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A Discrete-Continuous Hybrid Approach t
Periodic Routing of Waste Collection
Vehicles With Recycling Operations

Chao Lei, Zhoutong Jiang, and Yanfeng Ouyang

Abstract— Waste management agencies need to plan their
waste collection activities in an efficient way such that they not
only provide high-quality and timely service to customers but
also maximize their net profit from recyclable waste, i.e., the
total recycling revenue minus total operating costs. This paper
proposes a mixed-integer linear program model for the waste
collection problem in urban areas while considering the recycling
operation at the sorting facility. A hybrid solution approach
with both discrete and continuous optimization components is
developed to solve the problem. The continuous component builds
upon asymptotic routing cost formulas from the continuous
approximation literature, while it is integrated into the discrete
optimization component via an iterative stochastic approximation
procedure. A series of numerical experiments are conducted,
and results show that the proposed model and hybrid solution
approach significantly outperform state of the art benchmarks
from the literature.

Index Terms— Periodic vehicle routing, waste collection, con-
tinuum approximation, recycling.

[. INTRODUCTION

UE to increasing concerns over the environmental and
ecological impacts of urban wastes, the waste collection
problem has received considerable attention from the industry
and the academic community in the last few decades, e.g.,
see [1]-[5]. Moreover, as the economic benefits of recyclables
(such as glass, metal, plastics, or paper) become more promi-
nent under the rapid development of recycling technologies,
waste recycling has nowadays become an important revenue
source for many waste management agencies. That is, instead
of being directly dumped into landfills, the collected waste
will first be delivered to a so-called sorting facility so that the
recyclable materials in the waste are sorted out and packed for
sale. The operations at such sorting facilities often complicate
the waste collection decisions, and hence they should be
considered jointly. However, only very few studies have jointly
considered the waste collection and recycling operations [6].
In practice, a waste management agency usually operates a
fleet of collection vehicles (often of different types for different
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Fig. 1. [Illustration of waste collection problem.
types of waste) and sends them out periodicall
or every other day) to visit various waste coll
that are distributed over a spatial region, as ¢
small example in Figure 1. Here we assume th:
collection point is a dumpster (illustrated by nun
in Figure 1) which can be lifted and unloadec
types of collection vehicles. Typically, most du
not be visited every day, and therefore a plant
several days has to be considered. As such,
planning decisions consist of two main compone
schedule that reveals which dumpsters are visitec
(Figure 1a), and (ii) a routing plan for collec
day of the planning cycle (Figure 1b-1d). Co
potential benefits of recycling, the objective of
not merely to minimize the total operating costs 1
collection vehicles visiting dumpsters, but also
the total revenue from selling recyclable materia
in the aim of maintaining stable and smooth
the sorting facility (such that the workers woul
on certain days while being extremely busy or
days), the agency often attempts to balance the
the facility (i.e., indicated by the arrival of inbo
over time.

The waste collection problem has been m:
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problem and has wide applications besides waste collection,
e.g., raw materials pickup [7], product/good delivery [8],
and on-site service planning [9], [10]. Surveys of the related
variants, solution approaches and applications of PVRP can be
found in [11] and [12], and more information of many other
types of routing problems can be found in the book by Toth
and Vigo [13]. Since the timing of customer visits is also part
of the agency’s decision, the closest literature to our problem
might be that on PVRP with service choice (PVRP-SC) [14],
which is an extension of the PVRP that also chooses each
customer’s visit frequency/schedule. This reference developed
a solution approach based on Lagrangian relaxation and
branch-and-bound which can solve instances of up to
50 customers within several hours of computation time.
However, the interdependence between the scheduling and
routing decisions, each posing as a hard combinatorial
problem, imposes significant computational burdens for
large-scale instances. The interested readers can refer to the
monograph by Nemhauser and Wolsey [15] for more detailed
explanations of the integer and combinatorial programming
techniques. As alternatives, heuristic [16]-[18] and meta-
heuristic [19]-[21] algorithms are often used to solve PVRP,
and most of them decompose the problem into two sequential
optimization phases: the first phase seeks an acceptable
schedule that can be assigned to each customer and, the second
phase solves a classic VRP to fulfill the service promise
in each time period. However, these algorithms, due partly
to the sequential nature, usually fail to consider the related
travel costs while deciding the visiting schedule in the first
phase. Such a disconnection often makes it difficult to verify
the solution’s effectiveness and efficiency. Moreover, since
heuristic/meta-heuristic algorithms only produce numerical
solutions, it is often challenging to obtain managerial insights.

In light of the challenges associated with discrete models,
continuous approximation (CA) has often been used as
an alternative approach to providing asymptotic estimates
of routing costs in large-scale logistics systems [22]—[25].
One important advantage of the CA approach is that,
by using continuous densities to replace discrete decision
variables and formulating localized approximations, the model
decouples spatial and temporal interdependence and yields an
analytically tractable solution that is not only easy to optimize
but also capable of offering valuable managerial insights. This
modeling approach has been established as a useful tool for
many related logistics problems; see [26] for a recent review.
Francis and Smilowitz [27] proposed a CA formulation for
PVRP-SC by modeling all the parameters and decisions as
continuous functions of time and/or space. The continuous
model facilitates strategic analysis of service choice options,
but it cannot be used directly as implementable solutions in
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the consideration of recycling operations, which
imizing the total profits of the system and
workload of recycling operations at the sorting
time. To solve the model effectively, we develo
hybrid solution approach by (i) solving a discre
subproblem that integrates CA-based routing cc
formulas and a group of independent vehicle rou
lems, and (i1) applying a stochastic approximati
based on the Adam algorithm to iteratively corr
introduced by the asymptotic estimation. The pe
the proposed model and algorithm is tested thr
of numerical experiments. It is shown that the hy
approach can drastically outperform the benchm
current literature, and it holds the potential to pro
managerial insights to waste management agenc

This remainder of the paper is organized
Section II presents the notation and mathemat
tion of the problem. The hybrid approach is
Section III. Section IV presents numerical exp
test the performance of the proposed model
approach. Section V concludes the paper and dis
ble directions of future research.

II. MATHEMATICAL MODELING

In this section, we present a mixed-integer
model for the waste collection and recycling
V' denote the set of dumpsters distributed over
where each dumpster i € ) is associated w
capacity limit QP. The waste management ager
task is to visit and clear all the dumpsters perioc
multi-period cycle 7 = {1,2,...,|7]}; e.g.,ac
week and each period can be a weekday such th
attempts to get a weekly schedule and a daily
More specifically, the agency needs to decide
to be assigned to each dumpster over the planr
i.e., the combination of days in which the dumps
and the visiting routes on each day r € 7 so as
visiting schedule at each dumpster. We use S
set of all possible schedules, indexed by s. The
between a schedule s € S and a day ¢t € 7 is
a binary parameter o ,, where a,;, = 1 if day
schedule s, or a;; = 0 otherwise. A generic sc
be represented by a combination of binary par
across all t € T; i.e., s = (as,l, G52y, as,|7—|)

Let D;; denote the amount of waste generates
i € Vondayt e 7. We assume that all the waste
at a dumpster up to the early morning of a d
cleared if the dumpster is visited by a vehicle in
and we also assume that partial collection is
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demand pattern of (1, 2, 3, 1, 2) from Monday to Friday. If the
dumpster is visited according to either of the following two
schedules, i.e., s; = (1,0,1,0,1) and s, = (1,1,0,1,0),
the amounts of waste to be observed by the vehicle upon
arrival on Monday to Friday mornings (dependent on the
leftover from previous days) would be: (2,0,3,0,4) and
(3,1,0,5,0), respectively. It should be noted that, since each
dumpster can only hold a limited amount of waste, i.e., Q?,
certain schedules may not be feasible for certain dumpsters and
should be excluded from S. For example, if the capacity of the
dumpster is 5 units, a third schedule option s3 = (0, 1,0, 0, 1)
leading to 6 units of waste at the dumpster on Friday morning
shall be infeasible. Hence, we define the feasible schedule set
S; for each dumpster i € V as

S = {s eS‘W,-,S,, < QP vt eT}, VieV.

The agency’s scheduling decision, denoted by y;;, can be
defined accordingly as

1 if dumpster i € V is visited according to

YVi,s = schedule s € S;;
0 otherwise.
Meanwhile, to fulfill the schedule promise, the agency

needs to deploy a set of waste collection vehicles, denoted
by K, to visit a series of dumpsters according to a specific
routing plan on each day. In this study, we assume that a
vehicle can initiate multiple trips from a depot, which is
indexed by node 0, within a single day. That means a vehicle
k € K can return to the depot before its on-board load reaches
the fixed capacity of the vehicle QV, dump the waste, and
then starts a new trip. Hence, the routing subproblem on
each day resembles the so-called multi-trip vehicle routing
problem (MTVRP). The readers can refer to [31] for more
details of MTVRP. Let N, denote the set of trips being
conducted by vehicle k € I on day ¢t € 7, we then define the
routing decision variables x; x ,; ; on day t € 7 as follows:

1 if vehicle k € K travels from node
o i €eVU{0} tonode j €e VU{0}, j #i in
ki = tripn € Ny onday t € T;
0 otherwise.

In addition to the binary routing decision variables, we define
continuous variables u; x ,,; and u;’ ki a8 the arrival and
departure times of vehicle k € IC at node i € V U {0} in trip
n € N, of day t € T, respectively. These variables help keep
track of the temporal order of the vehicles along their service
trips. In practice, it usually takes a certain length of time S; to
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variables v; s s« » to link the scheduling and rout
together

1 if dumpster i € V is served accor

schedule s € S; and meanwhile i
Vi s, t.k,n — . ) .
vehicle k € K in trip n € Nj; on

0 otherwise.

As mentioned earlier, after a vehicle visits all t
dumpsters on a trip, it needs to ship the load
sorting facility before it starts the next trip. Her
there is only one sorting facility and it is at the «
as the depot.1 Let w; > 0 denote the amount of
processed at the sorting facility on day r € 7. E
is ideal that all the collected waste can be proce
usually an upper bound QSF being imposed on tt
w; because of the limited working capacity a
facility. If the total waste collected on a certain
the sorting capacity, the surplus part would be dit
to the landfill, and the benefit of recycling is lo:

The agency may bear multiple objectives while
waste collection service. For example, it may wan
the travel costs of the fleet as vehicles require fu
to operate. We assume that the travel cost betwe
i,j € VU{0},i # j is proportional to the assc
time T; j, with a cost factor of CT per time unit.
may also want to maximize the total revenue
recyclable materials. It is assumed that such re
t € T is linearly proportional to the amount ¢
is processed at sorting facility on that day, i.e
benefit factor CR per unit of waste. To achieve
balancing the workload at the sorting facility, a
CB is imposed on each unit of load differences
facility across days, i.e., |w; — wy|,Vt,t' € T,

To this end, the waste collection problem can |
as the following MILP:

max ZCR'wt—ZZCB’lwt_wt’|

teT teT veT

t'>t

=23 > > VT xik,

€T keK neNj, i,jeVU{0}
J#l

s.t. z vis =1, VieV
SES,'
Z Z Vis,t,kn = Ogs.t * Yis,
kel neNy,
VieT,ieV,seS;

wr < QSF, Vit e T
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Xt,k,n,0,i T E Xt,k,n,j,i = E Vi,s,t,k,n»,

JjeV seS;
VieT, ke K,neNes,i €V (6)

Xt,k,n,i,0 T zxz,k,n,i,j = th,k,n,j,i + Xt,k,n,0,i5
JjeV A%
VieT, ke K,neNes,i €V (7)
th,k,n,o,j = th,k,n,j,o <1,
JjeV JjeV
VieT, ke,ne N, (8)

v
E Z Wi,t,s “Vis.thkn = 0",

i€V seS;
VieT,kek,ne N )

upni +Si +Tij <urgenj+M(1—Xpnij),
VieT, keK,neNe,ie€V,jeVUi0} (10)
Ut k,n,i + S + Ti,j > Ut kn,j — M (1 - xt,k,n,i,j) 5
VieT, kek,neNes,i €V, jeVU{0} (11)
u;,k,n,o +To;i <urpni +M (1 — xl,k,n,O,i) ,

VieT, ke K,neNes,i €V (12)
u;,k,n,O + TO,i = Ut kn,i — M (1 — xt,k,n,O,i) >
VieT, ke K,neNgs,i €V (13)

/ "[ 2
ut,k,n,O 2 utsk,n_lso + SO - 2 - xt,kanao’j
jev

=D Xikmorjo |, Ve eT keK,neNi,\{1)

jev
(14)
vis €{0,1}, VieV,ses; (15)
Vi s,t.k,n € {0, 1},

VieV,seSi,teT,ke,ne N, (16)
Xt kn,i,j €10, 1},

VieT,keK,neNisi,jeVUuio) (17)
wy >0, VieT (18)
e i Wy gpi = 0,

VieT, ke K,neNgs,i €V (19)

The objective function (1) maximizes the total profit of the
system throughout the entire planning cycle, i.e., the difference
between the total revenue from selling recycled materials and
the overall costs for providing the waste collection service. The
three terms in (1) represent the total sales revenue, the total
penalty for unbalanced load at the sort facility, and the total
travel cost, respectively. Constraints (2) ensure that each dump-
ster is assigned to a spemﬁc schedule. Constramts (3) Connect

1 1 4 1 4 4 4 1 ~~ B s AN

capacity limit along a trip. Constraints (10) - (
relationships between the vehicle trips and the
at dumpsters and the depot, which also serve
of eliminating subtours. Note that M denotes t
duration of the entire planning horizon. Constrair
define binary and nonnegative variables.

III. SOLUTION APPROACH

The MILP model proposed in the previous
variant of PVRP, which is known to be extre:
to solve. State-of-the-art algorithms for solvin
[19], [20] typically decompose the solution pro
sequential phases. The first phase determines a ¢
for each customer by solving a scheduling subj
as follows:

(SP1) max ZCR-w,—ZZCB-Iu

teT teT t'eT
t'>t

s.t.(2), (4), (5), (15) and (18).

Then, given the scheduling solution Yy; ¢, the
determines a routing plan for each day by solv
subproblem SP2-¢:

(SP2-t) min > > z CT T xex,

keK neNy, i,jeVui0
J#

s.t. (6) — (14),(16), (17), (19) and

E E Vi,s,t,k,n = as,t'yi,s’ v

keK neNys

Since the scheduling and routing decisions are
dependent, the sequential nature of the two-pha
(i.e., no spatial routing information is used to ¢
temporal scheduling of visits) may likely lea
solutions. In hopes of overcoming this shortcon
pose an improved solution approach that incorpc
cost estimates into the scheduling decision-ma
Specifically, we use asymptotic routing cost fc
the CA literature to obtain a parametric approxi
travel cost on each day, and incorporate it into
of scheduling subproblem SP1.

Following results in [23], [32], the total trave
large-scale planar vehicle routing problems can b
a line-haul part (i.e., travel from the depot to tl
the customers) and a local detour part (i.e., trav
customers). We assume that the region can be
into a set of disjoint subregions, denoted by Z
tomer point and demand distributions are dens
homogeneous inside each subregion z € Z. |

O. denonte the acvumntotic linehanl and 1ocal
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depot, i.e., Tp,; + T;0. Meanwhile, the local detour travel

time for each dumpster visit is proportional to the average

separation between two neighboring points in that zone [23],
1

» Zievz zsesi s Vis | 2

e, k-v- ( — , where k is a dimensionless

constant that depends only on the distance metric, v is the

Z z As,t° Vi,
inverse of vehicle speed, and === SES ~2 s the spatial
density of dumpster points. In summary, the total travel costs
I1;,, and €; ; can be formulated in closed form as follows:

ey, 2ses; Wit (To,i + Ti0) - yis

H[,Z = CT ’ QV 9
VieT,ze Z, (20)
3
Qt,z:CT'lg'V' Az'zzas,z')’i,s s
iGVZSESi
VieT,z€Z. (21)

Since y;s 1s a binary variable, we know that y;, =
(y,',s)z,‘v’i € V,s € §;, holds. Thus, by taking square on
both sides of (21) and replacing y; ; by (yi,s)za the equations
above can be transformed into the following second order cone
constraints [34]:

2 — (CT . ]2 . 1))2 AZ . Z Z Os,t - (yi,s)2 5

ieV, seS;
VieT,ze Z.

(:.2)

(22)

Now, we are ready to reformulate the scheduling subproblem,
denoted by SP1’, as the following mixed-integer quadratically
constrained program (MIQCP):

(SP1") max ZCR S Wy — Z Z C® - |w; — wy
teT teTt//eT
t'>t
- Z Z (j«t,z ' Hz,z == ‘91,2 ' Qt,z)
teT zeZ

s.t. (2), (4), (5), (15), (18), (20) and (22). (23)

In the above formulation, we have also introduced two sets
of coefficients {/; .} and {6; .} in the objective function (23)
to adjust the approximated line-haul and local detour travel
costs, respectively. Their values should both be asymptotically
equal to 1 if the customer points and demand are densely
and homogeneously distributed over the subregions. Allowing
their values to deviate from 1 for each subregion gives us
the tolerance for moderate violations to the asymptoticity
assumptions in real-world situations (e.g., the number of
customers being less than infinite, and their spatial distribution
being slightly nonhomogeneous).

[—— 4 ~ ~ e . " 1 N 1 4 1 1
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update 6, ; and A;;, Vt € T,Vz € Z, as fc
generic iteration n, with the current coefficier
SP1’ to obtain the scheduling decisions (as we
distribution), the resulting asymptotic cost estim
Q’;,Z from (20)-(21), as well as the approximate
cost V=21 -TI! 460 - Qi ., V1, 2. Then, I
to obtain the actual routing cost l)t’ 2> Vi, z, and we
adaptive stepsize that will be used to update the
In so doing, we note that the gradients of the ¢

e 2
% [Zt Z‘,Z(V?’Z — 6{”2)] with respect to (/1,,1,
written as

(gz,,z,gz,,z) = ( ZZ(V, =0
Q> >

The estimates of the first and second moment
the gradients are then computed as follows, with
zero and exponential decaying factors f1, f» € |

-1
(mzt, ? ,z) 'Bl (mflrz ’mgr,z )
+(1=p)- (gﬁlt,z, gg,,z) :
—1 —1
(qz,,z’ qgt,z) = 'BZ ) (q;rft,z > qélt,z )

+( - p)- [(gﬁt,z)z, (g

To account for the bias of moment estimate
moments are corrected as

A1 [N/ S S
(mir,z ’ met,z ’ q)w,z ’ qlgz,z)

n n n
| M Mo T
1—-p1 1=p7 1 =57
Finally, we use the corrected

(rh’jl’z, rﬁgt’z, 21;’;’2, qut,Z) and a predetermine
y to update A;; and 6; ; as follows:

(’wz’en,z) - (’1?21’9’1 1) v ’ 5 T

where € is a very small number to prevent an
zero. Note that one main advantage of the Adan
that the magnitudes of parameter updates are in
rescaling of the gradient.

As a final remark, it should be noted that t
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TABLE I

COMPARISON RESULTS BETWEEN THE HYBRID AND BENCHMARK SOLUTION APPROACHES IN SECTION I'V-A

Balance cost ($)

Recycle revenue ($)

Travel cost ($)

Total profit ($)

Case |V| |K|
Hybrid BM Hybrid BM Hybrid BM Hybrid BM Diff.
1 45 3 0.0 0.9 44.4 44.9 417 447 27 0.6 521.9%
2 45 4 0.0 0.3 45.4 457 429 442 25 L1 1273%
3 45 5 0.0 1.1 46.2 440 414 434 48 04 1242.9%
4 60 3 0.0 0.7 582 63.7 532 594 5.1 35 457%
5 60 4 0.0 0.7 58.7 60.3 544 577 43 1.8 138.9%
6 60 5 0.0 0.8 59.4 63.5 567  60.6 27 2.1 28.6%
7 75 3 0.0 0.7 75.5 76.1 682 728 73 26  180.8%
8 75 4 0.0 1.1 75.7 79.2 654 739 103 42 1452%
9 75 5 0.0 0.2 753 76.2 684 700 6.9 6.0 15.0%
can be easily estimated as M LI T ) e 1 g L
* * " % * .
- 5 " | * 5 : e n® 5 =
o | Do+ T0)  Xier e Wins e O R 1 L e
Ajos ® C - oV ) R S IV
Os,t° 0, 2 ’ I e I
kv VA D> L (24) I o
ZGT 2 nt 4 22 3 4 5 6 2z * 3 4. '5 6 3 3
_ . (a) 45 dumpsters (b) 60 dumpsters (c) 7
where n; ; denotes the number of dumpsters in zone z that are
currently visited on day ¢, and A; ; and 6, ; are the converged Fig. 2. Spatial distribution of dumpsters for test cases in S

values of coefficients 4, ; and 6; ; from the hybrid approach.

IV. NUMERICAL STUDY

In this section, a series of numerical experiments are
conducted to test the applicability and effectiveness of the
proposed CA-based hybrid solution approach. This hybrid
solution approach is implemented as follows: in Section IV-A,
we apply a standard MIQCP solver to solve both the schedul-
ing and routing subproblems for medium-size test instances;
in Section IV-B, we implement a variable neighborhood
search (VNS) based algorithm to solve the routing subprob-
lems for larger instances. In both sections, the performance
of the proposed hybrid solution approach is compared with
that of the conventional sequential optimization approach. All
these numerical tests are performed on a personal computer
with 3.4 GHz CPU and 16 GB RAM.

A. Medium-Size Instances

We first consider a [2,6] x [2, 6] service region and a
S-weekday planning cycle. A total of 9 test cases with different
number of dumpsters, |V| € {45, 60, 75}, and different number
of vehicles, |K| € {3,4,5} are constructed. The geographic
distributions of dumpsters and the region partition are illus-
trated in Figure 2. The vehicle depot and the sorting facility
are both located at (0, 0). The amount of waste generated at
dumpster i on day t, D, ‘s follows a normal distribution Wlth

L~ 1 14 1 M~ ~ v 4 1°

For these medium-size test instances, we ir
proposed hybrid approach by solving both
SP1” and SP2 using the standard MIQCP solver
An improved two-phase heuristic algorithm is
benchmark for comparison. This benchmark ap
upon what is described in Section 111, i.e., it first
tial scheduling/routing solution by solving SP1 :
the Gurobi solver. Then it further improves the
series of iterations; in each of these iterations,
searches for a better solution by randomly p
scheduling decision and solve the routing decisior
For each test case, both the proposed “hybrid
mark (BM) approaches are tested for five randor
instances, and the CPU time limit for each test i
to be 3600 seconds. The average output, includin
cost, the recycling revenue, the total travel cost,
profit, are presented in Table I.

From the last three columns of Table I, we
that, given the same computation time, our propc
drastically outperforms the benchmark approacl
generating more profits for all 9 cases. Moreowt
approach can significantly reduce the total trav
maintaining a similar recycling revenue. Since bo
use the same routing solver, such performance
from the proposed hybrid approach seems to re
1ncorp0rat10n of travel cost estimation into th
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TABLE II
COMPARISON RESULTS BETWEEN THE HYBRID AND BENCHMARK SOLUTION APPROACHES

Balance cost ($)

Travel cost ($)

Recycle revenue ($) Total profit ($)

Case |V| ¢® R T
Hybrid BM  Hybrid BM  Hybrid BM Hybrid ~ BM Diff.
1 45 10 01 05 0.0 6.2 15.5 190 441 44.4 287 192 49.6%
2 45 10 01 10 0.0 4.6 307 368 439 44.4 132 30 331.9%
3 45 10 05 05 0.0 6.6 15.5 190 2214 222.1 2059 1965  4.8%
4 45 10 05 1.0 0.0 4.6 310 368 2211 222.1 1901 1808  5.2%
5 45 50 01 05 0.0 235 15.4 19.3 4.2 44.4 28.8 17 1625.8%
6 45 50 01 10 0.0 255 306 372 44l 44.4 135 -183  173.4%
7 45 50 05 05 0.0 235 15.4 193 2214 222.1 2060 1794  14.8%
8 45 50 05 10 0.0 255 307 372 2211 222.1 1904 1594  19.4%
9 9 1.0 01 05 0.0 8.8 287 356 89.0 89.4 604 450  34.0%
10 9 10 01 10 0.0 107 574 719 89.0 89.4 31.6 68  365.0%
19 10 05 05 0.0 9.5 287 358 4458 447.0 4171 4017 39%
129 10 05 10 0.0 107 571 724 4450 447.0 3879 3639  6.6%
13 9 50 01 05 0.0 327 285 347 88.9 89.4 604 220  174.6%
14 9 50 01 10 0.0 274 572 688 88.9 89.4 31.7 68  564.1%
15 9 50 05 05 0.0 338 290 347 446.1 447.0 4171 3785  102%
16 9 50 05 10 0.0 219 575 69.1 4452 447.0 387.7 3560  8.9%
17 150 10 01 05 0.0 49 466 567 1489 149.1 1022 876 16.8%
18 150 10 01 10 0.0 7.2 93.1 1124 1490 149.1 55.8 296  88.7%
19 150 10 05 05 0.0 6.3 466 563 7450 745.7 698.4  683.1 22%
20 150 1.0 05 1.0 0.0 6.9 934 1132 7450 745.7 651.6 6256  42%
21 150 50 01 05 0.0 151 467 532 1489 149.1 1022 808  264%
2 150 50 01 1.0 0.0 15.1 935 1063 14838 149.1 553 277 99.5%
22 150 50 05 05 0.0 151 465 532 7451 745.7 6987 6774  3.1%
24 150 50 05 1.0 0.0 15.1 932 1064 7453 7457 652.1 6242  45%
take the following values: |V| € {45, 90, 150}, CB € {1.0, 5.0}, TABLE 1II
CR €{0.1,0.5} and CT € {0.5, 1.0}. We set |K| = 5, and all NUMERICAL RESULTS FOR TEST CASE 1
the other parameters are the same as those in Section I'V-A.
For each test case, we generate five random instances Day A 4
and embed a state-of-the-art VNS algorithm [6], [20] inside z1 22 z3 z1 Z2 z3
the hybrid approach to solve the routing subproblem SP2, 1 0297 0292 0277 1669 1623 1675
while still using the Gurobi solver for only the scheduling 2 0269 0282 0247  L677  1.683 1667
f ) . . 30249 0262 0307 1.674 1668 1614
subproblem SP1’. The VNS algorithm mainly consists of a 4 0242 0250 0301 1.673 1.672  1.665
5 0249 0258 0237 1677 1671  1.669

constructive heuristic, and an iterative algorithm with embed-
ded local search subroutines. The original pseudocode of the
VNS algorithm is presented in Appendix B — although, for
our hybrid approach, any operations that are related to the
scheduling solution are skipped. For comparison, this VNS
algorithm is also used to solve the sequential subproblems
SP1 and SP2, as a benchmark. For each computation instance,
we set the CPU time limit to be 1800 seconds.

Table II presents the average balance cost, recycling rev-
enue, travel cost, and profit for all 24 test cases. We can
observe that the proposed hybrid approach significantly outper-
forms the state-of-the-art sequential solution approach (even
with the same embedded VNS algorithm) in terms of gen-
erating profits for all 24 cases, and can always achieve a
much lower travel cost as compared to the benchmark (up to
21.1% reduction). Such results are consistent with our obser-
vations in Section IV-A. Since we use the same algorithms to
solve the routing subproblems for both approaches, it can be
inferred that such significant improvements are primarily due

solution approach is more likely to achieve a bett
decision than the benchmark sequential approacl
scheduling decision lies at the center of the en
process, and their solution quality would have
influence on the system performance.
Furthermore, as we mentioned at the end o
the hybrid approach provides a convenient way
the marginal cost/profit of adding an extra dum
one test instance of case 1 as an example,
values for 7; , It,z and ?t,z are presented in T¢
extra dumpster at location (5, 5) with a dema
(1,2,3,1,2) will be added to the problem, tt
gives the approximate marginal cost for serving
according to schedules (1,0,1,0,1) and (1,1,
and $6.1, respectively. As such, the decision m
able to use the estimated coefficients A; ; and

hyvhrid annraach ta accace the 1tmnacrcrte of varioiio
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TABLE IV
RESULTS FOR TEST CASES IN THE LITERATURE

Balance cost ($)

Recycle revenue ($)

Travel cost ($)

Total profit ($)

Case |V| 17 QY

Hybrid BM Hybrid BM Hybrid BM Hybrid BM Diff.
1 48 4 200 0.0 6.0 2,620.0 2,626.0 277.7 391.4 2,342.3 2,228.6 5.1%
2 96 4 195 0.0 27.0 4,880.0 4,871.0 370.1 564.8 4,509.9 4,279.2 5.4%
3 144 4 190 0.0 3.0 7,152.0 7,151.0 706.8 891.3 6,445.2 6,256.7 3.0%
4 192 4 185 0.0 9.0 9,908.0 9,903.0 765.9 944.7 9,142.1 8,949.3 2.2%
5 240 4 180 0.0 39.0 13,400.0 13,391.0 966.9 1,128.5 12,433.1 12,223.5 1.7%
6 288 4 175 0.0 13.0 14,680.0 14,675.0 1,159.6 1,377.6 13,520.4 13,284.4 1.8%
7 72 6 200 0.0 88.0 5,682.0 5,664.0 623.3 755.6 5,058.7 4,820.4 4.9%
8 144 6 190 0.0 140.0 12,030.0 11,940.0 1,116.0 1,378.3 10,914.0 10,421.7 4.7%
9 216 6 180 0.0 451.0 16,416.0 16,227.0 1,399.6 1,686.0 15,016.4 14,090.0 6.6%
10 288 6 170 0.0 59.0 23,088.0 23,085.0 1,931.1 2,220.6 21,156.9 20,805.4 1.7%

number of time periods |7 |, and different vehicle capacity oV.
It should be noted that, the original test cases assume preset
frequencies/schedules at customers (i.e., dumpsters in this
study) and unlimited capacity at the depot (i.e., sorting facility
in this study). To accommodate the problem settings in this
study, a few adjustments are made: (i) the assumption on preset
frequencies and schedules is relaxed, and (ii) explicit limits on
the customer storage levels and the throughput at the depot are
enforced. Specifically, the storage capacity for each customer
is calculated as QP = D’;—LT',W € V, where D; and F; are
the daily demand and the preset frequency at customer i € V,
respectively; and the capacity at the sorting facility Q°F is
calculated as the sum of the daily demand at all customers, i.e,
05F = >"..), D;. The number of vehicles |K| = 5 for all cases
and the maximum number of trips conducted by each vehicle
per day is [Ny ;| = 10, Vk € K, t € 7. In each case, the whole
area is partitioned into four zones according to the Cartesian
quadrants. The cost factors are set as CB=CR=CT=1,and
the algorithm parameters are the same as those in Section I'V-
A. Table IV shows that the proposed hybrid approach outper-
forms the benchmark approach for all 10 test cases. This is
consistent with the findings in the previous two sections.

V. CONCLUSION

This paper proposes an MILP model for the periodic
waste collection planning problem to help waste management
agencies determine both scheduling and routing decisions to
maximize the total profits from recyclable materials. The load
balance of recycling operations at the sorting facility is also
considered. An iterative hybrid solution framework including
discrete and continuous components is developed to enhance
the performance of the solution approach. More specifically,
a scheduling subproblem that integrates asymptotic travel
cost estimation formulas from the continuum approximation
literature and a group of vehicle routing subproblems are
solved iteratively, and a stochastic approximation subroutine

b TR, R P T S IR P SR I DR R RS P T T

types of recyclable waste may have their uniqu
requirements (e.g., paper waste typically needs to
before food waste so as to prevent contamination
ing such additional requirements will further cc
problem. If there are multiple sorting facilities
limited capacity, the load assignment decision
should be considered as well. In certain cases, i
of limited capacities of vehicles as well as dum
collection may become helpful although it incr
travel distances. Finally, we are also interested in
other types of approximation methods, e.g., nel
for the travel cost estimation while solving th
subproblem.

APPENDIX A
NOTATION LIST

R The entire region being studied

V Set of dumpsters, indexed by i

K Set of waste collection vehicles, index

T Set of time periods, indexed by ¢

S Set of all possible schedules, indexed

Si Feasible schedule set for dumpster i €

Os,t Binary parameter, where a;; = 1 if .
part of schedule s, or a,; = 0 otherw

Q? Storage capacity limit for dumpster i «

oV Load capacity of a waste collection ve

OSF  Processing capacity at the sorting faci!

D, Amount of waste generated at dumpst
onday t €T

Wi+ Amount of waste at dumpster i € V by
of day ¢, if this dumpster is visited ac
to schedule s € S

Ni.t Set of trips being conducted by vehicl
on day r € 7, indexed by n

Si Service time at dumpster i € V

T; Travel time between two nodes i, j €

T Travel coct ner f1ime 11nit
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01,2
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Xt,k,n,i, j

Vi,s

Vis,t,k,n

Ut k,n,i
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Area size of subregion z € Z

Asymptotic line-haul travel costs for visiting
zone z € ZondayteT

Asymptotic local detour travel costs for visiting
zone z € Zondayt €T

Parameter that adjust the approximated line-
haul travel costs for visiting zone z € Z on
day t € T

Parameter that adjust the approximated local
detour travel costs for visiting zone z € Z on
day r € 7

Routing decision variable, whose value equals
1 if vehicle k € K travels from node i € VU{0}
to node j € VU{0}, j # i in trip n € Ny on
day t € 7, or 0 otherwise

Scheduling decision variable, whose value
equals to 1 if dumpster i € V is visited
according to schedule s € §;, or 0 otherwise
Binary decision variable, whose value equals
to 1 if dumpster i € V is served according to
schedule s € §; and meanwhile it is visited by
vehicle k € K in trip n € N, on day t € 7,
or O otherwise

Arrival time of vehicle k € K at node i €
VU({0} in trip n € Ny of day 1 € T

Algorithm State of the Art VNS Algorithm to Solve the Waste

Collection Problem

1: Initialization:

(a)

(b)

()

Select the set of neighborhood structure N, x =
1, ..., Kmax, Where xmax 18 the maximum number

of neighborhood structures;

Find an initial solution x: (i) for scheduling
decision, each customer is assigned a visiting
schedule randomly; (ii) for routing decisions,
solving a vehicle routing problem for each day
using the Clarke and Wright savings algorithm

[40].

Set the stopping criteria: the total computation

time limit Tiax;

2: while elapsed time < Tyax do

3 Setk <1

4: while © < k. do

5: (a) Shaking: Randomly generate a point from

k™ neighborhood of x (i.e., x’ € Ni(x));

6: (b) Local search: Apply the 3-opt local search

algorithm with x’ as initial solution,
obtain a local optimum x”. If x” is fea-
sible, continue; otherwise, set k¥ < x + 1
and go back to step 5;

u; . ,; Departure time of vehicle k € K at
VU({0} in trip n € Ny, of day t € 7
wy Amount of waste being processed at tl

facility on day t € 7.

APPENDIX B
PSEUDOCODE FOR THE BENCHMARK SOl
APPROACH IN SECTION IV-B

(See Algorithm in the left column)
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