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Abstract. This paper presentsmethods to obtain analytical solutions to a class of continuous
traffic equilibrium problems, where continuously distributed customers from a bounded
two-dimensional service region seek service from one of several discretely located facilities
via the least congested travel path. We show that under certain conditions, the traffic flux at
equilibrium, which is governed by a set of partial differential equations, can be decomposed
with respect to each facility and solved analytically. This finding paves the foundation for an
efficient solution scheme. Closed-form solution to the equilibrium problem can be obtained
readily when the service region has a certain regular shape, or through an additional confor-
mal mapping if the service region has an arbitrary simply connected shape. These results
shed light on some interesting properties of traffic equilibrium in a continuous space. This
paper also discusses how service facility locations can be easily optimized by incorporating
analytical formulas for the total generalized cost of spatially distributed customers under
congestion. Examples of application contexts include gates or booths for pedestrian traffic, as
well as launching sites for air vehicles. Numerical examples are used to show the superiority
of the proposed optimization framework, in terms of both solution quality and computation
time, as compared with traditional approaches based on discrete mathematical program-
ming and partial differential equation solution methods. An example with the metro station
entrances at the Beijing Railway Station is also presented to illustrate the usefulness of the
proposed traffic equilibrium and location designmodels.
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Region V University Transportation Center.

Supplemental Material: The source code (in MATLAB and Python scripts) and data (configuration files,
numerical results, and setup files for Viswalk simulations) needed to reproduce the results in the
paper are available at https://doi.org/10.1287/opre.2021.2213.
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1. Introduction
The transportation community has long recognized the
need to address congestion and equilibrium while plan-
ning facilities to serve spatially distributed customers.
The customers’ choices on service facilities and access
paths may be coupled with one another due to induced
or altered traffic congestion near these facilities. Disre-
garding the congestion effect while planning facility
locations may lead to unnecessarily high transportation
cost and negative socio-economic impacts on the gen-
eral public. In a broader sense, the societal cost includes
not only wasted time due to extra delay, but also secur-
ity and safety hazards.

Examples of such problems can be found in many
contexts that involve self-organized traffic in a continuous

space. In the context of pedestrian traffic, crowd conges-
tion not only leads to wasted time due to delay, but also
discomfort and safety hazards due to inadequate service
facilities (e.g., stairs, exits, and entrances) and lack of flow
channelization in open space. Extreme manifestation of
such negative consequences of congestion includes the
series of devastating pedestrian stampede incidents in
recent years, for example, Shanghai’s New Year Eve crash
in 2014 that killed 36 people and severely injured 47 others
(BBC News 2015), and the 2015 Hajj pilgrimage incident
in Mina, Saudi Arabia, that killed at least 2,411 pil-
grims (Gladstone 2015). In many parts of the world,
air vehicles are being considered as an option to allow
future travelers to use low-altitude air space. Uber has
unveiled a prototype of its UberAIR concept flying
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cars that will operate commercially in 2023 (Chow
2018). At the same time, air taxis are being tested in
Dubai and China as well (Baggaley 2017, Toh and
Ostrower 2018). The freight industry (e.g., Amazon,
DHL) has also been exploring the possibility of using
short-range unmanned aerial vehicles (i.e., drones) to
deliver parcels from a mobile dispatch base (either
ground or air based) near customer neighborhoods.
The concentration of air vehicle or drone traffic in cer-
tain air space (e.g., near the city center or dispatch base)
may cause delay and mandate traffic diversion, which
in turn significantly affects operational and energy effi-
ciency (She and Ouyang 2021). For example, each Sky-
port of UberAIR flying cars (providing passenger
pickup/dropoff and aircraft battery charging services)
are intended to accommodate 200 lift offs and land-
ings each hour (Reisinger 2018), which, if deployed,
would cause significant congestion in low-altitude air
space. Similar issues would appear in military opera-
tions associated with the stationing of aircraft carriers
in hostile environments. Even in a seemingly unre-
lated context, deployment of surveillance sensors (e.g.,
those based on radiation) in open or constrained
spaces (e.g., airports or city squares) may be formu-
lated into a similar problem, if sensor detection effec-
tiveness is affected by not only distance but also block-
age effects from a dense crowd—the overall latency
and/or reliability of the sensor signals may depend on
the path that involves the least cumulation of local
blockage. In these and many other similar application
contexts, a better understanding of the congestion
effect in the continuous space around service facilities
will be extremely beneficial for planners to design a
more optimized system of such facilities and to mini-
mize the negative impact of congestion.

Traffic equilibrium in a continuous space is unique
because traveling objects (e.g., air vehicles and pedes-
trians) follow no clear spatial guideways, select arbitrary
travel paths that often deviate from straight lines, and
interact with one another from all directions in local
neighborhoods. Field experiments in Hoogendoorn and
Daamen (2005) show that pedestrians use varying curvy
paths to avoid congested areas even if the walking dis-
tance is longer, as shown in Figure 1(a).1 Similarly, air
traffic trajectories in Figure 1(b) show similar curvy paths
in the air when they concentrate on the landing points.
On solving facility location problems in continuous
space, Carlsson and Jia (2015) proposed an approach by
finding the asymptotically optimal configurations of
facilities and spatial partitions. The framework was also
applied to find the optimal hub-and-spoke network
design in continuous Euclidean space (Carlsson and Jia
2013). However, the impact of traffic congestion was not
factored in those models—instead, most of the efforts on
traffic congestion have been addressing equilibrium in
a discrete network. For example, facility location and

network design problems are often handled as bilevel
models with embedded static or dynamic traffic assign-
ment (DTA) problems. Interested readers are referred to
Long and Szeto (2019) on dynamic traffic equilibrium
and system optimal problem in the discrete setting.

Many studies have addressed the impact of traffic
congestion on service network planning, but most of
the existing models were developed over an underly-
ing discrete transportation network (Mahmassani and
Chen 1993, Peeta and Mahmassani 1995, Jiang et al.
2011), for example, in the context of network design
(Abdelghany et al. 2012, Feng and Miller-Hooks 2014),
facility location design (Bai et al. 2011, Hajibabai
and Ouyang 2013, Hajibabai et al. 2014, Bai et al.
2016), shelter network design problems (Sherali et al.
1991, Li et al. 2012, An et al. 2015), competitive supply
chains (Konur and Geunes 2011, 2012), (as well as)
planning large public spaces (Gao et al. 2014). Using
discrete network flow (even on a very dense network)
to approximate traffic concentration and congestion in a
continuous space may not always be satisfactory due, in
part, to difficulties associated with (i) the coupling of con-
gestion experienced by neighboring travelers in differ-
ent travel directions, which, in the discrete network
model, would have been treated as complex link spill-
over effects, and (ii) clustering of two-dimensional
fluxes into one-dimensional link flows and characteriza-
tion of link capacities, which are nontrivial tasks. As a
result, alternative modeling approaches that can
directly describe traffic in a two-dimensional continu-
ous space have gained attention. Helbing et al. (2005)
used the social force model to describe pedestrian
flows and proposed design solutions to improve the
efficiency and safety in congestion-prone areas, such
as airport terminals. Yang et al. (1994), Yang (1996), and
Yang andWong (2000) first formulated a series of contin-
uous user traffic equilibrium problems in the form of
two-dimensional partial differential equations (PDEs).
More recently, a series of extensions has been made to
address multiple variants to the problem (Wong and
Sun 2001, Ho et al. 2003, Ho andWong 2005).

Mathematically, suppose that M discrete facilities
are built in a bounded and simply connected ser-
vice region Ω ⊂ R

2 to serve continuously distributed
customers described by a bounded demand density
q(x) ≥ 0,x ∈Ω. The facilities are located at x1, : : : ,xM ∈Ω.
Facility i ∈ {1, : : : ,M} occupies an infinitesimal circular
area Bi � {x : |x− xi | ≤ r0}, where 0 < r0 � ����|Ω|√

. We
assume that the facilities are well separated in the
sense that Bi ∩ Bj � ∅ for all i≠ j and Bi ⊂Ω for all i.
We define Ai ⊂Ω as the subset of customers who travel
to facility i for service. The transportation cost per unit
distance per unit demand near location x ∈Ω is iso-
topic but dependent on the local traffic, that is,
c(x, f(x)), where f(x) is a continuously differentiable
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vector field denoting the flux vector near x. Facility i
charges a service fee per unit demand, Ci(Qi), based
on the total flow throughput, Qi :� ∫

Ai
q(x)dx ≥ 0.

A customer at x chooses to patronize one of the facili-
ties, say facility i, along the best travel path p(x) ⊆ R

2

such that its generalized cost (i.e., sum of travel cost
and service fee) is minimized, that is, x ∈Ai if xi ∈ p(x)
and [i,p(x)] � argmini′,p′

∫
p′(x)c(x

′, f(x′))dx′ +Ci′ (Qi′ ). Self-
interested customers may collectively form user equilibrium
in the continuous region, such that all customers from loca-
tion x will experience an equal total generalized cost for
obtaining service, which we denote by a scalar function
φ(x) � ∫

p(x)c(x′, f(x′))dx′+ Ci(Qi), ∀ x ∈Ai.2 Based on Yang

and Wong (2000), the traffic equilibrium can be described by
the following two-dimensional first-order PDE:

∇ · f(x) � q(x), x ∈Ω\⋃M
i�1Bi, (1a)

c(x, f(x)) f(x)|f(x)| � −∇φ(x), x ∈Ω\⋃M
i�1Bi, (1b)

f(x) ·nx � 0, x ∈ ∂Ω, (1c)

φ(x) � Ci(Qi), x ∈ ∂Bi, 1 ≤ i ≤M, (1d)∫
∂Bi

f(x) ·nxdx+Qi � 0, 1 ≤ i ≤M, (1e)

where ∇· is the divergence operator; ∇ is the gradient
operator; ∂Ω and ∂Bi denote the boundaries of Ω and
Bi, respectively; nx denotes the outward unit normal
vector to the boundary at x ∈ ∂Ω or x ∈ ∂Bi. Equations
(1a) and (1e) follow flux conservation; (1b) guarantees

that the customers will choose their cost-minimizing
travel paths; (1c) implies that no traffic crosses the
boundary of the region; and (1d) directly follows the
definition of φ(x) at facility boundaries.

The solution to the previous PDEs has been incor-
porated into upper level optimization models for a
number of application contexts, for example, point
service facility location design (Ouyang et al. 2015),
reliable location design (Wang et al. 2021), guideway
network design (Zhang et al. 2021), and truck-drone
distribution system design (Wang and Ouyang 2018).
In particular, point service facilities could be gates or
booths for pedestrians, dispatch bases or Skyports for
drones, or even surveillance sensors at airports. The
facility location design can be optimized in many
ways, for example, the problem could be written into
the following median-type formulation:

min
M, x

φ̄ (2a)

subject to (1) and∑M
i�1

g(xi) ≤ B, (2b)

where g(x) is the cost for opening a facility at x, (2b) is

the budget constraint, and φ̄ �
[∫

Ω
q(x)dx

]−1∫
Ω
φ(x)

q(x)dx is the average customer service cost.
The previous model includes nonlinear differential

equations as part of the constraints and hence is very
difficult to solve. Such problems are typically solved
by numerical methods (e.g., finite element method, or

Figure 1. (Color online) Example Pedestrian (a) and Aircraft (b) Trajectories
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FEM) that seek approximation in a set of local parti-
tions (i.e., finite elements) that can be systematically
integrated into a global system of equations (Yang
and Wong 2000, Wong et al. 2004, Ho and Wong 2006,
Du et al. 2016). Embedding such PDEs as constraints
in an upper level optimization problem typically
requires iterative algorithms (such as Lagrangian
relaxation; see Ouyang et al. 2015) that solve the PDEs
many times. With the standard PDE solution methods
(e.g., via FEM), this incurs prohibitive computational
burdens. Yet, little efforts have been made toward inves-
tigating the structure of the PDEs in the hope to obtain
closed-form analytical solutions, such that the PDEs’ solu-
tion can be effectively used to plan service facilities. In
light of this, this paper focuses on developing analytical
solution methods for a class of continuous traffic equili-
brium problems. We show that under certain conditions,
the previous PDEs can be asymptotically solved in closed
forms when the sizes of facilities are negligible as com-
pared with the service region size, for specially shaped
service regions (e.g., circular areas). For more generally
shaped regions, an additional conformal mapping treat-
ment (which can also be expressed in closed forms) is
needed. Our PDE solution will not only serve as an
efficient way to compute congestion effects in various
application contexts, but also shed light on some basic
properties of continuous traffic equilibrium in a two-
dimensional space. For example, we show that the size of
the facilities has a significant impact on the equilibrium
flux pattern, and we discuss the limiting behavior when
the size of the facilities approaches zero. Formulas for cal-
culating the total generalized cost for all customers as
well as the flow throughput at each facility are devel-
oped; this brings in significant computation advantages
over the traditional numerical methods in the literature.
These analytical results can be easily incorporated into
optimization models, for example, for planning service
facilities to serve spatially distributed customers. In this
paper, we directly incorporate the analytical results into a
nonlinear solver to solve some simple location optimiza-
tion problems, which manifests computational gains
comparing with the numerical methods developed by
Ouyang et al. (2015). The computational methods and
modeling tools from this paper will allow transportation
planners (e.g., supply chain planners for drone deliveries
in Amazon, DHL, and service facilities designers for
transit plazas or sport stadiums, or urbanmobility service
providers such as Uber Elevate) to estimate the conges-
tion cost induced by their designs, and in turn help those
planners to design a more optimized system of facilities
that minimizes the negative impact of congestion.

The remainder of this paper is organized as follows.
The basic PDE solution methodology is presented in
Section 2 and Section 3. We start with deriving a PDE
solution to a basic problem where all customers go to
only one facility for service, which is presented in Sec-
tion 2. The result serves as the building block for

solving multifacility cases via an exact decomposition
scheme in Section 3. Section 4 presents two numerical
examples, one on a unit square and the other on an
irregular service region. The last section presents con-
cluding remarks.

2. Single Facility
We first consider the special case of problem (1) where
only one facility (i.e., M � 1) is built at x1 ∈Ω. In what
follows, we first transform the PDE into a solvable
form by showing equivalence and then derive the sol-
ution explicitly.

To start with, it can be easily verified, following the
divergence theorem (Marsden and Tromba 2003),∫

Ω

∇ · f(x)dx �
�
∂Ω

f(x) · nx dx,

that the vector field determined by the following
equation also satisfies (1a) and (1e):

∇ · f(x) � q(x) −Qδ(x − x1), x ∈ Ω, (3)

where Q � ∫
Ω
q(x)dx and δ(·) is the Dirac delta func-

tion defined on R
2.

Next, note that the presence of the cost potential
function φ(x) in (1b) implies that no curl of ∇φ(x)
exists anywhere; hence, (1b) can be equivalently
rewritten as follows: for all x ∈Ω\B1,

0 � ∇ × [−∇φ(x)] � ∇ × c(x, f(x)) f(x)|f(x)|
[ ]

� c(x, f(x))
|f(x)|

∇ × f(x) + ∇ c(x, f(x))
|f(x)| × f(x),

where ∇ × is the curl operator. For nontrivial cases,
c(x, f(x))
|f(x)| ≡= 0, and hence, as long as

∇ c(x, f(x))
|f(x)| × f(x) � 0, x ∈Ω, (4)

holds, we know that (1b) reduces to the following:

∇ × f(x) � 0, x ∈Ω: (5)

There could be many possible ways for condition (4)
to hold. The simplest example might be the case when
the travel cost function is linear with respect to flux
intensity, that is, c(x, f(x)) ~ |f(x)|.3 In this paper, we
limit our focus to the class of problems where condi-
tion (4) holds at least approximately.4

When the conservative property (5) is satisfied, we
can introduce a new function u(x) such that

∇u(x) � −f(x), x ∈ Ω, (6)

and hence the solution to the following Neumann prob-
lem in the mathematics literature (Guenther and Lee
1996) must also satisfy (3), (5) and (1c):

Δu(x) � −q(x) +Qδ(x − x1), x ∈ Ω, (7a)
∇u(x) · nx � 0, x ∈ ∂Ω, (7b)
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where Δ is the Laplacian operator. It is known that
the integral representation of the solution to this
Neumann problem (7) has the following form:

u(x) �
∫
Ω

N(x′, x)q(x′)dx′ −QN(x1, x) + ū, (8)

where ū is average value of u(x) in region Ω,5 and
N(x′,x) is the Neumann function (Roach 1982) defined
over two points x′,x ∈Ω that uniquely solves the fol-
lowing normalized Neumann problem for all x′ ∈Ω,

−ΔN(x′,x) � δ(x− x′) − 1
|Ω| , x ∈Ω, (9a)

∇N(x′,x) ·nx � 0, x ∈ ∂Ω, (9b)∫
Ω

N(x′,x)dx � 0: (9c)

It is known that the Neumann function should have
the following form:

N(x′, x) � S(x′, x) +U(x′, x), (10)

where

S(x′, x) � − 1
2π

log |x − x′| + |x|2
4 |Ω | ,

and U(x′,x) as a function of x is harmonic inΩ but has
nonhomogeneous Neumann boundary conditions
due to (9b), namely,

ΔU(x′,x) � 0, x ∈Ω, (11a)
∇U(x′,x) ·nx � −∇S(x′,x) ·nx, x ∈ ∂Ω: (11b)

Now we are ready to show that as r0 → 0+, the solu-
tion to the Neumann problem also (asymptotically)
satisfies (1d). Note from (8) and (10) that in the neigh-
borhood of x1, log(·) monotonically increases with no
upper bound. Let B � {x′: |x′ − x| ≤ r} ⊇Ω be a disk
centered at x, where radius r is sufficiently large such
that the first inequality below holds. Then we have∫

Ω

1
2π

log |x′ − x| dx′ ≤
∫
B

1
2π

log |x′ − x| dx′

� r2(2 logr− 1)=4 <∞, x ∈Ω:

Therefore, for bounded demand density, that is, supx′∈Ω
q(x′) <∞, we have

∫
Ω
S(x′,x)q(x′)dx′ <∞ and continu-

ous as well. Then, limx→x1

∫
Ω
S(x′,x)q(x′) dx′ � ∫

Ω
S

(x′,x1) q(x′) dx′ <∞. Moreover, because U(x′,x) is har-
monic, its regularity and the maximum principle
implies that limx→x1U(x1,x) �U(x1,x1) <∞ and limx→x1∫
Ω
U(x′,x)q(x′)dx′ � ∫

Ω
U(x′,x1)q(x′) dx′ <∞. As a result,

limx→x1

∫
Ω
N(x′,x)q(x′)dx′ � ∫

Ω
N(x′,x1) q(x′) dx′ <∞. To

this end,
lim
x→x1

u(x) � lim
r0→0

Q
2π

log r0 +
∫
Ω
N(x′,x1)q(x′)dx′

−QU(x1,x1) −Q |x1|2
4 |Ω| + ū, (12)

which is independent of x and dominated by the first
term, implying that f(x) near x1 is asymptotically per-
pendicular to the boundary ∂B1 as r0 → 0+. Therefore,
(1d) is satisfied based on the gradient theorem (Williamson
and Trotter 1996).

Recall that (3) implies (1a) and (1e),6 and (5) is equiva-
lent to (1b). Hence, the Neumann problem solution from
(8), which therefore satisfies (3), (5), (1c), and (1d) in light
of (6), also solves the original problem (1) asymptotically
as r0 → 0+. This is stated in the following proposition.

Proposition 1. As r0 → 0+ and M � 1, when (4) holds,
the solution f(x) to (1) can be asymptotically obtained from
(8) via f(x) � −∇u(x), ∀x.

Now, the solution to continuous traffic equilibrium
reduces to one on finding the Neumann function for
Ω. It turns out that the specific form of the Neumann
function depends on the shape of the region Ω. For
certain special shapes, Neumann functions can be
expressed in explicit closed forms; some examples
will be given in Section 2.1. However, for a generally
shaped region Ω, it may not be possible to directly
express the Neumann functions in closed forms. In
such cases, we either resort to numerical solutions or
conduct spatial mapping to change the shape of the
region. The latter approach is discussed in Section 2.2.

2.1. Service Region with Special Shapes
Over the years, the applied mathematics community
has found closed-form Neumann functions for some
specific regions, including circular disks, rectangles,
and equilateral triangles (McCartin 2011). For the
sake of brevity, we present these Neumann functions
without proof. Interested readers are encouraged to
verify that these closed-form functions indeed solve
the Neumann problem described in the previous
section.

2.1.1. Unit Disk. When Ω is the unit disk, {x: |x|≤ 1},
the corresponding Neumann function is well known
(Kolokolnikov et al. 2005):

N(x′,x) � 1
2π

−log |x−x′| −log
∣∣∣∣x |x′| − x′

|x′|
∣∣∣∣+ |x|2+ |x′|2

2
−3
4

( )
:

(13)

Figure 2, (a) and (b) show, respectively, the flux pat-
tern and cost surface based on (8) and (13) when

c(x, f(x)) � |f(x)| ,q(x) ≡ 1 and x1 � 1
2 , 0
( )

.

2.1.2. Rectangle. For a rectangular region Ω � [0,a] ×
[0,b], where a,b > 0, the Neumann function can be
expressed by a trigonometric series (Roach 1982):

N(x′,x) � 4
ab
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∑∞
m,n�0

γmn
cos(mπx(1)=a)cos(mπx′(1)=a)cos(nπx(2)=b)cos(nπx′(2)=b)

π2(m2=a2+n2=b2) ,

(14)

where (x(1),x(2)) and (x′(1),x′(2)) are the coordinates of
points x and x′, respectively; γ00 � 0,γm0 � γ0n � 1

2 and
γmn � 1 for m > 0,n > 0.

Figure 2, (c) and (d) show the flux pattern and cost
surface when c(x, f(x)) � |f(x)| ,q(x) ≡ 1,a � b � 1 and

x1 � 3
4 ,

1
2

( )
.

2.2. Service Region with General Shapes
For an arbitrary bounded region Ω, the Neumann func-
tion is not readily available, but it still follows the basic
form (10). We propose to use conformal mapping
(Henrici 1993) to help transform the arbitrarily shaped
region to one in which (11) can be solved in closed forms.

In so doing, we use the complex plane C to represent the
two-dimensional space, andmap the points inΩ to those
in another region D ⊂ C while preserving angles, that is,
the mapping is denoted as h : Ω→D, where Ω,D ⊂ C.
Because harmonic functions remain harmonic under
conformal mapping, we can obtain the following imme-
diate result.

Proposition 2. Let x ∈Ω and ζ � h(x) ∈D be a one-to-one
conformal mapping from region Ω to region D, which is
also continuous on the boundary h : ∂Ω→ ∂D. Let h′(x) be
the differential of the mapping at x. Suppose H(x′,ζ) is a
harmonic function of ζ in D satisfying

ΔH(x′,ζ) � 0, ζ ∈D, (15a)

∇H(x′,ζ) ·nζ � − |h′(x)|−1∇S(x′,x) ·nx, ζ ∈ ∂D: (15b)

Figure 2. (Color online) Flux Pattern and Cost Surface for Service Regions with Special Shapes
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Note. (a) Flux pattern: circular disk; (b) cost contour; circular disk; (c) flux pattern: square; and (d) cost contour: square.

Wang, Ouyang, and She: Continuous Traffic Equilibrium and Facility Location Planning
1470 Operations Research, 2022, vol. 70, no. 3, pp. 1465–1484, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

12
6.

16
2.

12
6]

 o
n 

16
 A

ug
us

t 2
02

2,
 a

t 1
0:

49
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

Published in Operations Research on March 21, 2022 as DOI: 10.1287/opre.2021.2213. 
This article has not been copyedited or formatted. The final version may differ from this version.



Then, U(x′,x) �H(x′,h(x)) is the solution to Equation
(11) on regionΩ.

Proof. Because H(x′,ζ) is a harmonic function of ζ
that remains harmonic under conformal mapping, we
immediately know U(x′,x) is also harmonic and hence
(11a) is satisfied. Moreover, if ζ and x are the corre-
sponding points on ∂D and ∂Ω, respectively, we have,
in view of the conformality:

∇U(x′,x) ·nx � [|h′(x)| ·∇H(x′,ζ)] ·nζ � |h′(x)|
∇H(x′,ζ) ·nζ:

Hence, (11b) also is satisfied. This completes the proof. w

Proposition 2 has an important implication on solv-
ing the Neumann problem for irregularly shaped
regions. Now that we know the Neumann function on
a circular disk, we can set D to be a unit disk and
produce the Neumann function for any other simply
connected regionΩ(C.

Corollary 1. Let ζ � h(x) denote a conformal mapping that
transforms a point in a simply connected region x ∈Ω into
one in the unit disk ζ ∈D. Then the Neumann function on
Ω is given by (10) where

U(x′,x) � − 1
π

∫ 2π

0
(log |ejθ − h(x)|)

· |h′(h−1(ejθ))|−1∇S(x′,h−1(ejθ)) ·nh−1(ejθ) dθ+χ,

(16)

where j � ����−1√
, e is the base of the natural logarithm, and χ

is a scalar chosen so that (9c) is satisfied.

Proof. We first note that h(x) must exist due to Riemann
mapping theorem (Ahlfors 1966). Then, in the unit disk
D, by Dini’s formula (Henrici 1993), the solution to (15) is

H(x′, ζ) � − 1
π

∫ 2π

0
(log |ejθ − ζ |)

· |h′(x)|−1∇S(x′, x) · nx dθ + χ,

where x � h−1(ejθ). Noting that U(x′,x) �H(x′,h(x)),
we have completed the proof. w

Corollary 1 provides an efficient formula to evaluate
the Neumann function for regions with general shapes.
If the conformal mapping function h, its inverse h−1 as
well as its derivative h′ can be explicitly expressed, (16)
can be directly applied. In practical applications, if the
region boundary is given without parametrized expres-
sion, the numerical conformal mapping would be
applied to efficiently evaluate the cost potential. As
stated in Papamichael and Stylianopoulos (2010),
numerical approximated conformal mapping h and its
inverse h−1 can be efficiently evaluated by many public
domain software packages. The derivative h′ would
also be evaluated using basic numerical methods.
Although the extra numerical computation for the

conformal mapping may induce extra computational
costs, our framework still has the advantage over the
finite elemental method in practical applications. Note
that the conformal mapping only depends on the shape
of the domain boundary, so it can be precomputed and
stored. In Ouyang et al. (2015), for each set of location
configuration, triangular finite element meshes must be
regenerated again to evaluate the average costs—this
involves heavy computational costs. In contrast, using
our conformal mapping based method, for any facility
location configuration, we can directly use Equation (15),
without any extra computation, to efficiently estimate the
average cost. This significantly reduces the computational
burden. In our follow-up paper (Wang et al. 2021), the
advantage of the proposed conformal mapping method
would be further magnified when considering facility
location design under disruption uncertainties.

3. Multiple Facilities
3.1. Decomposition Scheme
Now, we extend the discussion to the case ofM > 1 facili-
ties that compete for self-organized demand, where the
one-facility results from the previous section will serve as
a building block. Recall that if (4) holds, then (1b) becomes
(5), and then all the differential equations in (1) become
linear with respect to f(x). In light of this, we will next
show that the solution to (1) forM > 1 facilities, described
by the vector field f(x), should be expressed as the super-
position ofM vector fields fi(x), for 1 ≤ i ≤M, each corre-
sponding to a single facility and satisfying

∇· fi(x) �Qi

Q
q(x)−Qiδ(x−xi), 1≤ i≤M,x∈Ω, (17a)

∇× fi(x) � 0, 1≤ i≤M,x∈Ω, (17b)
fi(x) ·nx � 0, 1≤ i≤M,x∈∂Ω: (17c)

Equation (17) is essentially the equivalent of (3), (5) and
(1c) for an arbitrary facility i, if we imagine (that the total
demand served by this facility), Qi, comes proportionally
from every neighborhood, that is, facility i attracts
demand with a density q(x)Qi=Q from x. Note that Qi=Q
is used only as a weight factor in the revealed solution
structure whenwe superimpose themultiple vector fields.
Each weight factor is solved as an unknown such that the
boundary conditions will hold. Because each imaginary
sub-flux fi(x) is a vector field, eventually, for any point x,
the actual flux f(x) at a location x is the vector summation
of multiple fi(x)’s using those weight factors, which in the
end shall have only one direction. As such, all the demand
from location x would eventually flow toward this direc-
tion and choose the facility corresponding to it. Per our
discussion in the previous section, each of these PDEs can
be solved similarly via the Neumann function as follows:

ui(x) �Qi

Q

∫
Ω

N(x′,x)q(x′)dx′ −QiN(xi,x) + ūi, (18)

where ∇ui(x) � −fi(x) for 1 ≤ i ≤M.
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It is easy to verify that the resultant flux f(x) �∑M
i�1fi(x) satisfies (3), the equivalent of (1a) and (1e),

because of the following:

∇ · f(x) �∑M
i�1

∇ · fi(x) � q(x) −∑M
i�1

Qiδ(x− xi), x ∈Ω:

Moreover, when (4) holds, (1b) is satisfied because

∇ × c(x, f(x)) f(x)
|f(x) |

( )
� c(x, f(x))

|f(x)| ∇ × f(x)

� c(x, f(x))
|f(x) |

∑M
i�1

∇ × fi(x) � 0,

and (1c) holds as f(x) ·nx � ∑M
i�1fi(x) ·nx � 0.

Recall the case for one facility, from (12) we know
that in the neighborhood of the facility, the flux tends
to be perpendicular to the boundary of the facility,
and its magnitude approaches infinity. In the multifa-
cility case, as long as these facilities are well separated,
this situation applies to each facility, and hence the
total flux near a facility is dominated by that entering
this facility, that is, f(x) � ∑M

i�1fi(x) ≈ fi(x) for all
x ∈ ∂Bi, and this flux is approximately perpendicular
to ∂Bi. As such, (1d) is satisfied based on the gradient
theorem and the fact that f(x) is curl free as long as the
following equations hold:

Ci(Qi) −Ci−1(Qi−1) �
∫
x̃ i→̃xi−1

c(x, f(x))
|f(x)| f(x) · txdx,

2 ≤ i ≤M, (19)

where the integral is defined over a Jordan arc passing
from an arbitrary x̃i ∈ ∂Bi to an arbitrary x̃i−1 ∈ ∂Bi−1
excluding B1, : : : ,BM, and tx is the tangent vector along
the arc at location x. The results are summarized in
the following proposition.

Proposition 3. When (4) holds and in the limit as
r0 → 0+, the solution f(x) to (1) can be asymptotically
expressed as the superposition of M continuously differen-
tiable vector fields f1(x), : : : , fM(x) for all x ∈Ω, that is,
f(x) � ∑M

i�1fi(x), where the M vector fields are determined
by (18), (19), and Q � ∑M

i�1Qi.

Proposition 3 provides a decomposition scheme for
solving continuous traffic equilibrium with multiple
facilities. In the preceding section, we presented ways
to obtain the closed-form Neumann functions for one
facility. Substituting the Neumann functions into (18)
yields the equilibrium flux pattern for each facility i
individually, and the flux will be scaled by a factor of
Qi=Q. By solving a system of Equation (19), we can
obtain the throughput at each facility, Qi, and hence
retrieve f(x) for multiple facilities by superimposing
the vector fields fi(x) for all i. Note that there are
only M− 1 independent Qi’s because Q � ∑M

i�1Qi is a

constant. The generalized cost φ(x) can then be obtained
from the flux pattern by evaluating (1b) and (1d).

In general, to solve the system of Equation (19), if the
line integral on the right-hand side cannot be explicitly
expressed, numerical integration is necessary to obtain an
evaluation. Due to the possible complexity of the integral,
existence and uniqueness of the system (19) is not guaran-
teed for all possible forms of the congestion function
c(x, f(x)). However, if the congestion function is linear, sys-
tem (19) can be simplified such that a unique solution is
guaranteed and many other desirable properties can be
explored. This is discussed in the following section.

3.2. Properties of Linear Congestion Functions
If we further assume that the congestion function is
linear with respect to local flux intensity, namely,
c(x, f(x)) ~ |f(x)|, the equilibrium solution would have
some neat properties. This may provide a rich lode of
opportunities for exploring the nature of the continu-
ous traffic equilibrium problem. In what follows,
without losing generality, we assume for the sake of
simplicity that

c(x, f(x)) � |f(x)| : (20)

In this case, (1b) becomes f(x) � −∇φ and PDEs (1)
turn into a Poisson equation with mixed Dirichlet and
Neumann boundary conditions. The linearity of
gradient operator ∇ implies that φ(x) differs from
u1(x) + ⋯ + uM(x) at most by a constant. Moreover,
(19) can be reduced to

Ci(Qi) −Ci−1(Qi−1) �
∑M
j�1

[uj(̃xi) − uj(̃xi−1)], 2 ≤ i ≤M,

(21)

where x̃i ∈ ∂Bi, ∀i. Substituting (18) into (21) yields

Ci(Qi) −Ci−1(Qi−1)

�
∫
Ω

(N(x′, x̃i) −N(x′, x̃i−1))q(x′)dx′

+∑M
k�1

Qk(N(xk, x̃i−1) −N(xk, x̃i)), 2 ≤ i ≤M:

(22)

The system of Equations (22), along with ∑M
i�1Qi �Q,

can be used to solve the total flow throughput Qi, ∀i,
given the locations of facilities x � {x1,x2, : : : ,xM}. Note
that this property implies that the cost function φ(x),x ∈
Ω can be directly obtained without solving the flux fields.
The following proposition discusses the existence and
uniqueness of the solution to the nonlinear system (22).

Proposition 4. The nonlinear system (22), along with∑M
i�1Qi �Q, has a unique solution in the limit as r0 → 0+

if Ci(·), ∀1 ≤ i ≤M are bounded and continuously
differentiable.
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Proof. Let Pi �
∫
Ω
N(x′, x̃i)q(x′)dx′, then, we can rewrite

the nonlinear systems as follows:

Ci(Qi) � Pi −
∑M
k�1

QkN(xk, x̃i) + κ, 1 ≤ i ≤M, (23a)

Q �∑M
k�1

Qi, (23b)

where κ is an auxiliary variable in addition to Qi, ∀i.
As r0 → 0+, we have that

N(xi, x̃j) �
N(xi,xj), i≠ j,

− 1
2π

logr0 +U(xi,xi) + |xi|2
4 |Ω| , i � j:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Let ε � −2π=log r0, then ε→ 0+ as r0 → 0+. As such,
the nonlinear algebraic system (23) can be rewritten in
the following form:

(I + εA)v � ε2h(v), (24)
where

A �

U(x1,x1) + |x1 |2
4 |Ω| N(x1,x2) ⋯ N(x1,xM) −1

N(x2,x1) U(x2,x2) + |x2 |2
4 |Ω| ⋯ N(x1,xM) −1

⋮ ⋮ ⋱ ⋮ ⋮

N(xM,x1) ⋯ ⋯ U(xM,xM) + |xM |2
4 |Ω| −1

1 ⋯ ⋯ 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

v � (εQ1,: : : ,εQM, εκ)T,
h(v) � (P1 −C1(Q1), : : : ,PM −CM(QM),Q+ ε−1κ):
As ε→ 0+, I+ εA must be invertible and the inverse
(I+ εA)−1 � I− εA+ ε2A2+⋯. Note that Qi ∈ [0,Q],
∀1 ≤ i ≤M and ∑M

i�1Qi �Q, hence there exists
an i′ such that >Qi′ ≥Q=M; otherwise, ∑M

i�1Qi <
MQ=M �Q, which is a contradition. For this i′, we
have that Pi′ <∞ as ε→ 0+, it follows from (23a)
that κ ~O(ε−1). Therefore, ignoring the third and
higher order terms of ε, (24) can be rewritten in the
following form:

v � h̃(v), (25)
where

h̃(v) � ε( εκ+ ε(P1 −C1(Q1)) − ε2s1κ
⋮

εκ+ ε(PM −CM(QM)) − ε2sMκ
κ+ εQ− ε2Mκ

) +O(ε3),

(26)

where si � ∑M
j�1(A)ij. The last row in (25) implies that

κ �Q=(Mε) +O(1). Substituting it into other rows, we
obtain that

h̃(v) � (εQ=M
⋮

εQ=M
εκ

) +O(ε2): (27)

Now consider the set K :� {v ∈ R
M+1 : 0 ≤ vi ≤ εQ,

∀1 ≤ i ≤M;vM+1 ∈ J}, where J is any closed interval
(note that εκ ~O(1)). It follows from (27) that as
ε→ 0, function h̃ maps K into a strict subset of K,
that is, h̃(K) ⊂K. Because K is compact and convex,
Brouwer’s theorem guarantees that existence of v ∈K
with h̃(v) � v, which implies the existence of the solu-
tion to the nonlinear system (22).

Suppose that v � (εQ1, : : : ,εQM,εκ) and v′ � (εQ1
′, : : : ,

εQM
′ ,εκ′) are two distinct solutions. Then, for i �

1, : : : ,M, we have from (24) that

Qi + ε
∑M
j�1

(A)ijQj − εκ � ε(Pi −Ci(Qi)), (28a)

Qi
′ + ε

∑M
j�1

(A)ijQj
′ − εκ′ � ε(Pi −Ci(Qi

′)): (28b)

Subtracting (28b) from (28a) yields

Qi −Qi
′ � ε(κ − κ′) + ε

∑M
j�1

(A)ij(Qj
′ −Qj)

+ ε(Ci(Qi
′) − Ci(Qi)): (29)

Because ∑M
i�1Qi � ∑M

i�1Qi
′ �Q, summing over i for (29)

gives 0 � ε(κ− κ′) +O(ε). Note that κ,κ′ ~O(ε−1),
therefore in the limit as ε→ 0+, we have that κ− κ′ �
O(1) and thus Qi −Qi

′ �O(ε). Substituting this back to
(29) and noting that Ci(·) is continuously differentia-
ble, we get

Qi−Qi
′ � ε(κ−κ′)+ε

∑M
j�1

(A)ijO(ε)+εC′
i (Qi

′)O(ε)

� ε(κ−κ′)+O(ε2), (30)

where C′
i (Qi) is the derivative of Ci(·) at Qi. Again, sum-

ming over i for (30) gives 0 � ε(κ− κ′) +O(ε2), this fur-
ther implies that κ− κ′ �O(ε) and Qi −Qi

′ �O(ε2).
Applying this procedure repeatedly, by induction we
know that κ− κ′ �O(εL) and Qi −Qi

′ �O(εL+1) for an
arbitrary large L > 1 and hence we conclude that κ � κ′
and Qi �Qi

′ for all i � 1, : : : ,M, which contradicts v≠ v′.
So the nonlinear system (22) has a unique solution, and
this completes the proof. w

Furthermore, the first M entries of (27) implies that
Qi �Q=M+O(ε), ∀i � 1, : : : ,M, which becomes an
interesting feature of the solution to (22): the value of
Qi for different i converges asymptotically to an equal
value as r0 → 0 regardless of the charging function Ci

and facility location xi. This is summarized in the fol-
lowing proposition.

Proposition 5. If the congestion function is linear within a
bounded region Ω, and if the charging functions Ci, ∀I,
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and demand density function q(x) are bounded, the total
facility flow throughputs in the equilibrium solution con-
verge to Q1 �Q2 �⋯�QM as r0 → 0. The maximum dif-
ference between the set of flow values converges to zero at a
rate of −2π=log r0.

Intuitively, this asymptotic result can be explained
as follows. As r0 → 0, the congestion near the facilities
increases dramatically, to an extent that it dominates
the bounded service fee at each facility. Thus, custom-
ers could ignore the service fee but choose facilities
based on congestion cost only. Because transportation
cost would be dominated by that near the facility
(where the total flux intensity approaches infinity),
the actual travel distance becomes less important, and
the number of customers choosing each facility tends
to be equal regardless of the location of facilities.
Proposition 5 thus implies that the size of facilities
does have a significant impact on the PDE solution.

Based on the knowledge of total flux throughput
Qi, ∀i, the generalized cost φ(x) can be derived based
on the boundary condition φ(̃x1) � C1(Q1) at facility 1.
Note that φ(x) only differs from u1(x) +⋯ + uM(x) by
a constant. Therefore, we have

φ(x) −φ(̃x1) �
∑M
i�1

[ui(x) − ui(̃x1)]: (31)

Substituting (18) into (31) yields

φ(x) � C1(Q1) +
∑M
i�1

Qi [N(xi, x̃1) −N(xi, x)]

+
∫
Ω

[N(x′, x) −N(x′, x̃1)]q(x′) dx′, ∀x: (32)

Moreover, if the weighted average of the Neumann
function vanishes, that is,

∫
Ω
N(x′,x)q(x)dx � 0, ∀ x′,

the total cost can be further simplified, as stated in the
following corollary.

Corollary 2. When Condition (20) holds and the Neumann
function of region Ω is normalized with respect to q(x) (i.e.,∫
Ω
N(x′,x)q(x)dx � 0, ∀x′), the average customer cost

under the continuous traffic equilibrium is given by

φ̄ � C1(Q1) +
∑M
i�1

QiN(xi, x̃1): (33)

In the literature, continuous traffic equilibrium prob-
lems are generally solved by the finite element
method (Yang and Wong 2000), and the average/total
cost is estimated through numerical integration. How-
ever, Corollary 2 provides a much more efficient way
to calculate the average/total cost; no discretization or
integration over region Ω is needed. This property
can be further used to simplify many difficult prob-
lems, for example, to optimize the location of service

facilities that minimize the system-wide cost. The opti-
mal facility locations can now be determined by sim-
ply solving the following system of equations (either
analytically or numerically):

∂φ̄

∂xi
� 0, 1 ≤ i ≤ M: (34)

In contrast, traditionally, the location optimization prob-
lem can only be solved by embedding the finite element
method into other iterative solution algorithms, for
example, see Ouyang et al. (2015), which normally bears
prohibitive computation burdens. Moreover, Equation
(33) implies that the average travel cost under traffic
equilibrium is closely related to −1=log r0 (note the defi-
nition (10)) and if r0 → 0+, the average cost would be
infinitely large. So, numerical instability issues would
arise when using numerical methods, which would
yield large numerical errors and suboptimal designs.
However, our analytical solution enables us to separate
the singular term related to r0 from other regular parts.
Because we know the effect of r0 → 0+ to the average
cost, we can fully control the effect of r0 and thus do not
need to worry about the numerical fluctuations when
solving the optimization problems.

4. Numerical Examples
4.1. Hypothetical Example
In this section, we present two hypothetical examples to
illustrate the performance of the proposed solution frame-
work. The first example is similar to the one in Ouyang
et al. (2015), where the optimal location of multiple facili-
ties is sought in a rectangle Ω � [0,a] × [0,b]. At location
x, with coordinates (x(1),x(2)), the demand density varies
along the x(1)-axis, that is, q(x) � q̄(1+ τqcos(πx(1)=a)).
The facility opening cost varies along the x(2)-axis, that is,
g(x) � ḡ(1+ τgcos(πx(2)=b)), and the facility service fee
follows Ci(Q) � 1+ τcQ, i � 1, 2, : : : ,M. Parameters τq ∈
[−1, 1] and τg ∈ [−1, 1] control the heterogeneity of q(x)
and g(x) overΩ, respectively. For illustration purposes, we
only solve the median-type facility problem (2), using the
simple nonlinear optimization approach based on (34). Fol-
lowing Ouyang et al. (2015), we select q̄ � 100, ḡ � 1,τq �
τg � 0:8,τc � 0:01, B � 8,a � b � 1 and the radius of
facilities is r0 � 0:01. The transportation cost function
is selected to be the BPR-type (Bureau of Public
Roads) function7 (Bureau of Public Roads 1964), that
is, c(x, f(x)) � α(x) + β(x) |f(x)|γ(x). In this example, we
choose linear congestion, that is, α(x) ≡ 0,β(x) ≡
γ(x) ≡ 1. As such, (18) can be specified as follows:

ui(x) � −Qi N(xi,x) − τqa
π2b

cos
πx(1)

a

( )( )
, (35)

where the Neumann function N(xi,x) is given by (14).
Note that |Ω | � ab, and hence Q � ∫

Ω
q(x)dx � q̄ab.
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Therefore, for solving Qi, (22) becomes the following:
for 2 ≤ i ≤M,

Ci(Qi) −Ci−1(Qi−1)

�∑M
k�1

Qk

(
N(xk, x̃i−1) −N(xk, x̃i)

+ τqa
π2b

cos
πx̃(1)i−1
a

( )
− cos

πx̃(1)i

a

( )( ))
, (36)

and (32) is thus changed to

φ(x) � C1(Q1) +
∑M
j�1

Qi N(xi, x̃1) − τqa
π2b

cos
πx̃(1)1

a

( )( )

−∑M
j�1

Qi N(xi,x) − τqa
π2b

cos
πx(1)

a

( )( )
: (37)

Then average generalized cost is given by

φ̄ � C1(Q1) + aq̄
b

τ2q

2π2 −
τq

π2 cos
πx̃(1)1

a

( )( )

+∑M
i�1

Qi N(xi, x̃1) − τqa
π2b

cos
πxi
a

( )( )
: (38)

For each set of locations x, the corresponding average
cost φ̄ can be evaluated by solving system (36) and
evaluating (38), which takes only 0.01 seconds on
average. As a comparison, using the finite element
method with mesh generation (such as that in Ouyang
et al. 2015), the average cost can hardly be obtained
within 30 seconds on average. Using a nonlinear
solver in MATLAB, the optimal location of facilities is
obtained from solving (2) within 247 seconds (see
Figure 3(a)). As a benchmark, the Lagrangian relaxation
algorithm with embedded finite element method
(Ouyang et al. 2015) requires 10.7 hours of computation
time to solve an equivalent mixed-integer program
(MIP) formulation with 25 candidate facility locations
(i.e., the one in Ouyang et al. 2015), and yet leaving a
25% optimality gap (see Figure 3(b)). All computation
experiments are implemented in a personal computer
with 3.6 GHz CPU and 4 gigabytes memory. See “Unit
square” scenario in Table 1 for a comparison.

The second example involves an irregular, nonconvex,
and bounded service region as shown in Figure 4. Its
boundary ∂Ω is described by the following parametric
function in polar coordinates on the complex plane:

b(θ)
� (9sin(θ) + cos3(θ) − 3sin2(θ)cos(θ) − 4sin(θ)cos(θ))
+ i (−sin3(θ) − 2sin2(θ) + 2cos2(θ) − 9cos(θ) + 3sin(θ)cos2(θ)),

0 ≤ θ < 2π: (39)

The shape of Ω could represent an asymmetric twin
city area. We will first apply the conformal mapping

scheme and the decomposition-based PDE solution
method to obtain exact solution to the continuous
traffic equilibrium problem for any given service
facilities. To this end, the following conformal map
transformsΩ into a unit disk D:

ζ � h(x) �

− 2j
3
+ (1 − j

��
3

√ )
6

��
23

√ (
3

��
3

√ �������������������������������������������������
27x2 + (324 + 32j)x + (−324 + 2,916j)

√
− 27x + (−162 − 16j)

)1
3

−
4
3
− 9j

( )
(1 + j

��
3

√ )
22=3

(
3

��
3

√ �������������������������������������������������
27x2 + (324 + 32j)x + (−324 + 2,916j)

√
−27x + (−162 − 16j)

)−1
3
: (40)

The inverse map is simple: x � h−1(ζ) � ζ3+ 2jζ2 − 9jζ.
Note that x � b(θ) and ζ � exp( jθ) are the correspond-
ing points on ∂Ω and ∂D, respectively.

Basic calculus shows that the normal vector as a
function of θ ∈ [0, 2π) is

nx(θ) � −9sin(θ) + 4sin(2θ) − 3cos(3θ)��������������������������������������������������
24sin(θ) − 54sin(2θ) − 72cos(θ) + 106

√ ,

(
−3sin(3θ) + 9cos(θ) − 4cos(2θ)��������������������������������������������������

24sin(θ) − 54sin(2θ) − 72cos(θ) + 106
√ )

: (41)

The area ofΩ is as follows:

|Ω | �
∫ 2π

0

∫ 1

0
|(h−1)′(rejθ)|2rdrdθ � 92π: (42)

Hence, (16) can be specified by means of (41) and (42),
where nh−1(ejθ) � nx(θ). As such, the Neumann function
of Ω can be expressed analytically and thus (2a) can
be specifically derived.

Suppose now that the optimal locations of multiple
facilities are sought in Ω to minimize the average cost
per unit demand. The demand is homogenous, that
is, q(x) ≡ q̄, but the facility opening cost varies with
the distance to the origin (0, 0), specifically, g(x) �
ḡ(1+ τgcos(π |h(x)|)). The facility service fee still follows
Ci(Q) � 1+ τcQ, i � 1, 2, : : : ,M. We choose q̄ � ḡ � 1,
τg � 0:8,τc � 0:01,B � 4, and r0 � 0:3, and then solve (2)
via a nonlinear solver.

For each set of locations x, the corresponding aver-
age cost φ̄ can be evaluated in 6.9 seconds on average
whereas the finite element method with mesh genera-
tion takes 30 seconds on average. The computation
burden of the proposed method is heavier for this
case than that for the unit square case (despite their
similar problem size), because the Neumann function
obtained by (16) for Ω is no longer normalized—in
such cases, a numerical integration must be computed
for (32).8 The optimal solution, found within 59
minutes of computation time, is shown in Figure 5(a),
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with a minimum average cost of φ̄
∗ � 9:92. Interest-

ingly, note that none of the facilities is distributed
around the center of the region, where facility con-
struction cost is relatively high and traffic flux is likely to
concentrate. In contrast, the Lagrangian relaxation algo-
rithm with embedded finite element method subroutine
(Ouyang et al. 2015) takes 11.1 hours to find a solution to
the corresponding MIP formulation (with 25 candidate
locations), leaving a 30% optimality gap. The best average
cost is 10.99, about 10.8% higher than that from the non-
linear optimization approach. This comparison demon-
strates the superiority of the proposed method in terms of
solution quality and computational performance, which is
expected to be even more prominent for larger problem
instances. See “Irregular, nonconvex” scenario in Table 1
for a comparison.

4.2. Empirical Example
The examples presented in Section 4.1 used hypotheti-
cal data to show how the closed-form analytical PDE
solution (in contrast to numerical solutions from tradi-
tional finite element methods) helps facilitate facility

location design by achieving a shorter computation
time and a superior convergence process. This subsec-
tion further demonstrates the applicability of the
closed-form formulas and the facility location design
framework through a full-scale example. In so doing,
we plan the location of metro station entrances in the
Beijing Railway Station North Square, China. The pur-
pose of this example is to show (i) how traffic conges-
tion and equilibrium can be captured by our PDE
model with reasonable fidelity, and (ii) how the pro-
posed facility location design model could be used to
improve pedestrian traffic facilities.

The Beijing Railway Station is a major intercity rail-
way station in Beijing, serving extremely high pedes-
trian traffic in peak seasons (up to 175 thousand daily;
see Yi 2020). The North Square of the station, sur-
rounded by nearly rectangular street grids, is the key
hub for passengers to transfer between the intercity rail-
way system and city transportation systems. A large
majority of these transfer passengers take the metro,
and currently the metro station’s entrances are located
on the far side of the North Square in Figure 6(a).

Figure 3. (Color online) Optimal Locations of Facilities in Unit Square with Heterogeneous Demand and Opening Cost

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b)

Note. (a) Optimal solution using nonlinear solver based on (38). Minimum average cost φ̄
∗ � 4:87. (b) Optimal solution using Lagrangian relaxa-

tion algorithm. Minimum average cost φ̄
∗ � 5:03.

Table 1. Comparison of the Numerical Results

Scenario
Computation time for average cost Computation time for optimal locations Optimal cost

CF FE CF + NS FE + LR CF + NS FE + LR

Unit square 0.01 sec 30 sec 247 sec 10.7 hr 4.87 5.03
Irregular, nonconvex 6.9 sec 30 sec 59 min 11.1 hr 9.92 10.99

Note. CF, closed-form formulas; FE, finite element method; LR, Lagrangian relaxation; NS, MATLAB nonlinear solver.
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The North Square has been extremely congested during
most of the day; see Figure 6(b) for a photo of the typi-
cal crowd on the Square. The city’s government agen-
cies have been very concerned about the pedestrian
traffic capacity of this transfer hub in case of major pub-
lic events, especially as they prepare for the upcoming
2022 Beijing Winter Olympics.

In this illustrative example, we first evaluate the
pedestrian traffic efficiency, measured by pedestrian
travel time under congestion, under the current North
Square layout. We approximate the North Square by a
rectangular domain that can be further partitioned
into multiple subdomains, each of which represents a
surrounding demand area (e.g., railway entrance,
ticket office, shopping mall, hotel, parking lot). The
shape and dimension of each demand area (measured

in feet (ft)) are shown in Figure 7(a), and a coordinate
system is set up with its origin at the lower-left corner
of the Square. The two current metro station entrances
are located at x1 � (350,150),x2 � (350,775). To stay
focused, we only consider the peak-hour steady-state
pedestrian travel demand between the metro entran-
ces and these surrounding demand areas, and further
model the traffic to be originating from those demand
areas and destined toward either of the metro station
entrances. The demand density values q(x) (measured
in person per square foot per hour) are assumed to
vary across demand areas, as marked in Figure 7(a).
This setup generates about 85,000 pedestrians per
hour in total.

Because the domainΩ � [0, 400] ft × [0, 925] ft is rec-
tangular, (14) can be used to derive the Neumann

Figure 4. (Color online) RegionΩ (Left) and Unit DiskD (Right) Based onMapping Function (40)

- 5 5 10

- 5

5

10

x- plane

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

ζ - plane

Figure 5. (Color online) Facility Location Design in an IrregularΩ
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Note. Solution from (a) nonlinear optimization and (b) Lagrangian relaxation.
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function N(x′,x). Therefore, we choose the same linear
congestion function as the ones in Section 4.1 (with
parameters α � 0,β � 2:26, and γ � 1), and assume that it
is location independent within Ω. We further set the
radius of two circular metro station entrances (approxi-
mating a square) to be r0 � 20 ft. As such, we can
substitute q(x) into (18) and (22) to analytically estimate
the average generalized cost φ̄ for the given metro station
entrances.

Meanwhile, to verify our analytical PDE model, we use
a state-of-art simulation package, PTV Viswalk (PTV

2014) as a tool for benchmarking. PTV Viswalk is a
discrete-event agent-based simulator that uses the social
force model (Helbing and Molnar 1995) to mimic individ-
ual pedestrian’s motion behavior. It captures pedestrians’
desire to reach their destinations, the mutual influences
among pedestrians, as well as all surrounding objects.
This simulation package has been intensively calibrated
and widely used for reproducing pedestrian traffic in
complex, crowded situations (such as railway stations and
stadiums); see Peiponen (2017), Wibowo and Fadilah
(2018), andMartén andHenningsson (2014) for examples.

Figure 6. (Color online) Beijing Railway Station North Square

(a)

(b)

Source. Reuters 2018 (b)
Note. (a) Map and (b) the crowd.
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The full-scale simulation setup in Viswalk is fairly
straightforward, as shown in Figure 7(b). For model-
ing convenience, we set up two square metro entran-
ces, and use identical ramps to approximate the gates
of each entrance. These ramps are all connected to a
common destination (i.e., the metro system). Each
pedestrian chooses its fastest path to reach the com-
mon destination via any of the ramps.

Viswalk uses a range of agent-based model parame-
ters (e.g., desired speed, and safety distance between
adjacent pedestrians) to describe the behavior and
interactions of pedestrians. We select the parameter
combinations that could best fit with the traffic flux
pattern from the PDE model under the current
metro entrance design, and these values are shown in
Table 2. Interested readers are referred to Viswalk’s

manual (PTV 2014) for detailed interpretation of these
parameters, so we only give a brief explanation in the
following. Here, we set a very large desired speed v0
to capture the pedestrians’ rush toward their destina-
tions. Parameters Asi (ft/second (s)2), Bsi (ft), Asm (ft/
s2), Bsm (ft), and r (ft) jointly control the strength of
repulsive forces between neighboring pedestrians,
and we use rather large values such that the pedes-
trians are sensitive to crowds. Parameter τ takes a
large value to show that the pedestrians are willing to
take detours to avoid congested areas. Other parame-
ters, such as VD, react to n, and noise, have secondary
effects and take their default values from the user manual.
To avoid local gridlocks near the entrance ramps (i.e., sim-
ilar to singular flux in the PDE model), we surround the
ramps with a subdomain, approximately five feet wider

Figure 7. (Color online) Model Setup

(a)

(b)

Note. (a) Subdomain partition and (b) simulation model setup in Viswalk.

Table 2. Pedestrian Behavior Parameters in Viswalk

Parameter v0 Asi Bsi Asm Bsm λ τ VD r React to n Noise

Value 16 mph 4.0 12.0 4.0 12.0 1.0 3.0 3.0 30 8 1.2
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than the ramps, and assign τ � 0:05 and v0 � 24 miles per
hour (mph). Each simulation will run for a total of 600 sec-
onds, and the pedestrians’ statistics are collected after a
warm-up period of 200 seconds (when the traffic becomes
almost steady).

The flux vector fields from the analytical PDE
solution and the Viswalk simulations are plotted in
Figure 8, (a) and (b), respectively. It can be observed
that the flux patterns from the two models are largely
similar, whereas that from the PDE model is more dif-
fusive and smooth, possibly as a result of the fluid-
like continuous flow description. In contrast, the flux
distribution from the Viswalk simulation has sharper
boundaries between void and nonvoid areas, possibly
because it is consolidated from discrete pedestrian
agent trajectories. Despite that, both figures show
curvy travel paths around the sinks, indicating that
the pedestrians are naturally pushed away from each
other, and they have to detour away from their shortest
paths. As a result, in both figures, traffic uses even the
farther side of the sinks to avoid congestion, and fills up

almost the entire open space. In less congested areas,
the flux vectors are rather laminar. These obvious simi-
larities between the vector fields, particularly those at
the congested regions, demonstrate that the pedes-
trians’ congestion-avoiding behavior is fairly well repre-
sented by the analytical model.

The relative error between the analytical flux vector
field f(x) and the simulated flux vector field, denoted
f′(x), is measured9 over a discrete set of sample points,
X, as follows:

E(f, f′ | α,β,γ) � 1
|X|

∑
x∈X

||f(x) − f′(x)||
||f(x)|| ,

where X � {x | x ∈Ωeval, |x− xi | ≥ 15 ft ∀i, ||f(x)|| ≥ 0:0001},
and Ωeval is the open area marked by the dashed box in
Figure 7(b). The value of E(f, f′) for Figure 8, (a) and (b) is
16.7%.

The statistics of traffic performance for both the
analytical PDE solution and Viswalk simulation are
reported in the first column of Table 3. Comparing to

Figure 8. (Color online) Flux Vector Fields of the PDE Solution and Viswalk Simulation

(a) (b)

(c) (d)

Note. (a) Current layout, PDE; (b) current layout, Viswalk; (c) optimized layout, PDE; (d) optimized layout, Viswalk.
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the simulation result, the average travel cost is within
20% of those by the PDE, and the prediction of pedes-
trians’ facility choice (i.e., indicated by Q1=Q2) is also
in good accordance.

Now we are ready to embed the PDE solution into
the location optimization model for the North Square.
The goal is to redesign the locations of the two entran-
ces such that the pedestrian congestion during peak
hours can be mitigated. To simplify the process, we
choose to only relocate the two existing entrances
without adding new ones. Hence, the facility set-up
cost is constant and hence can be ignored in the objec-
tive function. Similar to the examples in Section 4.1,
we use MATLAB’s nonlinear solver. With direct
evaluation of the analytical PDE solution, the optimal
locations can be found within three seconds as
the following: x1 � (150,288),x2 � (150,554). The corre-
sponding pedestrian flux vector field is plotted in
Figure 8(c), and the traffic performance statistics are
shown in the second column of Table 3. For compari-
son, we again use Viswalk to simulate the pedestrian
traffic under the optimal design, and this time we
directly use the same setup and parameter values as
those in Table 2. The corresponding flux vector field
and performance statistics are given in Figure 8(d) and
Table 3 as well. The flux vector fields now have a
slightly larger difference with E(f, f′) � 34:4%, but the
general flux pattern and the service performance statis-
tics are reasonably similar. Notably, both models have
yielded almost equal throughputs at the two metro
station entrances, illustrating how the pedestrians’ meso-
level route choices at equilibrium are driven by conges-
tion. Considering the drastically different assumptions
underlying the analytical and simulation models, our
results show reasonably good performance of the ana-
lytical solution in (i) predicting pedestrian flow under
equilibrium, and (ii) estimating the potential saving
from optimized facility location design. After relocating
the two metro station entrances, the PDE model pre-
dicts that the average travel cost is reduced by 39.6%.
The simulation result shows a reduction of 32%, which
is fairly close considering the difference in nature of
these two models.

Finally, it is interesting to check the importance of
considering the impacts of traffic congestion in the

process of optimal location design. In so doing,
we design the metro entrance locations without con-
sidering any congestion, and use the same MATLAB
nonlinear solver to solve the same problem, but with
α > 0,β � γ � 0 (i.e., no congestion impact exists, and
also note that the exact value of α does not affect the
optimal locations because the total cost is proportional
to α as long as it is positive). This problem is equiva-
lent to a typical two-median problem (Tansel et al.
1983). The optimal locations obtained in this setting
are found to be x1 � (150, 389),x2 � (150, 769). Then, we
evaluate the traffic service performance under this
new location design when congestion exists (with the
same congestion parameters in the PDE model), The
average travel cost with congestion is 22.16, which is
around 12.1% higher than the minimal cost (19.77)
under the optimal design. This simple comparison
illustrates why it is important to consider congestion
and traffic equilibrium in facility location design.

5. Conclusion
This paper proposed a decomposition method for solv-
ing a class of PDEs that describe user equilibrium (UE)
traffic behavior in a continuous two-dimensional space.
This class of problems has significance in a range of
application contexts. We have shown that under certain
conditions, the solution to the PDEs can be obtained by
solving multiple Neumann problems in a bounded
region. One key advantage of this approach is that
closed-form solution to the Neumann problem is read-
ily available for some specific cases, for example, when
the demand region forms a circular disk, a rectangle, or
an equilateral triangle. When the demand region takes
an arbitrary shape, we further propose a conformal
mapping scheme that helps transform the demand
region to obtain exact analytical PDE solutions. More-
over, several properties of the analytical solutions are
discussed, which leads to formulas for calculating the
average system cost as well as the total flow throughput
at each facility. In contrast to traditional PDE solution
approaches (such as the finite element method), the pro-
posed methodology not only sheds light on the proper-
ties of continuous traffic equilibrium but also holds the
promise to reduce the computational burden. Computa-
tional experiments demonstrate significant savings on

Table 3. Comparison of Pedestrian Traffic Statistics Under Different Designs

Statistics Current Optimized Optimized without congestion
x1 : (350, 150),x2 : (350, 775) x1 : (150, 288),x2 : (150,554) x1 : (150, 389),x2 : (150,769)
PDE Viswalk PDE Viswalk PDE

Average travel cost 32.89 38.46 19.77 26.15 22.16
Average speed 3.12 2.87 6.76 5.03 3.74
Q1=Q2 99.1% 98.4% 93.8% 104.8% 170%
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computation time and accuracy associated with solving
for continuous UE and seeking optimal service facility
locations.

Future research can be conducted in many direc-
tions. In this paper, all the analytical solutions are
derived based on assumption (4) on the travel cost
function c(x, f). However, in some more general cases
where (4) is violated, the problem can still be solved
approximately. In future studies, approximated meth-
ods building upon the analytical results proposed in
this paper can be developed to efficiently find solu-
tions where the travel costs are described by general
nonlinear functions (e.g., those derived from realistic
traffic fundamental diagrams). Along this line, the
model can be improved by replacing the flow-based
cost formulation with density-based counterparts to
better represent realistic traffic behavior in heavy con-
gestion. In addition, in this paper, disruption risks of
facilities are not considered during the optimization.
Addressing reliable facility location design under con-
tinuous traffic equilibrium and probabilistic facility
disruption risks will be another challenging topic.
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Endnotes
1 The trajectories actually mark the pedestrians’ head locations, which
include minor wiggles due to lateral body movements while walking.
2 Formulation (1) can be used to describe different types of equilibria,
for example, user equilibrium (Wardrop 1952) when customers are
completely rational and interested in their own costs. In applications
that involve central control (e.g., commercial drone operations), traffic
may be better represented by a system optimal flux pattern (Wardrop
1952). In such cases, we can still use the same formulation (1) as long
as the link cost function is properly defined to include the marginal
externality, that is, instead of using the actual cost to each traveler,
c(x, f(x)), we can use c(x, f(x)) + | f(x) | · ∂

∂|f(x)| c(x, f(x)). This is explained
in more detail in Ouyang et al. (2015). In emergency situations, pedes-
trian behavior may be irrational (e.g., by exhibiting herd behavior).
Further studies would be needed for such cases.
3 The real-world congestion cost function can take many forms, and
linearity might be reasonable when traffic delay is considerably

larger than free flow travel time (e.g., in heavy traffic). See figure 10
in Steffen and Seyfried (2010). Note how the scattered points
roughly form an inverse curve. So after proper regression, the travel
time can be approximately linear of density/flux.
4 If Condition (4) is violated, the problem can still be solved to
obtain an approximate solution for further refinement (e.g., as the
initial solution for a nonlinear finite element method). We leave this
topic for future research.
5 We shall note that the solution u(x) is not unique, but any two sol-
utions differ by a constant (see theorem 3-2 in Guenther and Lee
1996). By removing the last term ū, we could obtain a normalized
solution to the Neumann problem satisfying

∫∫
Ω
u(x,x′)dx dx′ � 0.

6 The converse, that is, (1a) and (1e) implying (3), is not necessarily true.
However, this does not affect the correctness of Proposition 1, because
(8) does solve the original PDEs (1) asymptotically as r0 → 0+.
7 The BPR-type function is widely used in the transportation planning
literature but it does not capture the phenomenon that a higher speed
may be associated with a higher flow in very congested traffic. It may be
more appropriate to explore other variants of the cost function (e.g.,
those obtained from the traffic fundamental diagram, or those relating
speed to traffic density). Those options will be left for future research.
8 We use a simple algorithm to estimate the numerical integration
in this nonconvex region. First, we use meshgrid to generate a grid
of sampled points and get the corresponding values of the inte-
grand. The integrand returns NaN for points lying outside the
region. Then we use nanmean multiplied by the area of the region
to obtain the value of the integral. The extra computational com-
plexity added to each optimization step is O(K), where K is the size
of the grid. Note that the evaluation of the integrand using closed-
form formula only takes O(1) computation time.
9 In Viswalk, local traffic characteristics, including average density and
velocity, can be evaluated using local screening sections. The product of
the two, measured over an array of sections, yields the flux.
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