) 16

i>1 i>1 i>1

=o0.,(1). (5.29)

Since on € all degrees i with M — M; — y; > 0 are bounded and Chebyshev’s inequality shows that
; ~ E[M;] = Q,(n) for any fixed i a.a.s., (5.3) yields M; = M; — y; a.a.s. Hence, (5.29) turns into

E

E [nul(4"") - nul4")|£"] - (H(l —a Y =Y —a - Y- ai)Ai> 18"

i>1 i>1 i>1

= ocall). (5.30)

Further, since Ziz] v; <dp1 and E[d,11] = O (1), we obtain

E l(H(l —a - Y- ai_l)yi> 1@]

i>1 i>1
=E <H<1— a ™y - Y- ")y)l@ {Z y,-ga‘l/“}]we,n(l)
i>1 i>1 i>1
=E <H<1 a=y = (1 - ’1>y> {Z y,<e‘1/4} + 0 (1)
i>1 i>1 i>1

[by Lemmas 5.6 — 5.7 /Claims 5.9 — 5.10]

=E <H(1 —d - Y-« ) {Z §, < 5—1/4} +0.,(1) [by Lemma 5.8]

i>1 i>1 i>1

—E[(-a )y —d- dai‘_l] +0c,(1) [by the def. of 7]

—E|D(1 - K'(a)/k) - d — %K’(a)] +0en(1) [by(1.10)]. (5.31)

Similarly, Claim 5.9, Lemma 5.8 and the construction (5.16) of A yield

E K;(l - a’)A,»)l%”] =E [(;(1 - al')A,-)l {; A; 55—1/3}]

+o0c,(1)=E lZ(l - a")&] + 0c (1)

i>1
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= 0ea )+ (1= LY Pk =] B[l - ]

i>1

- d_d
= 0. ,(1) + X kE[K(a)] (5.32)

Finally, the assertion follows from (5.30), (5.31), and (5.32). [

5.4 | Proof of Lemma 5.4

The argument resembles the one from the proof of Lemma 5.3 but the details are considerably more
straightforward as we merely add checks to obtain A” from A’. As before we consider the events &, &’
from (5.12) and (67) Moreover, recalling that the total number of new non-zero entries when going
from A’ to A” is bounded by d,,, we introduce &" = {d,,; < 1/e}.

Claim5.13.  We have P [&"] = 1 — O, .(€?).

Proof.  This follows from the assumption E[dﬁﬂ] = O¢ (1) and Chebyshev’s inequality. [

Further, similarly as in the proof of Lemma 5.3 we consider the set

=\ U

i1 jelM,~M; |

of variable nodes adjacent to the new checks. Let &' be the event that none of the variable nodes in
Z is connected with the set of new checks by more than one edge.

Claim 5.14.  Wehave P [&"|&' n&"| =1 - 0,(1).

Proof.  Given &' there are Q,(n) cavities in total, with each variable node contributing no more
than On(\/ﬁ) cavities. Moreover, given & we choose O, ,(1/¢) of cavities randomly to attach the new
checks. Consequently, the probability of twice choosing a cavity with the same underlying variable is
o,(1). n
Claim 5.15.  We have E [|nul(4”) — nulA")| (1 =18 N &' n&" N &"")| = 0. .().

Proof.  Wehave [nul(A”) — nul(A")| < d, as we add at mostd,,..; rows. Because E[d,+1] = O¢,(1),
Claim (5.13) and the Cauchy—Schwarz inequality yield

E [|nul(A”) — nulA")| (1 = 18")] < E[dﬁH] 1/2(1 —P[&D? = 0.,(1). (5.33)
Moreover, Lemma 5.6, Lemma 5.7, and Claim 5.14 show that

E [|nul4”) - nul(A")| 18"\ &],E [|nulA”) — nul(A")| 18" \ &']
E [|nul(A”) — nul(A")| 1&" \ "] = 0,a(1). (5.34)

The assertion follows from (5.33) and(5.34). [
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The matrix A” results from A’ by adding checks a}’;, i > 1, j € [M; — M; ] that are connected to
random cavities of A’. Moreover, as before let ¥’ D X' be the o-algebra generated by G', A’, M_,
d)icin+1), ¥>M and A. Then &, &', &" are £'-measurable, but &"” is not.

Claim5.16.  Ontheevent En&’'N&" wehave E [(nul(A”) — nul(A" )18 L] = 0 n(1)—= Y5, (1—
aY(M; - M;).

Proof. Let & be the set of all the new checks af;, i>1l,je[M;—M;]. Let B be the {0, 1}-matrix
whose rows are indexed by & and whose columns are indexed by V,, = {xi, ... ,x,} such that for
each a € &/ and each x € V,, the corresponding entry equals one iff x € dgra. Further, obtain B by
substituting each one-entry of B by the appropriate nonzero field element from y. If & occurs, then
B has rank tk(B) = |&/ | = Y., Mi — M}, because no column contains two nonzero entries and each
row contains at least one nonzero entry. Further, let B, be the matrix obtained from B by replacing all
entries in the x-column by zero if x € F(A") is frozen to zero in A’.

Ontheevent & N &' N&" N & we have

" o_ Al
nulA” = nul sl (5.35)

Moreover, on &' N &" the set " of non-zero columns of B has size at most | 2| < d,41 < 1/e,
while there are at least edn/2 cavities. Hence,on & N &' N &" N &' the probability that " forms
a proper relation is bounded by exp(—1/&*). Therefore, Lemma 2.5 implies that

E [(nul(A”) — nul(4")) 18" "] = 0c(1) — E [tk (B.) [£"] . (5.36)

Further, since an a-fraction of cavities are frozen, a row of B with i nonzero entries gets zeroed out
completely in B, with probability &’ + 0,(1). Consequently,

E [tk (B.) [£"] = 0ca(1) + 2 (1-a') M; - M;). (5.37)

i>1
Finally, the assertion follows from (5.36) and (5.37). [

Proof of Lemma 5.4. LetE =& N& N&" n&".Combining Claims 5.15-5.16, we obtain

E |E[nul(A”) — nul(4")|="] + (2(1 — oYM, —M,-‘)) 16| = o,.,(1). (5.38)

i>1

Since on € all degrees i with M} — M; > 0 are bounded a.a.s. and M; = Q,(n) a.a.s., we conclude
that M; — M; =y, for all i > 1 a.a.s. Hence, (5.38) turns into

E = 0 n(1). (5.39)

E[nul(A”) — nul(4")|="] + <Z(1 - a")r,-> 1€

i>1

Further, because )., ¥; < dyy1 and E[d,11] = O, . (1),

Az
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KZ“ - ’)71> {Z yise /4}] + 00 n(D[by Claim 5.13]

i>1 i>1

=E l(Z(l - ai)f'z) 1 {z 7: < 6_1/4}] +0.,(1) [by Lemma 5.8]
i>1 i>1

= dE[1 — o] + 0,(1) = —dE[aK'(@)]/k + d + 0.,(1) [by(1.10)]. (5.40)

The assertion follows from (5.39) and (5.40). [

5.5 | Proof of Lemma 5.2

Once more we break the proof down into a few relatively simple steps.

Claim 5.17.  We have E[nul(A”)] = E[nul(4,.)] + 0,(1).

Proof.  The choice of the random variables in (5.1) and Lemma 1.11 ensure that the event & =
{Zizl iM; < dn/ k} has probability 1 — 0,(1/n). Further, given & the random variables nul(A”) and
nul(A, ) are identically distributed by the principle of deferred decisions. Because the nullity of either

matrix is bounded by 7 deterministically, the claim follows. [ |

To compare nul(A"”) and nul(A,,, 5+) we consider the event

&t = {‘21:_ 1M+<Zdl,Vz>n/lnn M} = 0}.

i>1 i=1
Claim5.18.  Wehave P [€*] = 1 - 0,(1/n).
Proof.  This follows from the definition (5.2) of the random variables M;" and Lemma 1.11. [

Further, consider the event

W = {dn+1 <Inn, 2 iAi+y,) < 1n4n} .

i>1
Claim5.19. Wehave P[Z 1 =1 - 0,(1).
Proof.  This follows from the assumption that E[d?], E[k*] are bounded. [
Moreover, let % be the event that x,,4; does not partake in any multi-edges of G, y+.
Claim5.20. Wehave P [%|% n&*] =1—0,(In"°n).

Proof. Given #" N & variable node x,+; has target degree at most Inn and all check degrees are
bounded by 7/In’n. Hence, the probability that x,.,; joins the same check twice is O,(In""n). u

The next claim shows that nul(A””), nul(4,,, +) can be coupled identically on the ‘bulk’ event
EXNUNT .
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Claim 5.21.  Given &* N% N % the random variables nul(A”’) and nul(A,,, 5+) are identically
distributed and thus

E [(nul(A") - nul(A,.4; y)) 1% N W N E*| =0. (5.41)

Proof. By construction, on & N % N 7 the random matrices A" and A, 5+ are identically
distributed, and hence so are their nullities. n

In light of Claims 5.18 and 5.21 we are left to bound the difference of the nullities on &*\ (% N%").

Claim 5.22.  There is a coupling of A, 5+ and A"’ on &* such that [nul(A") — nul(A,;; p+)| <
2. A+ 7).

Proof.  We estimate the number of edges of the Tanner graph G, 5+ incident with the checks a;,
M; < j < M; or the new variable x,.1 of G, y+. By construction, there are at most 2121 i(Ai+7,)
such edges. Similarly, there are no more than 3., i(A; + y;) edges incident with the new checks a;’/,
b}!{ added to A" to obtain A”’. By the principle of deferred decisions on &” we can couple the Tanner
graphs of A”” and A, y+ such that they coincide on all the edges that join variables xi, ... ,x, and
checks a;;, j < M;, and hence the matrices themselves so that they coincide on all the corresponding

matrix entries. Consequently, A" and A, 5+ differ in no more than 2 3., i(A; + y,) entries. n
We proceed to bound the difference of the nullities on &t \ 7.

Claim 5.23. We have E [221 A +y)1&*\ W] = 0,(1).

Proof. Theevent &t \ 7 is contained in the union of the three events

Q = %+n{3i>logn e >0}, @ =& " n{d, >logn}\ @,

@3 = %+ﬂ {Z iA,‘ >1n3n} \(@1 U@z).

i>1

To bound the contribution of @, consider mf,, = ¥, M ~ Po((1 — €)d(n + 1)/k). We claim that,
with the copies (k;);>; of k independent of everything else,

E lz iy,ml] < 0,(1/m) |1+ E| Y 1{k; > logn}kid, || =

i>1 i=1
0,(1) - P [k > logn] + 0,(1/n) = O,(log2n). (5.42)

Indeed, the last equality sign follows from the first because E[kz] = 0,(1) and the first equality
sign follows because my, is independent of d,,; and the k;. Further, to obtain the first inequality we
consider the m{, checks one by one. The degree of the ith check is distributed as k;. We discard it
unless k; > logn. But if k; > logn, then the probability that k; is adjacent to x,.; is bounded by
O,kid,,/ ZZ:idh) and Ezzldh > n. Thus, we obtain (5.42). Further, we observe that (5.42) yields
P[G,1<E 2521 iy;1@Q, = On(log_zn). Hence, as E Zizl iA; = 0,(1) we obtain
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E Z iA10, | <P[G]logn+E Z iA1 Z iA; > logn o | = o0,(1). (5.43)
i1 i>1 i>1
Combining (5.42) and (5.43), we conclude that
E lz i(A; + y,)l@l] = 04(1). (5.44)
i>1

Regarding @,, we deduce from the bound E[d}, ] = O,(1) for an r > 2 that

E lz iyll@z] < 0,(1og W)E [dys11{d,s1 > logn}] = 0,(1). (5.45)
i>1

Moreover, since the A; are independent of d,,.; and E Ziz1 iA; = 0,(1), we obtain E [Ziz1 iAiICQz]
= 0,(1). Hence, (5.45) yields

E [Z i(A; + y,)l@zl = 0,(1). (5.46)
i>1
Moving on to @3 and recalling the definition (5.2) of A, we find

P[G;] <E lz iAi] In"3n = 0,(E[k*]In"*n) = 0,(logn). (5.47)

i>1

Moreover, on @3 we have Zizl iy, < log?n because d,,; < logn and y; = 0 foralli > logn.
Consequently, since the A; are mutually independent and Eiz1 E[iA;] = 0,(1), (5.47) yields

E lz i(A; + y,.)1@3] <ou(1) +4E lZ iA1 {Z iA; > 1n3n}] = 0,(1). (5.48)

i>1 i>1 i>1
Finally, the assertion follows from (5.44), (5.46), and (5.48). [

Proof of Lemma 5.2.  The first assertion concerning A" and A,, ys follows from Claim 5.17.

Concerning A”" and A, 5+, Claim 5.18 shows that it suffices to couple nul(A”")1&* and
nul(A,, »+)1&", because both random variables are bounded by n + 1. Indeed, thanks to Claim 5.21
we merely need to couple nul(A”")1&*\ (X N%" ) and nul(A,,,; 5 )1E T\ (¥ "W’ ), and Claim (5.22)
supplies a coupling such that

|nul(A")1E = nul(A, 4 4)| 1E\ X T ) <2 iA +y1E N\ AT ). (549

i>1

Hence, it suffices to show that

E Z A+ y)IENUNT )| = 0a(1). (5.50)

i>1
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Indeed, in light of Claim 5.23 we merely need to estimate Zizl i(Aj+y)1Er N \ % . But since on
E*NW wehave ). i(A;i +y,) < In*n, Claim 5.20 yields

E [ iAi+y)1& n# \%| < (1-P[Z|E* 07 ]) In*n = 0,(1). (5.51)
i>1
Finally, the assertion follows from Claim 5.23 and (5.49)—(5.51). n

6 | PROOF OF THEOREM 1.2

We describe how to extend the proof of [47] to G. First, we will work on G = Gy, (defined in
Section 2.2), the configuration model for G. By Lemma 4.3, properties that holds with probability
1 —0,(1) for G also hold with probability 1 — 0,(1) for G. Second, using the terminology in [47], vari-
able nodes in G are called vertices, and each check node corresponds to a hyperedge in the following
sense: if f; is a check node adjacent with variable nodes {v,,, ... , V4, } for some & > 1, then the set
of vertices {vg,, ... ,vq, } is called a hyperedge. A check node with size 0 corresponds to an isolated
hyperedge with size 0, i.e. this hyperedge does not contain any vertex.

Suppose P(d > 2) > 0 as otherwise the theorem holds trivially by Remark 1.3(b). We first prove
Theorem 1.2 in the case k > 1. Consider the parallel stripping process where all vertices of degree
less than 2 are deleted in each step, together with the hyperedges (if any) incident with them. Take
a random vertex v € [n]. Let A, be the probability that v survives after ¢ iterations of the stripping
process. It is easy to see that 4, is monotonically non-increasing and thus A = lim,_,, 4, exists. For
any vertex u € [n], let &/(u) denote the set of vertices of distance j from u. Recall that there exists a
constant ¢ > 0 such that Ed**® < co and Ek*™* < co by our assumptions on d and k. We claim that

Claim 6.1. With high probability, the maximum degree and the maximum size of hyperedges in G
are at most (nlogn)!/?+®_ and for every u € [n] and for all fixed R, | Uj<g &/ ()| = O,(n'/**?log*n).

Let H, be the subgraph of G obtained after ¢ iterations of the parallel stripping process. Consider
Doob’s martingale (IE(H,|e, ... ,e;))o<j<m Where random hyperedges are added in the orderey, ... , e,
using the configuration model, and m denotes the number of hyperedges in G. By Claim 6.1, swapping
two clones in the configuration model would affect H; by O,(n'/@*?log’n), as each altered hyper-
edge can only affect the vertices (if surviving the first rth iteration or not) within its z-neighborhood.
Standard concentration arguments (see, for instance, the proof of [, theorem 2.19]) based on Azuma’s
inequality (with Lipschitz constant Cn'/@*+®]og?n for some fixed C > 0) produce that ||H,| — An| =
0,(n4+9)/ 44291093 n) = 0,(n). Next we deduce an expression for 4,. Consider a random hypertree T
iteratively built as follows. The root of T is v, which is incident to d, hyperedges of size ki, ... , kg,
where the k;s are i.i.d. copies of k where

Pk = j) =MT=D. 6.1)

Then the ith hyperedge is incident to other k; — 1 vertices (other than v) whose degrees are i.i.d. copies
of d, where

Pd =j) = w. (6.2)
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This builds the first neighborhood of v in T. Iteratively we can build the r-neighborhood of v in T
for any fixed r. It follows from the following claim that the r-neighborhood of v in G converges in
distribution to the r-neighborhood of 7', as n — oo, for any fixed » > 1. This is because when uniformly
picking a random variable clone (or check clone), the degree of the corresponding variable node (or
check node) has the distribution in (6.2) (or (6.1)). Let S be a set of vertices in G. We say S induces
a cycle if there is a closed walk xox; ... x, = xp such that all x; € S, and every pair of consecutive
vertices in the walk are contained in a hyperedge in G.

Claim 6.2.  With high probability, for all fixed R > 1, Uj<zgd’(v) induces no cycles.

(The proofs of Claims 6.1 and 6.2 can be found at the end of this section.) If v survives ¢ iterations
of the stripping process then at least two hyperedges incident with v survives after ¢ iterations of the
stripping process. On the other hand, let x be a hyperedge of size at least 1 and let u be a vertex incident
with x. Let p, denote the probability that u is incident with at least one hyperedge other than x which
survives after ¢ iterations of the stripping process. We will deduce a recursion for p, and then deduce
A, from p,. Note that the degree of u follows the distribution from (6.2). Then, ignoring an 0,(1) error
accounting for the probability of the complement of the events in Claims 6.1 and 6.2:

po=1,
and
p=YXHE2 3 ¥ HIP(k =[]/ T] a-p
Jj>2 d SCj—-11,IS|=>1 &y, k =1 = ieS ie[j—11\S
h j—1=h
ZJ]P’(d ])Z ( > (2 Pk = k')pf'_1> (2 PGk = K')(1 — pt)k’—1>
i>2 =1 K>1 K>1
A= (i-1\ (K@) K@)) ™
; ;< >< >(L'k >
jPd=)) K\, Pa-5
O
noting that
-1 _ Z Pl = K')pt'~! Zﬂp’(k J)p,_ @
k>1 j=1
Consequently,
) h j—h
=Y Pd=pY, (1) (Z P = K p,k’—1> (1 -3 Ph= p,k’—1>
Jj>2 h>2 kK>1 k'>1
h . \Jj-h
=Y ra=HY (’ 1 —Epk!
- 303, () () (- m)

B A (K@Y K, K
_J;P(d_p<1 <1 k > i (1 p > >
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=P(d22)—<D<l—KI,(<”’)>—P(d=0)—P(d=1)<1_’<'(/’f)>>

_ (K@) K@)\ g K )
<kD/<1k>IP(d1)k)

_1-D <1 _ K’(p,)> _K'G)p, (1 _ K’(p») .
k k k

Letg(x) = 1- éD’(l - %). Then g'(x) = iD”(l - %)K”(x) which is nonnegative over [0, 1].
We also have ¢(x) = g(x) — x, where ¢ is given in (1.4). Since ¢(1) = —=D'(0)/d < 0, ¢'(p) < 0 by
the hypothesis, and g(x) is nondecreasing in [0, 1], it follows that |g’(p)| < 1 and thus p is an attractive
fix point of x = g(x). As py = 1. It follows that p; — p as r — co. Consequently, for every £ > 0 there
is sufficiently large I such that |p, — p| < £. Hence, after [ iterations of the parallel stripping process,
the number of vertices remaining is (4 + o(1))n + O, (€n) where

—1_ K\ KO, _ Kb
A=1 1)(1 = > = D<1 = > 6.3)

If p = 0 then 4 = 0 by Remark 1.3(c). Our theorem for rn* follows by letting / — 0. Since k > 1,
K(0) = 0 and thus m* /n = %K(O) + 0z,(1) = 0 ,(1). This establishes (1.6) when p = 0.

Suppose p > 0. It is sufficient to show that the 2-core is obtained after further removing O,(én)
vertices, following the same approach as [47, lemma 4]. We briefly sketch it. Following the same
argument as before, the probability that a random vertex has degree j > 2 after [ iterations of the
stripping process is

/ i~j
ZP(d—l)( >(Epllc 1)1(1 Epk l)z—]_gp(d_ )( )(Kipl)) <1_I<](<p1)>

Similarly, the probability of a uniformly random hyperedge in G having size j > 1 and surviving the
first I iterations of the stripping process is

Pk = j)p).

The number of vertices with degree less than 2 after / iterations is bounded by (4; — A;41)n + 0,(n).
Hence, by choosing / sufficiently large, we can make these quantities arbitrarily close to those with p;
replaced by p. Now standard concentration arguments apply to show that the number of degree j > 2
vertices is y;n + O,(én), where

ZP(d_ )( )(K(p)> <1_Kf]§p)>f—j,

the number of vertices of degree less than 2 is O, (€n). Similarly, the number of remaining hyperedges
of size j is P(k = j)p/m + O,,(én), and the total degree of the remaining vertices is

mz JPUe = )P + O,(én) = mpK' (p) + O,(én) = (dn/k)pK' (p) + Op(n). (6.4)

=1

Note that £ can be made arbitrarily small by choosing sufficiently large /.
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Now we remove one hyperedge incident with a vertex with degree 1 at a time. Call this process
SLOWSTRIP. Let G, denote the hypergraph obtained after ¢ steps of SLOWSTRIP and let X; denote
the total degree of the vertices of degree 1 in G;, Then, for all ¢ = O,(€n) such that X; > 0:

EXe1 — Xi1Gy)

ZJIF’(k =j)p'm G=1)- 2yon +0,)

Mpmmz (dn/k)pK'(p)
2 2(K'(p)/K*D"(1 = K'(p)/k)
=-1 - Pk = 2 0,(¢
) pK'< ) <J>z;’(’ Jrk=po > K'(p)dp/k O

D"(1 - K'(p)/HK" (p)

=—1+
kd

+ 0,(8).

Note that in the first equation above, —1 accounts for the removal of one variable clone x from the set
of vertices of degree less than 2. The term jP(k = j)p/m/pK'(p)m approximates the probability that x
is contained in a hyperedge of size j, up to an O,(€) error. In that case, j — 1 variable clones that lie in
the same hyperedge as x will be removed. For each of these j — 1 deleted variable clones, if it lies in
a variable of degree 2, then it results in one new variable node of degree 1. The probability for that to
happen is approximated by 2y,n/D;, up to an O,(€) error, where D, denotes the total degree of G, and
by (6.4), D, = (dn/k)pK'(p) + O,(£n). For the second equation above, note that

=Y Pd= (’%j’”) (1 - K’,ﬁ””) +0,0) = —(K ,f”)) D'(1 = K'(p)/k) + 0,(@).
>2

By the assumption that ¢’ (p) < 0 we have

L, D' =K'(p)/)K" (p)
1+ d <0

Hence, E(X;+1 — X;|G;) < —6 for some 6§ > 0, by making £ sufficiently small (i.e. by choos-
ing sufficiently large /). Then the standard Azuma inequality [lemma 29] (with Lipschitz constant
(nlogn)'/@+%) by Claim 6.1 will be sufficient to show that X; decreases to 0 after O,(én) = 0z,(n)
steps (See details in [47, lemma 4]). The case p > 0 of the theorem follows by

*

lim ™ = im 7. Z Pk = j)p = fK(p)

n—oo n—oo
n n j=1

as desired. This proves (1.6) when k > 1.

Suppose now that po = P(k = 0) > 0. Let G be the hypergraph obtained from G by deleting all
hyperedges with size 0. Let 7z denote the number of hyperedges in G. Then, with probability 1 —o0,(1),
7t ~ (1 — po)m. The size of a uniformly random hyperedge in G has the same distribution as k, defined
by k conditioned on k > 1. Let k = Ek. Then, k = k/(1 — py). Let K(a) be the probability generating
function of k. Then, immediately

K(a) = ’“1%;0”0 K () = f_—(”‘pi K@) = f_—(;z
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Let @ be the function obtained from ® by replacing K(a), K’(«) and k by K(a), K (a) and %, respec-
tively. It is straightforward to see that the set of stable points of @ corresponds to the set of stable points
of ®. Thus, by letting 5 = max{x € [0, 1] : @ (x) = 1} it follows then that 5 = p. Applying (1.6) with
k>1to G,

lim "*=1—D<1-"’)> _K’(/’)D/<1_K’]§p)>

n—-oo n k k
k k k

..omt d—,_. d

lim = = ZK@) = £ (K(p) = po),

where n* and m* denote the numbers of vertices and hyperedges in G. Since n* = 7* and m* =
m* + (1 +0,(1))pom = (1 + 0,(1))(m* + podn/k), as the set of hyperedges of size 0 in G remain in the
2-core of G, the equations (1.6) holds as well for the case that pg > 0. O

Proof of Claim 6.1. Since both Ed**° = 0,(1) and Ek**® = 0,(1), the probability that
d > (nlogn)'/® or k > (nlogn)'/®* is 0,(1/nlogn). The bound on the maximum degree and
maximum size of the hyperedges in G follows by taking the union bound.

For any u € [n], let N;(u) = |0'(u)|. We will prove that with high probability for every u and for
every fixed i, N;(u) = 0,(n'/®*?log*n), which then completes the proof for Claim 6.1. We prove by
induction. Let di, ... ,dy, denote the degrees of the vertices in 0(u). Then the number of hyper-

edges incident with these vertices is bounded by M := ZZ.V"(")

(j=1
is stochastically dominated by z;v:,(lu)(l + on(l));lj where 3]- are i.i.d. copies of d whose distribution is
given in (6.2). The 0,(1) error is caused by the exposure of Ujs,‘ai (u) which contains o,(n) vertices by
induction. Since Ed*™° = 0,(1), we have d := Ed = 0,(1). Note that EM = dN;(u). Applying the

Chernoff bound to the sum of independent [0, 1]-valued random variables we have

d;. By the construction of G, each M

P(M > 2dN;(u) + nl/(2+")10g2n)

Ni(u) A .
= d; 2dNi(u) (3+0)/(2+0) )
=F < z (nlogn)!/(2+o) = (nlogn)!/@+o) + (logn) <n -

J=1

Similarly, N;; () is bounded by Zjﬂilki, where k; are the sizes of the hyperedges incident with the ver-
tices in 0'(u). Similarly, Zjﬂilki is stochastically dominated by (1+0n(1))2jﬂi 1i‘j where Ich arei.i.d. copies
of k whose distribution is defined in (6.1). Let k = Ek. Applying the Chernoff bound again we obtain
that with probability at least 1 —n~2, Nig1 (1) < 2kM +n'/@1og?n < 4dkN;(u)+(1+2k)n'/@+1og?n.
Apply this recursion inductively and the union bound on the failure probability, we obtain N;(u) =

O,(n"/®*]og?n), as desired. O
Proof of Claim 6.2. Fix € > 0. Choose L = L(g, r) sufficiently large so that the probability that
d, > L is smaller than ¢ (note that v is a uniformly random vertex). Given d, < L. Let ki, ... , kg be

the sizes of the hyperedges incident to v. Similarly to the proof of Claim 6.1, k;s are approximated by
i.i.d. copies of k defined in (6.1), up to an 1+ o(1) multiplicative error. We can assume L is sufficiently
large so that with probability at least 1 — €, Zilki < L. Inductively, we can make L sufficiently large
so that |0'(v)| < Lforall i < R. Let &; denote the set of hyperedges incident with vertices in *(v), but
not incident with any in 0"~!(v). Cycles in d'(v) can appear in two ways: (a) two vertices in 9'(v) are
incident with the same hyperedge in &;; (b) two hyperedges in &;_; are incident with the same vertex
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in 0'(v). We will prove that with high probability, none of the two cases occurs for any fixed i. For (a),
let (d})jeqi(vy denote the degrees of the vertices in 0'(v). The expected number of occurrences of pairs
of vertices in (a) is

(3 (DT (B)oe)-oue( T 44). 6o

k€ (v) he[m] k€ (V)

Note that |¢/(v)| < L for each j < R. This immediately implies that d; < L for all j € 0'(v). Hence, the
above probability is O,(n~!). The probability that |0'(v)| < L fails is at most Re by our choice of L.
Hence, the probability that (a) fails is at most Re + 0,,(1). The treatment of (b) is analogous. Our claim
now follows by letting € — 0. |

7 | PROOF OF THEOREM 1.4

Recall that

qﬁ(a):l—a—;D’(l—K;Ea)). (7.1)

For Theorem 1.4 and Remark 1.5, it is sufficient to prove that if condition (i) or (ii) is satisfied then
(2) max,eo,1] P(ar) = max{®(0), ®(p)}; and (b) ¢'(p) < 0 unless

Pd=1)=0 and 2(Ek-1)Pd =2) > Ed. (7.2)

Since ®(a) is continuous on [0, 1], the maximum occurs at either O or 1 or at a stable point.

Case A: Var(k) = 0. In this case, k = k always and thus K(«) = a*. We must have k > 1 since
otherwise k = d = 0. If k = 1 then ¢’ (a) = —1 which implies (b) immediately. Moreover, K"’ (a) = 0
for all « € [0, 1] and thus ®'(a) = (d/k)K" (a)¢() = 0 for all a € [0, 1]. This implies (a).

Next consider the case that k = 2. Then, ¢ (a) = —iD”’(l—a) < 0on(0,1)unlessd < 2. Consider
the case that supp d N N3 # §. Then ¢ is concave and can have at most 2 roots. Obviously a = 0 is
aroot. Let p denote the other root if exists. We must have ¢’(p) < 0 by the concavity of ¢. Hence, the
maximum of @ cannot be achieved at 1. Thus, the maximas of @ can only be from {0, p}. This verifies
(a) and (b). Now assumed < 2. Then ¢” () = 0on [0, 1]. Hence ¢'(a) = ¢'(1) = —1+Pd =2)/d <0
for all @ € [0, 1]. Thus, ¢(a) is a line with a negative slope and has exactly one root at O on [0, 1].
Hence p = 0 and ¢’ (p) < 0. This verifies (a) and (b).

Next we consider the case that k > 3. We have

pla)=1-—a-— éD’(l — ot

L (k=1a*

d)'(a):—l 2D//(1_ak—l)

¢N(a) — %ak—S ((k— Z)D”(l _ (Xk_l) _ (k— I)DIN(I _ (xk_l)ak_l)
k—

= TlaH (k=2)D"(t) = (k= DD"'(1)(1 = 1)) where t=1—a""".

Hence,

$(0)=0 o) = —éD'(O) <0 (7.3)

¢'(0) = -1 d)=-1+ k;—lD”(O). (7.4)
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Recall that ®'(a) = %K”(a)q’)(a). We have K" («) > 0 for all @ € (0, 1]. By (7.3) we have ®'(1) < 0
and thus the supremum of ®(a) can only occur at 0 or a stable point. In all of the following subcases,
we will prove that ¢’ (a) has at most 1 root in [0, 1] (except for some trivial cases that we discuss
separately). It follows immediately that ¢ can have at most three roots on [0, 1] including the trivial
one at « = 0. Now we prove that this implies claims (a) and (b).

If ¢ has only a trivial root, then so is ®'(«). Thus, & = 0 is the unique maxima of ®(«) and p = 0.
This verifies (a). As ¢’(0) = —1 we immediately have ¢'(p) < 0.

If ¢ has two roots, then the larger root is p. Since ¢’(0) < 0, in this case, ¢ is negative in (0, p) and
positive in (p, 1). This is only possible when ¢(1) = 0 by (7.3), which requires P(d = 1) = 0. In this
case, p = 1. Next we consider two further cases: (i) 2(k — 1)P(d = 2) > d corresponding to ¢'(1) > 0;
(ii) 2(k — DPP(d = 2) < d corresponding to ¢’(1) < 0. As ¢ has only two roots, case (ii) obviously
cannot happen. Thus, it means that the only situation that ¢ has two roots would be P(d = 1) = 0 and
2(k — 1)P(d = 2) > d, as in (7.2). In this situation we are only required to verify (a). Note that ¢ is
negative in (0, 1) as p = 1. It follows then that ®(«) is a decreasing function in (0, 1). Hence, a = 0 is
the unique maxima, as desired.

If ¢ has three roots, then there is a root p* between 0 and p. Then ¢ is negative in (0, p*) and
positive in (p*, p). As K" () > 0 for all « € (0, 1], the sign of ¢ implies that p* is a local minima and
p is a local maxima. This verifies (a). Moreover, as ¢ is positive in (p*, p) and ¢(p) = 0, ¢'(p) < 0
follows immediately.

Case Al: Var(k) = 0 and Var(d) = 0. In this case d = d. Then D(a) = a?. If d > 3 then

¢ (a) = ij]aH ((k=2)d(d — D" — (k= Dd(d — 1)(d — 2)t*3(1 = 1))
=(k-=1d-D"3 3 (k=2 = (k= 1)(d -2)(1-1) wheret=1-—a""

Obviously, ¢ (a) has a unique root in [0, 1].

If d = 1 then ¢'(a) = —1 and so ¢ has only a trivial root at « = 0; If d = 2 then ¢"'(a) > 0 in
(0, 1) and so ¢ is convex and thus has only a trivial root at @ = 0 by (7.3). Hence ford < 2, p = 0 and
is the unique maxima. Claims (a) and (b) hold trivially.

Case A2: Var(k) = 0 and d ~ Pos,(4). In this case D(a) = h,(Aa)/h,(A), where

X e
h.(x) = Z,—' for all nonnegative integers r; (7.5)
jzrt”
h.(x) = ¢" for all negative integers r. (7.6)

Then, for all integers ¢,

2 3
D/(a) — j'hr—l(j'a)’ Dll(a) — )’ hr—2(ia)’ D"’(a) — j’ hr—3(/1a).
hy(4) hy(4) hy(4)
Since [Ed = d, it requires that A satisfies
Ahy_1(4)
D(l)=202 =4, 7.7
(D () (7.7)
Thus,

(k = Dda*3

¢" (@) = ((k = 2)hy2(A1) = (k = (1 = Dh,_3(41)) .

h(4)
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Solving ¢"(a) = 0 yields

k-1 A — hr—Z(At) —_ 1 _ hr—3(’“) - hr—Z(At)
2T T o ! o) (7.8)

The right-hand side above is obviously a constant function if » < 2. If » > 3, then h,_3(Ar) —h,_»(Af) =
(At)Y=3/(r = 3)!, and h,_3(At) is a power series of Ar with minimum degree r — 3. Hence, by dividing
(At) =3 /(r — 3)! from both the numerator and the denominator, we immediately get that the right-hand
side of (7.8) is an increasing function. However the left-hand side of (7.8) is a decreasing function.
Hence (7.8) has at most one solution, implying that ¢”’ (a) has at most one root.

Case B: k ~ Pos(y). We must have y satisfy

yhs—l(J/)
L= —
hy(y)

so that Ek = k. Here k > s is required (to guarantee the existence of y if s > 1, and to avoid triviality
if s = 0). Now we have K(a) = hy(ya)/hs(y), where h; is defined as in (7.5) and (7.6). Thus,

¢(a)=1—a—1D’<1_hs—l(7“)>

d he 1 (r)
/ hs_o(ya) h_1(ya)
= 1 4 =200 pyr (1 _ BV Q)
L TN ) < hs_l(y)>
PN & " hei(ya)\  hya(ya)? ( hs_1<ya>>>
= hy_s(ya)D" [ 1 - - D1 -2 )
¢@ dhs_l(n( ara) < hs_m) Tt () ht (1)
Hence,
$(0) = 0 B(1) =-=D'(0) <0 (7.9)
'(0) = -1 (1) = -1 + L5220 pyn, 7.10
¢ (0) &' (1) + 20O (7.10)

As before, we will prove that ¢’ () has at most 1 root in [0, 1] (except for some trivial cases that will
be discussed separately), which is sufficient to ensure (a) and (b).
Case BI: k ~ Pos(y) and Var(d) = 0. In this case d = d. Then D(a) = a“. If d > 3 then solving

¢" (a) = 0 yields
d-2 o1 (ra) \ hes(rar)
hya(yay = (1 - . 7.11
o) e < hs-1(7) ) hy—(ya) 71D

On the right hand side above, 1 —h,_1(ya)/hs_1(y) > 0 and is a decreasing function of «. We also have

hys(ya) _ hy—3(y@) _ (1 (s - 3)!)“
hyo(ya) — hes(ya) — (ya)y=3/(s = 3)! hs3(ya) '

which is positive and a decreasing function of @ if s > 3, and is equal to 1 if s < 2. Hence, the left-hand
side of (7.11) is an increasing function whereas the right hand side is a decreasing function. Hence
¢" (@) has at most one root.

If d < 2 the same argument as in Case A1 shows that claims (a) and (b) hold.

Case B2: k ~ Pos(y) and d ~ Pos,(4). In this case D(a) = h,(Aa)/h,(A), and A necessarily
satisfies (7.7). Then solving ¢ («) = 0 yields

Ay _ hys(ra)  ho(AA = by (ya) /hy—1 (1))
hor(r) hs2(ya)  hy-3(A(1 = hy 1 (ya)/hs—1(7)))
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The left-hand side is an increasing function whereas the right hand side is the product of two functions,

both of which are either equal to 1 or a positive decreasing function. Thus, ¢’ (a) has at most one root.
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APPENDIX A: PROOF OF LEMMA 1.11

Since E[A"] < oo, the event A = {max,-em Ai <n/ lngn} has probability

Pl#]=1-o0,(1/n). (A1)
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Moreover, fixing a small enough # = #(6) > 0 and a large enough L = L(n) > 0 and setting Q; =
Y5y H{i = j}, we obtain from the Chernoff bound that P [vj' <L:1Q—sP[A=jl| >l n]
0,(1/n). Hence, by Bayes’ rule,

P [ast 10— P[4 =] > \/Zlnnw] = ou(1/n). (A2)

In addition, let % = {h € N : (1 + n)""'L < n/In’n} and for h € F let

Ry= Y QULA+n)'" <j< L+ An/in’n},
j=1

Ry=sY PA=jI{LA+m"" <j<LA+mn)" An/ln’n}.
j=1

Then the Chernoff bound and Bayes’ rule yield

g [Elh e : |Ry—Ri| > nRy + lnznl/%] = 0,(1/n). (A3)

Finally, given . and |Q; — sP[A = jl| < /alnn forallj < L and |Rh - Teh' < nRy + In*n for all
h € ¢, we obtain

iz:, 3 < Z,J'Q,-/H Y (1 +n)'LRy/s

hex

=0,(1)+E[A1{A < L}] + Z A+ )" 'Ry, + (n*n)) /s < E[AL] + 5/2 + 0,(1).
hex

Similarly, %2?:1 A; > E[A1] = 6/2 + 0,(1). Thus, the assertion follows from (A1)—(A3)

APPENDIX B: STOCHASTIC VERSUS LINEAR INDEPENDENCE

A precursor of Proposition 2.4 for finite field was obtained in [7, lemma 3.1]. Instead of dealing with
linear independence, that statement dealt with stochastic dependencies. Formally, given an mXn-matrix
A over a finite field IF, let 44 be the probability distribution on [F” defined by

pa(o) =1{c € kerA}/| kerA|.

(This definition is nonsensical over infinite fields for the obvious reason that | kerA| € {1, c}.) Let
o = 64 € " denote a sample from 4. The stochastic independence statement reads as follows.

Lemma B.1 ([7, lemma 3.1]). For any 6 > 0, £ > 0 and for any finite field F there existsT =
T (6,7,F) > 0 such that for any matrix A overF the following is true. Choose@ € [T | uniformly at
random. Then with probability at least 1 — 6 the matrix A[O] satisfies

max |ua) (Vi €1 2 6 = 7)) = [ ] maror ({os = wih)| < on”. (B1)

ICin): |1|=¢ 7€l iel
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In words, for most sets I of £ coordinates the joint distribution of the coordinates (o;);c; is close
to a product distribution in total variation distance. Furthermore, the number 6 of rows that we add to
A is bounded in terms of €, £ only; that is, 6 does not depend on the size m X n of A or on the matrix
A itself. Lemma B.1 and its proof are inspired by the “pinning lemma” from [17].

The following lemma shows that how Proposition 2.4 implies Lemma B.1; in a nutshell, the lemma
states that linear independence is stronger than stochastic independence.

Lemma B.2. Let A be an m X n-matrix over a finite field F. Unless I C [n] is a proper relation of A
we have

pviel :o;=5}) =[] mUoi==} forall €F. (B2)

i€l
Proof.  Since for every = € F! we have

mViel:oi=r))=1{VieIn§A) : =0} us (Vi I\ FA) : 6, =1},
[[mdoi=ah=1(vieing@ :m=0} [[ mdoi=xu,

i€l ie\F(A)

we may assume that /N E(A) = @ by simply passing on to I\ §(A) if necessary. Hence, the task reduces
to proving (B2) under the assumption that I C [n] \ §(A) is no relation of A.

To prove this statement let N = nul(A) and suppose that &, ... ,&yv € " form a basis of ker A. Let
= € F™N be the matrix with columns &, ... ,&y and let Z, ... , Sy signify the rows of Z. The homo-
morphism z € F¥ — kerA, z = 2z maps the uniform distribution on F" to the uniform distribution
ua on ker A. Therefore, to prove (B2) it suffices to prove that the projection of this homomorphism to
the I-rows, i.e., the map z € FN — (E,z);e; is surjective. Equivalently, we need to show that

tk (E)ier = ] (B3)

Assume for contradiction that (B3) is violated. Then there exists a vector z € F/ \ {0} such that
Y.ic; ZiEi = 0. This implies that for all x € ",

Ax=0 > Zzix,-:O.

iel

As a consequence, there exists a row vector y of length m such that (yA); = 1{i € I}z; for all j € [n].
Hence, @ # supp(yA) C I. Thus I is a relation of A, in contradiction to our assumption that it is not. m

Thus, Lemma B.1 is an immediate consequence of Proposition 2.4 and Lemma B.2. Indeed, the
proof of Proposition 2.4 renders the explicit bound I = [4£3/6*] + 1 on the number of coordinates
that need to get pegged. By comparison, the stochastic approach via the arguments from 7, 10 leads
to a value of I that is exponential in £ (although it may be possible to improve this estimate via
probabilistic arguments).

APPENDIX C: A SELF-CONTAINED PROOF OF THE UPPER BOUND ON THE RANK

The “<”-inequality in (1.3) was previously proved by Lelarge [41], who derived the bound from the
Leibniz determinant formula and the formula for the matching number of random bipartite graphs
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from [13]. The proof of that formula, however, is far from straightforward. Therefore, as a point of
interest in this section we show that another idea from mathematical physics, the interpolation method
from spin glass theory 25, 30, can be harnessed to obtain a self-contained proof of the upper bound
on the rank. The proof uses similar ideas as the proof of the lower bound outlined in Section 2. Thus,
phrased in terms of the nullity, the aim in this section is to show that a.a.s.

nul(A)/n > rél[%)h D(a) + 0,(1). (C1)

C.1 | The interpolation method

The basic idea behind the interpolation method is to construct a family of random matrices A, (¢)
parametrised by “time” t. At t = m,, we obtain precisely the matrix A, ,. At the other extreme, A,(0)
is a block diagonal matrix whose nullity can be read off easily. To establish the lower bound we will
control the change of the nullity with respect to . By comparison to applications of the interpola-
tion method to other combinatorial problems (e.g., 11, 17, 25, 49), the construction here is relatively
elegant. In particular, throughout the interpolation we will be dealing with an actual random matrix,
rather than some other, more contrived object.

Getting down to the details, apart from ¢ and € we need two further parameters: an integer I =
T (e) > 0and areal g € [0, 1], which, in order to obtain the optimal bound, we choose such that

®(f) = max D(a). (C2)

a€l0,1]

Further, let m,,, ~ Po((1 — €)dn/k). Also let (ki,k,{,k;')izl and (d;);>; be copies of k and d, respec-
tively, mutually independent and independent of m, ,. Additionally, choose 8 € [F ] uniformly and
independently of everything else. Finally, recall that ({;, &;);>1 are uniformly distributed on the unit
interval and independent of all other randomness.

The Tanner graph G,(f) has variable nodes

Xts oo s Xy AN (Xijn)ieim, 1), jelkl), helk/-11-

Moreover, let &; be a random set that contains each of the variable nodes x;;;, with probability g
independently. Then the check nodes are

ap, ... ,d, (bl}/’)iE[mE‘n—t], ekl Pis --- 5 Po, f,“,‘)h for each Xijh € F,.

To define the edges of the Tanner graph let I';(¢) be a random maximal matching of the complete
bipartite graph with vertex sets

U {xi} x [d;], (U {a;} x [ki]> U{by:i€lme,—1, jelkl}.
=1 =1

For each matching edge {(x;,s),(a;,1)} € T.(¢) insert an edge between x; and a; into the Tanner
graph and for each {(x;,s),b;,} € T'c(¢) insert an edge between x; and b; ;. Thus, G.(f) may contain
multi-edges. Further, add an edge between x; and p; fori = 1, ... , 0 and add an edge between x;;;, and
b;j foreach h € [k} — 1] as well as an edge between every x;;; € &, and the check f; ;. Finally, let
A, (1) be the random matrix induced by G.(¢). Formally, with the rows indexed by the check nodes and
the columns indexed by the variable nodes, we let

AcD)p,x, = 1{i =]} (i €[6].) € [n]),



COJA-OGHLAN ET AL.

f1,2,2 f3,1,1 f3,1.3

FIGURE C1  Left: sketch of the component of x; at ¢ = 0; the check p; is present iff i < 0. Right: sketch of the factor graph
G, (1) for 0 <t <m,,, with the g;; coloured black and the other colours as in the left figure

k;

q;
Ao, = 12,8, Y, 2 L{{05v). (@) €T(D)}} (G €1l.j € [n]),

u=1 v=1

Ac@p,,, =1 {x; € 96,1y} (h € [me, —1],j € [n]),
Acp,,x,,, = Hh=u, i=v} (hou € [me, —11,i € [k}],v € [Ky ],
w € [k — 1],
Ay, 50 = W L)) = (u,v, W)} (h,u € [me, —1],i € [ky1,j € [vk, — 1],

velk,)welk, -1]).

All other entries of A.(¢) are equal to zero.

The semantics is as follows. The checks a; will play exactly the same role as before, that is, each is
adjacent to k; of the variable nodes xy, ... ,x, a.a.s. By contrast, each b;; is adjacent to precisely one
of the variables x, ... ,x,. In addition, b;; is adjacent to the kl{ — 1 variable nodes x; 4, h € [k,( —1].
These variable nodes, in turn, are adjacent only to b;; and to f;; if x;j, € % . The checks f;;; are
unary, that is, f;;, simply forces x;;; to take the value zero. Finally, each of the checks p; is adjacent
to x; only, i.e., py, ... , pg just freeze xy, ... ,xp.

For t = 1 the Tanner graph contains m., ~ Po((1 — €)dn/k) ‘real’ checks a; and none of the
checks b;; or f; ;. In effect, A (1) is distributed precisely as A, from Section 2.2. By contrast, at f = 0
there are no checks a; involving several of the variables xy, ... ,x,. As a consequence, the Tanner graph
decomposes into n connected components, one for each of the x;. In fact, each component is a tree
comprising x;, some of the checks b;, and their proprietary variables x; ; along with possibly a check
fins that freezes x;, s to zero. For i € [0] there is a check p; freezing x; to zero as well. Thus, A.(0) is
a block diagonal matrix consisting of 7 blocks, one for each component. In effect, the rank of A.(0)
will be easy to compute. Finally, for 0 < # < 1 we have a blend of the two extremal cases. There will
be some checks a; and some b;; with their retainer variables and checks; see Figure C1.

We are going to trace the nullity of A.(?) as ¢ increases. But since the newly introduced variables
x;;, inflate the nullity, we subtract the “obvious” correction term to retain the same scale throughout
the process. In addition, we need a correction term to make up for the greater total number of check
nodes in A.(0) by comparison to A.(m ,). Thus, let

t

Ne=nul A (1) + | F,| — Z Kk -1, % = Z(ki — 1)k —1).
i=1 pa



COJA-OGHLAN ET AL. WI LEY 59

The following two statements summarise the interpolation argument. First, we compute E[./].
Proposition C.1.  For any fixed® > 0 we have n"'E[#/ o] = D(1—K'(f)/k)+dK'(f)/k—d + 0. ,(1).
The next proposition provides monotonicity.

Proposition C.2. For any € > 0 there exists T = T (g) > 0 such that with probability 1 — 0,(1/n)
uniformly for all 0 < t < m, we haveE[N 11 + Y r11|lme ] > E[N + Y Im, ] + 06, (1).

As an immediate consequence of Propositions C.1 and C.2 we obtain the desired lower bound on
the nullity.

Corollary C.3.  We have~E[nul(4,)] > maxyepo.1) (@) + 0ca(1).
Proof.  Proposition A.2 implies that

E[nul Aa,n] = E[nul As(me,n)] =E[WNm, | =E[WNp  + ?mm] - E[?mm]

en en

> B[ W + Yol = E[%m 1+ 0c(n) = ELV] = E[%m_ 1+ 00a().  (C3)
Further, by Proposition C.1,
LB 0] = —d + dK'(B)/k+D(L = K'B)/K) + 0cn(D)
LY, 1 = & (BK(B) =K+ 1= K (D)) + 0D,
Hence, (C2) yields
N ELY ] = B, ) = O(9) + 0,(1) = max @@+ 0D,
and the assertion follows from (C3). n

Combining Proposition 2.6, Proposition 2.8 and Corollary C.3 and the standard concentration for
nul A, from Lemma 4.7 completes the proof of (C1). We proceed to prove Propositions C.1 and C.2.

C.2 | Proof of Proposition C.1

Each component of G, (0) contains precisely one of the variable nodes xi, ... ,x,. In effect, A.(0) has
a block diagonal structure, and the overall nullity is nothing but the sum of the nullities of the blocks.
It therefore suffices to calculate the nullity of the block B, representing the connected component of

x;. Indeed, because Y_, |0%x| = zz‘gm;(O) ki(ki — 1) and Y\, |0°x, 0 Fo| = |Fo| we have

No = Enl N, where Ny = nul(B;) — |02xs + |02xs N %| )
s=1

Consequently, since 8 = 0,(1) it suffices to prove that

E[N,] = {dK B)/k+D(1 =K' (B)/k)—d +o0.1)  if 5> 8, @
Ou(1) otherwise.
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In fact, the second case in (C4) simply follows from N; < d; and E[d,] = O,(1) for all s.
Hence, suppose that s > 0. As |N;| < d; and E[d] = O, ,(1) for an r > 2 we find & > 0 such that

E[|IN,[1{d; > £'/2}] = 0. n(1). (€5)

Moreover, let 2 = Y7 k1 {k > £}, M| = 7 "1{k] = j}. Because E[k’] = O, ,(1) we have

E[E] < %E k1{k > £75}] = nO, ,(¢%), (C6)

while MJ’ ~ (1 — €)dnP [k = j]/k for all j < €78 a.a.s. by Chebyshev’s inequality. Hence, introducing
the event

& ={d, <e'? E<ne®, Vj<e ™ : M) ~ (1 —e)dnP [k = j]/k,

zn: di ~dn, Y iM ~ (1 —e)dn} ,
i=1

i>3

we obtain from (C5) and (C6) that

]E[NY] =K [ergv] + Oa,n(l)- (C7)

With y < d; the actual degree of x, in G.(s), let k1, ... , Ky be the degrees of the checks adjacent to
Xs. We claim that given & and d,

drv((k1, .. y) (s . kg ) = 0ca(e!). (C8)

Indeed, on & the probability that x, is adjacent to a check of degree greater than £7% is

Ocn(d,E/ 2123 jM;) = 0¢ »(€). Further, given &; we have

D M > (1= 2¢)dn,

Jj>3

and thus P[y < d,|&,] = 0...(¢'/?). Moreover, given y = dj, for each i € [d] the probability that the
ith clone of x; gets matched to a check of degree j < e7% is

M}/ Y M =P ke = j] /k+ 0,(1) = P [k = | + 0a(1).

h>3

These events are asymptotically independent for the different clones. Thus, we obtain (C8).

Finally, we can easily compute IV, given the vector (ky, ... , k). The matrix B, has fairly simple
structure. The first y rows have a non-zero entry in the first column representing x,. Additionally,
fori = 1, ...,y the ith row contains x; — 1 further non-zero entries, and the columns where theses
non-zero entries occur are disjoint for all i. Finally, at the bottom of the matrix there is a block freezing
the variables in % N 0%x, to zero. We therefore claim that the rank of the matrix works out to be

Y 14
Elk(By)x1, ... .k, 1= D (1= 57 + [ Fono’x| + 1= [Jad - g5, (€9)

i=1 i=1



COJA-OGHLAN ET AL. WI LEY 61

To see this, let us first compute the rank of the matrix B} without the first column. Then row i € [y]
contributes to the rank unless all the variables in the corresponding equation other than x; belong to
F, an event that occurs with probability f¥i~!; hence the first summand. In addition, the | % N 0%, |
rows pegging variables to zero contribute to the rank (second summand). Furthermore, going back to
B, the first column adds to the rank unless none of the first y rows of B, gets zeroed out completely,
an event that has probability [T, (1 — g%~1). Since

Y
E[Nilk1. ... .kp] = 14 Y (i = 1) = ELkB)IK1, ... .xy] —E [|02xs - |02xsr79‘70| K1, ... ,xy]
i=1
= 1 - E[tk(By)|K1, ... .ky] +E Uasz N 9O| K, ... ,x,] ,
substituting (C9) in yields
Y Y
ENglxy, ... iyl = [Ja=p57H = Y= psh. (C10)
i=1 i=1

Combining (C7), (C8) and (C10) completes the proof.

C.3 | Proof of Proposition C.2

To couple the random variables ./, and ./, we need to investigate short linear relations among the
cavities, that is, the clones from U?:l {x;} X [d;] that are not incident to an edge of I'.(¢). Denote this
set by & (¢). Further, let P, be the distribution on the set of variables induced by drawing a random
cavity, i.e.,

Py(x;) = 1€ @ N ({x;} X [diDI/1€ ()],
and lety;,y, ... be independent samples from P,.
Lemma C4. Foranyé>0and¢ > Othereis T =T (6,¢) > 0 such that
P [yl, ... ,y, form a proper relation] < 6.

Proof.  The choice of m,, guarantees that |6 (f)] > en/2 a.a.s. Moreover, since E[d] = O, ,(1)
we find L = L(e,8) > 0 such that the event & = {Y_ d;1{d; > L} < 5°n/16} has probability
P[Z] > 1 — §/8. Therefore, we may conditionon & = £ N {|€ (¢)| > en/2}.

Let xy, ... ,x, be variables drawn uniformly with replacement from V,, = {xi, ... ,x,}. Then on

the event & we have, for any Z-tuple yy, ... ,y, of variables,

Py =yi. oo ye = yelAc@)] <P lxi =y1, .. .xe = ye|A(0)] RQLJE) + 67

Consequently, because the distribution of G.(¢#) — {pj, ... ,pe} is invariant under permutations of
X1, ... ,X,, Remark 3.6 shows that P [x1 =Yy eee s Xp =Yg IAE(t)] < 8(g/(2L))* /2, provided that
I =T (6,7) is large enough. [

We proceed to derive Proposition C.2 from Lemma C.4 and a coupling argument. Let G.(f) be
the Tanner graph obtained from G, (z + 1) by removing the check a,41, let AL() be the corresponding
matrix and let
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m, ,—t—1

N/ = AL+ | Foa| = Y, Kl — 1),
i=1

Then clearly
E [‘/Vt+1 - /Vt|me,n] =K [/Vt+l - -/Vz,lms,n] -E [-/Vz - -/Vl,lme,n] .

Let a € [0, 1] be the fraction of frozen cavities in G.(f), with the convention that & = 0 if the set €’ (r)
of these cavities is empty.

Lemma C.5.  We have E |E[V 11 — ¥/ |Ac(t) ,me ] = (K(@) = 1)| = 0cu(1).

Proof.  The random matrix A,(z + 1) is obtained from A.(¢) by inserting a new random check a,y;.
Pick ¢ = ¢{(g) > 0 small enough and 6 = §(¢) > 0 smaller still. Since [nul(A(f)) —nul(A.(z+ 1))| < 1
and E[kz] = O ,(1) we may condition on the event that k,;; < £~!. Similarly, Lemma A.4 shows that
we may assume that the set & of variables of G.(f) where the new check node a4, attaches does not
form a proper relation, provided that = J (¢) is chosen sufficiently large. Therefore, Lemma 2.5
yields

B[N 11 — N i|Ac(@) ,me ] = E[nul(A (7 + 1)) — nul(AL(0))|AL (1), m.,]
=K [a*+1 — 1|AL(1),mc | + 0e(1) = K(@) — 1 + 0,,(1),

as claimed. n

Lemma C.6. Ler OQOa,p) = E [k@@pt =1  for « € [0,1].  Then
E|E [#: = #/ LD mes] = O )| = 0ca(D).

Proof. The factor graph G;(¢) is obtained from G/(¢) by adding the checks b,,,m_,_l,h for h €
[k;,,{_t_ 1], the corresponding variables Xm, ,~t—1hj and possibly their respective checks fmm_,_l,h j- Since
by construction

|Wo = N/ < b1,

and E[kz] = O (1) we may condition on the event that k;,,g_t_l < ¢!, In effect, Lemma C.4 shows
that we may assume the set 2° of cavities adjacent to the new checks by, 1., does not form a proper
relation, provided that & = J (¢) is chosen large enough. Moreover, the number of frozen cavities in
Z is within 0,(1) of a binomial distribution Bin(k;,,s —i—1> @) in total variation. Therefore, Lemma 2.5
shows that »

E[#, = #/IAL(0).m.,| = EnulA, (1)) — nul(AL(0) — kp_, -1k, o1 — D)+ |F'IIALGD), m,,]
= Q(as ﬁ) + 0511(1)’

as claimed. n
Lemma C.7. We have E[¥ 1 — ¥,] = E[(k — 1)(f* - 1)].

Proof.  This is the result of a straightforward calculation. [
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Proof of Proposition C.2.  Combining Lemmas C.5-C.7, we obtain
Bl i1 + Y] =BV + Y1 =E [@f = 1 —k(af™ = 1)+ (k= D(B* = D] +0c.(1). (C11)

Since x* — kxy*! + (k— 1)y* > 0forall k > 1, x,y € [0, 1], the assertion follows from (C11). ]

APPENDIX D: Verification of m —m’)/n and rk(4)/n

Let m; denote the number of rows with exactly j nonzero entries. With standard concentration argu-
ments, we know that a.a.s. mg ~ mP(k = 0) ~ (dn/k)K(0), and m; ~ mP(k = 1) ~ (dn/k)K'(0).
Consequently, a.a.s. in —m’)/n ~ d(1 — K(0) — K'(0))/k.

For rk(A”), let X; be the indicator variable that there exists a row with exactly one nonzero entry,
and that nonzero entry occurs at the i-th column. Then rk(4’) = ZleXi. Conditioning on m; and
D= ijmj, we know that EX; = Zj P(d = j)(1 — (n; /DY) for every i. Since a.a.s. m; /D ~ K'(0)/k,
the standard concentration results immediately yield that a.a.s. tk(A")/n ~ 1= i P = j)(K'(0)/ky =
1 - D(1 — K'(0)/k).
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