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Abstract
We determine the asymptotic normalized rank of a random

matrix A over an arbitrary field with prescribed numbers

of nonzero entries in each row and column. As an appli-

cation we obtain a formula for the rate of low-density

parity check codes. This formula vindicates a conjecture

of Lelarge (2013). The proofs are based on coupling argu-

ments and a novel random perturbation, applicable to any

matrix, that diminishes the number of short linear relations.
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1 INTRODUCTION

1.1 Background and motivation

The theory of random matrices, which commenced with the nuclear physics-inspired work of Wigner

in the 1950s [56], has been one of the great success stories at the junction of probability, mathematical

physics and combinatorics. Nevertheless, quite a few basic questions remain open to this day. For

instance, while dense random matrices such as the Gaussian Orthogonal Ensemble are reasonably well

understood (e.g., [30]), far less is known about sparse random matrices where the expected number

of nonzero entries per row or column is bounded. Yet over the last two or three decades such sparse

random matrices, with entries from finite or infinite fields, have emerged to play a pivotal role in several

exciting applications. Modern error-correcting codes are a case in point. For instance, the codebook of

a low-density parity check code (“ldpc code”), a class of codes that has been at the centre of tremendous

recent developments in coding theory [20, 27, 34], comprises the kernel of a sparse random matrix over
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a finite field drawn from a carefully tailored distribution. In addition, sparse random matrices occur in

randomised constructions of Ramanujan graphs [6, 13, 19], statistical inference [26], the analysis of

algorithms [16], and the theory of random constraint satisfaction problems [1, 23].

Among the fundamental questions about such random matrices that have remained open, perhaps

the most conspicuous one concerns the rank. Although this parameter was already studied in early

contributions [8, 9, 37], there has been no comprehensive rank formula for sparse random matrices.

The present paper furnishes one. To be precise, we will determine the asymptotic rank of a sparse

random matrix with prescribed numbers of nonzero entries in the rows and columns. Among other

applications, important classes of ldpc codes are based on precisely such random matrices as a diligent

choice of the degrees greatly boosts the code’s performance [34]. Moreover, the rank is linearly related

to the rate of the code, arguably the code’s most basic parameter.

Lelarge [41] noticed that an upper bound on the rank of a sparse random matrix can be derived from

the matching number of random bipartite graphs, which was determined by Bordenave, Lelarge, and

Salez [14]. Lelarge went on to conjecture that this bound be tight for sparse random matrices over the

binary field F2. We prove this conjecture. In fact, we prove a much stronger result. Namely, we show

that Lelarge’s conjectured formula holds for sparse random matrices over any field, finite or infinite,

regardless the distribution of the nonzero matrix entries. Thus, the rank is governed by the location of

the nonzero entries rather than the distribution of the matrix entries.

The proof of the rank formula evinces an interesting connection to statistical physics. Indeed,

Lelarge already observed that a sophisticated but mathematically nonrigorous physics approach called

the “cavity method” renders a wrong prediction as to the rank for certain degree distributions.1 This

discrepancy merits attention because the cavity method has been brought to bear on a panoply of

theoretical as well as real-world problems, ranging from spin glasses to machine learning [57]. We

manage to shed light on the issue. Specifically, the “replica symmetric” version of the cavity method

predicts that the rank of a random matrix over a finite field can be expressed analytically as the maxi-

mum of a variational problem. A priori, this variational problem asks to optimize a functional called

the Bethe free entropy over an infinite-dimensional space of probability measures. Such optimization

problems have been tackled in the physics literature numerically by means of a heuristic called pop-

ulation dynamics. For the rank problem this was carried out by Alamino and Saad [3]. But thanks to

the algebraic nature of the problem we can show that the rank actually comes out as the solution to a

variational problem on a restricted domain. We are thus left with a dramatically simplified variational

problem, which ultimately boils down to a humble one-dimensional optimization task. We will see

that the optimal solution to this one-dimensional problem does indeed yield the rank (over any field).

Furthermore, the solution can be lifted to a solution to the original infinite-dimensional problem. As

an aside, we do not know if the original infinite-dimensional variational problem may possess spuri-

ous maximizers that boost its value beyond the optimal value of the restricted version, thereby spoiling

the accuracy of the original physics formula. We will return to this question, and to the physics slant

on the problem, in Section 2.3.3. In any case, for certain degree distributions the maximum values

that we obtain by way of the restricted variational problem actually exceed those that surfaced in the

experiments from [3] or the heuristic derivations from [31] for the unrestricted formula; hence the

discrepancy between the physics predictions and mathematical reality.

Apart from remedying the discrepancy, we prove the rank formula by effectively turning the physi-

cists’ cavity calculations into a rigorous mathematical argument. The crucial tool that makes this

possible is a novel perturbation, applicable to any matrix, that diminishes the number of short linear

relations (see Proposition 2.4 below). We expect that this perturbation will find future applications. Let

1The derivation of this erroneous prediction was posed as an exercise in [31, Chapter 19].
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us proceed to introduce the random matrix model and state the main results. A discussion of related

work and a detailed comparison with the physics work follow in Section 2, once we have the necessary

notation in place.

1.2 The rank formula

Let F be a field equipped with a 𝜎-algebra that turns F into a standard Borel space and let 𝜒 ∶ [0, 1]2 →
F∗ = F ⧵ {0} be a measurable map. Let (𝜻 i, 𝝃i)i≥1 be mutually independent uniformly distributed

[0, 1]-valued random variables. Moreover, let d, k ≥ 0 be integer-valued random variables such that

0 < E[dr] + E[kr] < ∞ for a real r > 2 and set 𝑑 = E[d], k = E[k]. Let n > 0 be an integer divisible

by the greatest common divisor of the support of k and let m ∼ Po(𝑑n∕k) be independent of the 𝜻 i, 𝝃i.

Further, let (di, ki)i≥1 be copies of d, k, mutually independent and independent of m, 𝜻 i, 𝝃i. Given

n∑
i=1

di =
m∑

i=1

ki, (1.1)

draw a simple bipartite graph G comprising a set {a1, … , am} of check nodes and a set {x1, … , xn}
of variable nodes such that the degree of ai equals ki and the degree of xj equals dj for all i, j uniformly

at random. Then let A be the m × n-matrix with entries

Aij = 1{aixj ∈ E(G)} ⋅ 𝜒𝜻 i,𝝃j .

Thus, the ith row of A features precisely ki nonzero entries and the jth column contains precisely dj
nonzero entries. Moreover, the nonzero entries of A are drawn in the vein of an exchangeable array by

evaluating the function 𝜒 at a random poisition (𝜻 i, 𝝃j). Routine arguments show that A is well-defined

for large enough n, that is, (1.1) is satisfied and there exists a simple G with the desired degrees with

positive probability; see Proposition 1.10 below. We call G the Tanner graphof A. Also recall that the

rank rk A of the matrix A is defined as the maximal number of linear independent rows (or columns).

In addition, nul A is the dimension of the kernel of A and the sum rk A + nul A equals the number of

columns of A.

The following theorem, the main result of the paper, provides an asymptotic formula for the rank

of A. Let D(x) and K(x) denote the probability generating functions of d and k, respectively. Since

E[d2] + E[k2] < ∞, the functions D(x),K(x) are continuously differentiable on the unit interval.

Therefore, the function

Φ ∶ [0, 1] → R, 𝛼 → D
(
1 − K′(𝛼)∕k

)
− 𝑑

k
(
1 − K(𝛼) − (1 − 𝛼)K′(𝛼)

)
. (1.2)

is continuous.

Theorem 1.1. For any d, k we have, uniformly for all 𝜒 ,

lim
n→∞

rk(A)
n

= 1 − max
𝛼∈[0,1]

Φ(𝛼) in probability. (1.3)

Perhaps surprisingly, the r.h.s. of (1.3) depends only on the degree distributions d, k but not in any

way on the field F or the choice of nonzero entries (within the aforementioned model). Furthermore,

let us emphasize that the function Φ, being continuous on the unit interval, is guaranteed to attain a

maximum. However, this maximum need not be unique, and nonuniqueness of the maximizer may

have interesting combinatorial repercussions [16].
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A second point that may seem surprising at first glance is that the rank converges to any nonrandom

value at all, as provided by (1.3). A heuristic explanation can be given on grounds of physics reason-

ing. Indeed, the nullity of A (dimension of the kernel) corresponds to the logarithm of the partition

function of a natural Boltzmann distribution, namely the uniform distribution on the kernel of A. Com-

monly the normalized logarithm of such a partition functions (known as the “free entropy” in physics

jargon) converges to a constant for random systems that are “self-averaging.” Here “self-averaging”

means that a small perturbation to the system, that is, the matrix in our case, cannot cause dispropor-

tionate tremors in logarithm of the partition function. In the random matrix model that we consider

here the self-averaging condition is clearly satisfied because changing a single matrix entry can at

most alter the nullity by one. Therefore, the Azuma–Hoeffding inequality easily implies that nul A
concentrates about its mean. That said, there is no general theorem that guarantees convergence to a

deterministic value in self-averaging systems, so even this aspect of Theorem 1.1 is not in any way a

triviality.

Theorem 1.1 establishes a generalised version of Lelarge’s rank conjecture [41] with a tighter

conditions on the moments of d, k. Specifically, Lelarge only considered matrices over the field F2,

while here we consider general fields and allow for a very general choice of nonzero entries. That said,

while here we assume that E[dr],E[kr] < ∞ for a real r > 2, Lelarge considered degree distributions

with E[d2],E[k2] < ∞. We did not undertake a serious attempt to weaken the moment condition to

r = 2, but this may conceivably introduce significant new techical difficulties.

The theorem covers a very general class of sparse random matrices. Indeed, since d, k have finite

means the matrix A is sparse, that is, the expected number of nonzero entries is O(n) as n → ∞. Yet

because the degree distributions are subject only to the condition E[dr] +E[kr] < ∞, the typical max-

imum number of nonzero entries per row or column may approach
√

n. Furthermore, the choice of the

nonzero entries of the matrix by way of the measurable map 𝜒 , reminiscent of an exchangeable array,

allows for rather general choices of nonzero matrix entries. To elaborate, recall that an exchangeable

array is an infinite matrix (𝝌 ij)i,j≥1 of F∗-valued random variables such that the distribution of any finite

top-left submatrix is invariant under row and column permutations [35]. The Aldous–Hoover repre-

sentation theorem shows that any such array can be described by a function 𝒳 ∶ [0, 1]4 → F∗ [4, 31].

Specifically, any finite submatrix of 𝝌 ij can be obtained by substituting suitable independent random

variables that are uniformly distributed on the unit interval [0, 1] into𝒳 . Theorem 1.1 therefore implies

the rank formula for a Hadamard product of the biadjacency matrix of the random bipartite graph

G and the commensurately dimensioned top-left bit of the exchangeable array (𝝌 ij)i,j. Of course, an

immediate special case is the random matrix whose nonzero entries are drawn mutually independently

from an arbitrary distribution on F∗. 2

The lower bound on the rank constitutes the principal contribution of Theorem 1.1. Indeed, the

upper bound rk(A)∕n ≤ 1 − max𝛼∈[0,1] Φ(𝛼) + o(1) as n → ∞ a.a.s. was already derived in [41] from

the Leibniz determinant formula and the formula for the matching number of a random bipartite graph

from [14].3 Nonetheless, in the appendix we give an independent proof of the upper bound, which is

shorter than the combination [14, 41].

Theorem 1.1 implies a formula for the rate of a common class of ldpc codes. Such codes are

based on random matrices A over finite fields Fq with suitable degree distributions d, k. Specifically,

a common construction of ldpc codes involves an optimisation over the degree distributions d, k of

2To see this, assume that 𝝌 is an F∗-valued random variable. Then given n pick a large integer N ≫ n2. Let 𝜒 ∶ [0, 1]2 → F∗ be

a step function obtained by chopping [0, 1] into N subintervals of size 1∕N and assigning a value drawn from 𝝌 independently

to each of the N2 resulting rectangles. Because Theorem 1.1 provides uniform convergence in 𝜒 , we obtain the rank of a matrix

with nonzero entries drawn from 𝝌 .
3While [41] only dealt with matrices over F2, the argument extends to other fields without further ado.



COJA-OGHLAN ET AL. 5

the variables/checks so as to maximise the probability that the Belief Propagation message passing

algorithm (or a variant thereof) recovers the original codeword from the received, noisy data [52]. The

codebook consists of the kernel of the random matrix A. Hence, the rate of the code equals nul A∕n.

Since Theorem 1.1 implies that

1

n
nul A → max

𝛼∈[0,1]
Φ(𝛼) in probability,

we thus obtain the rate.

1.3 The 2-core bound

There is a simple graph-theoretic upper bound on the rank, and Theorem 1.1 puts us in a position to

investigate if and when this bound is tight. To state this bound, we recall that the 2-core of G is the

subgraph G∗ obtained by repeating the following operation.

While there is a variable node xi of degree one or less, remove that variable node along

with the adjacent check node (if any).4

Of course, the 2-core may be empty, that is, with no variable or check nodes. In the case that

P(k = 0) > 0 it is possible to have a 2-core without any variable node but with a non-empty set of

check nodes whose degrees are all zero. Extending prior results that dealt with the degrees of all check

nodes coinciding [19, 47], we compute the likely number of variable and check nodes in the 2-core. Let

𝜙(𝛼) = 1 − 𝛼 − D′ (1 − K′(𝛼)∕k
)
∕𝑑. (1.4)

Note thatΦ′(𝛼) = 𝑑K′′(𝛼)𝜙(𝛼)∕k. Since d, k have finite second moments and𝜙(0) ≥ 0 while𝜙(1) ≤ 0,

we can define

𝜌 = max{x ∈ [0, 1] ∶ 𝜙(x) = 0}. (1.5)

Theorem 1.2. Assume that 𝜙′(𝜌) < 0 and let n∗ and m∗ be the number of variable and check nodes
in the 2-core, respectively. Then

lim
n→∞

n∗

n
= 1 − D

(
1 − K′(𝜌)

k

)
− K′(𝜌)

k
D′
(

1 − K′(𝜌)
k

)
, lim

n→∞

m∗

n
= 𝑑

k
K(𝜌) in probability. (1.6)

Remark 1.3.

(a) If P(k = 1) = 0 then 1−D
(

1 − K′(0)
k

)
− K′(0)

k
D′
(

1 − K′(0)
k

)
evaluates to zero, and a.a.s. 𝑑K(0)∕k

is the number of check nodes with degree zero in G divided by n, up to an o(1) error.

(b) If d ≤ 1 then we observe that 𝜙(𝛼) = −𝛼 and thus 𝜌 = 0. In this case, 1 − D
(

1 − K′(0)
k

)
−

K′(0)
k

D′
(

1 − K′(0)
k

)
evaluates to zero. This agrees with the trivial fact that n∗ = 0, and

m∗

n
→

𝑑K(0)∕k a.a.s. in this case.

4Strictly speaking, what we describe here is the 2-core of the hypergraph whose vertices are the variable nodes and whose edges

are the neighborhoods of the check nodes.
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(c) If P(k = 1) > 0 and P(d ≥ 2) > 0 then 𝜙(0) > 0, which implies that 𝜌 > 0. Thus the right-hand

sides of (1.6) are both positive.

Theorem 1.2 yields an elementary upper bound on the rank of A, as follows, which we refer to as

the 2-core bound:

rk(A)∕n ≤ 1 − max{Φ(0),Φ(𝜌)} + o(1) a.a.s. (1.7)

To see that rk(A)∕n ≤ 1−Φ(0)+o(1) a.a.s., let A′ be the matrix comprising the rows of A that contain at

most one nonzero entry and let m′ be the number of such rows. Then rk(A) ≤ m−m′+rk(A′). Moreover,

routine arguments reveal that (m−m′)∕n ∼ 𝑑(1−K(0)−K′(0))∕k and rk(A′)∕n ∼ 1−D(1−K′(0)∕k)
a.a.s. (see Appendix D for a proof), deducing the desired upper bound for rk(A).

The other upper bound in (1.7) can be deduced by considering the 2-core and lower bounding the

nullity. Counting only solutions to Ax = 0 where xi = 0 for all variables that belong to the 2-core G∗,

we obtain nul(A) ≥ n − n∗ − (m − m∗). Invoking Theorem 1.2, we thus find that as n → ∞,

rk(A)
n

≤ 1 − D
(

1 − K′(𝜌)
k

)
+ 𝑑

k
(1 − K(𝜌)) − K′(𝜌)

k
D′
(

1 − K′(𝜌)
k

)
.

Now 𝜙(𝜌) = 0 implies D′
(

1 − K′(𝜌)
k

)
= 𝑑(1 − 𝜌). Substituting this into the inequality above yields

rk(A)∕n ≤ 1 − Φ(𝜌) + o(1) a.a.s. (1.8)

The following theorem shows that the 2-core bound is tight in several cases of interest.

Theorem 1.4. Assume that

(i) either Var(d) = 0 or d ∼ Po≥𝓁(𝜆) for an integer 𝓁 ≥ 0 and 𝜆 > 0, and
(ii) either Var(k) = 0 or k ∼ Po≥𝓁′ (𝜆′) for an integer 𝓁′ ≥ 0 and 𝜆′ > 0.

Then

lim
n→∞

rk(A)∕n = 1 − max{Φ(0),Φ(𝜌)} in probability.

Remark 1.5. Under either condition of Theorem 1.4 (i) or (ii), the condition𝜙′(𝜌) < 0 of Theorem 1.2

is satisfied, unless P(d = 1) = 0 and 2(k − 1)P(d = 2) ≥ 𝑑. We will prove this in the proof of

Theorem 1.4.

On the basis of a canny but nonrigorous statistical physics approach called the cavity method sev-

eral authors predicted that (over finite fields) the 2-core bound (1.7) is universally tight for all d, k.

Alamino and Saad reached this conclusion by way of numerical experiments [3], while Mézard and

Montanari [46] posed a nonrigorous but analytical derivation as an exercise. However, the predic-

tion turns out to be erroneous. Indeed, Lelarge [41] produced an example of d, k whose function Φ(𝛼)
attains its unique maximum at a value 0 < 𝛼 < 𝜌. We will see another counter-example momentarily.

On the positive side, Theorem 1.4 verifies that the 2-core bound actually is tight in all the cases for

which Alamino and Saad [3] conducted numerical experiments.
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1.4 Examples

Let us conclude this section by investigating a few examples of degree distributions d, k and their

resulting rank formulas.

Example 1.6 (the identity matrix). As was brought to our attention by an anonymous reviewer, in

the case d = k = 1 deterministically the matrix A is just a permutation matrix, which clearly has full

rank. Accordingly, we find D(x) = K(x) = x and Φ(x) = 0. Hence, (1.3) boils down to the trivial fact

rk A ∼ n.

Example 1.7 (the adjacency matrix of random bipartite graphs). Let G = G(n, n, p) be a random

bipartite graph on vertices v1, … , vn, v′1, … , v′n such that for any i, j ∈ [n] the edge {vi, v′j} is present

with probability p independently. With p = Δ∕n for a fixed Δ > 0 for large n the vertex degrees

asymptotically have distribution Po(Δ). Indeed, with the choice d ∼ Po(Δ) and k ∼ Po(Δ) the

adjacency matrix A(G(n, n, p)) and the random matrix A can be coupled such that rk A(G(n, n, p)) =
rk(A) + o(n) a.a.s. Hence, Theorem 1.1shows that over any field F,

lim
n→∞

rk(A(G(n, n, p)))
n

= 2 − max{exp(−Δ exp(Δ(𝛼 − 1)))

+ (1 + (1 − 𝛼)Δ) exp(Δ(𝛼 − 1)) ∶ 𝛼 ∈ [0, 1]},

in probability. Theorem 1.4 implies that the 2-core bound is tight in this example.

Example 1.8 (fixed row sums). Motivated by the minimum spanning tree problem on weighted

random graphs, Cooper, Frieze and Pegden [20] studied the rank of the random matrix with degree

distributions k = k ≥ 3 fixed and d ∼ Po(𝑑) over the field F2. The same rank formula was obtained

independently in [7] for arbitrary finite fields. Extending both these results, Theorem 1.1 shows that

the rank of the random matrix with these degrees over any field F with any choice 𝜒 of nonzero entries

is given by

lim
n→∞

rk A
n

= 1 − max
{

exp(−𝑑𝛼k−1) − 𝑑

k
(
1 − k𝛼k−1 + (k − 1)𝛼k) ∶ 𝛼 ∈ [0, 1]

}
.

Once more Theorem 1.4 shows that the 2-core bound is tight.

Example 1.9 (nonexact 2-core bound). There are plenty of choices of d, k where the 2-core bound

fails to be tight. Degree distributions that render graphs G with an unstable 2-core furnish particularly

egregious offenders. In such graphs the removal of a small number of randomly chosen checks ai likely

causes the 2-core to collapse. Analytically, the instability manifests itself in 𝜌 from (1.5) being a local

minimum of Φ(x). For instance, letting d, k be the distributions with D(x) = (22x2 + 3x11)∕25 and

K(x) = x3, we obtain

Φ(x) = − 3

25
x22 + 33

25
x20 − 33

5
x18 + 99

5
x16 − 198

5
x14 + 1386

25
x12 − 1386

25
x10 + 198

5
x8

− 99

5
x6 + 187

25
x4 − 154

75
x3 − 2

75
. (1.9)

Hence, 𝜌 = 1 and Φ′′(1) > 0, while the global maximum is attained at 𝛼 ≈ 0.75.
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FIGURE 1 Left: the function Δ → 2 − max𝛼∈[0,1] exp(−Δ exp(Δ(𝛼 − 1))) + (1 + (1 − 𝛼)Δ) exp(Δ(𝛼 − 1)) for Example 1.7.

Middle: the function 𝑑 → 1 − max𝛼∈[0,1] exp(−𝑑𝛼k−1) − 𝑑(1 − k𝛼k−1 + (k − 1)𝛼k)∕k from Example 1.8 with k = 3. Right: the

function Φ(x) from (1.9) for Example 1.9

1.5 Preliminaries

Throughout the paper we consistently keep the assumptions on the distributions d, k listed in Section 1.

In particular, E[dr]+E[kr] < ∞ for some real r > 2. Because all-zero rows and columns do not add to

the rank, we may assume that d ≥ 1, k ≥ 1. We write gcd(k) and gcd(d) for the greatest common divisor

of the support of d and k, respectively. When working with A we tacitly assume that gcd(k) divides

n. In order to highlight the number of columns we write An = A and Gn = G for the corresponding

Tanner graph. The following proposition, whose proof can be found in Section 4.2, shows that An is

well-defined (Figure 1).

Proposition 1.10. With probability Ω(n−1∕2) over the choice of m, (di)i≥1, (ki)i≥1 the condition (1.1)
is satisfied and there exists a simple Tanner graph G with variable degrees d1, … , dn and check
degrees k1, … , km.

We introduce the size-biased random variables

P
[
d̂ = 𝓁

]
= 𝓁P

[
d = 𝓁

]
∕𝑑,P

[
k̂ = 𝓁

]
= 𝓁P

[
k = 𝓁

]
∕k (𝓁 ≥ 0). (1.10)

Throughout the paper we let (ki, di, k̂i, d̂i)i≥1 denote mutually independent copies of k, d, k̂, d̂. Unless

specified otherwise, all these random variables are assumed to be independent of any other sources of

randomness.

We use common notation for graphs and multigraphs. For instance, for a vertex v of a multigraph

G we denote by 𝜕Gv the set of neighbors of v. More generally, for an integer 𝓁 ≥ 1 we let 𝜕𝓁Gv be the

set of vertices at distance precisely 𝓁 from v. We omit the reference to G where possible.

The proofs of the main results rely on taking a double limit where we first take the number n of

columns to infinity and subsequently send an error parameter 𝜀 to zero. We use the asymptotic symbols

with an index n such as On( ⋅ ), on( ⋅ ) to refer to the inner limit n → ∞ only. Thus, for functions

f (𝜀, n), g(𝜀, n) we write

f (𝜀, n) = On(g(n, 𝜀)) if pointwise for every 𝜀 > 0, lim sup
n→∞

|||| f (𝜀, n)g(𝜀, n)
|||| < ∞,

f (𝜀, n) = on(g(n, 𝜀)) if pointwise for every 𝜀 > 0, lim sup
n→∞

|||| f (𝜀, n)g(𝜀, n)
|||| = 0.

For example, 1∕(𝜀n) = on(1). Additionally, we will use the symbols O𝜀,n, o𝜀,n, etc. to refer to the double

limit 𝜀 → 0 after n → ∞. Thus,
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f (𝜀, n) = O𝜀,n(g(𝜀, n)) if lim sup
𝜀→0

lim sup
n→∞

|||| f (𝜀, n)g(𝜀, n)
|||| < ∞,

f (𝜀, n) = o𝜀,n(g(𝜀, n)) if lim sup
𝜀→0

lim sup
n→∞

|||| f (𝜀, n)g(𝜀, n)
|||| = 0.

For instance, 𝜀 + 1∕(𝜀n) = o𝜀,n(1).
Finally, we need the following basic lemma on sums of independent random variables.

Lemma 1.11. Let r > 2, 𝛿 > 0 and suppose that (𝝀i)i≥1 are independent copies of a random variable
𝝀 ≥ 0 with E[𝝀r] < ∞. Further, let s = Θn(n). Then P

[||∑s
i=1(𝝀i − E[𝝀])|| > 𝛿n

]
= on(1∕n).

For the sake of completeness the proof of Lemma 1.11 is included in the appendix.

2 OVERVIEW

We survey the proof of Theorem 1.1 and subsequently compare these techniques with those employed

in prior work. The main contribution of the paper is the “≥”-part of (1.3), that is, the lower bound

on the rank. We prove this lower bound via a technique inspired by the physicists’ cavity method.

The scaffolding of the proof is provided by a coupling argument reminiscent of a proof strategy

known in mathematical physics jargon under the name “Aizenman-Sims-Starr scheme” [2] or “cavity

ansatz” [31]:

To calculate the mean of a random variable Xn on a random system of size n in the limit

n → ∞, calculate the difference E[Xn+1] − E[Xn] upon going to a system of size n + 1.

Perform this calculation by coupling the systems of sizes n and n + 1 such that the latter

results from the former by adding only a bounded number of elements.

We will apply this approach to Xn = nul An. The coupling will be such that Xn+1 is the nullity

of a random matrix obtained from An obtained by adding a few rows and columns. Thus, we need to

calculate the ensuing change in nullity upon adding to a matrix several rows/columns whose number

is random and bounded in expectation.

In general, such a calculation hardly seems possible. To carry it out we would need to understand

the linear dependencies among the coordinates where the new rows sport nonzero entries, an exceed-

ingly complicated task. Two facts deliver us from this complexity. First, the positions of the nonzero

entries of the new rows are (somewhat) random. Second, we develop a random perturbation, appli-

cable to any matrix, that diminishes the number of short linear relations (Proposition 2.4 below). To

be precise, we will conclude that by applying the perturbation, for any fixed 𝓁 the probability that a

set of 𝓁 coordinates forms a proper relation in the sense of Definition 2.1 below can be made negli-

gibly small without substantially altering the nullity. In effect, the probability that there will be linear

dependencies among the positions of the nonzero entries of the new rows will turn out to be negligi-

ble. Since this perturbation argument is the linchpin of the entire proof, this is what we shall begin

with. Subsequently we will explain how this general perturbation renders the desired lower bound on

the rank.

2.1 Short linear relations

Define the support of a vector 𝜉 ∈ FU as supp(𝜉) = {i ∈ U ∶ 𝜉i ≠ 0}.
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Definition 2.1. Let A be an m × n-matrix over a field F.

• A set ∅ ≠ I ⊆ [n] is a relation of A if there exists a row vector y ∈ F1×m such that ∅ ≠ supp(yA) ⊆ I.

• If I = {i} is a relation of A, then we call i frozen in A. Let 𝔉(A) be the set of all frozen i ∈ [n].
• A set I ⊆ [n] is a proper relation of A if I ⧵ 𝔉(A) is a relation of A.

• For 𝛿 > 0, 𝓁 ≥ 1 we say that A is (𝛿,𝓁)-free if there are no more than 𝛿n𝓁 proper relations I ⊆ [n]
of size |I| = 𝓁.

Thus, if I ⊆ [n] is a relation of A, then by adding up suitable multiples of the rows of the homoge-

neous linear system Ax = 0 we can infer a nontrivial linear relation involving the variables (xi)i∈I only.

In the simplest case the set I = {i} may be a singleton. Then the equation xi = 0 is implicit in Ax = 0

and we call coordinate i frozen. In particular, i is frozen if A contains a row whose only nonzero entry

appears in column i. However, this is not the only possibility. For instance, in the following F2-matrix

variable x1 is frozen because the sum of all three rows equals (1 0 0):

⎛⎜⎜⎜⎝
1 0 1 1

1 1 0 1

1 1 1 0

⎞⎟⎟⎟⎠ . (2.1)

In effect, for any vector 𝜉 in the kernel of (2.1) we have

0 = (1 1 1)
⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠ = (1 1 1)
⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
1 0 1 1

1 1 0 1

1 1 1 0

⎞⎟⎟⎟⎠ 𝜉
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣(1 1 1)
⎛⎜⎜⎜⎝
1 0 1 1

1 1 0 1

1 1 1 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ 𝜉 = (1 0 0)𝜉 = 𝜉1. (2.2)

Generally, a linear number Ω(n) of rows may have to collude to cause freezing. Moreover, although the

proof is just a bit of routine linear algebra, it is worthwhile including the following characterization of

frozen coordinates.

Fact 2.2. A coordinate i is frozen in the matrix A iff 𝜉i = 0 for all 𝜉 ∈ ker A.

Proof. Let A be an m×n matrix over an arbitrary field. The calculation from (2.2) readily generalizes

to arbitrary matrices and implies that 𝜉i = 0 for any frozen coordinate i ∈ [n] and any 𝜉 ∈ ker A.

Conversely, assume that for coordinate i ∈ [n] we have 𝜉i = 0 for all 𝜉 ∈ ker A. Let e(i) ∈ F1×n be

the vector whose ith coordinate equals one and whose other coordinates are equal to zero. Moreover,

obtain A+ from A by adding e(i) as an extra row. Because 𝜉i = 0 for all 𝜉 ∈ ker A we have ker A+ = ker A.

Therefore, rk A = rkA+ and thus e(i) is a linear combination of the rows of A. Hence, i ∈ 𝔉(A). ▪

Furthermore, excluding frozen coordinates, a proper relation I of A renders a nontrivial linear

relation among at least two of the variables (xi)i∈I . Finally, A is (𝛿,𝓁)-free if only few 𝓁-subsets I ⊆ [n]
are proper relations.

We proceed to put forward a small random perturbation that will mostly rid a given matrix of short

proper relations, an observation that we expect to be of independent interest.

Definition 2.3. Let A be an m × n matrix and let 𝜃 ≥ 0 be an integer. Let i1, i2, … , i𝜃 ∈ [n] be

uniformly random and mutually independent column indices. Then the matrix A[𝜃] is obtained by
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adding 𝜃 new rows to A such that for each j ∈ [𝜃] the jth new row has precisely one nonzero entry,

namely a one in the ijth column.

In other words, in A[𝜃] we expressly peg 𝜃 randomly chosen variables xi1 , … , xi𝜃 of the linear system

Ax = 0 to zero. The proof of the following proposition is based on a blend of algebraic and probabilistic

ideas.

Proposition 2.4. For any 𝛿 > 0, 𝓁 > 0 there exists 𝒯 = 𝒯 (𝛿,𝓁) > 0 such that for any matrix A
over any field F the following is true. With 𝜽 ∈ [𝒯 ] chosen uniformly at random we have

P [A[𝜽] is (𝛿,𝓁) − free] > 1 − 𝛿. (2.3)

The key feature of Proposition 2.4 is that the maximum number 𝒯 of variables that get pegged to zero

does not depend on the matrix A or its size but on 𝛿 and 𝓁 only. Moreover, since adding a single row can

change the nullity by at most one, we obtain |nul(A) − nul A[𝜽]| ≤ 𝒯 . Hence, while eliminating short

proper relations, the perturbation does not shift the nullity significantly. Proposition 2.4 is a sweeping

generalisation of a probabilistic result from [7], where the perturbation from Definition 2.3 was applied

to matrices over finite fields to diminish stochastic dependencies among entries of randomly chosen

vectors in the kernel. That argument, in turn, was inspired by ideas from information theory [17, 48,

51]. We will come back to this in Section 2.3.

We will incorporate the perturbation from Proposition 2.4 into the Aizenman–Sims–Starr coupling

argument, which reduces the rank calculation to studying the impact of a few additional rows and

columns on the rank. The following lemma, whose proof consists of a few lines of linear algebra, shows

how the impact of such operations can be tracked in the absence of proper relations. Specifically, the

lemma shows that all we need to know about the matrix A to which we add rows/columns is the set

𝔉(A) of frozen variables.

Lemma 2.5. Let A,B,C be matrices of size m × n, m′ × n and m′ × n′, respectively, and let I ⊆ [n]
be the set of all indices of nonzero columns of B. Moreover, obtain B∗ from B by replacing for each
i ∈ I ∩𝔉(A) the ith column of B by zero. Unless I is a proper relation of A we have

nul

(
A 0

B C

)
− nul A = n′ − rk(B∗ C). (2.4)

Observe that the quantity on the l.h.s. of (2.4) (and thus the one on the r.h.s. as well) may be either

positive or negative, depending on A,B,C.

To put Proposition 2.4 and Lemma 2.5 to work, we need to explain the construction of the tele-

scoping series of random variables upon which the Aizenman–Sims–Starr argument is based. That is

our next step.

2.2 The Aizenman–Sims–Starr scheme

In order to derive the desired lower bound on the rank we need to bound the nullity of An from above.

In line with the Aizenman–Sims–Starr scheme [2, 49], a first stab at this problem might be to write a

telescoping sum

lim sup
n→∞

1

n
E[nul(An)] = lim sup

N→∞

1

N

N−1∑
n=1

E[nul(An+1)] − E[nul(An)]. (2.5)



12 COJA-OGHLAN ET AL.

Providing that E[nul(An+1)]−E[nul(An)] is bounded, the lim sup of the sequence of summands exists.

In this case, due to the normalizing factor 1∕N on the r.h.s. of (2.5), we obtain

lim sup
N→∞

1

N

N−1∑
n=1

E[nul(An+1)] − E[nul(An)] ≤ lim sup
n→∞

E[nul(An+1)] − E[nul(An)]. (2.6)

Hence, combining (2.5) and (2.6), we obtain the bound

lim sup
n→∞

1

n
E[nul(An)] ≤ lim sup

n→∞
E[nul(An+1)] − E[nul(An)].

To obtain an explicit estimate, we should thus attempt to couple An+1 and An so that we can write a

single expectation

E[nul(An+1)] − E[nul(An)] = E [nul(An+1) − nul(An)] . (2.7)

Ideally, to bring the tools from Section 2.1 to bear, under this coupling An+1 should be obtained from

An by adding one column and a few rows.

Unfortunately, this direct approach flounders for obvious reasons. For instance, depending on the

distributions d, k, due to divisibility issues An+1 may not even be defined for all n.5 To deal with

this issue we introduce a more malleable version of the random matrix model, without significantly

altering the rank. Specifically, we introduce a parameter 𝜀 > 0, for which we choose a large enough

𝒯 = 𝒯 (𝜀) > 0. Then for integers n ≥ 𝒯 we construct a random matrix A𝜀,n as follows. Like in

Section 1.2 let 𝜒 ∶ [0, 1]2 → F∗ be a measurable map and let (𝜻 i, 𝝃i)i≥1 be uniformly distributed

[0, 1]-valued random variables. Further, let

m𝜀,n ∼ Po((1 − 𝜀)𝑑n∕k).

Additionally, choose 𝜽 ∈ [𝒯 ] uniformly at random and, as before, let (di)i≥1, (ki)i≥1 be copies of d,

k. All of these random variables are mutually independent. Further, let 𝚪𝜀,n be a uniformly random

maximal matching of the complete bipartite graph with vertex classes

m𝜀,n⋃
i=1

{ai} × [ki] and

n⋃
j=1

{
xj
}
× [dj].

As in the well known configuration model of random graphs, we think of {ai}×[ki] as a set of clones of

ai and of {xj}× [dj] as a set of clones of xj. We obtain a random Tanner graph G𝜀,n with variable nodes

x1, … , xn and check nodes a1, … , am𝜀,n , p1, … , p𝜽 by inserting an edge between ai and xj for each

matching edge that joins the sets {ai} × [ki] and {xj} × [dj]. Additionally, check node pi is adjacent to

xi for each i ∈ [𝜽]. To be clear, we do not need to set aside any unmatched variable clones as partners

of the pi. We simply add the xi-pi-edges on top of the configuration model. Since ultimately 𝒯 will

be chosen to be of order o(n), the number of these additional edges is relatively small.

Since there may be several edges joining clones of the same variable and check node, G𝜀,n may

be a multigraph. Finally, we construct a random matrix A𝜀,n whose rows are indexed by the check

5For instance, suppose that d = 3 and k = 4 deterministically. Then (1.1) boils down to 4m = 3n, and thus An is well-defined

only if n is divisible by four.
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nodes a1, … , am𝜀,n and whose columns are indexed by x1, … , xn such that the nonzero entries of A𝜀,n
represent the edges of the matching 𝚪𝜀,n. Specifically, the matrix entries read

(A𝜀,n)pi,xj = 1 {i = j} (i ∈ [𝜽], j ∈ [n]),

(A𝜀,n)ai,xj = 𝜒𝜻 i,𝝃j

ki∑
s=1

dj∑
t=1

1
{
{(ai, s), (xj, t)} ∈ 𝚪𝜀,n

}
(i ∈ [m𝜀,n], j ∈ [n]).

Morally, A𝜀,n mimics the matrix obtained from the original model An by deleting every row with prob-

ability 𝜀 independently (which, of course, would be unworkable because still the model is not generally

defined for all n). Furthermore, the purpose of the check nodes p1, … , p𝜽 is to ensure that A𝜀,n is

(𝛿,𝓁)-free for a small enough 𝛿 = 𝛿(𝜀) and a large enough 𝓁 = 𝓁(𝜀). Indeed, while Proposition 2.4

requires that a random set of 𝜽 variables be pegged, the checks p1, … , p𝜽 just freeze the first 𝜽 vari-

ables. But since the distribution of the Tanner graph G𝜀,n−{p1, … , p𝜽} is invariant under permutations

of the variable nodes, both constructions are equivalent. The following proposition shows that going

to A𝜀,n does not shift the rank significantly.

Proposition 2.6. For any any 0 < C < C′ and any function 𝒯 = 𝒯 (𝜀) ≥ 0 the following is true. If

lim sup
𝜀→0

lim sup
n→∞

1

n
E[nul(A𝜀,n)] ≤ C then lim

n→∞
P
[
nul(An) ≤ C′n

]
= 1. (2.8)

Analogously, if

lim inf
𝜀→0

lim inf
n→∞

1

n
E[nul(A𝜀,n)] ≥ C′ then lim

n→∞
P [nul(An) ≥ Cn] = 1.

By construction, the degrees of the checks ai and the variables xj in G𝜀,n − {p1, … , p𝜽} are

upper-bounded by ki and dj, respectively. We thus refer to ki and dj as the target degrees of ai and xj.

Indeed, since G𝜀,n will turn out to feature few if any multi-edges and m𝜀,n is significantly smaller than

𝑑n∕k and thus

P

[m𝜀,n∑
i=1

ki ≤

n∑
i=1

di

]
= 1 − on(1),

most check nodes ai have degree precisely ki a.a.s. But we expect that about 𝜀𝑑n variable nodes xi will

have degree less than di. In fact, a.a.s. 𝚪𝜀,n fails to cover about 𝜀𝑑n “clones” from the set
⋃n

i=1{xi}×[di].
Let us call such unmatched clones cavities.

The cavities provide the wiggle room that we need to couple A𝜀,n and A𝜀,n+1. An instant idea might

be to couple G𝜀,n+1 and G𝜀,n such that the former is obtained by adding one variable node xn+1 along

with dn+1 new adjacent check nodes. Additionally, the new checks get connected with some random

cavities of G𝜀,n. In effect, the coupling takes the form

nul A𝜀,n+1 = nul

(
A𝜀,n 0

B C

)
, (2.9)

where B has n columns and dn+1 rows and C is a column vector of size dn+1 a.a.s. But this direct attempt

has a subtle flaw. Indeed, going from A𝜀,n to A𝜀,n+1, (2.9) adds E[dn+1] = 𝑑 rows on the average. Yet
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actually we should be adding merely E[m𝜀,n+1 − m𝜀,n] = (1 − 𝜀)𝑑∕k rows. To remedy this problem

we borrow a trick from prior applications of the Aizenman–Sims–Starr scheme in combinatorics [7,

17, 18]. Namely, we set up a coupling under which both A𝜀,n,A𝜀,n+1 are obtained by adding a few

rows/columns to a common “base matrix” A′. Thus, instead of (2.9) we obtain

nul A𝜀,n = nul

(
A′

B

)
, nul A𝜀,n+1 = nul

(
A′ 0

B′ C′

)
. (2.10)

To be precise, C′ above is a column vector with an expected (1 − 𝜀)𝑑 nonzero entries and B,B′ are

matrices whose numbers of nonzero entries are bounded in expectation. Furthermore, the base matrix

A′ itself is quite similar to A𝜀,n, except that A′ has a slightly smaller number of rows. In Section 5 we will

present the construction in full detail and apply Proposition 2.4 and Lemma 2.5 to prove the following

upper bound on the change in nullity. Recall the function Φ from (1.2) and recall that 𝜽 ∈ [𝒯 ] with

𝒯 = 𝒯 (𝜀) dependent on 𝜀 only is the number of pinned variables in the construction of A𝜀,n.

Proposition 2.7. There exists a function 𝒯 = 𝒯 (𝜀) > 0 such that

lim sup
𝜀→0

lim sup
n→∞

E[nul(A𝜀,n+1)] − E[nul(A𝜀,n)] ≤ max
𝛼∈[0,1]

Φ(𝛼).

As an immediate consequence of Proposition 2.7 we obtain the desired upper bound on the nullity.

Corollary 2.8. We have

lim sup
𝜀→0

lim sup
n→∞

1

n
E[nul(A𝜀,n)] ≤ max

𝛼∈[0,1]
Φ(𝛼).

Proof. Proposition 2.7 yields

1

n
E[nul(A𝜀,n)] =

1

n

[
E[nul(A𝜀,1)] +

n−1∑
N=1

(
E[nul(A𝜀,N+1)] − E[nul(A𝜀,N)]

)]
≤ max

𝛼∈[0,1]
Φ(𝛼) + o𝜀,n(1),

as claimed. ▪

Proof of Theorem 1.1. The desired lower bound on the rank of An is an immediate consequence of

Proposition 2.6 and Corollary 2.8. ▪

2.3 Discussion

Before delving into the technical details of the proofs of the various propositions, we compare the proof

strategy and the results with previous work. We begin with a discussion of related work on the rank

problem. Roughly speaking, prior work on the rank of random matrices relies on separate strands of

techniques, depending on whether the average number of nonzero entries per row/column is bounded

or unbounded. Subsequently we discuss the physicists’ (nonrigorous) cavity method and explain how

it led to an erroneous prediction.

2.3.1 Dense matrices

The difficulty of the rank problem for dense random matrices strongly depends on the distribution of

the matrix entries. For instance, a square matrix with independent Gaussian entries in each row has full
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rank with probability one simply because the submanifold of singular matrices has Lebesgue measure

zero. By contrast, the case of matrices with independent uniform±1 entries is more subtle. Komlós [36]

proved that such matrices are regular a.a.s. Vu [55] subsequently presented a simpler proof, based on

collision probabilities and Erdős’ Littlewood-Offord inequality. An intriguing conjecture, which has

inspired a distinguished line of research [33, 34, 44, 53–54], asserts that the dominant reason for a

random ±1-matrix being singular is the existence of a pair of identical rows or columns.

Interesting enough, the limiting probability that a dense square matrix with entries drawn uniformly

from a finite field is singular lies strictly between zero and one. Kovalenko and Levitskaya [37, 38, 42,

43] obtained a precise formula for the distribution of the rank of dense random matrices with indepen-

dent entries over finite fields via the method of moments. For more recent improvements see [27] and

the references therein.

A further line of work deals with random m×n matrices in which the number of nonzero entries per

row diverges in the limit of large n but is of order on(n). Relating the permanent and the determinant,

Balakin [9] and, using delicate moment calculations, Blömer, Karp and Welzl [12] dealt with the rank

of such matrices over finite fields. Moreover, using expansion arguments, Costello and Vu [21, 22]

studied the real rank of random symmetric matrices of a similar density. They find that such matrices

essentially have full rank a.a.s., apart from a small defect based on local phenomena. In the words

of [22], “dependency [comes] from small configurations”.

2.3.2 Sparse matrices

Matters are quite different in the sparse case where the average number of nonzero entries per row is

bounded. In fact, as we will discover in due course the formula from Theorem 1.1 is driven by “depen-

dency coming from large configurations,” that is, by minimally linearly dependent sets of unbounded

size.

The first major contribution dedicated to sparse matrices was a paper by Dubois and Mandler [24]

on the random 3-XORSAT problem. Translated into random matrices, this problem asks for what

ratios m∕n a random m × n-matrix over F2 with precisely three one-entries in each row has full rank

(i.e., equal to m ∧ n) a.a.s. Thus, the random matrix model is just the one from Example 1.8 with

k = 3. Dubois and Mandler pinpointed the precise full row rank threshold m∕n ≈ 2.75. The proof

relies on the first moment method applied to | ker A|, which boils down to a one-dimensional calcu-

lus problem. Matters get more complicated when one considers a greater number k > 3 of nonzero

entries per row. This more general problem, known as random k-XORSAT, was solved independently

by Dietzfelbinger et al. [23] and by Pittel and Sorkin [50] via technically demanding moment calcu-

lations. Unfortunately, considering fields Fq with q > 2 complicates the moment calculation even

further. Yet undertaking a computer-assisted tour-de-force Falke and Goerdt [29] managed to extend

the method to F3. However, extending this strategy to infinite fields is a nonstarter as | ker A| may be

infinite.

In a previous paper Ayre, Coja-Oghlan, Gao and Müller [7] applied the Aizenman–Sims–Starr

scheme to the study of sparse random matrices with precisely k nonzero entries per row as in

Example 1.8, over finite fields. The present paper goes beyond that earlier contribution in two cru-

cial ways. First, we develop a far more delicate coupling scheme that accommodates general degree

distributions d, k rather than just the Poisson-constant degrees from Example 1.8, including degree

sequences for which the 2-core bound fails to be tight (in contrast to Example 1.8). Apart from render-

ing a proof of Lelarge’s conjecture, we expect that this more general coupling scheme will find further

uses in the theory of random factor graphs; for instance, it seems applicable to generalizations of the

models from [17].
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Second, the rank calculation in [7] is based on a probabilistic view that does not extend to infinite

fields. Indeed, the proof there is based on a close study of a uniformly random element 𝝈 of the kernel

of the random matrix A. Specifically, [7, lemma 3.1] analyzes the impact of the perturbation from

Definition 2.3 on a matrix A ∈ Fm×n for a finite field F. With 𝝈 = (𝝈1, … ,𝝈n) ∈ ker(A) a uniformly

random element of the kernel, the lemma shows that for a large enough 𝒯 = 𝒯 (𝛿,F) > 0 and a

uniformly random 0 ≤ 𝜽 ≤ 𝒯 ,∑
1≤i<j≤n
𝜔,𝜔′∈F

E
|||P [𝝈i = 𝜔,𝝈j = 𝜔′|A[𝜽]] − P [𝝈i = 𝜔|A[𝜽]] ⋅ P [𝝈j = 𝜔′|A[𝜽]]||| < 𝛿n2, (2.11)

As in Proposition 2.4, the necessary value of 𝒯 is independent of n,m, and A. Thus, the random

perturbation renders the vector entries (𝝈i,𝝈j) nearly stochastically independent, for most i, j. Thanks

to general results from [10], (2.11) extends from pairwise independence to 𝓁-wise independence, albeit

with a weaker error bound 𝛿. The result [7, lemma 3.1] was inspired by general statements about

probability measures on discrete cubes from [17, 48, 51].

Inherently, this stochastic approach does not generalize to infinite fields, where, for starters, it does

not even make sense to speak of a uniformly random element of the kernel. That is why here we replace

the stochastic approach from the earlier paper by the more versatile algebraic approach summarized

in Proposition 2.4, which are applicable to any field—say, the reals, the field Qp of p-adic numbers,

the algebraic closure of a finite field or a structure as complex as a function field. Instead of show-

ing stochastic independence, Proposition 2.4 renders linear independence amongst most bounded-size

subsets of coordinates. Apart from being more general, this algebraic viewpoint allows for a cleaner,

more direct proof of the rank formula. Additionally, on finite fields the stochastic independence (2.11)

follows from the linear independence provided by Proposition 2.4, with a significantly improved bound

on 𝒯 (𝛿). We work this out in detail in Appendix B.

The single prior contribution on the rational rank of sparse random matrices is due to Bordenave,

Lelarge and Salez [13], who computed the rational rank of the (symmetric) adjacency matrix of a

random graph with a given vertex degree distribution. The proof is based on local weak convergence

and the “objective method” [5]. An intriguing question for future research is to extend the techniques

from the present paper to symmetric random matrices.

2.3.3 The cavity method (and its caveats)

On the basis of the cavity method, an analytic but nonrigorous technique inspired by the statistical

mechanics of disordered systems, it had been predicted erroneously that over finite fields the 2-core

bound (1.7) on the rank of A is universally tight for general degree distributions d, k [3, 46]. Where

did the cavity method go astray?

The method comes in two instalments, the simpler replica symmetric ansatz and the more elab-

orate one-step replica symmetry breaking ansatz (“1RSB”). The former predicts that the rank of

A over a finite field Fq converges in probability to the solution of an optimization problem on an

infinite-dimensional space of probability measures. To be precise, let 𝒫 (Fq) be the space of prob-

ability measures on Fq. Identify this space with the standard simplex in Rq. Further, let 𝒫 2(Fq) be

the space of all probability measures on 𝒫 (Fq). Given 𝜋 ∈ 𝒫 2(Fq) let (𝝁𝜋
i,j)i,j≥1 be a sequence of

independent samples from 𝜋. Recalling (1.10), the Bethe free entropy is defined by

ℬ(𝜋) = E

⎡⎢⎢⎢⎣logq

∑
𝜎1∈Fq

d∏
i=1

∑
𝜎2,… ,𝜎k̂i

∈Fq

1
⎧⎪⎨⎪⎩

k̂i∑
j=1

𝜎j𝝌 i,j = 0

⎫⎪⎬⎪⎭
k̂i∏

j=2

𝝁𝜋
i,j(𝜎j)

⎤⎥⎥⎥⎦
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− 𝑑

k
E

⎡⎢⎢⎣(k − 1) logq

∑
𝜎1,… ,𝜎k∈Fq

1

{ k∑
i=1

𝜎i𝝌1,i = 0

} k∏
i=1

𝝁𝜋
1,i(𝜎i)

⎤⎥⎥⎦ .
(cf. [73, chapter 14]).

The replica symmetric ansatz predicts that

lim
n→∞

1

n
nul A = sup

𝜋∈𝒫 2(Fq)
ℬ(𝜋) in probability. (2.12)

For a detailed (heuristic) derivation of the Bethe free entropy and the prediction (2.12) we refer to [3].

But let us briefly comment on the intended semantics of 𝜋. Consider the Tanner graph G representing

A. Suppose that variable node xi and check node aj are adjacent. Then for 𝜎 ∈ Fq we define the Belief
Propagation message 𝜇A,xj→ai(𝜎) from xj to ai as follows. Obtain Axj→ai from A by changing the ijth
matrix entry to zero; this corresponds to deleting the xj-ai-edge from the Tanner graph. Then 𝜇A,xj→ai(𝜎)
is the probability that in a uniformly random vector 𝝈 ∈ ker Axj→ai we have 𝝈j = 𝜎. Further, define 𝜋A
as the empirical distribution of the 𝜇A,xj→ai over the edges of the Tanner graph:

𝜋A = 1∑n
i=1 di

n∑
j=1

m∑
i=1

1{Aij ≠ 0}𝛿𝜇A,xj→ai
∈ 𝒫 2(Fq).

Then the replica symmetric ansatz predicts that 𝜋A is asymptotically a maximiser of the Bethe free

energy, that is, sup𝜋∈𝒫 2(Fq) ℬ(𝜋) = ℬ(𝜋A) + on(1) a.a.s. Thus, the maximizer 𝜋 in (2.12) is deemed

to encode the Belief Propagation messages on the edges of the Tanner graph of A.

A bit of linear algebra that seems to have gone unnoticed in the physics literature reveals that the

messages actually have a very special form [7, lemma 2.3]. Namely, any message 𝜇A,xj→ai is either the

uniform distribution q−11 on Fq or the atom 𝛿0 on 0. In effect, the rank should come out as the Bethe

free entropy ℬ(𝜋𝛼) of a convex combination

𝜋𝛼 = 𝛼𝛿𝛿0
+ (1 − 𝛼)𝛿q−11 (𝛼 ∈ [0, 1]). (2.13)

In fact, a simple calculation yields Φ(𝛼) = ℬ(𝜋𝛼) for all 𝛼 ∈ [0, 1]. Thus, Theorem 1.1 shows that

lim
n→∞

rk A
n

= 1 − sup
𝛼∈[0,1]

ℬ(𝜋𝛼) in probability,

vindicating the cavity method to an extent. However, we do not know whether the Bethe free entropy

possesses other spurious maximizers 𝜋 ∈ 𝒫 2(Fq) with ℬ(𝜋) > sup𝛼∈[0,1] ℬ(𝜋𝛼).
Alamino and Saad [3] tackled the optimisation problem (2.12) by means of a numerical heuristic

called population dynamics, without noticing the restriction to (𝜋𝛼)𝛼∈[0,1]. In all the examples that they

studied they found that 𝜋 ∈ {𝜋0, 𝜋𝜌}, with 𝜌 from (1.5); in fact, all their examples fall within the

purview of Theorem 1.4. 6 This led Alamino and Saad to conjecture that the maximiser 𝜋 is generally

of this form, although they cautioned that further evidence seems necessary. Example 1.9 and [41]

6Strictly speaking, Alamino and Saad, who worked numerically with n in the hundreds, reported 𝜋 ∈ {𝜋0, 𝜋1}. Indeed, 𝜌 ∈ {0, 1}
in the first class of examples that they studied, but not in the other two. For instance, in their example (3) the actual value of 𝜌

is either 0 or a number strictly smaller than one, although 𝜌 > 0.97 whenever Φ(𝜌) > Φ(0).
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provide counterexamples. The more sophisticated 1RSB cavity method is presented in [46, chapter 19],

where an exercise asks the reader to verify that the 2-core bound is tight (over finite fields). While

Theorem 1.4 gives sufficient conditions for this to be correct, the aforementioned counterexamples

apply.

2.4 Organization

We proceed to prove Proposition 2.4, the “key lemma” upon which the proof of Theorem 1.1 rests,

in Section 3. Subsequently in Section 4 we use concentration inequalities and the local limit theorem

for sums of independent random variables to prove Proposition 2.6. Additionally, Section 4 contains

Proposition 1.10, which shows that the random matrix model (1.1) is well defined, a standard argument

that we include for the sake of completeness. Dealing with the full details of the coupling scheme,

Section 5 contains the proof of Proposition 2.7. Further, Section 6 deals with the proof of Theorem 1.2

and in Section 7 we prove Theorem 1.4. For the sake of completeness a proof of Lemma 1.11 is

included in Appendix A. Moreover, in Appendix B we elaborate on the relation between the algebraic

perturbation from Proposition 2.4 and the stochastic version from [7]. Finally, Appendix C contains

a self-contained proof of the upper bound on the rank for Theorem 1.1 via the interpolation method

from mathematical physics.

3 LINEAR RELATIONS: PROOF OF PROPOSITION 2.4

In this section we prove Proposition 2.4 and Lemma 2.5. The somewhat delicate proof of the former

is based on a blend of probabilistic and algebraic arguments. The proof of the latter is purely algebraic

and fairly elementary.

3.1 Proof of Proposition 2.4

Observe that Proposition 2.4 is not an asymptotic statement to the extent that we need to exhibit a

function 𝒯 = 𝒯 (𝛿,𝓁) such that (2.3) holds for all matrices A (ultimately in (3.12) we will see that

𝒯 (𝛿,𝓁) scaling as 𝓁3∕𝛿4 does the trick). Nevertheless, letting n denote the number of columns of A,

we may safely assume that n > n0 = n0(𝛿,𝓁) for any specific n0 that depends on 𝛿,𝓁 only. Indeed, to

deal with n ≤ n0 for any fixed value n0 we could just pick𝒯 ≥ 𝒯0(𝛿,𝓁) for a large enough𝒯0(𝛿,𝓁) so

that with probability at least 1−𝜀 we have {i1, … , i𝜽} = [n]. Note that we do not need to worry about

the possibility that 𝒯 > n because the ij are drawn with replacement. Further, if {i1, … , i𝜽} = [n],
then a glimpse at Definition 2.1 shows that all coordinates are frozen. Therefore, A[𝜽] is (𝛿,𝓁)-free.

Hence, from now on we assume that n ≥ n0 = n0(𝛿,𝓁) for a sufficiently large n0.

Given any matrix M we define a minimal h-relation of M as a relation I of M of size |I| = h that

does not contain a proper subset that is a relation of M. Let ℛh(M) be the set of all minimal h-relations

of M and set Rh(M) = |ℛh(M)|. Thus, R1(M) = |𝔉(M)| is just the number of frozen variables of

M. Additionally, let ℛ≤h(M) =
⋃

1≤i≤h ℛi(M) and R≤h(M) = |ℛ≤h(M)|. Let i1, i2, i3, … ∈ [n] be

uniformly distributed independent random variables.

The proof of Proposition 2.4 is based on a potential function argument. To get started we observe

that

ℛ1(A[t]) ⊆ ℛ1(A[t + 1]) for all t ≥ 0. (3.1)
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This inequality implies that the random variable

Δt =
E[R1(A[t + 𝓁])|A[t]] − R1(A[t])

n

is nonnegative. The random variable Δt gauges the increase in frozen variables upon addition of 𝓁
more rows that expressly freeze specific variables. Thus, “big” values of Δt, say Δt = Ωn(1), witness

a kind of instability as pegging a few variables to zero entails that another Ωn(n) variables get frozen

to zero due to implicit linear relations. We will exploit the observation that, since Δt ∈ [0, 1] and

E[Δt] is monotonically increasing in t, such instabilities cannot occur for many t. Thus, the expectation

E[Δ𝜽] will serve as our potential. A similar potential was used in [7] to study stochastic dependencies

in the case of finite fields F. But in the present more general context the analysis of the potential is

significantly more subtle. The following lemma puts a lid on the potential.

Lemma 3.1. We have E[Δ𝜽] ≤ 𝓁∕𝒯 .

Proof. For any r ∈ {0, 1, … ,𝓁 − 1} we have

∑
j≥0

E[Δr+j𝓁] =
1

n
∑
j≥0

E[R1(A[r + (j + 1)𝓁])] − E[R1(A[r + j𝓁])] ≤ 1

n
lim
j→∞

E[R1(A[r + j𝓁])]. (3.2)

Observe that there is no problem here taking the limit j → ∞ as the coordinates ij from Definition 2.3

are chosen independently with replacement. In the case that j ≫ n the likely outcome is thus that all
coordinates of A[r + j𝓁] are frozen, which is why limj→∞ E[R1(A[r + j𝓁])] = n. Hence, (3.2) yields∑

j≥0

E[Δr+j𝓁] ≤ 1. (3.3)

Summing (3.3) on r, we obtain

∑
𝜃∈[𝒯 ]

E[Δ𝜃] ≤
𝓁−1∑
r=0

∑
j≥0

E[Δr+j𝓁] ≤ 𝓁. (3.4)

Since 𝜽 ∈ [𝒯 ] is chosen uniformly and independently of everything else, dividing (3.4) by 𝒯 yields

E[Δ𝜽] =
1

𝒯

∑
𝜃∈[𝒯 ]

E[Δ𝜃] ≤
1

𝒯

𝓁−1∑
r=0

∑
j≥0

E[Δr+j𝓁] ≤
𝓁
𝒯

, (3.5)

as desired. ▪

Remark 3.2. Lemma 3.1 provides a bound on the mean of E[Δ𝜽] for a random 𝜽. The requirement

that 𝜽 be random stems from the fact that the proof is based on an averaging argument. It is an open

question whether this random value could be replaced by a deterministic value, and whether the choice

of such a deterministic value would have to depend on A.

The following lemma shows that unless A[t] is (𝛿,𝓁)-free, there exist many minimal h-relations for

some 2 ≤ h ≤ 𝓁.
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Lemma 3.3. If A[t] fails to be (𝛿,𝓁)-free then there exists 2 ≤ h ≤ 𝓁 such that Rh(A[t]) ≥ 𝛿nh∕𝓁.

Proof. Assume that

Rh(A[t]) < 𝛿nh∕𝓁 for all 2 ≤ h ≤ 𝓁. (3.6)

Since every proper relation I of size |I| = 𝓁 contains a minimal h-relation J ⊆ I for some 2 ≤ h ≤ 𝓁,

(3.6) implies that A[t] possesses fewer than 𝛿n𝓁 proper relations of size 𝓁 in total. Hence, if (3.6) holds,

then A[t] is (𝛿,𝓁)-free. ▪

As a next step we show that Δt is large if A[t] possesses many minimal h-relations for some 2 ≤ h ≤ 𝓁.

Lemma 3.4. If Rh(A[t]) ≥ 𝛿nh∕𝓁 for some 2 ≤ h ≤ 𝓁, then Δt ≥ 𝛿2∕𝓁2.

Proof. Let ℛv,h(A[t]) be the set of all relations I ∈ ℛh(A[t]) that contain v ∈ [n] and set rv,t,h =|ℛv,h(A[t])|. Moreover, let 𝒱t,h be the set of all v ∈ [n] with rv,t,h ≥ 𝛿hnh−1∕(2𝓁). We assumed|Rh(A[t])| ≥ 𝛿nh∕𝓁, and every h-relation is affiliated with an h-element subset of [n]. Consequently,

𝛿hnh∕𝓁 ≤ hRh(A[t]) ≤ |𝒱t,h|nh−1 +
(
n − |𝒱t,h|) ⋅ 𝛿hnh−1∕(2𝓁),

whence

|𝒱t,h| ≥ 𝛿hn
2𝓁

. (3.7)

Consider v ∈ 𝒱t,h along with a minimal h-relation I ∈ ℛv,h(A[t]). If I = {v, it+1, … , it+h−1}, that is,

I comprises v and the next h − 1 indices that get pegged, then v ∈ 𝔉(A[t + h − 1]). Indeed, since I
is a minimal h-relation of A[t] there is a row vector y such that supp(yA[t]) = I. Hence, if I ⧵ {v} =
{it+1, … , it+h−1}, then we can extend y to a row vector y′ such that supp(y′A[t + 𝓁]) = {v}, and thus

v ∈ 𝔉(A[t + h − 1]). Furthermore, since (it+1, … , it+h−1) ∈ [n]h−1 is uniformly random, we conclude

that

P [I = {v, it+1, … , it+h−1} |A[t]] = (h − 1)!∕nh−1 ≥ n1−h. (3.8)

Now, because every v ∈ 𝒱t,h satisfies rv,t,h ≥ 𝛿hnh−1∕(2𝓁), (3.8) implies that

P [v ∈ 𝔉(A[t + h − 1])|A[t]] ≥ rv,t,h∕nh−1 ≥ 𝛿h∕(2𝓁). (3.9)

We also notice that 𝒱t,h ∩ 𝔉(A[t]) = ∅ because no minimal h-relation contains a frozen variable.

Therefore, combining (3.1), (3.7), and (3.9) and using linearity of expectation, we obtain

Δt ≥
1

n
∑

v∈𝒱t,h

P [v ∈ 𝔉(A[t + h − 1])|A[t]] ≥ 𝛿h|𝒱t,h|
2𝓁n

≥
𝛿2h2

4𝓁2
≥

𝛿2

𝓁2
,

as desired. ▪

Combining Lemmas 3.3 and 3.4, we immediately obtain the following.

Corollary 3.5. If A[t] fails to be (𝛿,𝓁)-free then Δt ≥ 𝛿2∕𝓁2.
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We have all the ingredients in place to complete the proof of Proposition 2.4.

Proof of Proposition 2.4. We define T = {t ∈ [𝒯 ] ∶ P [A[t] fails to be (𝛿,𝓁)−free] ≥ 𝛿∕2} so that

P [A[𝜽] is (𝛿,𝓁) − free] > 1 − 𝛿∕2 − P [𝜽 ∈ T]. (3.10)

Hence, we are left to estimate P [𝜽 ∈ T]. Applying Corollary 3.5, we obtain for every t ∈ T ,

E[Δt] ≥
𝛿2

𝓁2
⋅ P [A[t] fails to be (𝛿,𝓁) − free] ≥ 𝛿3

2𝓁2
. (3.11)

Moreover, averaging (3.11) on t ∈ [𝒯 ] and applying Lemma 3.1, we obtain

𝛿3

2𝓁2
⋅ P [𝜽 ∈ T] = 𝛿3

2𝓁2
⋅
|T|
𝒯

≤
1

𝒯

∑
t∈T

E[Δt] ≤ E[Δ𝜽] ≤
𝓁
𝒯

.

Consequently, choosing

𝒯 > 4𝓁3∕𝛿4, (3.12)

ensures P [𝜽 ∈ T] ≤ 𝛿∕2. Thus, the assertion follows from (3.10). ▪

Remark 3.6. The proof presented in this section actually renders a slightly stronger statement than

Proposition 2.4. Specifically, let A be an m × N-matrix and let n ≤ N. Obtain A[𝜃, n] by pegging 𝜃

random variables from among the first n variables x1, … , xn of the linear system Ax = 0 to zero. Then

with 𝜽 = 𝜽(𝛿,𝓁) chosen as in Proposition 2.4 we find that with probability at least 1 − 𝛿, there are no

more than 𝛿n𝓁 proper relations I ⊆ [n]. Thus, in order to rid a subset of the columns of short linear

relations, it suffices to peg 𝜽 random variables from that subset to zero. The proof of this stronger

statement proceeds as above, except that we confine ourselves to minimal relations among the first n
columns.

3.2 Proof of Lemma 2.5

We are going to derive Lemma 2.5 from the following simpler, deterministic and nonasymptotic

statement.

Lemma 3.7. Let m, n,m′, n′ ≥ 1 be integers. Let A be an m×n matrix, let B be an m′ ×n matrix and
let C be an m′ × n′ matrix. Let I ⊆ [n] be the set of all indices of nonzero columns of B. Unless I is a
relation of A we have

nul A − nul

(
A 0

B C

)
= rk(B C) − n′.

Proof. Suppose that I is not a relation of A. We begin by showing that

nul A − nul

(
A
B

)
= rk(B). (3.13)
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Writing B1, … ,Bm′ for the rows of B and r = rk(B) for the rank and applying a row permutation

if necessary, we may assume that B1, … ,Br are linearly independent. Hence, to establish (3.13) it

suffices to prove that for all 0 ≤ 𝓁 < r,

rk

⎛⎜⎜⎜⎜⎜⎝

A
B1

⋮

B𝓁

⎞⎟⎟⎟⎟⎟⎠
< rk

⎛⎜⎜⎜⎜⎜⎝

A
B1

⋮

B𝓁+1

⎞⎟⎟⎟⎟⎟⎠
. (3.14)

In other words, we need to show that B𝓁+1 does not belong to the space spanned by B1, … ,B𝓁 and the

rows A1, … ,Am of A. Indeed, assume that B𝓁+1 =
∑𝓁

i=1xiBi +
∑m

i=1yiAi. Then 0 ≠ B𝓁+1 −
∑𝓁

i=1xiBi =∑m
i=1yiAi and thus ∅ ≠ supp

∑𝓁
i=myiAi ⊆ I, in contradiction to the assumption that I is no relation of A.

Hence, we obtain (3.14) and thus (3.13). Finally, to complete the proof of (2.4) we apply (3.13) to the

matrices (A 0) and (B C), obtaining

nul(A) + n′ − nul

(
A 0

B C

)
= nul(A 0) − nul

(
A 0

B C

)
= rk(B C),

as desired. ▪

Proof of Lemma 2.5. Recall that A has size m × n. By Definition 2.1 a coordinate i is frozen iff the

vector e(i) ∈ F1×n whose ith entry equals one and whose other entries equal zero can be written as

a linear combination of the rows of A. For every i ∈ 𝔉(A) we can therefore apply elementary row

operations (like in Gaussian elimination) to zero out the entire i-column of B. Since elementary row

operations do not alter the nullity of a matrix, we therefore obtain the identity

nul

(
A 0

B C

)
= nul

(
A 0

B∗ C

)
.

The assertion thus follows from Lemma 3.7. ▪

4 CONCENTRATION

The principal aim of this section is to prove Proposition 2.6, that is, to argue that the rank of the actual

matrix An that does not have any cavities and whose Tanner graph is simple is close to the expected

rank of A𝜀,n a.a.s. In other words, we need to show that the rank of a random matrix is sufficiently

concentrated that conditioning on

𝒟 =

{ n∑
i=1

di =
m∑

i=1

ki

}
,

and on the event 𝒮 that the Tanner graph is simple is inconsequential. The main tool will be the

following local limit theorem for sums of independent random variables, which we use in Section 4.1

to calculate the probability of 𝒟 .
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Theorem 4.1 ([34, p. 130]). Suppose that (Xi)i≥1 is a sequence of i.i.d. variables that take values in
Z such that the greatest common divisor of the support of X1 is one. Also assume that Var[X1] = 𝜎2 ∈
(0,∞). Then

lim
n→∞

sup
z∈Z

||||||
√

nP

[ n∑
i=1

Xi = z

]
− exp(−(z − nE[X1])2∕(2n𝜎2))√

2𝜋𝜎

|||||| = 0.

Subsequently, in Section 4.2 we calculate the probability of the event 𝒮 , proving Proposition 1.10

along the way. Finally, in Section 4.3 we complete the proof of Proposition 2.6.

4.1 The event 𝒟

Because E[dr] + E[kr] < ∞ for an r > 2, the event

ℳ =
{

max
i∈[n]

di + max
i∈[m]

ki ≤
√

n∕log9n
}

satisfies P [ℳ] = 1 − on(1). (4.1)

As an application of Theorem 4.1 we obtain the following estimate.

Lemma 4.2. If gcd(k) divides n, then P [𝒟 ] = Θn(n−1∕2) and P [𝒟 |ℳ] = Θn(n−1∕2).

Proof. For P [𝒟 |ℳ] there are several cases to consider. First, that Var(d) = Var(k) = 0, that is, d, k
are both atoms. Since m is a Poisson variable with mean 𝑑n∕k we find P [𝒟 |ℳ] = P

[
m = 𝑑n∕k

]
=

Θn(n−1∕2).
Second, suppose that Var(d) > 0 but Var(k) = 0. Then Theorem 4.1 and (4.1) show that

P

[|||||𝑑n −
n∑

i=1

di

||||| ≤
√

n ∧ k divides

n∑
i=1

di|ℳ] = Ωn(1). (4.2)

Further, given ||𝑑n −
∑n

i=1di|| ≤√n and given k divides
∑n

i=1di, the event km =
∑n

i=1di has probability

Θn(n−1∕2) by the local limit theorem for the Poisson distribution.

The case that Var(d) = 0 but Var(k) > 0 can be dealt with similarly. Indeed, pick a large enough

number L > 0 and let I = {i ∈ [m] ∶ ki > L}, m′ = |I|, m′′ = m − |I|, S′ =
∑

i∈I ki and S′′ =∑
i∈[m]⧵I ki. Then m′,m′′ are stochastically independent, as are S′, S′′. Moreover, since S′ satisfies the

central limit theorem we have

P
[|S′ − E[S′|ℳ]| ≤√n|ℳ] = Ωn(1). (4.3)

Further, Theorem 4.1 applies to S′′, which is distributed as
∑m

i=1ki1{ki ≤ L}. Hence, as n is divisible

by gcd(k), for large enough L we have

P
[
S′ + S′′ = 𝑑n||S′ − E[S′|ℳ]| ≤√n,ℳ

]
= Ωn(n−1∕2). (4.4)

Thus, (4.3) and (4.4) show that P [𝒟 |ℳ] = Ωn(n−1∕2). The upper bound P [𝒟 |ℳ] = On(n−1∕2)
follows from the uniform upper bound from Theorem 4.1.
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A similar argument applies in the final case Var(d) > 0, Var(k) > 0. Indeed, Theorem 4.1 and (4.1)

yield

P

[
gcd(k) divides

n∑
i=1

di and
|||||𝑑n −

n∑
i=1

di

||||| ≤
√

n|ℳ] = Ωn(1). (4.5)

Moreover, (4.3) remains valid regardless the variance of d. Hence, applying Theorem 4.1 to S′′, we

obtain

P

[
S′ + S′′ =

n∑
i=1

di
||| gcd(k) divides

n∑
i=1

di,
|||||𝑑n −

n∑
i=1

di

|||||
≤
√

n, |S′ − E[S′|ℳ]| ≤√n,ℳ
]
= Ωn(n−1∕2). (4.6)

Combining (4.5) and (4.6), we see that P [𝒟 |ℳ] = Ωn(n−1∕2). The matching upper bound P [𝒟 |ℳ] =
On(n−1∕2) follows from the universal upper bound from Theorem 4.1 once more. The treatment of the

unconditional P [𝒟 ] is similar but slightly simpler. ▪

4.2 The event 𝒮

The random matrix An for Theorem 1.1 is identical in distribution to the random matrix A0,n with

𝜀 = 0 conditioned on the event 𝒟 and on the event 𝒮 that the Tanner graph G0,n does not contain any

multi-edges. Therefore, Proposition 1.10 is going to be a consequence of Lemma 4.2and the following

statement.

Lemma 4.3. We have P
[
A0,n ∈ 𝒮 |𝒟 ] = Ωn(1).

We proceed to prove Lemma 4.3. Recall the event ℳ from (4.1). The proof of Lemma 4.3 is essen-

tially based on the routine approach of showing by way of a moment calculation that the number of

multi-edges of G0,n is asymptotically Poisson with a finite mean. This argument has been carried out

illustratively for the case of random regular graphs in [, chapter 9]. But since here we work with very

general degree distributions, technical complications arise. For instance, as a first step we need to

estimate the empirical variance of the degree sequences.

Claim 4.4. On the event 𝒟 ∩ℳ we have
1

n

∑n
i=1d2

i → E[d2], 1

n

∑m
i=1k2

i → 𝑑E[k2]∕k in probability.

Proof. We will only prove the statement about the ki; the same (actually slightly simplified) argu-

ment applies to the di. Thanks to Bennett’s tail bound for the Poisson distribution we may condition

on {m = m} for some integer m with |m − 𝑑n∕k| ≤ √n ln n. Fix a small 𝛿 > 0 and a large enough

L = L(𝛿) > 0. Given m = m the variables Qj =
∑

i∈[m] 1{ki = j} have a binomial distribution.

Therefore, the Chernoff bound yields

P
[||Qj − 𝑑nP [k = j]∕k|| ≤√n ln n|m = m

]
= 1 − on(1∕n) for any j ≤ L.

Hence, (4.1) and Lemma 4.2 yield

P
[
∀j ≤ L ∶ |Qj − 𝑑nP[k = j]∕k| ≤√n ln n|𝒟 ∩ℳ, m = m

]
= 1 − on(1). (4.7)
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Further, let

Rh =
∑
j≥1

1{(1 + 𝛿)h−1L < j ≤ (1 + 𝛿)hL ∧
√

n∕ln9n}Qj,

Rh = m
∑
j≥1

1{(1 + 𝛿)h−1L < j ≤ (1 + 𝛿)hL ∧
√

n∕ln9n}P [k = j],

and let ℋ be the set of all integers h ≥ 1 with (1 + 𝛿)h−1L ≤
√

n∕ln9n. Then the Chernoff bound

implies that

P
[
∀h ∈ ℋ ∶ |||Rh − Rh

||| > 𝛿Rh + ln2n|𝒟 ∩ℳ,m = m
]
= on(n−1). (4.8)

Finally, if |Qj −𝑑nP [k = j]∕k| ≤√n ln n for all j ≤ L and
|||Rh − Rh

||| ≤ 𝛿Rh + ln2n for all h ∈ ℋ , then

1

n

m∑
i=1

k2
i ≤ on(1) +

𝑑

k
E
[
k21{k ≤ L}

]
+ 𝑑

kn
∑
h∈ℋ

(1 + 𝛿)2hL2Rh

= on(1) +
𝑑

k
E
[
k21{k ≤ L}

]
+ 𝑑

kn
∑
h∈ℋ

(1 + 𝛿)2h+1L2Rh ≤
(1 + 𝛿)𝑑

k
E[k2] + on(1),

and analogously
1

n

m∑
i=1

k2
i ≥

(1 − 𝛿)𝑑
k

E[k2] + on(1).

Since this holds true for any fixed 𝛿 > 0, the assertion follows from (4.7) and (4.8). ▪

Claim 4.5. Let Y be the number of multi-edges of the Tanner graph G0,n and let 𝓁 ≥ 1. There is

𝜆 > 0 such that on

ℳ ∩𝒟 ∩

{ n∑
i=1

di = 𝑑n + on(n),
n∑

i=1

d2
i = nE[d2] + on(n)

}

∩

{ m∑
i=1

k2
i = 𝑑nE[k2]∕k + on(n)

}
∩ {m = 𝑑n∕k + on(n)},

we have

E

[
𝓁∏

i=1

Y − i + 1
||| (di)i∈[n], (ki)i∈m

]
= 𝜆𝓁 + on(1).

Proof. To estimate the 𝓁-th factorial moments of Y for 𝓁 ≥ 1, we split the random variable into a

sum of indicator variables. Specifically, let U𝓁 be the set of all families (ui, vi,wi)i∈𝓁 with ui ∈ [m],
vi ∈ [n] and 2 ≤ wi ≤ kui ∧ dvi ≤

√
n∕log9n such that the pairs (u1, v1), … , (u𝓁 , v𝓁) are pairwise

distinct. Moreover, let Y[(ui, vi,wi)i∈[𝓁]] be the number of ordered 𝓁-tuples of multi-edges comprising

precisely wi edges between check aui and variable xvi for each i. Then

𝓁∏
h=1

Y − h + 1 =
∑

(ui,vi,wi)i∈[𝓁]∈U𝓁

Y[(ui, vi,wi)i∈[𝓁]].
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Moreover, letting w =
∑

i wi, we claim that

E[Y[(ui, vi,wi)i∈[h]]|(di)i∈[n], (ki)i∈m] ∼
1

(𝑑n)w

𝓁∏
i=1

(
kui

wi

)(
dvi

wi

)
wi!. (4.9)

Indeed, the factors
(

dvi
wi

)(
kui
wi

)
wi! count the number of possible matchings between wi clones of the

variable node xvi , whose degree equals dvi , and of the check node aui of degree kui . Further, since 𝓁 is

bounded, the probability that all these matchings are realized in G0,n is asymptotically equal to (𝑑n)−w.

Now, for a sequence w = (w1, … ,w𝓁) let Yw =
∑

(ui,vi,wi)i∈[𝓁]∈U𝓁
Y[(ui, vi,wi)i∈[𝓁]]. Then (4.9) yields

E[Yw|(di)i∈[n], (ki)i∈m] ≤ On(n−w)
𝓁∏

i=1

( n∑
j=1

dwi
j

)( m∑
j=1

kwi
j

)

≤ On(n−w)max
j∈[n]

dw−2𝓁
j max

j∈[m]
kw−2𝓁

j

( n∑
j=1

d2
j

)𝓁( m∑
j=1

k2
j

)𝓁

≤ On(n2𝓁−w)max
j∈[n]

dw−2𝓁
j max

j∈[m]
kw−2𝓁

j = On(ln2𝓁−wn);

the last bound follows from our conditioning on ℳ. As a consequence,∑
w∶w>2𝓁

E[Yw|(di)i∈[n], (ki)i∈m] = on(1). (4.10)

Further, invoking (4.9), we obtain

E[Y(2,… ,2)|(di)i∈[n], (ki)i∈m] ∼ 𝝀𝓁 , where 𝝀 ∼
(∑n

i=1di(di − 1)
) (∑n

i=1ki(ki − 1)
)

2(𝑑n)2
. (4.11)

Combining (4.10) and (4.11), we conclude that on 𝒟 ∩ℳ ∩ {m = 𝑑n∕k + on(n)},

E[Y𝓁]|(di)i∈[n], (ki)i∈m] ∼ 𝝀𝓁 . (4.12)

Finally, on
{∑n

i=1di = 𝑑n + on(n),
∑n

i=1d2
i = nE[d2] + on(n)

}
∩
{∑m

i=1k2
i = 𝑑nE[k2]∕k + on(n)

}
we

have

𝝀 ∼ 𝜆 = (E[d2] − 𝑑)(E[k2] − k)
2𝑑2

, (4.13)

and the assertion follows from (4.12) and (4.13). ▪

Claim 4.6. We have P [𝒮 |𝒟 ∩ℳ] = Ωn(1).

Proof. Claims 4.4 and 4.5 show together with inclusion/exclusion (e.g., [13, theorem 1.22]) that

a.a.s. on ℳ ∩𝒟 ,

P
[
Y = 0|(di)i∈[n], (ki)i∈m

]
= exp(−𝜆) = Ωn(1).

Since 𝒮 = {Y = 0}, the assertion follows. ▪
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Proof of Lemma 4.3. The assertion follows immediately from (4.1), Corollary 4.2 and Corollary 4.6.

▪

Proof of Proposition 1.10. The proposition is immediate from Lemmas 4.2 and 4.3. ▪

4.3 Proof of Proposition 2.6

The random matrix An has n columns and m ∼ Po(𝑑n∕k) rows, with the column and row degrees

drawn from the distributions d and k. By comparison, A𝜀,n has slightly fewer, namely m𝜀,n ∼ Po((1 −
𝜀)𝑑n∕k) rows. One might therefore think that the proof of Proposition 2.6 is straightforward, as it

appears that An is obtained from A𝜀,n by simply adding another random Po(𝜀𝑑n∕k) rows. Since adding

O𝜀,n(𝜀n) rows cannot reduce the nullity by more than O𝜀,n(𝜀n), the bound on E[nul(An)]−E[nul(A𝜀,n)]
appears to be immediate. But there is a catch. Namely, in constructing An we condition on the event

𝒟 = {
∑n

i=1di =
∑m

i=1ki}. Thus, A𝜀,n does not have the same distribution as the top Bin(m, 1− 𝜀) rows

of An since the conditioning might distort the degree distribution. We need to show that this distortion

is insignificant. To this end, recall that m𝜀,n ∼ Po((1 − 𝜀)𝑑n∕k).

Lemma 4.7. A.a.s. we have

P
[||nul(A𝜀,n) − E[nul(A𝜀,n)|m𝜀,n, (di)i≥1, (ki)i≥1]|| >√n ln n|m𝜀,n, (di)i≥1, (ki)i≥1

]
= on(1),

Proof. Lemma 1.11 shows that
∑n

i=1di,
∑m𝜀,n

i=1 ki = O𝜀,n(n) and
∑m𝜀,n

i=1 ki ≤
∑n

i=1di with probability

1−on(n−1). Assuming that this is so, consider a filtration (𝔄t)t≤∑m𝜀,n
i=1

ki
that reveals the random matching

𝚪𝜀,n one edge at a time. Then

||E[nul(A𝜀,n)|𝔄t+1,m𝜀,n, (di)i≥1, (ki)i≥1 − E[nul(A𝜀,n)|𝔄t,m𝜀,n, (di)i≥1, (ki)i≥1
||] ≤ O𝜀,n(1),

for all t. Therefore, the assertion follows from Azuma’s inequality. ▪

Let An,𝒟 be the conditional version of the random matrix A0,n given 𝒟 . Thus, given
∑n

i=1di =∑m
i=1ki, we construct a random Tanner multi-graph with variable degrees d1, … , dn and check degrees

k1, … , km. Hence, the difference between An and An,𝒟 is merely that in the case of An we also

condition on the event 𝒮 that the Tanner graph is simple.

Lemma 4.8. There exists a coupling of An,𝒟 and A𝜀,n such that with probability at least 1 − 𝜀 the
two matrices agree in all but O𝜀,n(𝜀n) rows.

Proof. Let Gn,𝒟 and G𝜀,n denote the Tanner graphs corresponding to An,𝒟 and A𝜀,n, respectively. It

suffices to construct a coupling of Gn,𝒟 and G𝜀,n such that these graphs differ in edges incident with

at most O𝜀,n(𝜀n) check nodes. To construct the coupling we first generate the following parameters

for A𝜀,n. Parameter 𝒯 = 𝒯 (𝜀) is given. Generate 𝜽 ∈ [𝒯 ] uniformly at random. Then generate

m ∼ Po(𝑑n∕k) and m𝜀,n = Bin(m, 1 − 𝜀) and then check nodes a1, … , am𝜀,n . Each check node ai is

associated with an integer ki which is an independent copy of k. To distinguish G𝜀,n from Gn,𝒟 , we

colour these check nodes red. Add 𝜽 check nodes p1, … , p𝜽 to both G𝜀,n and Gn,𝒟 .

Next generate n variable nodes where variable node xi is associated with di, which is an independent

copy of d. Further, let rj =
∑m

h=11 {kh = j} denote the prospective number of checks of Gn,𝒟 of degree

j. Applying Azuma’s inequality and (4.1), we see that for any 𝜀 > 0 there exists L = L(𝜀) > 0 such that
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P

[∑
j≥L

rj > 𝜀n|ℳ] + P

[
∃j ≤ L ∶ rj ≤

m𝜀,n∑
i=1

1{ki = j}|ℳ] + P
[
m > m𝜀,n + 2𝜀𝑑n∕k

]
≤ 1∕n.

Hence, Lemma 4.2 implies that

P

[∑
j≥L

rj > 𝜀n|𝒟 ∩ℳ

]
+ P

[
∃j ≤ L ∶ rj ≤

m𝜀,n∑
i=1

1{ki = j} for all j ≤ L |𝒟 ∩ℳ

]
+ P

[
m > m𝜀,n + 2𝜀𝑑n∕k|𝒟 ∩ℳ

]
≤ 1∕n = on(1). (4.14)

Now condition on the event

ℛ = 𝒟 ∩ℳ ∩

{∑
j≥L

nj ≤ 𝜀n

}
∩

{
∀j ≤ L ∶ nj >

m𝜀,n∑
i=1

1{ki = j}

}
∩
{

m ≤ m𝜀,n + 2𝜀𝑑n∕k
}
.

Uncolour all (red) check nodes ai with ki ≤ L. Moreover, for each j ≤ L, generate rj −
∑m𝜀,n

i=1 1{ki = j}
additional check nodes of degree j and colour them blue. Finally, for each j > L, generate rj blue check

nodes of degree j.
Now G𝜀,n is generated by taking a random maximal matching from the clones of all uncoloured

and red check nodes {ai} × [ki] (excluding check nodes p1, … , p𝜽) to the set of variable clones

n⋃
j=1

{xj} × [dj],

and then adding an edge between pi and xi for 1 ≤ i ≤ 𝜽. The Tanner graph Gn,𝒟 is generated by

removing all matching edges from the clones of the red check nodes, and removing edges between pi
and ai for 1 ≤ i ≤ 𝜽, and then matching all clones of the blue check nodes to the remaining clones of

the variable nodes. Finally, (4.14) ensures that with probability at least 1 − 𝜀, the two Tanner graphs

differ in no more than O𝜀,n(𝜀n) check nodes. ▪

Proof of Proposition 2.6. Assume that (2.8) is satisfied for C > 0 and fix C′ > C and a small enough

𝛿 > 0. Then we find a small 0 < 𝜀 = 𝜀(𝛿) < 𝛿 such that

lim sup
n→∞

E[nul(A𝜀,n)]∕n ≤ C + 𝛿.

Hence, combining Lemmas 4.7 and 4.8 and taking into account that changing a single row can alter

the nullity by at most one, we conclude that

P
[
nul(An,𝒟 )∕n ≤ C + O𝜀,n(𝜀)

]
> 1 − 𝜀 + on(1). (4.15)

Finally, combining (4.15) and Lemma 4.3, we conclude that

P
[
nul(An,𝒟 )∕n ≤ C + O𝜀,n(𝜀)|𝒮 ] > 1 − 𝛿 + on(1), (4.16)

provided that 𝜀 = 𝜀(𝛿) is small enough. Since An,𝒟 given 𝒮 is identical to An, the desired upper bound

on the nullity of An follows from (4.16). The same argument renders the lower bound. ▪
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5 THE AIZENMAN–SIMS–STARR SCHEME: PROOF OF PROPOSITION 2.7

In this section we prove Proposition 2.7. As set out in Section 2.2, we are going to bound the difference

of the nullities of A𝜀,n+1 and A𝜀,n via Proposition 2.4 and Lemma 2.5. This requires a coupling of the

random variables nul(A𝜀,n+1) and nul(A𝜀,n).

5.1 The coupling

We begin by introducing a more fine-grained description of the random matrices A𝜀,n and A𝜀,n+1 to

facilitate the construction of the coupling. To this end, let M = (Mj)j≥1 and 𝚫 = (𝚫j)j≥1 be sequences

of Poisson variables with means

E[Mj] = (1 − 𝜀)P
[
k = j

]
𝑑n∕k, E[𝚫j] = (1 − 𝜀)P

[
k = j

]
𝑑∕k. (5.1)

All of these random variables are mutually independent and independent of 𝜽 and the (di)i≥1. Further,

let

M+
j = Mj + 𝚫j, m𝜀,n =

∑
j≥1

Mj, m+
𝜀,n =

∑
j≥1

M+
j . (5.2)

Since
∑

j≥1 Mj ∼ Po((1− 𝜀)𝑑n∕k), (5.2) is consistent with the earlier convention that m𝜀,n ∼ Po((1−
𝜀)𝑑n∕k).

The random vectors (d1, … dn),M naturally define a random Tanner (multi-)graph Gn,M with vari-

able nodes x1, … , xn and check nodes p1, … , p𝜽 and ai,j, i ≥ 1, j ∈ [Mi]. Its edges are induced by a

random maximal matching 𝚪n,M of the complete bipartite graph with vertex classes

n⋃
h=1

{xh} × [dh] and
⋃
i≥1

Mi⋃
j=1

{ai,j} × [i].

Each matching edge (xh, s, ai,j, t) ∈ 𝚪n,M induces an edge between xh and ai,j in the Tanner graph. In

addition, there is an edge between pi and xi for every i ∈ [𝜽].
To define the random matrix An,M to go with Gn,M, let 𝜒 ∶ [0, 1]2 → F∗ be a measurable map and

let (𝜻 i,j, 𝝃i)i,j≥1 be uniformly distributed on [0, 1], mutually independent and independent of all other

randomness. 7 With the rows of An,M indexed by the check nodes of Gn,M and the columns indexed by

the variable nodes, we define the matrix entries by letting

(An,M)pi,xh = 1{i = j} (i ∈ [𝜽], h ∈ [n]),

(An,M)ai,j,xh = 𝜒𝜻 i,j,𝝃h

i∑
s=1

dh∑
t=1

1
{
{(xh, t), (ai,j, s)} ∈ 𝚪n,M

}
(i ≥ 1, j ∈ [Mi], h ∈ [n]).

The Tanner graph Gn+1,M+ and its associated random matrix An+1,M+ are defined analogously.

7Unfortunately at this point there does not seem to be an ideal notation for the matrix and its entries. Because the random vector

M depends on n and to preserve the analogy with common random graphs notation, we denote the random Tanner graph by

Gn,M and its associated random matrix by An,M. At the same time, in line with linear algebra conventions, when indexing matrix

entries we let the first index refer to the row of the matrix and the second index to the column. Since the variable n nodes

correspond to the columns, a degree of incoherence seems unavoidable.
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Lemma 5.1. For any 𝜃 > 0 we have E[nul(A𝜀,n)] = E[nul(An,M)], E[nul(A𝜀,n+1)] = E[nul(An+1,M+)].

Proof. We defined A𝜀,n as the m𝜀,n × n-matrix with target column and row degrees drawn from d
and k independently with a 𝜽 × 𝜽 identity matrix affixed at top. In effect, because m𝜀,n is a Poisson

variable, the number of rows of with target degree i is distributed as Mi, and these numbers are mutually

independent. Hence, nul A𝜀,n and nul An,M are identically distributed. The same argument applies to

A𝜀,n+1. ▪

Up to this point we merely introduced a new description of A𝜀,n and A𝜀,n+1. To actually couple them

we introduce a third random matrix whose nullity we can easily compare to nul(An,M) and nul(An+1,M+).
Specifically, let 𝜸i ≥ 0 be the number of checks ai,j, j ∈ [M+

i ], adjacent to the last variable node xn+1

in Gn+1,M+ . Also let 𝜸 = (𝜸i)i≥1 and set

M−
i = max{Mi − 𝜸i, 0}. (5.3)

In (5.3) the max is necessary because potentially 𝜸i might exceed Mi as 𝜸i might include some of the

“extra” 𝚫i checks included in Gn+1,M+ . Consider the random Tanner graph G′ = Gn,M− induced by a

random maximal matching 𝚪′ of the complete bipartite graph with vertex classes

n⋃
h=1

{xh} × [dh] and
⋃
i≥1

M−
i⋃

j=1

{ai,j} × [i].

For each variable xi, i = 1, … , n, let 𝒞 be the set of clones from
⋃

i∈[n]{xi} × [di] that 𝚪n,M− leaves

unmatched. We call the elements of 𝒞 cavities.

Now, obtain the Tanner graph G′′ from G′ by adding new check nodes

a′′
i,j with target degree ifor each i ≥ 1, j ∈ [Mi − M−

i ]. (5.4)

The new checks are joined by a random maximal matching 𝚪′′ of the complete bipartite graph with

vertex classes

𝒞 and
⋃
i≥1

⋃
j∈[Mi−M−

i ]
{a′′

i,j} × [i],

that is, for each matching edge we insert a corresponding variable-check edge.

Analogously, obtain G′′′ by adding one variable node xn+1 as well as check nodes a′′′
i,j , i ≥ 1, j ∈ [𝜸i]

and b′′′
i,j , i ≥ 1, j ∈ [M+

i − M−
i − 𝜸i] to G′. The new checks are connected to G′ via a random maximal

matching 𝚪′′′ of the complete bipartite graph with vertex classes

𝒞 and
⋃
i≥1

⎛⎜⎜⎝
⋃

j∈[𝜸i]
{a′′′

i,j } × [i − 1] ∪
⋃

j∈[M+
i −M−

i −𝜸i]

{b′′′
i,j } × [i]

⎞⎟⎟⎠ .
For each matching edge we insert the corresponding variable-check edge and in addition each of the

check nodes a′′′
i,j gets connected to xn+1 by exactly one edge.

Finally, we introduce the random matrices A′,A′′,A′′′ whose nonzero entries represent the edges

of G′,G′′,G′′′. Recalling that (𝜻 i,j, 𝝃i)i,j≥1 are uniform on [0, 1] and independent of everything else,
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we additionally introduce independent random variables (𝜻 ′
i,j, 𝜻

′′
i,j)i,j≥1, also uniform on [0, 1]. With the

rows and columns indexed by check and variable nodes, respectively, we define

A′
pi,j = A′′

pi,j = A′′′
pi,j = 1 {i = j} (i ∈ [𝜽], j ∈ [n]),

A′
ai,j,xh = A′′

ai,j,xh = A′′′
ai,j,xh = 𝜒𝜻 i,j,𝝃h

i∑
s=1

dh∑
t=1

1
{
{(xh, t), (ai,j, s)} ∈ 𝚪′} (i ≥ 1, j ∈ [M−

i ], h ∈ [n]),

A′′
a′′i,j,xh

= 𝜒𝜻 ′i,j,𝝃h

i∑
s=1

dh∑
t=1

1
{
{(xh, t), (a′′

i,j, s) ∈ 𝚪′′}
}

(i ≥ 1, j ∈ [Mi − M−
i , h ∈ [n]),

A′′′
a′′′i,j ,xh

= 𝜒𝜻 ′i,j,𝝃h

i−1∑
s=1

dh∑
t=1

1
{
{(xh, t), (a′′′

i,j , s) ∈ 𝚪′′′}
}

(i ≥ 1, j ∈ [𝜸i, h ∈ [n]),

A′′′
b′′′i,j ,xh

= 𝜒𝜻 ′′i,j,𝝃h

i∑
s=1

dh∑
t=1

1
{
{(xh, t), (b′′′i,j , s) ∈ 𝚪′′′}

}
(i ≥ 1, j ∈ [M+

i − M−
i − 𝜸i], h ∈ [n]).

In line with the strategy outlined in Section 2, this construction ensures that A′′ and A′′′ are obtained

from A′ by adding a bounded expected number of rows and, in the case of A′′′, one column. The

following lemma links A′′,A′′′ to the random matrices An,M, An+1,M+ from the beginning of the

section.

Lemma 5.2. We haveE[nul(A′′)] = E[nul(An,M)]+on(1) andE[nul(A′′′)] = E[nul(An+1,M+)]+on(1).

The proof of Lemma 5.2, deferred to Section 5.5, is tedious but relatively straightforward.

As a next step we are going to calculate the differences nul(A′′′) − nul(A′) and nul(A′′) − nul(A′).
We obtain expressions of one parameter of A′, namely the fraction of cavities “frozen” to zero. To be

precise, a cavity (xi, h) ∈ 𝒞 is frozen if xi ∈ 𝔉(A′). Let ℱ ⊆ 𝒞 be the set of all frozen cavities and

define 𝜶 = |ℱ |∕|𝒞 |; in the unlikely event that 𝒞 = ∅, we agree that 𝜶 = 0. In Sections 5.3 and 5.4

we are going to establish the following two estimates.

Lemma 5.3. We haveE[nul(A′′′)−nul(A′)] = E[D(1−K′(𝜶)∕k)+𝑑(K′(𝜶)+K(𝜶)−1)∕k]−𝑑+o𝜀(1).

Lemma 5.4. We haveE[nul(A′′) − nul(A′)] = 𝑑E[𝜶K′(𝜶)]∕k − 𝑑 + o𝜀(1).

We emphasize that the r.h.s. expressions in Lemmas 5.3 and 5.4 involve expectations on the random

variable𝜶. A key feature of the present argument is that we manage to avoid an analysis of𝜶 altogether.

This is because, as the following proof of Proposition 2.7 shows, we can just replace the difference of

the expectations by the largest conceivable value.

Proof of Proposition 2.7. Combining Lemmas 5.1 and 5.2, we see that

E[nul(A𝜀,n+1)] − E[nul(A𝜀,n)] = E[nul(An+1,M+)] − E[nul(An,M)]

= E[nul(A′′′)] − E[nul(A′′)] + on(1)

= (E[nul(A′′′)] − E[nul(A′)])

− (E[nul(A′′)] − E[nul(A′)]) + on(1). (5.5)



32 COJA-OGHLAN ET AL.

Further, combining (5.5) with Lemmas 5.3 and 5.4, we obtain

E[nul(A𝜀,n+1)] − E[nul(A𝜀,n)] ≤ E[D(1 − K′(𝜶)∕k) + 𝑑(K′(𝜶) + K(𝜶) − 1)∕k − 𝑑𝜶K′(𝜶)]∕k + o𝜀(1)
= E[Φ(𝜶)] + o𝜀(1) ≤ max

𝛼∈[0,1]
Φ(𝛼) + o𝜀(1). (5.6)

The proposition is an immediate consequence of (5.6). ▪

While proving Lemmas 5.3 and 5.4 in full detail requires a fair bit of work because we are dealing

with very general degree distributions d, k, it is not at all difficult to fathom where the right hand side

expressions come from. They actually arise naturally from Lemma 2.5 and the scarcity of short proper

relations supplied by Proposition 2.4. Indeed, we can write the matrices A′′, A′′′ in the form

A′′ =

(
A′

B

)
, A′′′ =

(
A′ 0

B′ C′

)
, (5.7)

with B, (B′ C′) representing the new rows and, in the case of A′′′, the additional column. To calculate

E[nul(A′′[𝜽]) − nul(A′[𝜽])] we basically need to assess the impact of adding a few more checks a′′
i,j to

the Tanner graph G′ of A′. The new checks connect to randomly chosen cavities of A′. Let k1, … , kL
denote the degrees of the new checks. Since the distribution k of the check degrees has a finite second

moment, the total degree k1 + · · · + kL is bounded a.a.s. The random matrix B therefore encodes the

non-zero entries corresponding to the edges that connect the a′
i,j with the cavities of A′ where the new

checks attach. Furthermore, the construction of A′ ensures that a.a.s. the number of cavities is as large

as (1+on(1))𝜀𝑑n, and the a′
i,j hatch on to randomly chosen cavities. Therefore, Proposition 2.4, applied

with 𝒯 = 𝒯 (𝜀) large enough, implies that the probability that the set I of nonzero columns of B
forms a proper relation of A′ is o𝜀(1). Consequently, Lemma 2.5 yields

E[nul(A′′) − nul(A′)] = −E[rk(B∗)] + on(1), (5.8)

where B∗ is obtained from B by zeroing out all columns indexed by 𝔉(A′). Further, since the number

of cavities of A′ is as large as Ωn(n) while k1 +· · ·+kL = on(
√

n) a.a.s., the matrix B has the following

form a.a.s.: there are L rows containing k1, … , kL nonzero entries, respectively, and every column of

B contains at most one nonzero entry. Consequently, once more because there are as many as Ωn(n)
cavities out of which an𝜶 fraction are frozen to zero, B∗ is close in total variation to the matrix obtained

from B by zeroing out every column with probability 𝜶 independently. In effect, the probability that

the i-th row of B∗ gets zeroed out entirely is 𝜶ki + on(1). Thus, a.a.s. we have

E[rk(B∗)|𝜶, k1, … , kL] =
L∑

i=1

(
1 − 𝜶ki

)
+ o𝜀,n(1). (5.9)

Substituting (5.9) into (5.8) and the correct distribution of k1, … , kL supplied by the coupling into

(5.9), we obtain the expression displayed in Lemma 5.4. To be explicit, the correct degrees k1, … , kL
are provided by (5.4), that is, there are Mi − M−

i checks of degree i for every i. Hence, to obtain the

expression in Lemma 5.3 we need to analyze the random variables 𝜸i from (5.3). This analysis will be

conducted in Lemma 5.8 below, which shows that the 𝜸i are well approximated by the 𝜸̂i from (5.15),

which in turn come in terms of the reweighted check degree distribution from (1.10). A similar but

slightly more complicated calculation explains the expression in Lemma 5.3. We proceed to prove

Lemmas 5.2–5.4 formally. This requires a bit of groundwork.
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5.2 Groundwork

Let P = PG′ be the distribution on the set Vn = {x1, … , xn} of variables induced by choosing a cavity

uniformly at random, that is,

P(xi) = |𝒞 ∩ ({xi} × [di])|∕|𝒞 |;
in the (unlikely) event that 𝒞 = ∅, we use the convention P(x1) = 1. Let x1, x2, … ∈ Vn be

independent samples drawn from P. The following lemma shows that |𝒞 | is linear in n a.a.s.

Lemma 5.5. A.a.s. we have |𝒞 | ≥ 𝜀𝑑n∕2.

Proof. The choice (5.1) of M ensures that E
∑

j≥1 jMj = (1 − 𝜀)𝑑n. Moreover, because the Mj are

mutually independent Poissons,

Var
∑
j≥1

jMj =
∑
j≥1

j2Var(Mj) =
∑
j≥1

j2E[Mj] = (1 − 𝜀)𝑑nE[k2]∕k = O𝜀,n(n).

Consequently, Chebyshev’s inequality shows that

P

[||||||
∑
j≥1

jMj − (1 − 𝜀)𝑑n
|||||| ≤
√

n log n

]
= 1 − on(1). (5.10)

Similarly, we have E
∑n

i=1di = 𝑑n and Var
∑n

i=1di =
∑n

i=1Var(d) = O𝜀,n(n), whence

P

[|||||
n∑

i=1

di − 𝑑n
||||| ≤
√

n log n

]
= 1 − on(1). (5.11)

Since |𝒞 | ≥ ∑n
i=1di −

∑
j≥1 jMj by construction, the assertion follows from (5.10) and (5.11). ▪

Further, letting 𝓁∗ = ⌈exp(1∕𝜀4)⌉ and 𝛿∗ = exp(−1∕𝜀4), consider the event

ℰ =
{
P
[
x1, … , x𝓁∗ form a proper relation of A′|A′] < 𝛿∗

}
. (5.12)

The following simple lemma is an application of Proposition 2.4.

Lemma 5.6. For sufficiently large 𝒯 = 𝒯 (𝜀) > 0 we have P
[
A′ ∈ ℰ

]
> exp(−1∕𝜀4).

Proof. Lemma 5.5 provides that |𝒞 | ≥ 𝜀n∕2 a.a.s. Moreover, since E[d] = O𝜀,n(1) we find L =
L(𝜀) > 0 such that the event ℒ =

{∑n
i=1di1{di > L} < 𝜀𝛿2

∗n∕(16𝓁∗)
}

has probability at least 1−𝛿∗∕8.

Thus, we may condition on the event 𝒜 = ℒ ∩ {|𝒞 | ≥ 𝜀n∕2}.

Let x̂1, … , x̂𝓁∗ be a sequence of independently and uniformly chosen variables from x1, … , xn.

Consider a set 𝒲 ⊆ {x1, … , xn}𝓁∗ . How can we estimate the probability that (x1, … , x𝓁∗ ) ∈ 𝒲 ?
Either one of the variables x1, … , x𝓁∗ has degree greater than L; on the event 𝒜 this occurs with

probability at most 𝛿2
∗∕16. Or all of x1, … , x𝓁∗ have degree at most L. Then the probability that

(x1, … , x𝓁∗ ) ∈ 𝒲 is not much greater than the probability that (x̂1, … , x̂𝓁∗ ) ∈ 𝒲 . To be precise,
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since x̂1, … , x̂𝓁∗ are chosen uniformly and there are at least 𝜀n∕2 cavities, the probabilities differ by

no more than a factor of (2L∕𝜀)𝓁∗ . Hence, on the event 𝒜 we have

P
[
(x1, … , x𝓁∗ ) ∈ 𝒲 |A′]

≤ (2L∕𝜀)𝓁∗P
[
(x̂1, … , x̂𝓁∗ ) ∈ 𝒲 |A′] + 𝛿2

∗∕8. (5.13)

Applying (5.13) to the set 𝒲 of proper relations and invoking Proposition 2.4 completes the proof. ▪

Further, consider the event

ℰ ′ =
{|𝒞 | ≥ 𝜀𝑑n∕2 ∧ max

i≤n
di ≤ n1∕2

}
. (5.14)

Lemma 5.7. We have P
[
ℰ ′] = 1 − on(1).

Proof. This follows from the choice of the parameters in (5.1), Lemma 1.11 and Lemma 5.5. ▪

To prove Lemmas 5.3 and 5.4 we need an explicit description of the vector 𝜸 that captures the

degrees of the checks adjacent to the new variable node xn+1. Since 𝜸 is defined in terms of the the

“big” Tanner graph Gn+1,M+ , 𝜸 and the random variables are stochastically dependent. However, the

next lemma shows that this dependence is very weak. Additionally, the lemma shows that the law of 𝜸

can be expressed easily in terms of the sequence (k̂i)i≥1 of independent copies of k̂ from (1.10). Indeed,

let

𝜸̂j =
dn+2∑
i=1

1{k̂i = j} and 𝜸̂ = (𝜸̂j)j≥1. (5.15)

Also let 𝚫̂ = (𝚫̂j)j≥1 be a family random variables, mutually independent and independent of everything

else, with distributions

𝚫̂j ∼ Po((1 − 𝜀)P [k = j]𝑑∕k). (5.16)

Further, let Σ′ be the 𝜎-algebra generated by G′, A′, M− and (di)i∈[n]. We write 𝜸|Σ′,𝚫|Σ′ for the

conditional versions of 𝜸,𝚫 given Σ′.

Lemma 5.8. With probability 1−exp(−Ω𝜀,n(1∕𝜀)) over the choice of G′, A′,M− and (di)i∈[n] we have

𝑑TV(𝜸|Σ′, 𝜸̂) + 𝑑TV(𝚫|Σ′, 𝚫̂) = O𝜀,n(𝜀1∕2).

Proof. We begin by studying the unconditional distributions of 𝜸 and 𝚫.

Let 𝜁 = (
∑

i≥1 iM+
i )∕(

∑n+1

i=1 di). Proceeding as in the proof of Lemma 5.5, we conclude that

P [1 − 2𝜀 ≤ 𝜁 ≤ 1 − 𝜀∕2] = 1 − on(1). Further, given 1 − 2𝜀 ≤ 𝜁 ≤ 1 − 𝜀∕2 we can think of Gn+1,M+

as being generated by the following experiment.

(i) Choose a set C ⊆
⋃n+1

h=1 {xh} × [dh] of size (1 − 𝜁 )
∑n+1

i=1 di uniformly at random.

(ii) Create a random perfect matching 𝚪⋆ of the complete bipartite graph with vertex classes(n+1⋃
h=1

{xh} × [dh]

)
⧵ C and

⋃
i≥1

M+
i⋃

j=1

{
ai,j
}
× [i].
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(iii) Obtain G⋆ with variable nodes x1, … , xn+1 and check nodes ai,j, i ≥ 1, j ∈ [M+
i ] by inserting an

edge between xh and ai,j for any edge of 𝚪⋆ that links {xh} × [dh] to {ai,j} × [i].

In other words, in the first step we designate the set of 𝒞 = C of cavities and in the next two steps

we connect the noncavities randomly.

By way of this alternative description we can easily get a grip on the degree of xn+1. Indeed, given

that dn+1 ≤ 𝜀−1∕2, the probability that one of the clones {n + 1} × [dn+1] ends up in C is O𝜀(𝜀1∕2).
Hence, the actual degree d⋆

n+1 of xn+1 in G⋆ satisfies

𝑑TV

(
d⋆n+1|{dn+1 ≤ 𝜀−1∕2}, d

)
= O𝜀,n(𝜀1∕2). (5.17)

Regarding the degrees of the checks adjacent to xn+1, by the principle of deferred decisions we can

construct 𝚪⋆ by matching one variable clone at a time, starting with the clones {xn+1}×[dn+1]. Clearly,

in this process the probability that a specific clone of xn+1 links to a specific check is proportional to

the degree of that check. Therefore, since E
∑

i≥1 iM+
i = O𝜀,n(1), we find a fixed number L such that

with probability 1−O𝜀,n(𝜀−1) all checks adjacent to xn+1 have degree at most L. Further, Chebyshev’s

inequality shows that M+
i = (1−𝜀)P [k = i]𝑑n∕k+on(n) for all i ≤ L and

∑
i≥1 iM+

i = (1−𝜀)𝑑n+on(n)
a.a.s. In effect, if dn+1 ≤ 𝜀−1∕2, the dn+1 choices of the checks are asymptotically independent, and the

distribution of the individual check degrees that xn+1 joins is at total variation distance on(1) of the

distribution k̂. In summary, given M+
i = (1 − 𝜀)P [k = i]𝑑n∕k + on(n) for all i ≤ L and

∑
i≥1 iM+

i =
(1 − 𝜀)𝑑n + on(n) we have

𝑑TV(𝜸, 𝜸̂) = O𝜀,n(𝜀1∕2). (5.18)

Moreover, it is immediate from (5.1) that the unconditional 𝚫 is distributed as 𝚫̂.

To complete the proof we are going to argue that M−, d1, … , dn and 𝜸,𝚫 are asymptotically inde-

pendent. Arguing along the lines of the previous paragraph, we find that for large L = L(𝜀) > 0 the

event

𝒦 =

{∑
i≥1

i(𝚫i + 𝜸i) ≤ L

}
,

occurs with probability P[𝒦 ] ≥ 1 − exp(−1∕𝜀2). Consequently, the event

ℒ = {P[𝒦 |M−, d1, … , dn] ≥ 1 − exp(−1∕𝜀)},

satisfies P[ℒ ] ≥ 1 − exp(−1∕𝜀). Moreover, since M comprises independent Poisson variables, the

event

ℳ =
{
∀i ≤ L ∶ |M−

i − E[Mi]| ≤√n ln n
}

∩

{ n∑
i=1

di = (1 − 𝜀)𝑑n + on(n)

}
∩

{∑
i≥1

iM−
i = (1 − 𝜀)𝑑n + on(n)

}
,

satisfies P[ℳ] = 1 − on(1). In summary,

P [𝒦 ] ≥ exp(−1∕𝜀2), P [ℒ ] ≥ 1 − exp(−1∕𝜀), P [ℳ|𝒦 ] = 1 − on(1). (5.19)

Further, we claim that for any outcomes (M−, 𝑑1, … , 𝑑n) ∈ ℒ ∩ℳ and (𝛾,Δ) ∈ 𝒦 ,

P
[
𝜸 = 𝛾,𝚫 = Δ|M− = M−,∀i ∈ [n] ∶ di = 𝑑i

]
∼ P [𝜸 = 𝛾]P [𝚫 = Δ] . (5.20)
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Indeed, on the event ℳ we have M−
i = E[Mi] +On

(√
n ln n

)
= Ωn(n) for any i ≤ L in the support of

k, the local limit theorem for the Poisson distribution yields

P
[
M− = M−,∀i ≤ n ∶ di = 𝑑i|𝜸 = 𝛾,𝚫 = Δ

]
= P

[
M = M− + 𝛾,∀i ≤ n ∶ di = 𝑑i|𝜸 = 𝛾,𝚫 = Δ

]
=

P
[
𝜸 = 𝛾,𝚫 = Δ|M = M− + 𝛾,∀i ≤ n ∶ di = 𝑑i

]
P [𝜸 = 𝛾,𝚫 = Δ]

⋅ P [M = M− + 𝛾] ⋅
n∏

i=1

P
[
di = 𝑑i

]
= (1 + on(1))

P
[
𝜸 = 𝛾|M = M− + 𝛾,∀i ≤ n ∶ di = 𝑑i,𝚫 = Δ

]
P [𝜸 = 𝛾]

⋅ P [M = M−] ⋅
n∏

i=1

P
[
di = 𝑑i

]
.

(5.21)

Finally, given M = M− + 𝛾 and 𝚫 = Δ we have M+
i = (1 − 𝜀)P [k = i]𝑑n∕k + on(n) for all i ≤ L and∑

i≥1 iM+
i = (1 − 𝜀)𝑑n + on(n). Therefore, by the principle of deferred decisions, once we condition

on a likely outcomes M− of M−, d1, … , dn and of 𝚫, the conditional probability of obtaining 𝜸 = 𝛾 is

close to the unconditional probability:

P
[
𝜸 = 𝛾|M = M− + 𝛾,∀i ≤ n ∶ di = 𝑑i,𝚫 = Δ

]
= (1 + on(1))P [𝜸 = 𝛾].

Hence, (5.20) follows from (5.19) and (5.21).

Finally, to complete the proof we combine (5.19) and (5.20) to conclude that with probability

1 − exp(−Ω𝜀,n(1∕𝜀)),

P
[
𝜸 = 𝛾,𝚫 = Δ|Σ′] = P

[
𝜸 = 𝛾,𝚫 = Δ|M−, d1, … , dn

]
= (1 + on(1))P [𝜸 = 𝛾]P [𝚫 = Δ]. (5.22)

The assertion follows from (5.18) and (5.22). ▪

5.3 Proof of Lemma 5.3

The proof comprises several steps, each relatively simple individually. Let

X =
∑
i≥1

𝚫i, Y =
∑
i≥1

i𝚫i, Y ′ =
∑
i≥1

i𝜸i.

Then the total number of new nonzero entries upon going from A′ to A′′′ is bounded by Y + Y ′. Let

ℰ ′′ =
{

X ∨ Y ∨ Y ′ ≤ 1∕𝜀
}
.

Claim 5.9. We have P
[
ℰ ′′] = 1 − O𝜀,n(𝜀).

Proof. Since (5.1) yields E[X],E[Y] = O𝜀,n(1), Markov’s inequality yields P [X > 1∕𝜀] = O𝜀,n(𝜀)
and P [Y > 1∕𝜀] = O𝜀,n(𝜀). Further, we can bound the probability that a check of degree i is adjacent

to xn+1 by idn+1∕n, because one of the i clones of the check has to be matched to one of the dn+1 clones

of xn+1 and
∑n

i=1di ≥ n. Hence,

E
[
Y ′] = E

∑
i≥1

i𝜸i ≤ E
∑

i∈[m+
𝜀,n]

k2
i dn+1∕n = O𝜀,n(1).

Thus, the assertion follows from Markov’s inequality. ▪
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Going from G′ to G′′′ we add checks a′′′
i,j , i ≥ 1, j ∈ [𝜸i] and b′′′

i,j , i ≥ 1, j ∈ [M+
i − M−

i − 𝜸i]. Let

𝒳 =

(⋃
i≥1

𝜸i⋃
j=1

𝜕a′′′
i,j ⧵ {xn+1}

)
∪
⎛⎜⎜⎝
⋃
i≥1

⋃
j∈[M+

i −M−
i −𝜸i]

𝜕b′′′
i,j

⎞⎟⎟⎠ ,
comprise all the variable nodes adjacent to the new checks, except for xn+1. Further, let

ℰ ′′′ =

{|𝒳 | = Y +
∑
i≥1

(i − 1)𝜸i

}
,

be the event that the variables of G′ where the new checks attach are all distinct.

Claim 5.10. We have P
[
ℰ ′′′|ℰ ′ ∩ℰ ′′] = 1 − on(1).

Proof. Given ℰ ′ there are Ωn(n) cavities in total, while the maximum number belonging to any one

variable is On(
√

n). Further, given ℰ ′′ we merely pick a bounded number Y + Y ′ = O𝜀,n(1∕𝜀) of these

cavities randomly as neighbors of the new checks. Thus, the probability of hitting the same variable

twice is on(1). ▪

Claim 5.11. We have E
[||nul(A′′′) − nul(A′)|| (1 − 1ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′)

]
= o𝜀,n(1).

Proof. Clearly ||nul(A′′′) − nul(A′)|| ≤ X+dn+1+1 because going from A′ to A′′′ we add one column

and at most X + dn+1 new rows. Consequently, as E[X2],E[d2
n+1] = O𝜀,n(1), the Cauchy–Schwarz

inequality yields

E
[||nul(A′′′) − nul(A′)|| (1 − 1ℰ ′′)

]
≤ E

[
(X + dn+1 + 1)2

]1∕2(
1 − P

[
ℰ ′′])1∕2 = o𝜀,n(1). (5.23)

Furthermore, Lemma 5.6 and Claims 5.7–5.10 readily imply that

E
[||nul(A′′′) − nul(A′)|| 1ℰ ′′ ⧵ℰ

]
≤ O𝜀,n(𝜀−1) exp(−1∕𝜀4) = o𝜀,n(1), (5.24)

E
[||nul(A′′′) − nul(A′)|| 1ℰ ′′ ⧵ℰ ′] ,E [||nul(A′′′) − nul(A′)|| 1ℰ ′′ ∩ℰ ′ ⧵ℰ ′′′] = on(1). (5.25)

The assertion follows from (5.23)–(5.25). ▪

We obtain G′′′ by adding checks a′′′
i,j adjacent to xn+1 and b′′′

i,j not adjacent to xn+1. Recall that 𝜶

signifies the fraction of frozen cavities. Further, let Σ′′ ⊃ Σ′ be the 𝜎-algebra generated by G′, A′, M−,

(di)i∈[n+1], 𝜸,M and 𝚫. The random variable 𝜶 and the events ℰ ,ℰ ′,ℰ ′′ are Σ′′-measurable, but ℰ ′′′

is not. Indeed, given Σ′′ the specific cavities of G′ that the new checks a′′′
i,j , b′′′

i,j join are still random.

Claim 5.12. On the event ℰ ∩ℰ ′ ∩ℰ ′′ we have

E
[(

nul(A′′′) − nul(A′)
)

1ℰ ′′′ |Σ′′]
= o𝜀,n(1) +

∏
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i)(M+
i − M−

i − 𝜸i).
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Proof. Let

𝒜 =
{

a′′′
i,j ∶ i ≥ 1, j ∈ [𝜸i]

}
,

be the set of all the new checks connected to xn+1 and let

ℬ =
{

b′′′
i,j ∶ i ≥ 1, j ∈ [M+

i − M−
i − 𝜸i]

}
,

be the set of all the new checks not connected to xn+1. Let B̃ be the {0, 1}-matrix whose rows are indexed

by 𝒜 ∪ℬ and whose columns are indexed by Vn = {x1, … , xn} such that for each a ∈ 𝒜 ∪ℬ′ and

each x ∈ Vn the corresponding entry equals one iff x ∈ 𝜕G′′′a. Further, obtain B from B̃ by replacing

each one-entry by the entry supplied by 𝜒 that represents the respective new edge of the Tanner graph.

If the event ℰ ′′′ occurs, then each column of B contains at most one nonzero entry and each row

contains at least one non-zero entry. In effect, B has full rank, that is,

rk(B) = |𝒜 ∪ℬ| =∑
i≥1

M+
i − M−

i .

Further, let B∗ be the matrix obtained from B by replacing all entries in the x-column by zero for every

x ∈ 𝔉(A′). Finally, let C ∈ F𝒜∪ℬ be a column vector whose entries Ca, a ∈ 𝒜 , are the entries from

𝜒 representing the edges of the Tanner graph G′′′ incident with xn+1 and whose remaining entries Cb,

b ∈ ℬ, are equal to zero.

By construction, on the event ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′ we have

nulA′′′ = nul

(
A′ 0

B C

)
.

Moreover, on ℰ ′ the set 𝒳 ′′′ of nonzero columns of B has size at most |𝒳 ′′′| ≤ Y + Y ′ ≤ 2∕𝜀,

while there are at least 𝜀𝑑n∕2 cavities. As a consequence, even though the sequence of cavities that

the new checks join are drawn without replacement, this sequence is at total variation distance on(1)
from a sequence of independent samples from the distribution P. Therefore, on ℰ ∩ ℰ ′ ∩ ℰ ′′ the

conditional probability given ℰ ′′′ that 𝒳 ′′′ forms a proper relation is bounded by O𝜀,n(exp(−1∕𝜀4)).
Hence, Lemma 2.5 implies that on ℰ ∩ℰ ′ ∩ℰ ′′,

E
[(

nul(A′′′) − nul(A′)
)

1ℰ ′′′|Σ′′] = 1 − E
[
rk (B∗ C) |Σ′′] + o𝜀,n(1). (5.26)

On ℰ ′′′ the matrix Q = (B∗ C) is a block matrix that decomposes into the 𝒜 -rows Q𝒜 and the ℬ-rows

Qℬ . Hence, rk(Q) = rk(Q𝒜 ) + rk(Qℬ). To complete the proof, we claim that

E
[
rk
(
Qℬ

) |Σ′′] = on(1) +
∑
i≥1

(
1 − 𝜶i) (M+

i − M−
i − 𝜸i), (5.27)

E
[
rk(Q𝒜 )|Σ′′] = on(1) +

∑
i≥1

(
1 − 𝜶i−1

)
𝜸i + 1 −

∏
i≥1

(
1 − 𝜶i−1

)𝜸i , (5.28)

where, as we recall, 𝜶 is the probability that a cavity chosen from p( ⋅ ) is frozen. Indeed, the probability

that a ℬ-row of B that contains precisely i nonzero entries gets zeroed out completely in B∗ equals

𝜶i + on(1) and there are M+
i − M−

i − 𝜸i such rows; hence (5.27).
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Similarly, the probability that an 𝒜 -row of B with i−1 nonzero entries gets zeroed out completely

in B∗ equals 𝜶i−1 + on(1) and there are 𝜸i such rows. Hence, the expected rank of the 𝒜 -rows of B∗
equals

∑
i≥1

(
1 − 𝜶i−1

)
𝜸i + on(1), which is the first summand in (5.28). Moreover, the presence of

the C-column adds one to the rank of Q𝒜 unless not a single one of the 𝒜 -rows of B gets zero out,

which occurs with probability
∏

i≥1

(
1 − 𝜶i−1

)𝜸i+on(1). Hence, we obtain (5.28). Finally, the assertion

follows from (5.26)–(5.28). ▪

Proof of Lemma 5.3. Let 𝔈 = ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′. Combining Claims 5.9–5.12, we see that

E
|||E [nul(A′′′) − nul(A′)|Σ′′]
−

(∏
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i)(M+
i − M−

i − 𝜸i)

)
1𝔈
|||||| = o𝜀,n(1). (5.29)

Since on 𝔈 all degrees i with M+
i − M−

i − 𝜸i > 0 are bounded and Chebyshev’s inequality shows that

Mi ∼ E[Mi] = Ωn(n) for any fixed i a.a.s., (5.3) yields M−
i = Mi − 𝜸i a.a.s. Hence, (5.29) turns into

E

||||||E
[
nul(A′′′) − nul(A′)|Σ′′] −(∏

i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i)𝚫i

)
1ℰ ′′

||||||
= o𝜀,n(1). (5.30)

Further, since
∑

i≥1 𝜸i ≤ dn+1 and E[dn+1] = O𝜀,n(1), we obtain

E

[(∏
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i

)
1𝔈

]

= E

[(∏
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i

)
1𝔈 ∩

{∑
i≥1

𝜸i ≤ 𝜀−1∕4

}]
+ o𝜀,n(1)

= E

[(∏
i≥1

(1 − 𝜶i−1)𝜸i −
∑
i≥1

(1 − 𝜶i−1)𝜸i

)
1

{∑
i≥1

𝜸i ≤ 𝜀−1∕4

}]
+ o𝜀,n(1)

[by Lemmas 5.6 − 5.7∕Claims 5.9 − 5.10]

= E

[(∏
i≥1

(1 − 𝜶i−1)𝜸̂i −
∑
i≥1

(1 − 𝜶i−1)𝜸̂i

)
1

{∑
i≥1

𝜸̂i ≤ 𝜀−1∕4

}]
+ o𝜀,n(1) [by Lemma 5.8]

= E
[
(1 − 𝜶k̂−1)d − d − d𝜶k̂−1

]
+ o𝜀,n(1) [by the def. of 𝜸̂]

= E
[
D(1 − K′(𝜶)∕k) − 𝑑 − 𝑑

k
K′(𝜶)

]
+ o𝜀,n(1) [by(1.10)]. (5.31)

Similarly, Claim 5.9, Lemma 5.8 and the construction (5.16) of 𝚫̂ yield

E

[(∑
i≥1

(1 − 𝜶i)𝚫i

)
1ℰ ′′

]
= E

[(∑
i≥1

(1 − 𝜶i)𝚫i

)
1

{∑
i≥1

𝚫i ≤ 𝜀−1∕3

}]

+ o𝜀,n(1) = E

[∑
i≥1

(1 − 𝜶i)𝚫̂i

]
+ o𝜀,n(1)
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= o𝜀,n(1) + (1 − 𝜀)𝑑
k
∑
i≥1

P
[
k = i

]
E[1 − 𝜶i]

= o𝜀,n(1) +
𝑑

k
− 𝑑

k
E[K(𝜶)]. (5.32)

Finally, the assertion follows from (5.30), (5.31), and (5.32). ▪

5.4 Proof of Lemma 5.4

The argument resembles the one from the proof of Lemma 5.3 but the details are considerably more

straightforward as we merely add checks to obtain A′′ from A′. As before we consider the events ℰ ,ℰ ′

from (5.12) and (67) Moreover, recalling that the total number of new non-zero entries when going

from A′ to A′′ is bounded by dn+1, we introduce ℰ ′′ = {dn+1 ≤ 1∕𝜀} .

Claim 5.13. We have P
[
ℰ ′′] = 1 − O𝜀,n(𝜀2).

Proof. This follows from the assumption E[d2
n+1] = O𝜀,n(1) and Chebyshev’s inequality. ▪

Further, similarly as in the proof of Lemma 5.3 we consider the set

𝒳 =
⋃
i≥1

⋃
j∈[Mi−M−

i ]
𝜕G′′a′′

i,j,

of variable nodes adjacent to the new checks. Let ℰ ′′′ be the event that none of the variable nodes in

𝒳 is connected with the set of new checks by more than one edge.

Claim 5.14. We have P
[
ℰ ′′′|ℰ ′ ∩ℰ ′′] = 1 − on(1).

Proof. Given ℰ ′ there are Ωn(n) cavities in total, with each variable node contributing no more

than On(
√

n) cavities. Moreover, given ℰ ′′ we choose O𝜀,n(1∕𝜀) of cavities randomly to attach the new

checks. Consequently, the probability of twice choosing a cavity with the same underlying variable is

on(1). ▪

Claim 5.15. We have E
[||nul(A′′) − nul(A′)|| (1 − 1ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′)

]
= o𝜀,n(1).

Proof. We have ||nul(A′′) − nul(A′)|| ≤ dn+1 as we add at most dn+1 rows. Because E[dn+1] = O𝜀,n(1),
Claim (5.13) and the Cauchy–Schwarz inequality yield

E
[||nul(A′′) − nul(A′)|| (1 − 1ℰ ′′)

]
≤ E

[
d2

n+1

]1∕2(1 − P [ℰ ])1∕2 = o𝜀,n(1). (5.33)

Moreover, Lemma 5.6, Lemma 5.7, and Claim 5.14 show that

E
[||nul(A′′) − nul(A′)|| 1ℰ ′′ ⧵ℰ

]
,E
[||nul(A′′) − nul(A′)|| 1ℰ ′′ ⧵ℰ ′] ,

E
[||nul(A′′) − nul(A′)|| 1ℰ ′′ ⧵ℰ ′′′] = o𝜀,n(1). (5.34)

The assertion follows from (5.33) and(5.34). ▪
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The matrix A′′ results from A′ by adding checks a′′
i,j, i ≥ 1, j ∈ [Mi − M−

i ] that are connected to

random cavities of A′. Moreover, as before let Σ′′ ⊃ Σ′ be the 𝜎-algebra generated by G′, A′, M−,

(di)i∈[n+1], 𝜸,M and 𝚫. Then ℰ ,ℰ ′,ℰ ′′ are Σ′′-measurable, but ℰ ′′′ is not.

Claim 5.16. On the eventℰ∩ℰ ′∩ℰ ′′ we have E
[
(nul(A′′) − nul(A′))1ℰ ′′′|Σ′′] = o𝜀,n(1)−

∑
i≥1(1−

𝜶i)(Mi − M−
i ).

Proof. Let 𝒜 be the set of all the new checks a′′
i,j, i ≥ 1, j ∈ [Mi − M−

i ]. Let B̃ be the {0, 1}-matrix

whose rows are indexed by 𝒜 and whose columns are indexed by Vn = {x1, … , xn} such that for

each a ∈ 𝒜 and each x ∈ Vn the corresponding entry equals one iff x ∈ 𝜕G′′a. Further, obtain B by

substituting each one-entry of B̃ by the appropriate nonzero field element from 𝜒 . If ℰ ′′′ occurs, then

B has rank rk(B) = |𝒜 | = ∑i≥1 M+
i − Mi, because no column contains two nonzero entries and each

row contains at least one nonzero entry. Further, let B∗ be the matrix obtained from B by replacing all

entries in the x-column by zero if x ∈ 𝔉(A′) is frozen to zero in A′.

On the event ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′ we have

nulA′′ = nul

(
A′

B

)
. (5.35)

Moreover, on ℰ ′ ∩ ℰ ′′ the set 𝒳 ′′ of non-zero columns of B has size at most |𝒳 ′′| ≤ dn+1 ≤ 1∕𝜀,

while there are at least 𝜀𝑑n∕2 cavities. Hence, on ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′ the probability that 𝒳 ′′ forms

a proper relation is bounded by exp(−1∕𝜀4). Therefore, Lemma 2.5 implies that

E
[(

nul(A′′) − nul(A′)
)

1ℰ ′′′|Σ′′] = o𝜀,n(1) − E
[
rk (B∗) |Σ′′] . (5.36)

Further, since an 𝜶-fraction of cavities are frozen, a row of B with i nonzero entries gets zeroed out

completely in B∗ with probability 𝜶i + on(1). Consequently,

E
[
rk (B∗) |Σ′′] = o𝜀,n(1) +

∑
i≥1

(
1 − 𝜶i) (Mi − M−

i ). (5.37)

Finally, the assertion follows from (5.36) and (5.37). ▪

Proof of Lemma 5.4. Let 𝔈 = ℰ ∩ℰ ′ ∩ℰ ′′ ∩ℰ ′′′. Combining Claims 5.15–5.16, we obtain

E

||||||E[nul(A′′) − nul(A′)|Σ′′] +

(∑
i≥1

(1 − 𝜶i)(Mi − M−
i )

)
1𝔈
|||||| = o𝜀,n(1). (5.38)

Since on 𝔈 all degrees i with M+
i − M−

i > 0 are bounded a.a.s. and M−
i = Ωn(n) a.a.s., we conclude

that Mi − M−
i = 𝜸i for all i ≥ 1 a.a.s. Hence, (5.38) turns into

E

||||||E[nul(A′′) − nul(A′)|Σ′′] +

(∑
i≥1

(1 − 𝜶i)𝜸i

)
1𝔈
|||||| = o𝜀,n(1). (5.39)

Further, because
∑

i≥1 𝜸i ≤ dn+1 and E[dn+1] = O𝜀,n(1),

E

[(∑
i≥1

(1 − 𝜶i)𝜸i

)
1𝔈

]
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= E

[(∑
i≥1

(1 − 𝜶i)𝜸i

)
1

{∑
i≥1

𝜸i ≤ 𝜀−1∕4

}]
+ o𝜀,n(1)[by Claim 5.13]

= E

[(∑
i≥1

(1 − 𝜶i)𝜸̂i

)
1

{∑
i≥1

𝜸̂i ≤ 𝜀−1∕4

}]
+ o𝜀,n(1) [by Lemma 5.8]

= 𝑑E[1 − 𝜶k̂] + o𝜀(1) = −𝑑E[𝜶K′(𝜶)]∕k + 𝑑 + o𝜀,n(1) [by(1.10)]. (5.40)

The assertion follows from (5.39) and (5.40). ▪

5.5 Proof of Lemma 5.2

Once more we break the proof down into a few relatively simple steps.

Claim 5.17. We have E[nul(A′′)] = E[nul(An,M)] + on(1).

Proof. The choice of the random variables in (5.1) and Lemma 1.11 ensure that the event ℰ ={∑
i≥1 iMi ≤ 𝑑n∕k

}
has probability 1 − on(1∕n). Further, given ℰ the random variables nul(A′′) and

nul(An,M) are identically distributed by the principle of deferred decisions. Because the nullity of either

matrix is bounded by n deterministically, the claim follows. ▪

To compare nul(A′′′) and nul(An+1,M+) we consider the event

ℰ+ =

{
𝑑n
2k

≤
∑
i≥1

iM+
i ≤

n∑
i=1

di,∀i ≥ n∕ln9n ∶ M+
i = 0

}
.

Claim 5.18. We have P
[
ℰ+] = 1 − on(1∕n).

Proof. This follows from the definition (5.2) of the random variables M+
i and Lemma 1.11. ▪

Further, consider the event

𝒲 =

{
dn+1 ≤ ln n,

∑
i≥1

i(𝚫i + 𝜸i) < ln4n

}
.

Claim 5.19. We have P [𝒲 ] = 1 − on(1).

Proof. This follows from the assumption that E[d2],E[k2] are bounded. ▪

Moreover, let 𝒰 be the event that xn+1 does not partake in any multi-edges of Gn,M+ .

Claim 5.20. We have P
[
𝒰|𝒲 ∩ℰ+] = 1 − on(ln−6n).

Proof. Given 𝒲 ∩ ℰ+ variable node xn+1 has target degree at most ln n and all check degrees are

bounded by n∕ln9n. Hence, the probability that xn+1 joins the same check twice is On(ln−7n). ▪

The next claim shows that nul(A′′′), nul(An+1,M+) can be coupled identically on the ‘bulk’ event

ℰ+ ∩𝒰 ∩𝒲 .
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Claim 5.21. Given ℰ+ ∩ 𝒰 ∩ 𝒲 the random variables nul(A′′′) and nul(An+1,M+) are identically

distributed and thus

E
[(

nul(A′′′) − nul(An+1,M+)
)

1𝒰 ∩𝒲 ∩ℰ+] = 0. (5.41)

Proof. By construction, on ℰ+ ∩ 𝒰 ∩ 𝒲 the random matrices A′′′ and An+1,M+ are identically

distributed, and hence so are their nullities. ▪

In light of Claims 5.18 and 5.21 we are left to bound the difference of the nullities onℰ+⧵(𝒰∩𝒲 ).

Claim 5.22. There is a coupling of An+1,M+ and A′′′ on ℰ+ such that ||nul(A′′′) − nul(An+1,M+)|| ≤
2
∑

i≥1 i(𝚫i + 𝜸i).

Proof. We estimate the number of edges of the Tanner graph Gn+1,M+ incident with the checks ai,j,

M−
i < j ≤ M+

i or the new variable xn+1 of Gn+1,M+ . By construction, there are at most
∑

i≥1 i(𝚫i + 𝜸i)
such edges. Similarly, there are no more than

∑
i≥1 i(𝚫i + 𝜸i) edges incident with the new checks a′′′

i,j ,

b′′′
i,j added to A′ to obtain A′′′. By the principle of deferred decisions on ℰ ′′ we can couple the Tanner

graphs of A′′′ and An+1,M+ such that they coincide on all the edges that join variables x1, … , xn and

checks ai,j, j ≤ M−
i , and hence the matrices themselves so that they coincide on all the corresponding

matrix entries. Consequently, A′′′ and An+1,M+ differ in no more than 2
∑

i≥1 i(𝚫i + 𝜸i) entries. ▪

We proceed to bound the difference of the nullities on ℰ+ ⧵𝒲 .

Claim 5.23. We have E
[∑

i≥1 i(𝚫i + 𝜸i)1ℰ+ ⧵𝒲
]
= on(1).

Proof. The event ℰ+ ⧵𝒲 is contained in the union of the three events

𝒬1 = ℰ+ ∩
{
∃i > log n ∶ 𝜸i > 0

}
, 𝒬2 = ℰ+ ∩ {dn+1 > log n} ⧵ 𝒬1,

𝒬3 = ℰ+ ∩

{∑
i≥1

i𝚫i > ln3n

}
⧵ (𝒬1 ∪ 𝒬2).

To bound the contribution of 𝒬1, consider m+
𝜀,n =

∑
i≥1 M+

i ∼ Po((1 − 𝜀)𝑑(n + 1)∕k). We claim that,

with the copies (ki)i≥1 of k independent of everything else,

E

[∑
i≥1

i𝜸i1𝒬1

]
≤ On(1∕n) ⋅

⎛⎜⎜⎝1 + E

⎡⎢⎢⎣
m+

𝜀,n∑
i=1

1{ki ≥ log n}k2
i dn+1

⎤⎥⎥⎦
⎞⎟⎟⎠ =

On(1) ⋅ P
[
k ≥ log n

]
+ On(1∕n) = On(log−2n). (5.42)

Indeed, the last equality sign follows from the first because E[k2] = On(1) and the first equality

sign follows because m+
𝜀,n is independent of dn+1 and the ki. Further, to obtain the first inequality we

consider the m+
𝜀,n checks one by one. The degree of the ith check is distributed as ki. We discard it

unless ki ≥ log n. But if ki ≥ log n, then the probability that ki is adjacent to xn+1 is bounded by

On(kidn+1∕
∑n+1

h=1dh) and
∑n+1

h=1dh ≥ n. Thus, we obtain (5.42). Further, we observe that (5.42) yields

P [𝒬1] ≤ E
∑

i≥1 i𝜸i1𝒬1 = On(log−2n). Hence, as E
∑

i≥1 i𝚫i = On(1) we obtain
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E

[∑
i≥1

i𝚫i1𝒬1

]
≤ P [𝒬1] log n + E

[∑
i≥1

i𝚫i1

{∑
i≥1

i𝚫i ≥ log n

}]
= on(1). (5.43)

Combining (5.42) and (5.43), we conclude that

E

[∑
i≥1

i(𝚫i + 𝜸i)1𝒬1

]
= on(1). (5.44)

Regarding 𝒬2, we deduce from the bound E[dr
n+1] = On(1) for an r > 2 that

E

[∑
i≥1

i𝜸i1𝒬2

]
≤ On(log n)E

[
dn+11{dn+1 > log n}

]
= on(1). (5.45)

Moreover, since the 𝚫i are independent of dn+1 and E
∑

i≥1 i𝚫i = On(1), we obtain E
[∑

i≥1 i𝚫i1𝒬2

]
= on(1). Hence, (5.45) yields

E

[∑
i≥1

i(𝚫i + 𝜸i)1𝒬2

]
= on(1). (5.46)

Moving on to 𝒬3 and recalling the definition (5.2) of 𝚫, we find

P [𝒬3] ≤ E

[∑
i≥1

i𝚫i

]
ln−3n = On(E[k2]ln−3n) = on(log−2n). (5.47)

Moreover, on 𝒬3 we have
∑

i≥1 i𝜸i ≤ log2n because dn+1 ≤ log n and 𝜸i = 0 for all i ≥ log n.

Consequently, since the 𝚫i are mutually independent and
∑

i≥1 E[i𝚫i] = On(1), (5.47) yields

E

[∑
i≥1

i(𝚫i + 𝜸i)1𝒬3

]
≤ on(1) + 4E

[∑
i≥1

i𝚫i1

{∑
i≥1

i𝚫i ≥ ln3n

}]
= on(1). (5.48)

Finally, the assertion follows from (5.44), (5.46), and (5.48). ▪

Proof of Lemma 5.2. The first assertion concerning A′′ and An,M follows from Claim 5.17.

Concerning A′′′ and An+1,M+ , Claim 5.18 shows that it suffices to couple nul(A′′′)1ℰ+ and

nul(An+1,M+)1ℰ+, because both random variables are bounded by n + 1. Indeed, thanks to Claim 5.21

we merely need to couple nul(A′′′)1ℰ+⧵ (𝒰 ∩𝒲 ) and nul(An+1,M+)1ℰ+⧵ (𝒰 ∩𝒲 ), and Claim (5.22)

supplies a coupling such that

||nul(A′′′)1ℰ+ − nul(An+1,M+)|| 1ℰ+ ⧵ (𝒰 ∩𝒲 ) ≤ 2
∑
i≥1

i(𝚫i + 𝜸i)1ℰ+ ⧵ (𝒰 ∩𝒲 ). (5.49)

Hence, it suffices to show that

E

[∑
i≥1

i(𝚫i + 𝜸i)1ℰ+ ⧵ (𝒰 ∩𝒲 )

]
= on(1). (5.50)
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Indeed, in light of Claim 5.23 we merely need to estimate
∑

i≥1 i(𝚫i + 𝜸i)1ℰ+ ∩𝒲 ⧵𝒰 . But since on

ℰ+ ∩𝒲 we have
∑

i≥1 i(𝚫i + 𝜸i) ≤ ln4n, Claim 5.20 yields

E

[∑
i≥1

i(𝚫i + 𝜸i)1ℰ+ ∩𝒲 ⧵𝒰

]
≤
(
1 − P

[
𝒰|ℰ+ ∩𝒲

])
ln4n = on(1). (5.51)

Finally, the assertion follows from Claim 5.23 and (5.49)–(5.51). ▪

6 PROOF OF THEOREM 1.2

We describe how to extend the proof of [47] to G. First, we will work on G = G0,n (defined in

Section 2.2), the configuration model for G. By Lemma 4.3, properties that holds with probability

1− on(1) for G also hold with probability 1− on(1) for G. Second, using the terminology in [47], vari-

able nodes in G are called vertices, and each check node corresponds to a hyperedge in the following

sense: if fa is a check node adjacent with variable nodes {va1
, … , vah} for some h ≥ 1, then the set

of vertices {va1
, … , vah} is called a hyperedge. A check node with size 0 corresponds to an isolated

hyperedge with size 0, i.e. this hyperedge does not contain any vertex.

Suppose P(d ≥ 2) > 0 as otherwise the theorem holds trivially by Remark 1.3(b). We first prove

Theorem 1.2 in the case k ≥ 1. Consider the parallel stripping process where all vertices of degree

less than 2 are deleted in each step, together with the hyperedges (if any) incident with them. Take

a random vertex v ∈ [n]. Let 𝜆t be the probability that v survives after t iterations of the stripping

process. It is easy to see that 𝜆t is monotonically non-increasing and thus 𝜆 = limt→∞ 𝜆t exists. For

any vertex u ∈ [n], let 𝜕j(u) denote the set of vertices of distance j from u. Recall that there exists a

constant 𝜎 > 0 such that Ed2+𝜎
< ∞ and Ek2+𝜎

< ∞ by our assumptions on d and k. We claim that

Claim 6.1. With high probability, the maximum degree and the maximum size of hyperedges in G
are at most (n log n)1∕(2+𝜎), and for every u ∈ [n] and for all fixed R, | ∪j≤R 𝜕j(u)| = On(n1∕(2+𝜎)log2n).

Let Ht be the subgraph of G obtained after t iterations of the parallel stripping process. Consider

Doob’s martingale (E(Ht|e1, … , ej))0≤j≤m where random hyperedges are added in the order e1, … , em
using the configuration model, and m denotes the number of hyperedges in G. By Claim 6.1, swapping

two clones in the configuration model would affect Ht by On(n1∕(2+𝜎)log2n), as each altered hyper-

edge can only affect the vertices (if surviving the first tth iteration or not) within its t-neighborhood.

Standard concentration arguments (see, for instance, the proof of [, theorem 2.19]) based on Azuma’s

inequality (with Lipschitz constant Cn1∕(2+𝜎)log2n for some fixed C > 0) produce that ||Ht| − 𝜆tn| =
On(n(4+𝜎)∕(4+2𝜎)log3n) = on(n). Next we deduce an expression for 𝜆t. Consider a random hypertree T
iteratively built as follows. The root of T is v, which is incident to 𝑑v hyperedges of size k1, … , k𝑑v

where the kis are i.i.d. copies of k̂ where

P(k̂ = j) = jP(k = j)
k

. (6.1)

Then the ith hyperedge is incident to other ki −1 vertices (other than v) whose degrees are i.i.d. copies

of d̂, where

P(d̂ = j) = jP(d = j)
𝑑

. (6.2)
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This builds the first neighborhood of v in T . Iteratively we can build the r-neighborhood of v in T
for any fixed r. It follows from the following claim that the r-neighborhood of v in G converges in

distribution to the r-neighborhood of T , as n → ∞, for any fixed r ≥ 1. This is because when uniformly

picking a random variable clone (or check clone), the degree of the corresponding variable node (or

check node) has the distribution in (6.2) (or (6.1)). Let S be a set of vertices in G. We say S induces

a cycle if there is a closed walk x0x1 … x𝓁 = x0 such that all xi ∈ S, and every pair of consecutive

vertices in the walk are contained in a hyperedge in G.

Claim 6.2. With high probability, for all fixed R ≥ 1, ∪j≤R𝜕
j(v) induces no cycles.

(The proofs of Claims 6.1 and 6.2 can be found at the end of this section.) If v survives t iterations

of the stripping process then at least two hyperedges incident with v survives after t iterations of the

stripping process. On the other hand, let x be a hyperedge of size at least 1 and let u be a vertex incident

with x. Let 𝜌t denote the probability that u is incident with at least one hyperedge other than x which

survives after t iterations of the stripping process. We will deduce a recursion for 𝜌t and then deduce

𝜆t from 𝜌t. Note that the degree of u follows the distribution from (6.2). Then, ignoring an on(1) error

accounting for the probability of the complement of the events in Claims 6.1 and 6.2:

𝜌0 = 1,

and

𝜌t+1 =
∑
j≥2

jP(d = j)
𝑑

∑
S⊆[j−1],|S|≥1

∑
k1,… ,kj−1≥1

j−1∏
i=1

P(k̂i = ki)
∏
i∈S

𝜌
ki−1
t

∏
i∈[j−1]⧵S

(1 − 𝜌t)ki−1

=
∑
j≥2

jP(d = j)
𝑑

∑
h≥1

( j − 1

h

)(∑
k′≥1

P(k̂ = k′)𝜌k′−1
t

)h(∑
k′≥1

P(k̂ = k′)(1 − 𝜌t)k
′−1

)j−1−h

=
∑
j≥2

jP(d = j)
𝑑

∑
h≥1

( j − 1

h

)(K′(𝜌t)
k

)h(
1 − K′(𝜌t)

k

)j−1−h

=
∑
j≥2

jP(d = j)
𝑑

(
1 −

(
1 − K′(𝜌t)

k

)j−1
)

= 1 −
D′(1 − K′(𝜌t)

k
)

𝑑
,

noting that

E𝜌k̂−1 =
∑
k′≥1

P(k̂ = k′)𝜌k′−1 =
∑
j≥1

jP(k = j)
k

𝜌j−1 = K′(𝜌)
k

.

Consequently,

𝜆t =
∑
j≥2

P(d = j)
∑
h≥2

( j
h

)(∑
k′≥1

P(k̂ = k′)𝜌k′−1
t

)h(
1 −

∑
k′≥1

P(k̂ = k′)𝜌k′−1
t

)j−h

=
∑
j≥2

P(d = j)
∑
h≥2

( j
h

)(
E𝜌k̂−1

t

)h(
1 − E𝜌k̂−1

t

)j−h

=
∑
j≥2

P(d = j)

(
1 −

(
1 − K′(𝜌t)

k

)j

− jK′(𝜌t)
k

(
1 − K′(𝜌t)

k

)j−1
)
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= P(d ≥ 2) −
(

D
(

1 − K′(𝜌t)
k

)
− P(d = 0) − P(d = 1)

(
1 − K′(𝜌t)

k

))
−
(

K′(𝜌t)
k

D′
(

1 − K′(𝜌t)
k

)
− P(d = 1)K′(𝜌t)

k

)
= 1 − D

(
1 − K′(𝜌t)

k

)
− K′(𝜌t)

k
D′
(

1 − K′(𝜌t)
k

)
.

Let g(x) = 1 − 1

𝑑
D′(1 − K′(x)

k
). Then g′(x) = 1

𝑑k
D′′(1 − K′(x)

k
)K′′(x) which is nonnegative over [0, 1].

We also have 𝜙(x) = g(x) − x, where 𝜙 is given in (1.4). Since 𝜙(1) = −D′(0)∕𝑑 ≤ 0, 𝜙′(𝜌) < 0 by

the hypothesis, and g(x) is nondecreasing in [0, 1], it follows that |g′(𝜌)| < 1 and thus 𝜌 is an attractive

fix point of x = g(x). As 𝜌0 = 1. It follows that 𝜌t → 𝜌 as t → ∞. Consequently, for every 𝜀̂ > 0 there

is sufficiently large I such that |𝜌t − 𝜌| < 𝜀̂. Hence, after I iterations of the parallel stripping process,

the number of vertices remaining is (𝜆 + o(1))n + On(𝜀̂n) where

𝜆 = 1 − D
(

1 − K′(𝜌)
k

)
− K′(𝜌)

k
D′
(

1 − K′(𝜌)
k

)
. (6.3)

If 𝜌 = 0 then 𝜆 = 0 by Remark 1.3(c). Our theorem for n∗ follows by letting I → ∞. Since k ≥ 1,

K(0) = 0 and thus m∗∕n = 𝑑

k
K(0) + o𝜀̂,n(1) = o𝜀̂,n(1). This establishes (1.6) when 𝜌 = 0.

Suppose 𝜌 > 0. It is sufficient to show that the 2-core is obtained after further removing On(𝜀̂n)
vertices, following the same approach as [47, lemma 4]. We briefly sketch it. Following the same

argument as before, the probability that a random vertex has degree j ≥ 2 after I iterations of the

stripping process is

∑
i≥j

P(d = i)
(

i
j

)
(E𝜌k̂−1

I )j(1 − E𝜌k̂−1
I )i−j =

∑
i≥j

P(d = i)
(

i
j

)(
K′(𝜌I)

k

)j(
1 − K′(𝜌I)

k

)i−j

.

Similarly, the probability of a uniformly random hyperedge in G having size j ≥ 1 and surviving the

first I iterations of the stripping process is

P(k = j)𝜌j
I .

The number of vertices with degree less than 2 after I iterations is bounded by (𝜆I − 𝜆I+1)n + on(n).
Hence, by choosing I sufficiently large, we can make these quantities arbitrarily close to those with 𝜌I
replaced by 𝜌. Now standard concentration arguments apply to show that the number of degree j ≥ 2

vertices is 𝛾jn + On(𝜀̂n), where

𝛾j =
∞∑

i=0

P(d = i)
(

i
j

)(
K′(𝜌)

k

)j(
1 − K′(𝜌)

k

)i−j

,

the number of vertices of degree less than 2 is On(𝜀̂n). Similarly, the number of remaining hyperedges

of size j is P(k = j)𝜌jm + On(𝜀̂n), and the total degree of the remaining vertices is

m
∑
j≥1

jP(k = j)𝜌j + On(𝜀̂n) = m𝜌K′(𝜌) + On(𝜀̂n) = (𝑑n∕k)𝜌K′(𝜌) + On(𝜀̂n). (6.4)

Note that 𝜀̂ can be made arbitrarily small by choosing sufficiently large I.
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Now we remove one hyperedge incident with a vertex with degree 1 at a time. Call this process

SLOWSTRIP. Let Gt denote the hypergraph obtained after t steps of SLOWSTRIP and let Xt denote

the total degree of the vertices of degree 1 in Gt, Then, for all t = On(𝜀̂n) such that Xt > 0:

E(Xt+1 − Xt|Gt)

= −1 +
∑
j≥1

jP(k = j)𝜌jm
𝜌K′(𝜌)m

⋅ (j − 1) ⋅ 2𝛾2n
(𝑑n∕k)𝜌K′(𝜌)

+ On(𝜀̂)

= −1 + 1

𝜌K′(𝜌)

(∑
j≥1

j(j − 1)P(k = j)𝜌j

)
2 ⋅ 1

2
(K′(𝜌)∕k)2D′′(1 − K′(𝜌)∕k)

K′(𝜌)𝑑𝜌∕k
+ On(𝜀̂)

= −1 + D′′(1 − K′(𝜌)∕k)K′′(𝜌)
k𝑑

+ On(𝜀̂).

Note that in the first equation above, −1 accounts for the removal of one variable clone x from the set

of vertices of degree less than 2. The term jP(k = j)𝜌jm∕𝜌K′(𝜌)m approximates the probability that x
is contained in a hyperedge of size j, up to an On(𝜀̂) error. In that case, j − 1 variable clones that lie in

the same hyperedge as x will be removed. For each of these j − 1 deleted variable clones, if it lies in

a variable of degree 2, then it results in one new variable node of degree 1. The probability for that to

happen is approximated by 2𝛾2n∕Dt, up to an On(𝜀̂) error, where Dt denotes the total degree of Gt and

by (6.4), Dt = (𝑑n∕k)𝜌K′(𝜌) + On(𝜀̂n). For the second equation above, note that

𝛾2 =
∑
i≥2

P(d = i) i(i − 1)
2

(
K′(𝜌I)

k

)2(
1 − K′(𝜌I)

k

)i−2

+ On(𝜀̂) =
1

2

(
K′(𝜌)

k

)2

D′′(1 − K′(𝜌)∕k) + On(𝜀̂).

By the assumption that 𝜙′(𝜌) < 0 we have

−1 + D′′(1 − K′(𝜌)∕k)K′′(𝜌)
k𝑑

< 0.

Hence, E(Xt+1 − Xt|Gt) < −𝛿 for some 𝛿 > 0, by making 𝜀̂ sufficiently small (i.e. by choos-

ing sufficiently large I). Then the standard Azuma inequality [lemma 29] (with Lipschitz constant

(n log n)1∕(2+𝜎) by Claim 6.1 will be sufficient to show that Xt decreases to 0 after On(𝜀̂n) = o𝜀̂,n(n)
steps (See details in [47, lemma 4]). The case 𝜌 > 0 of the theorem follows by

lim
n→∞

m∗

n
= lim

n→∞

m
n
⋅
∑
j≥1

P(k = j)𝜌j = 𝑑

k
K(𝜌),

as desired. This proves (1.6) when k ≥ 1.

Suppose now that p0 = P(k = 0) > 0. Let G be the hypergraph obtained from G by deleting all

hyperedges with size 0. Let m denote the number of hyperedges in G. Then, with probability 1−on(1),
m ∼ (1−p0)m. The size of a uniformly random hyperedge in G has the same distribution as k, defined

by k conditioned on k ≥ 1. Let k = Ek. Then, k = k∕(1 − p0). Let K(𝛼) be the probability generating

function of k. Then, immediately

K(𝛼) = K(𝛼) − p0

1 − p0

, K′(𝛼) = K′(𝛼)
1 − p0

, K′′(𝛼) = K′′(𝛼)
1 − p0

.
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Let Φ be the function obtained from Φ by replacing K(𝛼), K′(𝛼) and k by K(𝛼), K′(𝛼) and k, respec-

tively. It is straightforward to see that the set of stable points of Φ corresponds to the set of stable points

of Φ. Thus, by letting 𝜌 = max{x ∈ [0, 1] ∶ Φ′(x) = 1} it follows then that 𝜌 = 𝜌. Applying (1.6) with

k ≥ 1 to G,

lim
n→∞

n∗

n
= 1 − D

(
1 − K′(𝜌)

k

)
− K′(𝜌)

k
D′
(

1 − K′(𝜌)
k

)
= 1 − D

(
1 − K′(𝜌)

k

)
− K′(𝜌)

k
D′
(

1 − K′(𝜌)
k

)
lim
n→∞

m∗

n
= 𝑑

k
K(𝜌) = 𝑑

k
(K(𝜌) − p0),

where n∗ and m∗ denote the numbers of vertices and hyperedges in G. Since n∗ = n∗ and m∗ =
m∗ + (1+ on(1))p0m = (1+ on(1))(m∗ + p0𝑑n∕k), as the set of hyperedges of size 0 in G remain in the

2-core of G, the equations (1.6) holds as well for the case that p0 > 0. □
Proof of Claim 6.1. Since both Ed2+𝜎 = On(1) and Ek2+𝜎 = On(1), the probability that

d > (n log n)1∕(2+𝜎) or k > (n log n)1∕(2+𝜎) is On(1∕n log n). The bound on the maximum degree and

maximum size of the hyperedges in G follows by taking the union bound.

For any u ∈ [n], let Ni(u) = |𝜕i(u)|. We will prove that with high probability for every u and for

every fixed i, Ni(u) = On(n1∕(2+𝜎)log2n), which then completes the proof for Claim 6.1. We prove by

induction. Let 𝑑1, … , 𝑑Ni(u) denote the degrees of the vertices in 𝜕i(u). Then the number of hyper-

edges incident with these vertices is bounded by M ∶=
∑Ni(u)

j=1 𝑑j. By the construction of G, each M
is stochastically dominated by

∑Ni(u)
j=1 (1 + on(1))d̂j where d̂j are i.i.d. copies of d̂ whose distribution is

given in (6.2). The on(1) error is caused by the exposure of ∪j≤i𝜕
j(u) which contains on(n) vertices by

induction. Since Ed2+𝜎 = On(1), we have 𝑑 ∶= Ed̂ = On(1). Note that EM = 𝑑Ni(u). Applying the

Chernoff bound to the sum of independent [0, 1]-valued random variables we have

P
(
M ≥ 2𝑑Ni(u) + n1∕(2+𝜎)log2n

)
= P

(Ni(u)∑
j=1

d̂i
(n log n)1∕(2+𝜎)

≥
2𝑑Ni(u)

(n log n)1∕(2+𝜎)
+ (log n)(3+𝜎)∕(2+𝜎)

)
< n−2.

Similarly, Ni+1(u) is bounded by
∑M

j=1ki, where ki are the sizes of the hyperedges incident with the ver-

tices in 𝜕i(u). Similarly,
∑M

j=1ki is stochastically dominated by (1+on(1))
∑M

j=1k̂j where k̂j are i.i.d. copies

of k̂ whose distribution is defined in (6.1). Let k̂ = Ek̂. Applying the Chernoff bound again we obtain

that with probability at least 1−n−2, Ni+1(u) < 2k̂M+n1∕(2+𝜎)log2n < 4𝑑k̂Ni(u)+(1+2k̂)n1∕(2+𝜎)log2n.

Apply this recursion inductively and the union bound on the failure probability, we obtain Ni(u) =
On(n1∕(2+𝜎)log2n), as desired. □

Proof of Claim 6.2. Fix 𝜀 > 0. Choose L = L(𝜀, r) sufficiently large so that the probability that

𝑑v > L is smaller than 𝜀 (note that v is a uniformly random vertex). Given 𝑑v ≤ L. Let k1, … , k𝑑v be

the sizes of the hyperedges incident to v. Similarly to the proof of Claim 6.1, kjs are approximated by

i.i.d. copies of k̂ defined in (6.1), up to an 1+o(1) multiplicative error. We can assume L is sufficiently

large so that with probability at least 1 − 𝜀,
∑𝑑v

i=1ki ≤ L. Inductively, we can make L sufficiently large

so that |𝜕i(v)| ≤ L for all i ≤ R. Let ℰi denote the set of hyperedges incident with vertices in 𝜕i(v), but

not incident with any in 𝜕i−1(v). Cycles in 𝜕i(v) can appear in two ways: (a) two vertices in 𝜕i(v) are

incident with the same hyperedge in ℰi; (b) two hyperedges in ℰi−1 are incident with the same vertex
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in 𝜕i(v). We will prove that with high probability, none of the two cases occurs for any fixed i. For (a),

let (𝑑j)j∈𝜕i(v) denote the degrees of the vertices in 𝜕i(v). The expected number of occurrences of pairs

of vertices in (a) is

E

( ∑
j,k∈𝜕i(v)

(
𝑑j
2

)(
𝑑k
2

) ∑
h∈[m]

(kh
2

)
On(n−2)

)
= On(n−1)E

( ∑
j,k∈𝜕i(v)

𝑑2
j 𝑑

2
k

)
. (6.5)

Note that |𝜕j(v)| ≤ L for each j ≤ R. This immediately implies that 𝑑j ≤ L for all j ∈ 𝜕i(v). Hence, the

above probability is On(n−1). The probability that |𝜕i(v)| ≤ L fails is at most R𝜀 by our choice of L.

Hence, the probability that (a) fails is at most R𝜀+ on(1). The treatment of (b) is analogous. Our claim

now follows by letting 𝜀 → 0. □

7 PROOF OF THEOREM 1.4

Recall that

𝜙(𝛼) = 1 − 𝛼 − 1

𝑑
D′
(

1 − K′(𝛼)
k

)
. (7.1)

For Theorem 1.4 and Remark 1.5, it is sufficient to prove that if condition (i) or (ii) is satisfied then

(a) max𝛼∈[0,1] Φ(𝛼) = max{Φ(0),Φ(𝜌)}; and (b) 𝜙′(𝜌) < 0 unless

P(d = 1) = 0 and 2(Ek − 1)P(d = 2) > Ed. (7.2)

Since Φ(𝛼) is continuous on [0, 1], the maximum occurs at either 0 or 1 or at a stable point.

Case A: Var(k) = 0. In this case, k = k always and thus K(𝛼) = 𝛼k. We must have k ≥ 1 since

otherwise k = 𝑑 = 0. If k = 1 then 𝜙′(𝛼) = −1 which implies (b) immediately. Moreover, K′′(𝛼) = 0

for all 𝛼 ∈ [0, 1] and thus Φ′(𝛼) = (𝑑∕k)K′′(𝛼)𝜙(𝛼) = 0 for all 𝛼 ∈ [0, 1]. This implies (a).

Next consider the case that k = 2. Then,𝜙′′(𝛼) = − 1

𝑑
D′′′(1−𝛼) < 0 on (0, 1) unless d ≤ 2. Consider

the case that supp d ∩ N≥3 ≠ ∅. Then 𝜙 is concave and can have at most 2 roots. Obviously 𝛼 = 0 is

a root. Let 𝜌 denote the other root if exists. We must have 𝜙′(𝜌) < 0 by the concavity of 𝜙. Hence, the

maximum of Φ cannot be achieved at 1. Thus, the maximas of Φ can only be from {0, 𝜌}. This verifies

(a) and (b). Now assume d ≤ 2. Then𝜙′′(𝛼) = 0 on [0, 1]. Hence𝜙′(𝛼) = 𝜙′(1) = −1+P(d = 2)∕𝑑 < 0

for all 𝛼 ∈ [0, 1]. Thus, 𝜙(𝛼) is a line with a negative slope and has exactly one root at 0 on [0, 1].
Hence 𝜌 = 0 and 𝜙′(𝜌) < 0. This verifies (a) and (b).

Next we consider the case that k ≥ 3. We have

𝜙(𝛼) = 1 − 𝛼 − 1

𝑑
D′(1 − 𝛼k−1)

𝜙′(𝛼) = −1 + (k − 1)𝛼k−2

𝑑
D′′(1 − 𝛼k−1)

𝜙′′(𝛼) = k − 1

𝑑
𝛼k−3

(
(k − 2)D′′(1 − 𝛼k−1) − (k − 1)D′′′(1 − 𝛼k−1)𝛼k−1

)
= k − 1

𝑑
𝛼k−3

(
(k − 2)D′′(t) − (k − 1)D′′′(t)(1 − t)

)
where t = 1 − 𝛼k−1.

Hence,

𝜙(0) = 0 𝜙(1) = − 1

𝑑
D′(0) ≤ 0 (7.3)

𝜙′(0) = −1 𝜙′(1) = −1 + k − 1

𝑑
D′′(0). (7.4)
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Recall that Φ′(𝛼) = 𝑑

k
K′′(𝛼)𝜙(𝛼). We have K′′(𝛼) > 0 for all 𝛼 ∈ (0, 1]. By (7.3) we have Φ′(1) ≤ 0

and thus the supremum of Φ(𝛼) can only occur at 0 or a stable point. In all of the following subcases,

we will prove that 𝜙′′(𝛼) has at most 1 root in [0, 1] (except for some trivial cases that we discuss

separately). It follows immediately that 𝜙 can have at most three roots on [0, 1] including the trivial

one at 𝛼 = 0. Now we prove that this implies claims (a) and (b).

If 𝜙 has only a trivial root, then so is Φ′(𝛼). Thus, 𝛼 = 0 is the unique maxima of Φ(𝛼) and 𝜌 = 0.

This verifies (a). As 𝜙′(0) = −1 we immediately have 𝜙′(𝜌) < 0.

If 𝜙 has two roots, then the larger root is 𝜌. Since 𝜙′(0) < 0, in this case, 𝜙 is negative in (0, 𝜌) and

positive in (𝜌, 1). This is only possible when 𝜙(1) = 0 by (7.3), which requires P(d = 1) = 0. In this

case, 𝜌 = 1. Next we consider two further cases: (i) 2(k − 1)P(d = 2) > 𝑑 corresponding to 𝜙′(1) > 0;

(ii) 2(k − 1)P(d = 2) < 𝑑 corresponding to 𝜙′(1) < 0. As 𝜙 has only two roots, case (ii) obviously

cannot happen. Thus, it means that the only situation that 𝜙 has two roots would be P(d = 1) = 0 and

2(k − 1)P(d = 2) > 𝑑, as in (7.2). In this situation we are only required to verify (a). Note that 𝜙 is

negative in (0, 1) as 𝜌 = 1. It follows then that Φ(𝛼) is a decreasing function in (0, 1). Hence, 𝛼 = 0 is

the unique maxima, as desired.

If 𝜙 has three roots, then there is a root 𝜌∗ between 0 and 𝜌. Then 𝜙 is negative in (0, 𝜌∗) and

positive in (𝜌∗, 𝜌). As K′′(𝛼) > 0 for all 𝛼 ∈ (0, 1], the sign of 𝜙 implies that 𝜌∗ is a local minima and

𝜌 is a local maxima. This verifies (a). Moreover, as 𝜙 is positive in (𝜌∗, 𝜌) and 𝜙(𝜌) = 0, 𝜙′(𝜌) < 0

follows immediately.

Case A1: Var(k) = 0 and Var(d) = 0. In this case d = 𝑑. Then D(𝛼) = 𝛼𝑑 . If 𝑑 ≥ 3 then

𝜙′′(𝛼) = k − 1

𝑑
𝛼k−3

(
(k − 2)𝑑(𝑑 − 1)t𝑑−2 − (k − 1)𝑑(𝑑 − 1)(𝑑 − 2)t𝑑−3(1 − t)

)
= (k − 1)(𝑑 − 1)t𝑑−3𝛼k−3 ((k − 2)t − (k − 1)(𝑑 − 2)(1 − t)) where t = 1 − 𝛼k−1.

Obviously, 𝜙′′(𝛼) has a unique root in [0, 1].
If 𝑑 = 1 then 𝜙′(𝛼) = −1 and so 𝜙 has only a trivial root at 𝛼 = 0; If 𝑑 = 2 then 𝜙′′(𝛼) > 0 in

(0, 1) and so 𝜙 is convex and thus has only a trivial root at 𝛼 = 0 by (7.3). Hence for 𝑑 ≤ 2, 𝜌 = 0 and

is the unique maxima. Claims (a) and (b) hold trivially.

Case A2: Var(k) = 0 and d ∼ Po≥r(𝜆). In this case D(𝛼) = hr(𝜆𝛼)∕hr(𝜆), where

hr(x) =
∑
j≥r

xj

j!
for all nonnegative integers r; (7.5)

hr(x) = ex for all negative integers r. (7.6)

Then, for all integers t,

D′(𝛼) = 𝜆hr−1(𝜆𝛼)
hr(𝜆)

, D′′(𝛼) = 𝜆2hr−2(𝜆𝛼)
hr(𝜆)

, D′′′(𝛼) = 𝜆3hr−3(𝜆𝛼)
hr(𝜆)

.

Since Ed = 𝑑, it requires that 𝜆 satisfies

D′(1) = 𝜆hr−1(𝜆)
hr(𝜆)

= 𝑑. (7.7)

Thus,

𝜙′′(𝛼) = (k − 1)𝑑𝛼k−3

hr(𝜆)
((k − 2)hr−2(𝜆t) − (k − 1)(1 − t)hr−3(𝜆t)) .
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Solving 𝜙′′(𝛼) = 0 yields

k − 1

k − 2
(1 − t) = hr−2(𝜆t)

hr−3(𝜆t)
= 1 − hr−3(𝜆t) − hr−2(𝜆t)

hr−3(𝜆t)
. (7.8)

The right-hand side above is obviously a constant function if r ≤ 2. If r ≥ 3, then hr−3(𝜆t)−hr−2(𝜆t) =
(𝜆t)r−3∕(r − 3)!, and hr−3(𝜆t) is a power series of 𝜆t with minimum degree r − 3. Hence, by dividing

(𝜆t)r−3∕(r − 3)! from both the numerator and the denominator, we immediately get that the right-hand

side of (7.8) is an increasing function. However the left-hand side of (7.8) is a decreasing function.

Hence (7.8) has at most one solution, implying that 𝜙′′(𝛼) has at most one root.

Case B: k ∼ Po≥s(𝛾). We must have 𝛾 satisfy

𝛾hs−1(𝛾)
hs(𝛾)

= k,

so that Ek = k. Here k > s is required (to guarantee the existence of 𝛾 if s ≥ 1, and to avoid triviality

if s = 0). Now we have K(𝛼) = hs(𝛾𝛼)∕hs(𝛾), where hs is defined as in (7.5) and (7.6). Thus,

𝜙(𝛼) = 1 − 𝛼 − 1

𝑑
D′
(

1 − hs−1(𝛾𝛼)
hs−1(𝛾)

)
𝜙′(𝛼) = −1 + 𝛾hs−2(𝛾𝛼)

𝑑hs−1(𝛾)
D′′
(

1 − hs−1(𝛾𝛼)
hs−1(𝛾)

)
𝜙′′(𝛼) = 𝛾2

𝑑hs−1(𝛾)

(
hs−3(𝛾𝛼)D′′

(
1 − hs−1(𝛾𝛼)

hs−1(𝛾)

)
− hs−2(𝛾𝛼)2

hs−1(𝛾)
D′′′

(
1 − hs−1(𝛾𝛼)

hs−1(𝛾)

))
.

Hence,

𝜙(0) = 0 𝜙(1) = − 1

𝑑
D′(0) ≤ 0 (7.9)

𝜙′(0) = −1 𝜙′(1) = −1 + 𝛾hs−2(𝛾)
𝑑hs−1(𝛾)

D′′(0). (7.10)

As before, we will prove that 𝜙′′(𝛼) has at most 1 root in [0, 1] (except for some trivial cases that will

be discussed separately), which is sufficient to ensure (a) and (b).

Case B1: k ∼ Po≥s(𝛾) and Var(d) = 0. In this case d = 𝑑. Then D(𝛼) = 𝛼𝑑 . If 𝑑 ≥ 3 then solving

𝜙′′(𝛼) = 0 yields
𝑑 − 2

hs−1(𝛾)
⋅ hs−2(𝛾𝛼) =

(
1 − hs−1(𝛾𝛼)

hs−1(𝛾)

)
hs−3(𝛾𝛼)
hs−2(𝛾𝛼)

. (7.11)

On the right hand side above, 1−hs−1(𝛾𝛼)∕hs−1(𝛾) ≥ 0 and is a decreasing function of 𝛼. We also have

hs−3(𝛾𝛼)
hs−2(𝛾𝛼)

= hs−3(𝛾𝛼)
hs−3(𝛾𝛼) − (𝛾𝛼)s−3∕(s − 3)!

=
(

1 − (𝛾𝛼)s−3∕(s − 3)!
hs−3(𝛾𝛼)

)−1

,

which is positive and a decreasing function of 𝛼 if s ≥ 3, and is equal to 1 if s ≤ 2. Hence, the left-hand

side of (7.11) is an increasing function whereas the right hand side is a decreasing function. Hence

𝜙′′(𝛼) has at most one root.

If 𝑑 ≤ 2 the same argument as in Case A1 shows that claims (a) and (b) hold.

Case B2: k ∼ Po≥s(𝛾) and d ∼ Po≥r(𝜆). In this case D(𝛼) = hr(𝜆𝛼)∕hr(𝜆), and 𝜆 necessarily

satisfies (7.7). Then solving 𝜙′′(𝛼) = 0 yields

𝜆

hs−1(𝛾)
hs−2(𝛾𝛼) =

hs−3(𝛾𝛼)
hs−2(𝛾𝛼)

⋅
hr−2(𝜆(1 − hs−1(𝛾𝛼)∕hs−1(𝛾)))
hr−3(𝜆(1 − hs−1(𝛾𝛼)∕hs−1(𝛾)))
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The left-hand side is an increasing function whereas the right hand side is the product of two functions,

both of which are either equal to 1 or a positive decreasing function. Thus, 𝜙′′(𝛼) has at most one root.
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APPENDIX A: PROOF OF LEMMA 1.11

Since E[𝝀r] < ∞, the event ℳ =
{

maxi∈[s] 𝝀i ≤ n∕ln9n
}

has probability

P [ℳ] = 1 − on(1∕n). (A1)
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Moreover, fixing a small enough 𝜂 = 𝜂(𝛿) > 0 and a large enough L = L(𝜂) > 0 and setting Qj =∑
i∈[s] 1{𝜆i = j}, we obtain from the Chernoff bound that P

[
∀j ≤ L ∶ |Qj − sP [𝝀 = j]| >√n ln n

]
=

on(1∕n). Hence, by Bayes’ rule,

P
[
∃j ≤ L ∶ |Qj − sP [𝝀 = j]| >√n ln n|ℳ] = on(1∕n). (A2)

In addition, let ℋ =
{

h ∈ N ∶ (1 + 𝜂)h−1L ≤ n∕ln9n
}

and for h ∈ ℋ let

Rh =
∑
j≥1

Qj1{L(1 + 𝜂)h−1 < j ≤ L(1 + 𝜂)h ∧ n∕ln9n},

Rh = s
∑
j≥1

P [𝝀 = j]1{L(1 + 𝜂)h−1 < j ≤ L(1 + 𝜂)h ∧ n∕ln9n}.

Then the Chernoff bound and Bayes’ rule yield

P
[
∃h ∈ ℋ ∶ |||Rh − Rh

||| > 𝜂Rh + ln2n|ℳ] = on(1∕n). (A3)

Finally, given ℳ and |Qj − sP [𝝀 = j]| ≤ √n ln n for all j ≤ L and
|||Rh − Rh

||| ≤ 𝜂Rh + ln2n for all

h ∈ ℋ , we obtain

1

s

s∑
i=1

𝝀i ≤
∑
j=1

jQj∕s +
∑
h∈ℋ

(1 + 𝜂)hLRh∕s

= on(1) + E[𝝀1{𝝀 ≤ L}] +
∑
h∈ℋ

(1 + 𝜂)h+1(Rh + (ln2n))∕s ≤ E[𝝀1] + 𝛿∕2 + on(1).

Similarly,
1

s

∑s
i=1𝝀i ≥ E[𝝀1] − 𝛿∕2 + on(1). Thus, the assertion follows from (A1)–(A3)

APPENDIX B: STOCHASTIC VERSUS LINEAR INDEPENDENCE

A precursor of Proposition 2.4 for finite field was obtained in [7, lemma 3.1]. Instead of dealing with

linear independence, that statement dealt with stochastic dependencies. Formally, given an m×n-matrix

A over a finite field F, let 𝜇A be the probability distribution on Fn defined by

𝜇A(𝜎) = 1{𝜎 ∈ ker A}∕| ker A|.
(This definition is nonsensical over infinite fields for the obvious reason that | ker A| ∈ {1,∞}.) Let

𝝈 = 𝝈A ∈ Fn denote a sample from 𝜇A. The stochastic independence statement reads as follows.

Lemma B.1 ([7, lemma 3.1]). For any 𝛿 > 0, 𝓁 > 0 and for any finite field F there exists𝒯 =
𝒯 (𝛿,𝓁,F) > 0 such that for any matrix A overF the following is true. Choose𝜽 ∈ [𝒯 ] uniformly at
random. Then with probability at least 1 − 𝛿 the matrix A[𝜽] satisfies

∑
I⊆[n]∶|I|=𝓁 max

𝜏∈FI

|||||𝜇A[𝜽] ({∀i ∈ I ∶ 𝝈i = 𝜏i}) −
∏
i∈I

𝜇A[𝜽] ({𝝈i = 𝜏i})
||||| < 𝛿n𝓁 . (B1)
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In words, for most sets I of 𝓁 coordinates the joint distribution of the coordinates (𝝈i)i∈I is close

to a product distribution in total variation distance. Furthermore, the number 𝜽 of rows that we add to

A is bounded in terms of 𝜀,𝓁 only; that is, 𝜽 does not depend on the size m × n of A or on the matrix

A itself. Lemma B.1 and its proof are inspired by the “pinning lemma” from [17].

The following lemma shows that how Proposition 2.4 implies Lemma B.1; in a nutshell, the lemma

states that linear independence is stronger than stochastic independence.

Lemma B.2. Let A be an m× n-matrix over a finite field F. Unless I ⊆ [n] is a proper relation of A
we have

𝜇A ({∀i ∈ I ∶ 𝝈i = 𝜏i}) =
∏
i∈I

𝜇A ({𝝈i = 𝜏i}) for all 𝜏 ∈ FI . (B2)

Proof. Since for every 𝜏 ∈ FI we have

𝜇A ({∀i ∈ I ∶ 𝝈i = 𝜏i}) = 1 {∀i ∈ I ∩𝔉(A) ∶ 𝜏i = 0}𝜇A ({∀i ∈ I ⧵ 𝔉(A) ∶ 𝝈i = 𝜏i}) ,∏
i∈I

𝜇A ({𝝈i = 𝜏i}) = 1 {∀i ∈ I ∩𝔉(A) ∶ 𝜏i = 0}
∏

i∈I⧵𝔉(A)
𝜇A ({𝝈i = 𝜏i}) ,

we may assume that I∩𝔉(A) = ∅ by simply passing on to I⧵𝔉(A) if necessary. Hence, the task reduces

to proving (B2) under the assumption that I ⊆ [n] ⧵ 𝔉(A) is no relation of A.

To prove this statement let N = nul(A) and suppose that 𝜉1, … , 𝜉N ∈ Fn form a basis of ker A. Let

Ξ ∈ Fn×N be the matrix with columns 𝜉1, … , 𝜉N and let Ξ1, … ,ΞN signify the rows of Ξ. The homo-

morphism z ∈ FN → ker A, z → Ξz maps the uniform distribution on FN to the uniform distribution

𝜇A on ker A. Therefore, to prove (B2) it suffices to prove that the projection of this homomorphism to

the I-rows, i.e., the map z ∈ FN → (Ξiz)i∈I is surjective. Equivalently, we need to show that

rk (Ξi)i∈I = |I|. (B3)

Assume for contradiction that (B3) is violated. Then there exists a vector z ∈ FI ⧵ {0} such that∑
i∈I ziΞi = 0. This implies that for all x ∈ Fn,

Ax = 0 ⇒
∑
i∈I

zixi = 0.

As a consequence, there exists a row vector y of length m such that (yA)j = 1{i ∈ I}zi for all j ∈ [n].
Hence, ∅ ≠ supp(yA) ⊆ I. Thus I is a relation of A, in contradiction to our assumption that it is not. ▪

Thus, Lemma B.1 is an immediate consequence of Proposition 2.4 and Lemma B.2. Indeed, the

proof of Proposition 2.4 renders the explicit bound 𝒯 = ⌈4𝓁3∕𝛿4⌉ + 1 on the number of coordinates

that need to get pegged. By comparison, the stochastic approach via the arguments from 7, 10 leads

to a value of 𝒯 that is exponential in 𝓁 (although it may be possible to improve this estimate via

probabilistic arguments).

APPENDIX C: A SELF-CONTAINED PROOF OF THE UPPER BOUND ON THE RANK

The “≤”-inequality in (1.3) was previously proved by Lelarge [41], who derived the bound from the

Leibniz determinant formula and the formula for the matching number of random bipartite graphs
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from [13]. The proof of that formula, however, is far from straightforward. Therefore, as a point of

interest in this section we show that another idea from mathematical physics, the interpolation method

from spin glass theory 25, 30, can be harnessed to obtain a self-contained proof of the upper bound

on the rank. The proof uses similar ideas as the proof of the lower bound outlined in Section 2. Thus,

phrased in terms of the nullity, the aim in this section is to show that a.a.s.

nul(A)∕n ≥ max
𝛼∈[0,1]

Φ(𝛼) + on(1). (C1)

C.1 The interpolation method

The basic idea behind the interpolation method is to construct a family of random matrices A𝜀(t)
parametrised by “time” t. At t = m𝜀,n we obtain precisely the matrix A𝜀,n. At the other extreme, A𝜀(0)
is a block diagonal matrix whose nullity can be read off easily. To establish the lower bound we will

control the change of the nullity with respect to t. By comparison to applications of the interpola-

tion method to other combinatorial problems (e.g., 11, 17, 25, 49), the construction here is relatively

elegant. In particular, throughout the interpolation we will be dealing with an actual random matrix,

rather than some other, more contrived object.

Getting down to the details, apart from t and 𝜀 we need two further parameters: an integer 𝒯 =
𝒯 (𝜀) ≥ 0 and a real 𝛽 ∈ [0, 1], which, in order to obtain the optimal bound, we choose such that

Φ(𝛽) = max
𝛼∈[0,1]

Φ(𝛼). (C2)

Further, let m𝜀,n ∼ Po((1 − 𝜀)𝑑n∕k). Also let (ki, k′i , k′′
i )i≥1 and (di)i≥1 be copies of k and d, respec-

tively, mutually independent and independent of m𝜀,n. Additionally, choose 𝜽 ∈ [𝒯 ] uniformly and

independently of everything else. Finally, recall that (𝜻 i, 𝝃i)i≥1 are uniformly distributed on the unit

interval and independent of all other randomness.

The Tanner graph G𝜀(t) has variable nodes

x1, … , xn and (xi,j,h)i∈[m𝜀,n−t], j∈[k′i ], h∈[k′i−1].

Moreover, let ℱt be a random set that contains each of the variable nodes xi,j,h with probability 𝛽

independently. Then the check nodes are

a1, … , at, (bi,j)i∈[m𝜀,n−t], j∈[k′i ], p1, … , p𝜽, fi,j,h for each xi,j,h ∈ ℱt.

To define the edges of the Tanner graph let 𝚪𝜀(t) be a random maximal matching of the complete

bipartite graph with vertex sets

n⋃
i=1

{xi} × [di],

( t⋃
i=1

{ai} × [ki]

)
∪
{

bi,j ∶ i ∈ [m𝜀,n − t], j ∈ [k′
i]
}
.

For each matching edge {(xi, s), (aj, t)} ∈ 𝚪𝜀(t) insert an edge between xi and aj into the Tanner

graph and for each {(xi, s), bj,h} ∈ 𝚪𝜀(t) insert an edge between xi and bj,h. Thus, G𝜀(t) may contain

multi-edges. Further, add an edge between xi and pi for i = 1, … ,𝜽 and add an edge between xi,j,h and

bi,j for each h ∈ [k′
i − 1] as well as an edge between every xi,j,h ∈ ℱt and the check fi,j,h. Finally, let

A𝜀(t) be the random matrix induced by G𝜀(t). Formally, with the rows indexed by the check nodes and

the columns indexed by the variable nodes, we let

(A𝜀(t))pi,xj = 1{i = j} (i ∈ [𝜽], j ∈ [n]),
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FIGURE C1 Left: sketch of the component of xi at t = 0; the check pi is present iff i ≤ 𝜽. Right: sketch of the factor graph

G𝜀(t) for 0 < t < m𝜀,n, with the ai,j coloured black and the other colours as in the left figure

(A𝜀(t))ai,xj = 𝜒𝜻 i,𝝃j

ki∑
u=1

dj∑
v=1

1
{
{(xj, v), (ai, u) ∈ 𝚪𝜀(t)}

}
(i ∈ [t], j ∈ [n]),

(A𝜀(t))bh,i,xj = 1
{

xj ∈ 𝜕G𝜀(t)bh,i
}

(h ∈ [m𝜀,n − t], j ∈ [n]),

(A𝜀(t))bh,i,xu,v,w = 1{h = u, i = v} (h, u ∈ [m𝜀,n − t], i ∈ [k′
h], v ∈ [k′u],

w ∈ [k′u − 1]),
(A𝜀(t))fh,i,j,xu,v,w = 1{(h, i, j) = (u, v,w)} (h, u ∈ [m𝜀,n − t], i ∈ [k′

h], j ∈ [vk′h − 1],

v ∈ [k′
u],w ∈ [k′

u − 1]).

All other entries of A𝜀(t) are equal to zero.

The semantics is as follows. The checks ai will play exactly the same role as before, that is, each is

adjacent to ki of the variable nodes x1, … , xn a.a.s. By contrast, each bi,j is adjacent to precisely one

of the variables x1, … , xn. In addition, bi,j is adjacent to the k′i − 1 variable nodes xi,j,h, h ∈ [k′i − 1].
These variable nodes, in turn, are adjacent only to bi,j and to fi,j,h if xi,j,h ∈ ℱ . The checks fi,j,h are

unary, that is, fi,j,h simply forces xi,j,h to take the value zero. Finally, each of the checks pi is adjacent

to xi only, i.e., p1, … , p𝜽 just freeze x1, … , x𝜽.

For t = 1 the Tanner graph contains m𝜀,n ∼ Po((1 − 𝜀)𝑑n∕k) ‘real’ checks ai and none of the

checks bi,j or fi,j,h. In effect, A𝜀(1) is distributed precisely as A𝜀 from Section 2.2. By contrast, at t = 0

there are no checks ai involving several of the variables x1, … , xn. As a consequence, the Tanner graph

decomposes into n connected components, one for each of the xi. In fact, each component is a tree

comprising xi, some of the checks bj,h and their proprietary variables xj,h,s along with possibly a check

fj,h,s that freezes xj,h,s to zero. For i ∈ [𝜽] there is a check pi freezing xi to zero as well. Thus, A𝜀(0) is

a block diagonal matrix consisting of n blocks, one for each component. In effect, the rank of A𝜀(0)
will be easy to compute. Finally, for 0 < t < 1 we have a blend of the two extremal cases. There will

be some checks ai and some bi,j with their retainer variables and checks; see Figure C1.

We are going to trace the nullity of A𝜀(t) as t increases. But since the newly introduced variables

xi,j,h inflate the nullity, we subtract the “obvious” correction term to retain the same scale throughout

the process. In addition, we need a correction term to make up for the greater total number of check

nodes in A𝜀(0) by comparison to A𝜀(m𝜀,n). Thus, let

𝒩t = nul A𝜀(t) + |ℱt| − m𝜀,n−t∑
i=1

k′
i(k′i − 1), 𝒴t =

m𝜀,n∑
i=1

(ki − 1)(𝛽ki − 1).
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The following two statements summarise the interpolation argument. First, we compute E[𝒩0].

Proposition C.1. For any fixed𝜃 ≥ 0 we have n−1E[𝒩0] = D(1−K′(𝛽)∕k)+𝑑K′(𝛽)∕k−𝑑+o𝜀,n(1).

The next proposition provides monotonicity.

Proposition C.2. For any 𝜀 > 0 there exists 𝒯 = 𝒯 (𝜀) > 0 such that with probability 1 − on(1∕n)
uniformly for all 0 ≤ t < m𝜀,n we haveE[𝒩t+1 +𝒴t+1|m𝜀,n] ≥ E[𝒩t +𝒴t|m𝜀,n] + o𝜀,n(1).

As an immediate consequence of Propositions C.1 and C.2 we obtain the desired lower bound on

the nullity.

Corollary C.3. We have 1

n
E[nul(A𝜀)] ≥ max𝛼∈[0,1] Φ(𝛼) + o𝜀,n(1).

Proof. Proposition A.2 implies that

E[nul A𝜀,n] = E[nul A𝜀(m𝜀,n)] = E[𝒩m𝜀,n] = E[𝒩m𝜀,n +𝒴m𝜀,n] − E[𝒴m𝜀,n]

≥ E[𝒩0 +𝒴0] − E[𝒴m𝜀,n] + o𝜀(n) = E[𝒩0] − E[𝒴m𝜀,n] + o𝜀,n(n). (C3)

Further, by Proposition C.1,

1

n
E[𝒩0] = −𝑑 + 𝑑K′(𝛽)∕k + D(1 − K′(𝛽)∕k) + o𝜀,n(1),

1

n
E[𝒴m𝜀,n] =

𝑑

k
(
𝛽K′(𝛽) − k + 1 − K(𝛽)

)
+ o𝜀,n(1).

Hence, (C2) yields

n−1(E[𝒩0] − E[𝒴m𝜀,n]) = Φ(𝛽) + o𝜀(1) = max
𝛼∈[0,1]

Φ(𝛼) + o𝜀,n(1),

and the assertion follows from (C3). ▪

Combining Proposition 2.6, Proposition 2.8 and Corollary C.3 and the standard concentration for

nul A𝜀 from Lemma 4.7 completes the proof of (C1). We proceed to prove Propositions C.1 and C.2.

C.2 Proof of Proposition C.1

Each component of G𝜀(0) contains precisely one of the variable nodes x1, … , xn. In effect, A𝜀(0) has

a block diagonal structure, and the overall nullity is nothing but the sum of the nullities of the blocks.

It therefore suffices to calculate the nullity of the block Bs representing the connected component of

xs. Indeed, because
∑n

s=1
||𝜕2xs|| = ∑i≤m′

𝜀
(0) k′

i(k′
i − 1) and

∑n
s=1
||𝜕2xs ∩ℱ0

|| = |ℱ0| we have

𝒩0 =
n∑

s=1

Ns, where Ns = nul(Bs) −
|||𝜕2xs

||| + |||𝜕2xs ∩ℱ0
||| .

Consequently, since 𝜽 = On(1) it suffices to prove that

E [Ns] =

{
𝑑K′(𝛽)∕k + D(1 − K′(𝛽)∕k) − 𝑑 + o𝜀(1) if s > 𝜽,

On(1) otherwise.
(C4)
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In fact, the second case in (C4) simply follows from Ns ≤ ds and E[ds] = On(1) for all s.

Hence, suppose that s > 𝜽. As |Ns| ≤ ds and E[dr
s] = O𝜀,n(1) for an r > 2 we find 𝜉 > 0 such that

E[|Ns|1{ds > 𝜀𝜉−1∕2}] = o𝜀,n(1). (C5)

Moreover, let Ξ =
∑m′

𝜀
(0)

i=1 k′i1
{

k′i > 𝜀−8
}

, M′
j =
∑m′

𝜀
(0)

i=1 1{k′i = j}. Because E[k2] = O𝜀,n(1) we have

E[Ξ] ≤ 𝑑n
k

E
[
k1{k ≥ 𝜀−8}

]
= nO𝜀,n(𝜀8), (C6)

while M′
j ∼ (1 − 𝜀)𝑑nP [k = j]∕k for all j ≤ 𝜀−8 a.a.s. by Chebyshev’s inequality. Hence, introducing

the event

ℰs =
{

ds ≤ 𝜀𝜉−1∕2, Ξ ≤ n𝜀6, ∀j ≤ 𝜀−8 ∶ M′
j ∼ (1 − 𝜀)𝑑nP [k = j]∕k,

n∑
i=1

di ∼ 𝑑n,
∑
i≥3

iM′
i ∼ (1 − 𝜀)𝑑n

}
,

we obtain from (C5) and (C6) that

E[Ns] = E [Ns1ℰs] + o𝜀,n(1). (C7)

With 𝜸 ≤ ds the actual degree of xs in G𝜀(s), let 𝜿1, … ,𝜿𝜸 be the degrees of the checks adjacent to

xs. We claim that given ℰs and ds,

𝑑TV((𝜿1, … ,𝜿𝜸), (k̂1, … , k̂ds)) = o𝜀,n(𝜀1∕2). (C8)

Indeed, on ℰs the probability that xs is adjacent to a check of degree greater than 𝜀−8 is

O𝜀,n(dsΞ∕
∑

j≥3 jM′
j) = o𝜀,n(𝜀). Further, given ℰs we have∑

j≥3

jM′
j ≥ (1 − 2𝜀)𝑑n,

and thus P[𝜸 < ds|ℰs] = o𝜀,n(𝜀1∕2). Moreover, given 𝜸 = ds, for each i ∈ [ds] the probability that the

ith clone of xs gets matched to a check of degree j ≤ 𝜀−8 is

jM′
j∕
∑
h≥3

hM′
h = jP

[
k = j

]
∕k + on(1) = P

[
k̂ = j

]
+ on(1).

These events are asymptotically independent for the different clones. Thus, we obtain (C8).

Finally, we can easily compute Ns given the vector (𝜿1, … ,𝜿𝜸). The matrix Bs has fairly simple

structure. The first 𝜸 rows have a non-zero entry in the first column representing xs. Additionally,

for i = 1, … , 𝜸 the ith row contains 𝜿i − 1 further non-zero entries, and the columns where theses

non-zero entries occur are disjoint for all i. Finally, at the bottom of the matrix there is a block freezing

the variables in ℱ0 ∩ 𝜕2xs to zero. We therefore claim that the rank of the matrix works out to be

E[rk(Bs)|𝜿1, … ,𝜿𝜸] =
𝜸∑

i=1

(1 − 𝛽𝜿i−1) + |ℱ0 ∩ 𝜕2xs| + 1 −
𝜸∏

i=1

(1 − 𝛽𝜿i−1). (C9)
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To see this, let us first compute the rank of the matrix B′
s without the first column. Then row i ∈ [𝜸]

contributes to the rank unless all the variables in the corresponding equation other than xs belong to

ℱ0, an event that occurs with probability 𝛽𝜿i−1; hence the first summand. In addition, the |ℱ0 ∩ 𝜕2xs|
rows pegging variables to zero contribute to the rank (second summand). Furthermore, going back to

Bs, the first column adds to the rank unless none of the first 𝜸 rows of B′
s gets zeroed out completely,

an event that has probability
∏𝜸

i=1(1 − 𝛽𝜿i−1). Since

E[Ns|𝜿1, … ,𝜿𝜸] = 1 +
𝜸∑

i=1

(𝜿i − 1) − E[rk(Bs)|𝜿1, … ,𝜿𝜸] − E
[|||𝜕2xs

||| − |||𝜕2xs ∩ℱ0
||| |𝜿1, … ,𝜿𝜸

]
= 1 − E[rk(Bs)|𝜿1, … ,𝜿𝜸] + E

[|||𝜕2xs ∩ℱ0
||| |𝜿1, … ,𝜿𝜸

]
,

substituting (C9) in yields

E[Ns|𝜿1, … ,𝜿𝜸] =
𝜸∏

i=1

(1 − 𝛽𝜿i−1) −
𝜸∑

i=1

(1 − 𝛽𝜿i−1). (C10)

Combining (C7), (C8) and (C10) completes the proof.

C.3 Proof of Proposition C.2

To couple the random variables 𝒩t+1 and 𝒩t we need to investigate short linear relations among the

cavities, that is, the clones from
⋃n

i=1 {xi} × [di] that are not incident to an edge of 𝚪𝜀(t). Denote this

set by 𝒞 (t). Further, let Pt be the distribution on the set of variables induced by drawing a random

cavity, i.e.,

Pt(xi) = |𝒞 (t) ∩ ({xi} × [di])|∕|𝒞 (t)|,
and let y1, y2 … be independent samples from Pt.

Lemma C.4. For any 𝛿 > 0 and 𝓁 > 0 there is 𝒯 = 𝒯 (𝛿,𝓁) > 0 such that

P
[
y1, … , y𝓁 form a proper relation

]
< 𝛿.

Proof. The choice of m𝜀,n guarantees that |𝒞 (t)| ≥ 𝜀n∕2 a.a.s. Moreover, since E[d] = O𝜀,n(1)
we find L = L(𝜀, 𝛿) > 0 such that the event ℒ =

{∑n
i=1di1{di > L} < 𝜀𝛿2n∕16

}
has probability

P[ℒ ] ≥ 1 − 𝛿∕8. Therefore, we may condition on ℰ = ℒ ∩ {|𝒞 (t)| ≥ 𝜀n∕2}.

Let x1, … , x𝓁 be variables drawn uniformly with replacement from Vn = {x1, … , xn}. Then on

the event ℰ we have, for any 𝓁-tuple y1, … , y𝓁 of variables,

P
[
y1 = y1, … , y𝓁 = y𝓁|A𝜀(t)

]
≤ P

[
x1 = y1, … , x𝓁 = y𝓁|A𝜀(t)

]
(2L∕𝜀)𝓁 + 𝛿2.

Consequently, because the distribution of G𝜀(t) − {p1, … , p𝜽} is invariant under permutations of

x1, … , xn, Remark 3.6 shows that P
[
x1 = y1, … , x𝓁 = y𝓁|A𝜀(t)

]
< 𝛿(𝜀∕(2L))𝓁∕2, provided that

𝒯 = 𝒯 (𝛿,𝓁) is large enough. ▪

We proceed to derive Proposition C.2 from Lemma C.4 and a coupling argument. Let G′
𝜀(t) be

the Tanner graph obtained from G𝜀(t + 1) by removing the check at+1, let A′
𝜀(t) be the corresponding

matrix and let
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𝒩 ′
t = nulA′

𝜀(t) + |ℱt+1| − m𝜀,n−t−1∑
i=1

k′i(k′
i − 1).

Then clearly

E
[
𝒩t+1 −𝒩t|m𝜀,n

]
= E

[
𝒩t+1 −𝒩 ′

t |m𝜀,n
]
− E

[
𝒩t −𝒩 ′

t |m𝜀,n
]
.

Let 𝜶 ∈ [0, 1] be the fraction of frozen cavities in G′
𝜀(t), with the convention that 𝜶 = 0 if the set 𝒞 ′(t)

of these cavities is empty.

Lemma C.5. We have E ||E[𝒩t+1 −𝒩 ′
t |A𝜀(t)′,m𝜀,n] − (K(𝜶) − 1)|| = o𝜀,n(1).

Proof. The random matrix A𝜀(t + 1) is obtained from A′
𝜀(t) by inserting a new random check at+1.

Pick 𝜁 = 𝜁 (𝜀) > 0 small enough and 𝛿 = 𝛿(𝜁 ) > 0 smaller still. Since |nul(A′
𝜀(t))− nul(A𝜀(t+ 1))| ≤ 1

and E[k2] = O𝜀,n(1) we may condition on the event that kt+1 ≤ 𝜀−1. Similarly, Lemma A.4 shows that

we may assume that the set 𝒳 of variables of G′
𝜀(t) where the new check node at+1 attaches does not

form a proper relation, provided that 𝒯 = 𝒯 (𝜀) is chosen sufficiently large. Therefore, Lemma 2.5

yields

E[𝒩t+1 −𝒩t|A𝜀(t)′,m𝜀,n] = E[nul(A𝜀(t + 1)) − nul(A′
𝜀(t))|A′

𝜀(t),m𝜀,n]
= E

[
𝜶kt+1 − 1|A′

𝜀(t),m𝜀,n
]
+ o𝜀(1) = K(𝜶) − 1 + o𝜀,n(1),

as claimed. ▪

Lemma C.6. Let Q(𝛼, 𝛽) = E
[
k(𝛼𝛽k−1 − 1)

]
for 𝛼 ∈ [0, 1]. Then

E
|||E [𝒩t −𝒩 ′

t |A′
𝜀(t),m𝜀,n

]
− Q(𝜶, 𝛽)||| = o𝜀,n(1).

Proof. The factor graph Gt(𝜀) is obtained from G′
t(𝜀) by adding the checks bm𝜀,n−t−1,h for h ∈

[k′m𝜀−t−1], the corresponding variables xm𝜀,n−t−1,h,j and possibly their respective checks fm𝜀,n−t−1,h,j. Since

by construction |𝒩t −𝒩 ′
t | ≤ k′

m𝜀−t−1,

and E[k2] = O𝜀,n(1) we may condition on the event that k′
m𝜀−t−1 ≤ 𝜀−1. In effect, Lemma C.4 shows

that we may assume the set 𝒳 of cavities adjacent to the new checks bm𝜀,n−t−1,h does not form a proper

relation, provided that 𝒯 = 𝒯 (𝜀) is chosen large enough. Moreover, the number of frozen cavities in

𝒳 is within on(1) of a binomial distribution Bin(k′m𝜀,n−t−1,𝜶) in total variation. Therefore, Lemma 2.5

shows that

E
[
𝒩t −𝒩 ′

t |A′
𝜀,n(t),m𝜀,n

]
= E[nul(A𝜀(t)) − nul(A′

𝜀(t)) − k′
m𝜀,n−t−1(k′

m𝜀,n−t−1 − 1) + |ℱ ′||A′
𝜀(t),m𝜀,n]

= Q(𝜶, 𝛽) + o𝜀,n(1),

as claimed. ▪

Lemma C.7. We have E[𝒴t+1 −𝒴t] = E[(k − 1)(𝛽k − 1)].

Proof. This is the result of a straightforward calculation. ▪
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Proof of Proposition C.2. Combining Lemmas C.5–C.7, we obtain

E[𝒩t+1 +𝒴t+1] − E[𝒩t +𝒴t] = E
[
𝜶k − 1 − k(𝜶𝛽k−1 − 1) + (k − 1)(𝛽k − 1)

]
+ o𝜀,n(1). (C11)

Since xk − kxyk−1 + (k − 1)yk ≥ 0 for all k ≥ 1, x, y ∈ [0, 1], the assertion follows from (C11). ▪

APPENDIX D: Verif icat ion of (m − m′)∕n and rk(A′)∕n

Let mj denote the number of rows with exactly j nonzero entries. With standard concentration argu-

ments, we know that a.a.s. m0 ∼ mP(k = 0) ∼ (𝑑n∕k)K(0), and m1 ∼ mP(k = 1) ∼ (𝑑n∕k)K′(0).
Consequently, a.a.s. (m − m′)∕n ∼ 𝑑(1 − K(0) − K′(0))∕k.

For rk(A′), let Xi be the indicator variable that there exists a row with exactly one nonzero entry,

and that nonzero entry occurs at the i-th column. Then rk(A′) =
∑n

i=1Xi. Conditioning on m1 and

D =
∑

j jmj, we know that EXi =
∑

j P(d = j)(1 − (m1∕D)j) for every i. Since a.a.s. m1∕D ∼ K′(0)∕k,

the standard concentration results immediately yield that a.a.s. rk(A′)∕n ∼ 1−
∑

j P(d = j)(K′(0)∕k)j =
1 − D(1 − K′(0)∕k).
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