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Abstract. A group Γ is said to be finitely non-co-Hopfian, or renormalizable, if there exists a

self-embedding ϕ : Γ → Γ whose image is a proper subgroup of finite index. Such a proper self-
embedding is called a renormalization for Γ. In this work, we associate a dynamical system to a

renormalization ϕ of Γ. The discriminant invariant Dϕ of the associated Cantor dynamical system

is a profinite group which is a measure of the asymmetries of the dynamical system. If Dϕ is a finite
group for some renormalization, we show that Γ/Cϕ is virtually nilpotent, where Cϕ is the kernel

of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show

that the action associated to a renormalizable group is virtually renormalizable. We study the
properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an

invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable

Cantor action is an invariant of continuous orbit equivalence.

1. Introduction

A countable group Γ is co-Hopfian if every monomorphism ϕ : Γ → Γ is an isomorphism [4], and
is said to be non-co-Hopfian otherwise. If there exists a self-embedding ϕ whose image is a proper
subgroup of finite index, then Γ is said to be finitely non-co-Hopfian [55]. A proper self-embedding
ϕ : Γ→ Γ with finite index is called a renormalization of Γ, in analogy with the case for Γ = Zn. If
Γ admits a renormalization, then it is said to be renormalizable.

The free abelian group Zn is renormalizable, as are many finitely generated nilpotent groups. There
are also many examples of renormalizable groups which are not nilpotent, as described for example
in [18, 24, 28, 29, 30, 46, 48, 55]. On the other hand, the free group Z?n = Z ? · · · ? Z for n ≥ 2
is non-co-Hopfian, but is not renormalizable. The classification of non-co-Hopfian groups in general
appears to be a difficult problem.

There is a related concept of a scale-invariant group, introduced by Benjamini (see [52, Section 9.2]).
A scale for Γ is a descending chain of finite index subgroups S = {Γ` | ` ≥ 1} whose intersection is a
finite group, and such that for each `, there exists an isomorphism φ` : Γ→ Γ`. Benjamini asked if
a scale-invariant group must be virtually nilpotent? Nekrashevych and Pete [46, Theorem 1.1] gave
examples of scale-invariant groups which are not virtually nilpotent. In the same work, the authors
defined the notion of a strongly scale-invariant group, as a renormalizable group Γ such that the
collection of subgroups {Γ` = ϕ`(Γ) | ` ≥ 0} is a scale for Γ. Then [46, Question 1.1] asks if a strongly
scale-invariant group must be virtually nilpotent? The results of our work give a partial answer to

this question. We introduce a profinite group Γ̂ϕ naturally associated to a renormalization ϕ, and

show in Proposition 5.2 that ϕ induces an open embedding ϕ̂0 : Γ̂ϕ → Γ̂ϕ. Corollary 1.5 states that

if both the intersections ∩`>0 ϕ
`(Γ) and ∩`>0 ϕ̂

`
0(Γ̂ϕ) are finite groups, then Γ is virtually nilpotent.

In other words, we answer in the affirmative the question of Nekrashevych and Pete above under a

stronger assumption, that both Γ and the profinite group Ĝϕ admit a scale.
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Our approach to the study of renormalizable groups is based on the study of the Cantor dynamical
systems naturally associated to their renormalizations. An action Φ: Γ × X → X is said to be
a Cantor action if Γ is a finitely generated group, X is a Cantor metric space, and the action
is minimal. The basic properties of Cantor actions are discussed in Section 2. In Section 3, we
associate an equicontinuous Cantor dynamical system (Xϕ,Γ,Φϕ) to a renormalization ϕ of Γ.
The renormalization map ϕ for Γ induces a renormalization of the action of Γ, as explained in
Definitions 7.1 and 7.2. A key idea of this work is to study the regularity properties of the action,
as discussed in Section 4, which leads to a proof of the fundamental technical result Proposition 5.2.

The discriminant invariant D of an equicontinuous Cantor action (X,Γ,Φ) is the profinite group
defined in Definition 2.5. The isomorphism class of D depends only on the conjugacy class of the
action, and has other invariance properties [20, 21, 35, 37]. For the Cantor action (Xϕ,Γ,Φϕ)
associated to a renormalization ϕ, its discriminant invariant is denoted by Dϕ, and is given by
formula (12) which provides an effective way to calculate it. If Γ is abelian, the discriminant Dϕ is
the trivial group for any renormalization.

Let C(Gϕ) be the largest normal subgroup of the intersection K(Gϕ) =
⋂
`>0 ϕ

`(Γ).

THEOREM 1.1. Let Γ be a finitely generated group, and let ϕ : Γ→ Γ be a renormalization of Γ.

(1) If Dϕ is the trivial group, then Γ/C(Gϕ) is nilpotent.
(2) If Dϕ is a finite group, then Γ/C(Gϕ) is virtually nilpotent.

The proof of Theorem 1.1 given in Section 6, and uses Theorem 5.3 which is based on the results in
Reid [49], quoted as Theorem 5.1 below, and Theorem 4.4 and Proposition 5.2 in this work.

We give an example in Section 8.2 of a renormalization of the Heisenberg group for which Dϕ is a
Cantor group. Thus, while the assumption that Dϕ is finite is sufficient to conclude that Γ/C(Gϕ)
is nilpotent, it is not a necessary condition. On the other hand, there are renormalizations of the
Heisenberg group for which Dϕ is the trivial group. The known examples of renormalizations suggest
that it is an interesting problem to study the collection of all renormalizations for a given group Γ,
even for the simplest non-abelian nilpotent groups.

Next, we introduce some properties of the Cantor actions associated to renormalizations.

A Cantor action (X, G,Φ) is free if for any g ∈ Γ which is not the identity, the action Φ(g) has
no fixed points. The action is topologically free, as in Definition 2.1, if the set of points fixed by
at least one element of the group is a meager set. The notion of a quasi-analytic Cantor action,
as in Definition 4.1, was introduced in the works [21, 35] as a generalization of the notion of a
topologically free action. The quasi-analytic property of a Cantor action is a fundamental property
of renormalizable groups and actions.

THEOREM 1.2. The Cantor action Φϕ : Γ × Xϕ → Xϕ associated to a renormalization ϕ is
quasi-analytic. Hence, if the action Φϕ is also effective, then it is topologically free.

Given a Cantor action (X,Γ,Φ), let Φ(Γ) ⊂ Homeo(X) denote the image subgroup. If the action is

equicontinuous, then the closure G(Φ) ≡ Φ(Γ) ⊂ Homeo(X) in the uniform topology of maps is a
separable profinite group. This is discussed further in Section 2.2. For the Cantor action (Xϕ,Γ,Φϕ)

associated to a renormalization ϕ, we denote this closure by Γ̂ϕ. Then Theorem 4.4 implies that the

profinite action Φ̂ϕ : Γ̂ϕ×Xϕ → Xϕ is quasi-analytic, which implies Theorem 1.2. The quasi-analytic
property is used in the proof of the following, which is a restatement of Proposition 5.2:

THEOREM 1.3. Let ϕ be a renormalization of the finitely generated group Γ. Then ϕ induces an

injective homomorphism ϕ̂0 : Γ̂ϕ → Γ̂ϕ whose image is a clopen subgroup of Γ̂ϕ.

This is proved in Section 5, where we use this to show Theorem 5.3, which yields:

THEOREM 1.4. Let ϕ be a renormalization of the finitely generated group Γ, and ϕ̂0 : Γ̂ϕ → Γ̂ϕ

the induced contraction mapping on Γ̂ϕ. Then Dϕ =
⋂
n>0

ϕ̂n0 (Γ̂ϕ).
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Theorems 1.1 and 1.4 yield an answer to the profinite version of the Nekrashevych-Pete question:

COROLLARY 1.5. Let ϕ be a renormalization of the finitely generated group Γ. Suppose that

(1) K(Gϕ) =
⋂
`>0

ϕ`(Γ) ⊂ Γ , Dϕ =
⋂
n>0

ϕ̂n0 (Γ̂ϕ) ⊂ Γ̂ϕ

are both finite groups, then Γ is virtually nilpotent, and if both are trivial, then Γ is nilpotent.

The notion of isomorphism of Cantor actions, given in Definition 2.6, is a generalization of the usual
notion of conjugacy of topological actions. For Γ = Z, isomorphism corresponds to the notion of
“flip conjugacy” introduced in the work of Boyle and Tomiyama [10]. Return equivalence as given
in Definition 2.7, is a form of “virtual isomorphism” for equicontinuous Cantor actions.

The standard notion of continuous orbit equivalence for Cantor systems, as given in Definition 2.8,
requires only that the orbits of two actions agree in a continuous manner. For a Cantor action
(Xϕ,Γ,Φϕ), the isomorphism class of the reduced group C∗-algebra C∗r (Xϕ,Γ,Φϕ) and its K-theory
groups K∗(C

∗
r (Xϕ,Γ,Φϕ)), are invariants of its continuous orbit equivalence class. In particular,

they provide invariants of the conjugacy class of the renormalization ϕ. For example, the limit
group invariants defined in [26] for Γ = Zn are of this form, and for Γ nilpotent there are analogous
K-theoretic invariants of its renormalizations.

As mentioned above, our study of renormalizable groups naturally suggests a related notion, that
of a renormalizable equicontinuous Cantor action, as introduced in Definition 7.1. It is modeled
on the concept of a renormalizable dynamical system, and also that of self-similar groups [45] and
percolation theory [52, Section 9.2]. We also introduce a variant of this notion in Definition 7.2,
that of virtually renormalizable actions. The study of renormalizable Cantor actions is motivated,
in part, by the examples of Cantor actions defined recursively, in terms of the action of a finite
set of generators on a d-adic tree for d ≥ 3, where there is an embedding ϕ : Γ → Γ whose image
is a subgroup of the stabilizer group of a branch of a tree. The image ϕ(Γ) ⊂ Γ need not be of
finite index in Γ, even though the stabilizer group of a branch always has finite index in Γ. The
following result shows that if an equicontinuous Cantor action is quasi-analytic, then it arises from
a renormalization of the acting group Γ.

THEOREM 1.6. Let ϕ be a renormalization of Γ, then the Cantor action (Xϕ,Γ,Φϕ) is virtually
renormalizable. Conversely, suppose that the equicontinuous Cantor action (X,Γ,Φ) is renormaliz-
able and locally quasi-analytic, then Γ is renormalizable, and there is a renormalization ϕ such that
(X,Γ,Φ) is isomorphic to (Xϕ,Γ,Φϕ).

This is proved in Section 7. An equicontinuous Cantor action which is not locally quasi-analytic
must be wild, a notion introduced in the works [35, 36, 37]. We thus obtain the following dichotomy:

COROLLARY 1.7. A renormalizable Cantor action (X,Γ,Φ) is either quasi-analytic, and hence
Γ is renormalizable, or the action is wild.

This result motivates the study of the invariants of renormalizable Cantor actions, both to under-
stand the invariants of the renormalization map, and to discover invariants of these actions which
distinguish between the quasi-analytic and wild cases of Corollary 1.7. Our final results in this work
considers their invariant properties under continuous orbit equivalence.

THEOREM 1.8. Let (X,Γ,Φ) and (X′,Γ′,Φ′) be equicontinuous Cantor actions which are contin-
uously orbit equivalent. If (X,Γ,Φ) is renormalizable and locally quasi-analytic, then (X′,Γ′,Φ′) is
virtually renormalizable.

Theorems 1.6 and 1.8 combine to yield an important consequence, that the isomorphism class of the
discriminant group Dϕ associated to ϕ is an invariant of continuous orbit equivalence.

THEOREM 1.9. Let (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) be equicontinuous Cantor actions associated

to renormalizations ϕ : Γ → Γ and ϕ′ : Γ′ → Γ′, respectively. If the actions are continuously orbit
equivalent, then the isomorphism class of their discriminants Dϕ and D′ϕ′ are isomorphic.
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Examples and applications of our results are discussed in Section 8.

Section 9 discusses open problems. In particular, the works [35, 37] study the relations between the
discriminant invariant for a Cantor action and the wild property for the action. It is an interesting
problem to further explore this relation for renormalizable actions, as these include many class of
branch groups and related constructions, as in [5, 6, 45, 46, 47, 32].

2. Cantor actions

In this section, we recall some of the properties of Cantor actions. A basic reference is [3].

2.1. Basic concepts. For an action Φ: Γ× X→ X on a topological space X, let g · x = Φ(g)(x).

Let (X,Γ,Φ) denote an action Φ: Γ×X→ X. The orbit of x ∈ X is the subset O(x) = {g ·x | g ∈ Γ}.
The action is minimal if for all x ∈ X, its orbit O(x) is dense in X.

An action (X,Γ,Φ) is equicontinuous with respect to a metric dX on X, if for all ε > 0 there exists
δ > 0, such that for all x, y ∈ X and g ∈ Γ we have dX(x, y) < δ implies that dX(g · x, g · y) < ε. The
property of being equicontinuous is independent of the choice of the metric on X.

An action (X,Γ,Φ) is effective, or faithful, if the action homomorphism Φ: Γ→ Homeo(X) has trivial
kernel. The action is free if for all x ∈ X and g ∈ G, g · x = x implies that g = e, the identity of the
group. The isotropy group of x ∈ X is the subgroup

(2) Γx = {g ∈ Γ | g · x = x} .

Let Fix(g) = {x ∈ X | g · x = x}, and introduce the isotropy set

(3) Iso(Φ) = {x ∈ X | ∃ g ∈ Γ , g 6= id , g · x = x} =
⋃

e 6=g∈Γ

Fix(g) .

DEFINITION 2.1. [10, 41, 50] (X,Γ,Φ) is said to be topologically free if Iso(Φ) is meager in X.

Note that if Iso(Φ) is meager, then Iso(Φ) has empty interior.

The notion of topologically free Cantor actions was introduced by Boyle in his thesis [9], and later
used in the works by Boyle and Tomiyama [10] for the study of classification of Cantor actions, by
Renault [50] for the study of the C∗-algebras associated to Cantor actions, and by Li [41] for proving
rigidity properties of equicontinuous Cantor actions.

Now assume that X is a Cantor space. Let CO(X) denote the collection of all clopen (closed and open)
subsets of X, which forms a basis for the topology of X. For φ ∈ Homeo(X) and U ∈ CO(X), the
image φ(U) ∈ CO(X). The following result is folklore, and a proof is given in [36, Proposition 3.1].

PROPOSITION 2.2. A Cantor action Φ: Γ×X→ X is equicontinuous if and only if the orbit of
every U ∈ CO(X) is finite for the induced action Φ∗ : Γ× CO(X)→ CO(X).

Let (X,Γ,Φ) be an equicontinuous Cantor action. We say that U ⊂ X is adapted to the action if
U is a non-empty clopen subset, and for any g ∈ Γ, if Φ(g)(U) ∩ U 6= ∅ then Φ(g)(U) = U . The
proof of Proposition 3.1 in [36] shows that given x ∈ X and a clopen set W with x ∈W , there is an
adapted clopen set U with x ∈ U ⊂W .

The key property of adapted sets, is that for U adapted, the set of “return times” to U ,

(4) ΓU = {g ∈ Γ | g · U ∩ U 6= ∅}
is a subgroup of Γ, called the stabilizer of U . Then for g, g′ ∈ Γ with g · U ∩ g′ · U 6= ∅ we have
g−1 g′ · U = U , hence g−1 g′ ∈ ΓU . Thus, the translates {g · U | g ∈ Γ} form a finite clopen
partition of X, and are in 1-1 correspondence with the quotient space XU = Γ/ΓU . Then Γ acts by
permutations of the finite set XU and so the stabilizer group ΓU ⊂ G has finite index. The action
of g ∈ Γ on XU is trivial precisely when g is a stabilizer of each coset h · ΓU , so g ∈ CU where
CU =

⋂
h∈Γ h ΓU h−1 ⊂ ΓU is the largest normal subgroup of Γ contained in ΓU . The action of
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the finite group QU ≡ Γ/CU on XU by permutations is a finite approximation of the action of Γ on
X, and the isotropy group of the identity coset e · ΓU is DU ≡ ΓU/CU ⊂ QU .

DEFINITION 2.3. Let (X,Γ,Φ) be an equicontinuous Cantor action. A properly descending chain
of clopen sets U = {U` ⊂ X | ` ≥ 0} is an adapted neighborhood basis at x ∈ X for the action Φ, if
x ∈ U`+1 ⊂ U` for all ` ≥ 0, each U` is adapted to the action Φ, and the intersection ∩`>0 U` = {x}.

Given x ∈ X and ε > 0, Proposition 2.2 implies there exists an adapted clopen set U ∈ CO(X) with
x ∈ U and diam(U) < ε. Thus, one can choose a descending chain U of adapted sets in CO(X)
whose intersection is x, which shows the following:

PROPOSITION 2.4. Let (X,Γ,Φ) be an equicontinuous Cantor action. Given x ∈ X, there exists
an adapted neighborhood basis U at x for the action Φ.

2.2. The profinite model. Given an equicontinuous Cantor action (X,Γ,Φ), let Φ(Γ) ⊂ Homeo(X)

denote the image subgroup. Then the closure G(Φ) ≡ Φ(Γ) ⊂ Homeo(X) in the uniform topology
of maps is a separable profinite group. This group is identified with the Ellis group for the action,
as defined in [3, 22, 23]; see also [20, Section 2]. Each element ĝ ∈ G(Φ) is the uniform limit of a
sequence of maps {Φ(gi) | i ≥ 1} ⊂ Φ(Γ). We sometimes denote the limit ĝ by (gi).

For example, if G is an abelian group, then G(Φ) is a compact totally disconnected abelian group,
which can be thought of as the group of asymptotic motions of the system. When G is non-abelian,
the action closure G(Φ) can have much more subtle algebraic properties.

Let Φ̂ : G(Φ)×X→ X denote the induced action of G(Φ) on X. For ĝ ∈ G(Φ) we write its action on

X by ĝ · x = Φ̂(ĝ)(x). If the action Φ: G×X→ X is minimal, then the group G(Φ) acts transitively
on X. Given x ∈ X, introduce the isotropy group at x,

G(Φ)x = {ĝ ∈ Φ(G) | ĝ · x = x} ⊂ Homeo(X) ,(5)

which is a closed subgroup of G(Φ), and thus is either finite, or is a Cantor group.

DEFINITION 2.5. The discriminant of an equicontinuous Cantor action (X,Γ,Φ) is D = G(Φ)x.

There is a natural identification X ∼= G(Φ)/G(Φ)x of left G-spaces, and thus the conjugacy class of
G(Φ)x in G(Φ) is independent of the choice of x. Thus, to be precise, D denotes the conjugacy class
of G(Φ)x. If D is the trivial group, then X is identified with a profinite group, and the action is
free. However, there exists examples of free equicontinuous Cantor actions for which the group D is
non-trivial. The first such examples were constructed by Fokkink and Oversteegen in [25, Section 8],
and further examples are constructed in [21, Section 10].

2.3. Equivalence of Cantor actions. We recall three notions of equivalence of Cantor actions
which we use in this work. The first and strongest notion is the following, as used in [14, 36, 41]:

DEFINITION 2.6. Cantor actions (Xi,Γi,Φi), for i = 1, 2, are said to be isomorphic if there is
a homeomorphism h : X1 → X2 and a group isomorphism Θ: Γ1 → Γ2 so that

(6) Φ1(g) = h−1 ◦ Φ1(Θ(g)) ◦ h ∈ Homeo(X1) for all g ∈ Γ1 .

The notion of return equivalence for equicontinuous Cantor actions is weaker than the notion of
isomorphism, and is natural when considering the Cantor systems in the works [35, 36, 37].

Throughout this work, by a small abuse of notion, for an equicontinuous Cantor action (X,Γ,Φ),
we use ΦU to denote both the restricted action ΦU : ΓU × U → U and the induced quotient action
ΦU : HU × U → U for HU = Φ(GU ) ⊂ Homeo(U).

DEFINITION 2.7. Equicontinuous Cantor actions (X,Γ,Φ) and (X′,Γ′,Φ′) are return equivalent
if there exists an adapted set U ⊂ X for the action Φ and an adapted set V ⊂ X′ for the action Φ′,
such that the restricted actions (U,HU ,ΦU ) and (V,H ′V ,Φ

′
V ) are isomorphic.



6 STEVEN HURDER, OLGA LUKINA, AND WOUTER VAN LIMBEEK

The notion of continuous orbit equivalence for Cantor actions was introduced in [9, 10], and plays
a fundamental role in various approaches to the classification of these actions [50]. Consider the
equivalence relation on X defined by an action (X, G,Φ),

(7) R(X, G,Φ) ≡ {(x, g · x)) | x ∈ X, g ∈ G} ⊂ X× X .

Given actions (X, G,Φ) and (X′, H,Ψ), we say they are orbit equivalent if there exist a bijection
h : X→ X′ which maps R(X, G,Φ) to R(X′, H,Ψ), and similarly for the inverse map h−1.

DEFINITION 2.8. Let (X, G,Φ) and (X′, H,Ψ) be Cantor actions. A continuous orbit equivalence
between the actions is a homeomorphism h : X→ X′ which is an orbit equivalence, and satisfies the
locally constant properties:

(1) for each x ∈ X and g ∈ G, there exists α(g, x) ∈ H and an open set x ∈ Ux ⊂ X such that
Ψ(α(g, x)) ◦ h|Ux = h ◦ Φ(g)|Ux;

(2) for each y ∈ X′ and k ∈ H, there exists β(k, y) ∈ G and an open set y ∈ Vy ⊂ X′ such that
Φ(β(k, y)) ◦ h|Vy = h ◦Ψ(k)|Vy.

Note in particular that these conditions imply that the functions α : G×X→ H and β : H×X′ → G,
defined by (1) and (2) in Definition 2.8, are continuous, as the groups G and H have the discrete
topology. However, additional hypotheses are required to conclude that the maps α and β are
cocycles over the actions. The works [14, 36, 41] discuss these notions of equivalences as they apply
to equicontinuous Cantor actions.

3. Renormalizable groups

In this section, we construct the Cantor action (Xϕ,Γ,Φϕ) associated to a renormalization ϕ : Γ→ Γ,
and give some of the basic properties of this action.

Set Γ0 = Γ, and for ` ≥ 1, recursively define subgroups Γ` ⊂ Γ, where Γ` = ϕ(Γ`−1) ≡ ϕ`(Γ).

Let Gϕ ≡ {Γ` | ` ≥ 0} denote the descending group chain, where each Γ` has finite index in Γ.
Denote the intersection of the group chain by K(Gϕ) ≡

⋂
`>0 Γ`. If K(Gϕ) is a finite group, then

the group Γ is said to be strongly scale-invariant, in the terminology of Nekrashevych and Pete [46].

Let X` = Γ/Γ` be the finite coset space. Note that X` is not necessarily a group, as the subgroup Γ`
is not assumed to be normal in Γ. Note that Γ acts transitively on the left on X`, and the inclusion
Γ`+1 ⊂ Γ` induces a natural Γ-invariant quotient map p`+1 : X`+1 → X`. The inverse limit space

(8) Xϕ ≡ lim←− {p`+1 : X`+1 → X` | ` ≥ 0}

with the Tychonoff topology is a Cantor space. The actions of Γ on the factors X` induce a minimal
equicontinuous action on Xϕ, denoted by Φϕ : Γ×Xϕ → Xϕ or by (Xϕ,Γ,Φϕ).

Let Γ̂ϕ ⊂ Homeo(Xϕ) denote the closure of the image Φϕ(Γ). That is, Γ̂ϕ = G(Φϕ) as defined in

Section 2.2. The isomorphism class of the profinite group Γ̂ϕ is an invariant of the conjugacy class
in Homeo(Xϕ) of the action Φϕ.

Let G denote the profinite completion of Γ. Then there is a homomorphism ψ : Γ → G with dense
image, and the kernel of ψ is the groupN(ψ) given by the intersection of all normal subgroups of finite

index in Γ. Thus, N(ψ) is trivial exactly when the group Γ is residually finite. The map Φϕ : Γ→ Γ̂ϕ
induces a surjective map Φ̂ϕ : G→ Γ̂ϕ of profinite groups, and an action Φ̂ϕ : G×Xϕ → Xϕ.

The embedding ϕ induces a mapping denoted by λϕ : Xϕ → Xϕ, which is defined as the shift
map on sequences as follows. A point x̂ ∈ Xϕ is defined by an equivalence class of sequences
x̂ = (g0, g1, g2, . . .) with each g` ∈ Γ satisfying the relations g` = g`+1 mod Γ` for all ` ≥ 0. Then
λϕ(x̂) = (e, ϕ(g0), ϕ(g1), ϕ(g2), . . .) is well-defined, and is a contraction on Xϕ. Let xϕ ∈ Xϕ be the
unique fixed point for λϕ. Then xϕ = (e, e, e, . . .) where e ∈ Γ is the identity.
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Let Gϕ ≡ Gxϕ ⊂ G denote the isotropy subgroup for xϕ of the action Φ̂ϕ, and let N(Φ̂ϕ) ⊂ G

denote the kernel of the action map Φ̂ϕ. Then N(Φ̂ϕ) ⊂ Gϕ, and we have:

LEMMA 3.1. The discriminant group Dϕ of (Xϕ,Γ,Φϕ) is Dϕ = Φ̂ϕ(Gϕ) ⊂ Γ̂ϕ.

For k ≥ 0, define

(9) Uk = {(g0, g1, g2, . . .) ∈ Xϕ | gi = e for 0 ≤ i ≤ k} = lim←− {p`+1 : Γk/Γ`+1 → Γk/Γ` | ` ≥ k} ,

which is a clopen subset of Xϕ adapted to the action Φϕ, with stabilizer subgroup ΓUk
= Γk.

Recall that the proper embedding ϕ : Γ → Γ induces a contraction mapping λϕ : Xϕ → Xϕ, and
observe that λϕ : U` → U`+1 is a homeomorphism onto for all ` ≥ 0. The clopen sets {Uk | k ≥ 0}
form an adapted neighborhood basis at xϕ =

⋂
k>0 Uk which is the unique fixed point for λϕ.

As the orbit of xϕ is dense in Xϕ, for any non-empty open subset U ⊂ X there exists g ∈ Γ so that
Φ(g)(xϕ) ∈ U . It follows that there also exists k > 0 such that Φ(g)(Uk) ⊂ U .

For each ` ≥ 1, let C` denote the largest normal subgroup (the core) of the stabilizer group Γ`, so

(10) C` =
⋂
g∈Γ

g Γ` g
−1 ⊂ Γ` .

As Γ` has finite index in Γ, the same holds for C`. Observe that for all ` ≥ 1, we have C`+1 ⊂ C`.
Introduce the quotient group Q` = Γ/C` with identity element e` ∈ Q`. There are natural quotient
maps q`+1 : Q`+1 → Q`, and we can form the inverse limit Cantor group

(11) Γ̂∞ = lim←− {q`+1 : Q`+1 → Q` | ` ≥ 0} .

THEOREM 3.2. [20, Theorem 4.4] There is a natural isomorphism τ̂ : Γ̂ϕ → Γ̂∞ which identifies
the discriminant group Dϕ with the inverse limit group

(12) D∞ = lim←− {q`+1 : Γ`+1/C`+1 → Γ`/C` | ` ≥ 0} ⊂ Γ̂∞ .

There is an interpretation of the group D∞ as an asymptotic defect of the Γ-action on X∞ which
we elaborate on. Suppose that Γ` is a normal subgroup so that the quotient Γ/Γ` is a group. Then
Γ/Γ` acts transitively on X` without fixed points. For example, if Γ is abelian then this is always
true. In general, for the normal core C` ⊂ Γ`, the finite group Q` = Γ/C` acts transitively on X`

and the finite subgroup D` = Γ`/C` is the “defect” for the action of Q` on X` being a free action.
Then D∞ is the inverse limit of these finite defects, and provides a measure of the deviation of the

action Φ̂∞ of Γ̂∞ on X∞ from being free.

Associated to the group chain Gϕ, there are two subgroups,

(13) K(Gϕ) =
⋂
`>0

Γ` , C(Gϕ) =
⋂
g∈Γ

g K(Gϕ) g−1 .

where C(Gϕ) is the largest normal subgroup of Γ contained in K(Gϕ). Note that for any g ∈ C(Gϕ),
the action of Φϕ(g) on Xϕ is trivial.

4. Regularity of Cantor actions

A Cantor space X is totally disconnected, so one cannot define the usual notions of regularity for an
action based on the derivatives of the action maps. There is an alternative approach, based on the
notion of quasi-analytic actions, which was introduced in the works [1, 2] by Álvarez López, Candel,
and Moreira Galicia.

DEFINITION 4.1. An action Φ: H × X→ X, where H is a topological group and X is a Cantor
space, is said to be quasi-analytic (or QA) if for each clopen set U ⊂ X, if the action of g ∈ H
satisfies Φ(g)(U) = U and the restriction Φ(g)|U is the identity map on U , then Φ(g) acts as the
identity on all of X.
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If X is a Cantor group for which the action Φ is defined by group multiplication, so that the action
is induced by a group homomorphism Φ: H → X, then the action is quasi-analytic. A topologically
free action, as in Definition 2.1, is quasi-analytic. Conversely, the Baire Category Theorem implies
that an effective quasi-analytic action of a countable group is topologically free [50, Section 3].

A local formulation of the QA condition actions was introduced in the works [21, 35], and has proved
very useful for the study of the dynamical properties of equicontinuous Cantor actions.

DEFINITION 4.2. An action Φ: H × X → X, where H is a topological group and X a Cantor
metric space with metric dX, is locally quasi-analytic (or LQA), if there exists ε > 0 such that for
any non-empty open set U ⊂ X with diam(U) < ε, and for any non-empty open subset V ⊂ U , if
the action of g ∈ H satisfies Φ(g)(V ) = V and the restriction Φ(g)|V is the identity map on V , then
Φ(g) acts as the identity on all of U .

Examples of equicontinuous Cantor actions which are locally quasi-analytic, but not quasi-analytic,
are given in [21, 35].

If (X, H,Φ) is an equicontinuous Cantor action which is not quasi-analytic, then the isotropy group
defined in (5) is non-trivial. On the other hand, there are actions with non-trivial isotropy group
that are quasi-analytic (see Section 8.2 below, and the examples in [21]). Finally, we define:

DEFINITION 4.3. An equicontinuous Cantor action (X,Γ,Φ) is said to be stable if the associated

profinite action Φ̂ : Γ̂× X→ X is locally quasi-analytic. The action is said to be wild otherwise.

Now let ϕ : Γ→ Γ be a renormalization of the finitely generated group Γ. We assume the notation
and results from Sections 1, 2, and 3. In particular, Xϕ is the Cantor space defined in (8), and
(Xϕ,Γ,Φϕ) is the associated equicontinuous Cantor action on this space. Let G denote the profinite

completion of Γ. Its action on Xϕ is denoted Φ̂ϕ : G×Xϕ → Xϕ. Then Γ̂ϕ = Φ̂ϕ(G) ⊂ Homeo(Xϕ),

and Gϕ ≡ Gxϕ is the isotropy group at xϕ of the action Φ̂ϕ of G on Xϕ.

THEOREM 4.4. Let Γ be a finitely generated group and ϕ : Γ→ Γ a renormalization of Γ. Then

the profinite action Φ̂ϕ : G×Xϕ → Xϕ is quasi-analytic.

Proof. Let g ∈ G be such that Φ̂ϕ(g) acts non-trivially on Xϕ. Suppose there exists a non-empty

open set U ⊂ Xϕ such that Φ̂ϕ(g) acts on U as the identity.

The orbit of every point of Xϕ is dense in Xϕ under the action of Γ, so there exists h ∈ Γ such that

Φϕ(h)(xϕ) ∈ U . Set g′ = h−1gh so that Φ̂ϕ(g′) fixes the open set U ′ = Φϕ(h−1)(U). In particular,

Φ̂ϕ(g′) fixes xϕ and hence g′ ∈ Gϕ. Thus, we can assume without loss of generality that Φ̂ϕ(g) acts
as the identity on U and xϕ ∈ U , so that g ∈ Gϕ.

The nested clopen sets U = {U` | ` ≥ 0} form a neighborhood basis at xϕ so there exists some
k0 > 0 such that Uk ⊂ U for all k ≥ k0. Thus, for all k ≥ k0 we have λkϕ(Xϕ) ⊂ U .

The embedding ϕ induces a continuous embedding ϕ̂ : G → G, whose image is a clopen subgroup

denoted by V̂1. More generally, we have the clopen subset V̂` = ϕ̂`(G) ⊂ G for ` ≥ 0.

The isotropy group is Gϕ = ∩`≥0 ϕ̂
`(G), so for g ∈ Gϕ and all ` ≥ 0, the element g−` = ϕ̂−`(g) ∈ G

is defined. Thus g` = ϕ̂`(g) is defined for all ` ∈ Z. Here is the first key observation:

LEMMA 4.5. Let g ∈ G, and suppose g acts trivially on Uk0 , for some k0 ≥ 0. Then for all
` ≥ k0, we have that the action of ϕ̂−`(g) ∈ G on Xϕ is trivial. In particular, for ` ≥ k0, g−` ∈ Gϕ.

Proof. For x ∈ Xϕ and ` ≥ 0, set x` = λ`ϕ(x). Choose gx ∈ G such that x = gx · Gϕ via the
identification Xϕ

∼= G/Gϕ; that is, x is represented in Xϕ by the coset gxGϕ. Recall that under

this identification, for h ∈ G the action of Φ̂ϕ(h) on Xϕ becomes multiplication by h. That is,
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Φ̂ϕ(h)(x) = h · gxGϕ = hgx ·Gϕ. As ϕ̂ : G→ G is a homomorphism, for ` ≥ k0 we calculate

Φ̂ϕ(g−`)(x) = Φ̂ϕ(ϕ̂−`(g))(x)(14)

= ϕ̂−`(g)gx ·Gϕ
= ϕ̂−`(g)(ϕ̂−` ◦ ϕ̂`(gx)) ·Gϕ
= ϕ̂−`(gϕ̂`(gx) ·Gϕ)

Recall that that λ`ϕ(x) ∈ U` and that Φ̂ϕ(g) acts trivially on U` for ` ≥ k0, so we have

(15) ϕ̂−`(gϕ̂`(gx) ·Gϕ) = ϕ̂−`(ϕ̂`(gx) ·Gϕ) = gxGϕ = x

That is, Φ̂ϕ(g−`)(x) = x for all x ∈ Xϕ and ` ≥ k0, as was to be shown. �

The second key observation required for the proof of Theorem 4.4 is that for g ∈ Gϕ the equicontin-

uous action of Φ̂ϕ(g) on Xϕ is approximated by the action on the finite quotient spaces X` for ` > 0.

That is, the assumption that Φ̂ϕ(g) acts non-trivially on Xϕ implies there exists some m0 > 0 such

that the induced action of Φ̂ϕ(g) on Xm0
= Γ/Gm0

is non-trivial for some m0 > 0. Without loss

of generality, we may assume that m0 > k0. Denote this action by Φ̂m0
(g) ∈ Perm(Xm0

), where
Perm(Xm0) is the finite group of permutations of the finite set Xm0 .

LEMMA 4.6. There exists an increasing sequence of integers

Λm0
= {0 < `1 < `2 < `3 < · · · }

such that Φ̂m0
(g−`i) = Φ̂m0

(g) for all i ≥ 0.

Proof. Recall that the elements g−` = ϕ̂−`(g) were introduced above, where each g−` ∈ Gϕ by

Lemma 4.5. Thus, we can define a mapping σ : N → Perm(Xm0) by σ(`) = Φ̂m0(g−`) for ` ≥ 0.
Note that Perm(Xm0

) is a finite set, so by the pigeonhole principle, there exists some A ∈ Perm(Xm0
)

such that the set ΛA = {λ ≥ 0 | Φ̂m0
(g−λ) = A} is infinite. Let λ0 ∈ ΛA be the least value for the

set, then set

Λm0
= {`i = λi − λ0 | λi ∈ ΛA}.

Then note that Φ̂m0(g−`i) = Φ̂m0(g−`0) = Φ̂m0(g0) = Φ̂m0(g), as was to be shown. �

We can now complete the proof that the action Φ̂ϕ : G ×Xϕ → Xϕ is quasi-analytic. If not, then

there exists g ∈ G such that Φ̂ϕ(g) acts non-trivially on Xϕ, and a non-empty open set U ⊂ Xϕ

such that Φ̂ϕ(g) acts on U as the identity. Then by Lemma 4.5, there exists x ∈ Xϕ such that

Φ̂ϕ(g)(x) 6= x, while Φ̂m0
(g−`i)(x) = x for `i > k0, which contradicts the conclusion of Lemma 4.6.

Thus, the action of Φ̂ϕ must be quasi-analytic. �

Finally, note that Theorem 4.4 shows that the profinite action (Xϕ, Γ̂ϕ, Φ̂ϕ) is quasi-analytic, so the
same holds for the action (Xϕ,Γ,Φϕ) restricted to the image of Γ in G. Then the Baire Category
Theorem implies (see [36, Proposition 2.2] for example) that if a Cantor action Φ: Γ× X→ X of a
countable group Γ is quasi-analytic and effective, then it is topologically free. It follows that if the
action Φϕ is effective, then the action (Xϕ,Γ,Φϕ) is topologically free, as asserted in Theorem 1.2.

5. Open embeddings

In this section, given a renormalization ϕ, we consider properties of the open embeddings of the

profinite groups G and Γ̂ϕ associated to the Cantor action (Xϕ,Γ,Φϕ). This results in a structure

theory for the profinite group Γ̂ϕ that is the key to the proof of Theorem 1.1.

The universal property of the profinite completion of a group implies that ϕ induces a homomorphism
denoted by ϕ̂ : G → G of the profinite completion G of Γ, whose image is a clopen subgroup of G.
We then have the following result of Reid [49], as formulated in [55, Theorem 3.10].
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THEOREM 5.1 (Reid [49]). There exist closed subgroups Cϕ ⊂ G and Qϕ ⊂ G so that:

(1) G ∼= Cϕ oQϕ, where Cϕ is a pro-nilpotent normal subgroup of G;
(2) Cϕ is ϕ̂-invariant, and ϕ̂ restricts to an open contracting embedding on Cϕ;
(3) Qϕ is ϕ̂-invariant, and ϕ̂ restricts to an automorphism of Qϕ.

Moreover, let ê ∈ G be the identity element, then we have

(16) Cϕ = {g ∈ G | lim
n→∞

ϕ̂n(g) = ê} , Qϕ =
⋂
n>0

ϕ̂n(G) .

Theorem 1.2 implies that for ĝ ∈ G, the action of ϕ̂(ĝ) on Xϕ is locally determined. In particular,
the action ϕ̂(ĝ) is determined by its restriction to the clopen subset λϕ(Xϕ). We use this fact to

show that ϕ descends to a homomorphism of Γ̂ϕ.

PROPOSITION 5.2. Let ϕ be a renormalization of the finitely-generated group Γ. Then ϕ induces

an injective homomorphism ϕ̂0 : Γ̂ϕ → Γ̂ϕ whose image is a clopen subgroup of Γ̂ϕ.

Proof. Recall that N(Φ̂ϕ) ⊂ G is the kernel of the homomorphism Φ̂ϕ : G→ Γ̂ϕ ⊂ Homeo(Xϕ). By
the universal property of profinite completions, the embedding ϕ : Γ→ Γ induces a homomorphism
ϕ̂ : G→ G. We claim that ϕ̂ descends to a homomorphism

(17) ϕ̂0 : Γ̂ϕ ∼= G/N(Φ̂ϕ) −→ Γ̂ϕ ∼= G/N(Φ̂ϕ) .

For g ∈ N(Φ̂ϕ), observe that ϕ̂(g) acts as the identity on the clopen subset U1 = λϕ(Xϕ). As the

action Φ̂ϕ is quasi-analytic, this implies that ϕ̂(g) acts as the identity on Xϕ, and thus ϕ̂(g) ∈ N(Φ̂ϕ).

This shows that ϕ̂(N(Φ̂ϕ)) ⊂ N(Φ̂ϕ) ⊂ G, and thus we have the composition of homomorphisms

(18) ϕ̂0 : Γ̂ϕ = G/N(Φ̂ϕ)→ ϕ̂(G)/ϕ̂(N(Φ̂ϕ))→ G/ϕ̂(N(Φ̂ϕ))→ G/N(Φ̂ϕ) = Γ̂ϕ

which defines the map (17). We claim that ϕ̂0 is injective. If not, let γ ∈ Γ̂ϕ such that ϕ̂0(γ) = id.

That is, ϕ̂0(γ) ∈ Γ̂ϕ acts as the identity on Xϕ. In particular, ϕ̂0(γ) acts as the identity on λϕ(Xϕ),
so for x ∈ Xϕ,

λϕ(x) = ϕ̂0(γ) · λϕ(x) = λϕ(γ · x) .

As λϕ is an injection, we have γ · x = x for all x ∈ Xϕ, as was to be shown. �

We use the conclusions of Theorem 5.1 and Proposition 5.2 to obtain:

THEOREM 5.3. Let ϕ : Γ → Γ be a renormalization for the finitely generated group Γ, with

associated Cantor action (Xϕ,Γ,Φϕ). Let Φ̂ϕ : G×Xϕ → Xϕ be the action of the profinite completion

G of Γ, and set Γ̂ϕ = Φ̂ϕ(G) ⊂ Homeo(Xϕ). Let ϕ̂0 : Γ̂ϕ → Γ̂ϕ be the embedding induced from ϕ.

Then there exists a closed pro-nilpotent normal subgroup N̂ϕ ⊂ Γ̂ϕ so that:

(1) Γ̂ϕ ∼= N̂ϕ oDϕ is a semi-direct product;

(2) N̂ϕ is ϕ̂0-invariant, and ϕ̂0 restricts to an open contracting embedding on N̂ϕ;
(3) Dϕ is ϕ̂0-invariant, and ϕ̂0 restricts to an automorphism of Dϕ.

Moreover, let ê ∈ Γ̂ϕ be the identity element, then we have

(19) N̂ϕ = {g ∈ Γ̂ϕ | lim
n→∞

ϕ̂n0 (g) = ê} , Dϕ =
⋂
n>0

ϕ̂n0 (Γ̂ϕ) .

Proof. First, we show:

LEMMA 5.4. Dϕ = Φ̂ϕ(Qϕ) ⊂ Γ̂ϕ.



CANTOR DYNAMICS OF RENORMALIZABLE GROUPS 11

Proof. Recall that the clopen neighborhoods U` of xϕ are defined by (9), and for each ` ≥ 0 we have

U` = λ`ϕ(Xϕ). For each ` ≥ 0, define the clopen subset Û` = {γ ∈ Γ̂ϕ | Φ̂ϕ(γ)(U`) = U`} ⊂ Γ̂ϕ.

Also, recall that Dϕ = {γ ∈ Γ̂ϕ | γ · xϕ = xϕ}. As xϕ =
⋂
`≥0 U`, we then have Dϕ =

⋂
`≥0 Û`, and

so Û` = ϕ̂`0(Γ̂ϕ) where ϕ̂0 : Γ̂ϕ → Γ̂ϕ was defined in Proposition 5.2.

Recall that V̂` = ϕ̂`(G) ⊂ G, and thus Û` = Φ̂ϕ(V̂`). Then we have

(20) Φ̂ϕ(Qϕ) = Φ̂ϕ

⋂
`≥0

ϕ̂`(G)

 =
⋂
`≥0

Φ̂ϕ(ϕ̂`(G)) =
⋂
`≥0

Φ̂ϕ(V̂`) =
⋂
`≥0

Û` = Dϕ ,

as was to be shown. �

Next, set N̂ϕ = Φ̂ϕ(Cϕ) ⊂ Γ̂ϕ which is a pro-nilpotent closed subgroup. Then by an argument
exactly analogous to the proof of Lemma 5.4, we have

(21) N̂ϕ = {γ ∈ Γ̂ϕ | lim
`→∞

ϕ̂`0(γ) = ê ∈ Γ̂ϕ} .

This completes the proof of Theorem 5.3. �

Note that the identities (19) in Theorem 5.3 identify the images of the groups Cϕ and Qϕ in

Homeo(Xϕ) in terms of the dynamical properties of the action ϕ̂0 on Γ̂ϕ.

The conclusions of Theorem 5.3 are illustrated in various examples of renormalizable groups and
self-embeddings in Section 8, and also by the examples in the works [46, 54, 55]. Moreover, the
conclusion that ϕ induces an automorphism of the discriminant group Dϕ has applications to the
constructions of examples of Cantor actions using the Lenstra method as given in [35, Section 8.2].

6. Finite discriminant

We next consider the consequences of Theorem 5.3, for Dϕ a finite group. We first assume that
the discriminant group Dϕ is trivial, and show that the quotient group Γ/C(Gϕ) is nilpotent, where
C(Gϕ) is the normal core of the intersection K(Gϕ) ⊂ Γ associated to Gϕ, as defined in (13). Recall

that C(Gϕ) ⊂ Γ is identified with the kernel of the homomorphism Φϕ : Γ→ Γ̂ϕ ⊂ Homeo(Xϕ), and

that ϕ̂0 : Γ̂ϕ → Γ̂ϕ was defined in Proposition 5.2.

Note that ϕ restricts to an isomorphism of K(Gϕ) by its definition, and so ϕ also maps C(Gϕ)
isomorphically to itself, and thus induces an embedding ϕ′ : Γ/C(Gϕ) → Γ/C(Gϕ). Then without

loss of generality, we can replace Γ with Γ/C(Gϕ), so can assume that Φϕ : Γ→ Γ̂ϕ is an embedding,
and identify Γ with its image Φϕ(Γ). As we assume that Dϕ is trivial, by Theorem 5.3 we have

Γ̂ϕ ∼= N̂ϕ where N̂ϕ is a closed pro-nilpotent normal group.

Section 3 of the work [55] gives an overview of some of the structure theory of pro-nilpotent groups,

and we recall those aspects as required for the proof of Theorem 1.1. First, N̂ϕ admits a splitting

by [27, Theorem B] as N̂ϕ ∼= N̂∞ × N̂tor where N̂∞ is a torsion-free nilpotent group and N̂tor is a
torsion group with bounded exponent, by results of [38]. We now claim:

LEMMA 6.1. If Dϕ is trivial, then N̂tor is the trivial group.

Proof. Let πtor : N̂ϕ → N̂tor be the projection, then the image πtor(Γ) ⊂ N̂tor is dense.

The abelianization Âtor of N̂tor is an abelian group of bounded exponent, which is trivial if and

only if N̂tor is trivial. By Prüfer’s First Theorem (see § 24 of [39]), Âtor is a possibly infinite direct

sum of cyclic groups. As Γ is finitely generated, the image of Γ in Âtor is finite rank and dense, and

therefore the abelianization Âtor has finite rank. Thus, Âtor is a direct sum of finitely many cyclic
groups, hence is a finite group.
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Note that the contraction mapping ϕ̂ : N̂ϕ → N̂ϕ induces a contraction mapping ϕ̂tor : N̂tor → N̂tor.

The second part of Theorem B in Glöckner and Willis [27] proves the existence of a Jordan-Hölder
series for bounded exponent contraction groups with each composition factor a simple contraction
group. Here we say a contraction group with contraction α is simple if it has no nontrivial, proper
closed normal α-invariant subgroup. Further, the simple contraction groups are classified as shifts

on FN where F is a finite simple group. By considering the first composition factor, we see that N̂tor
has a quotient of the form FN where F is a finite simple group. Since N̂tor is solvable of bounded

exponent [49], we conclude that F is abelian. In particular N̂tor has an infinite abelian quotient,

which contradicts the fact that Âtor is a finite group, as shown previously. �

Now observe that by Lemma 6.1, the group Γ ⊂ N̂∞ and N̂∞ is a torsion-free nilpotent group, thus
Γ is nilpotent. This concludes the proof of Theorem 1.1 in the case where Dϕ is trivial.

Next, assume that Dϕ is a finite group. By Theorem 5.3, we have Dϕ = Φ̂ϕ(Qϕ) ⊂ Γ̂ϕ and its

intersection with N̂ϕ = Φ̂ϕ(Cϕ) is the trivial subgroup. It follows that N̂ϕ is a clopen subset of Γ̂ϕ,

and so Λϕ ≡ Γ ∩ N̂ϕ is a dense subgroup of N̂ϕ

The restriction of ϕ̂0 defines a contraction mapping ϕ̂0 : N̂ϕ → N̂ϕ. We can thus apply the above

arguments for the trivial discriminant case to the action of Λϕ on N̂ϕ to conclude that the group
Λϕ is nilpotent with finite index in Γ. This completes the proof of Theorem 1.1.

Finally, we give the proof of Corollary 1.5. Assume that both Dϕ and the subgroup K(Gϕ) in (13)
are finite groups. Thus its core C(Gϕ) ⊂ K(Gϕ) is also finite. Recall that in the above proof of
Theorem 1.1, we replaced Γ with the quotient Γ/C(Gϕ), and concluded that Γ/C(Gϕ) contains a
nilpotent subgroup of finite index. In the case where both groups Dϕ and K(Gϕ) are trivial, then the
claim of the corollary follows directly from Theorem 1.1 and the identification in 19 of Dϕ with the
second intersection in (13). In the case where both groups are finite, we have that C(Gϕ) is a finite
normal subgroup of Γ and Γ/C(Gϕ) contains a nilpotent subgroup of finite index, which implies that
Γ contains a nilpotent subgroup of finite index. This completes the proof of Corollary 1.5.

7. Renormalizable Cantor actions

In this section, we introduce the notions of (virtually) renormalizable Cantor actions, and study
their regularity properties and invariants, yielding proofs of Theorems 1.6, 1.8 and 1.9.

For a Cantor action (X,Γ,Φ) and an adapted set U ⊂ X, note that HU = Φ(ΓU ) ⊂ Homeo(U) acts
faithfully on U , so (U,HU ,ΦU ) is always an effective action.

DEFINITION 7.1. A Cantor action (X,Γ,Φ) is renormalizable if it is equicontinuous, and there
exists an adapted clopen set U ⊂ X such that the actions (X,Γ,Φ) and (U,HU ,ΦU ) are isomorphic
(as in Definition 2.6) by a homeomorphism λ : X→ U and group isomorphism Θ: Γ→ HU , and the
intersection ∩`≥0 λ

`(X) is a point.

For example, let (Xϕ,Γ,Φϕ) be the Cantor action associated to a renormalization ϕ of Γ. Suppose
the action is topologically free, then it is renormalizable, where λ = λϕ and Θ = ΦU ◦ ϕ : Γ → HU

is an isomorphism. In general, for a renormalizable action, there is no requirement that the map
ΦU : GU → HU is injective, and so HU need not be identified with a subgroup of Γ.

DEFINITION 7.2. A Cantor action (X,Γ,Φ) is virtually renormalizable if is equicontinuous, and
there exists an adapted set V ⊂ X such that the restricted action (V,HV ,ΦV ) is renormalizable.

The class of virtually renormalizable actions is much more general than the renormalizable actions,
as it allows for the case when the action map Φ: Γ → Homeo(X) has a non-trivial kernel. In the
following, we show some properties of these actions. We first show:

PROPOSITION 7.3. Suppose that the Cantor action (X,Γ,Φ) is renormalizable and locally quasi-
analytic, then it is quasi-analytic.
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Proof. We assume there is given a homeomorphism λ : X→ U and group isomorphism Θ: Γ→ HU

implementing an isomorphism of (X,Γ,Φ) with (U,HU ,ΦU ) as in (6).

Suppose that the map ΦU : ΓU → HU is injective, and hence is an isomorphism as it is onto by
the definition of HU . Then the composition ϕ ≡ Φ−1

U ◦ Θ: Γ → Γ is a proper inclusion with image
ΓU ⊂ Γ. As U is adapted, ΓU has finite index in Γ, and thus ϕ is a renormalization of Γ.

It thus suffices to show that if ΦU : ΓU → HU has a non-trivial kernel KU ⊂ Γ, then the action Φ is
not locally quasi-analytic, which yields a contradiction. We show this using a recursive argument.

Set U0 = X, then U = λ(X) is a clopen set by assumption. Then recursively define clopen sets
U` = λ`(U0) ⊂ U`−1 for ` > 0. The assumption in Definition 7.1 that the intersection ∩`≥0 λ

`(X) is
a point, labeled xλ ∈ X, implies that {U` | ` ≥ 0} is an adapted neighborhood basis at xλ.

Now set Γ` = ΓU`
for ` ≥ 0, and let H` = ΦU`

(Γ`) ⊂ Homeo(U`) for ` ≥ 0. The associated group
chain Gϕ = {Γ` = ϕ`(Γ) | ` ≥ 0}. Then U1 = U , and H1 = HU . Recall that as the action of H1 on
U1 is effective, and the actions (X,Γ,Φ) and (U,HU ,ΦU ) are isomorphic, so the action of Γ on X is
effective. That is, the kernel K0 ⊂ Γ of Φ is trivial, and Φ: Γ → H0 is an isomorphism onto. To
avoid cumbersome notation, we will identify Γ = H0 and write the action as g · x = Φ(g)(x).

Now observe that

Γ`+1 = {g ∈ Γ | g · U`+1 = U`+1} = {g ∈ Γ` | g · U`+1 = U`+1} = (ΓU`
)U`+1

since g · U`+1 = U`+1 implies g · U` = U`, as U` is an adapted clopen set and U`+1 ⊂ U`.

We give the first step of the recursive argument. Define

(22) K1 ≡ ker {ΦU1
: Γ1 → H1 ⊂ Homeo(U1)} ⊂ Γ1 ⊂ Γ .

By assumption, the subgroup K1 is non-trivial.

Let Φ1
U1

: H1 × U1 → U1 denote the action of H1, and let (H1)U2 ⊂ H1 denote the elements of H1

which map U2 to itself. Then introduce the subgroup K ′2 ⊂ (H1)U2
of elements which restrict to the

identity on U2. Then we have:

K ′2 = ker
{

Φ1
U2

: (H1)U2 → Homeo(U2)
}

= ker
{

Φ1
U2

: (H1)λ(U1) → Homeo(λ(U1))
}

(23)

= ker
{

Φ1
U2

: Θ(Γ)λ(U1) → Homeo(λ(U1))
}

= Θ (ker {ΦU1
: ΓU1

→ Homeo(U1)}) = Θ(K1) ,

where the last equality follows using the isomorphism of (X,Γ,Φ) with (U1, H1,Φ
1).

By assumption K1 is a non-trivial subgroup, so by (23) we have K ′2 = Θ(K1) is also non-trivial.
That is, if g ∈ K1 ⊂ Γ1 is not the identity, then g acts non-trivially on U0 = X and restricts to
the identity on U1 by the definition (22) of K1. Thus, h = Θ(g) ∈ H1 acts non-trivially on U1 and
restricts to the identity on U2. Since H1 = ΦU1

(Γ1), there exists g′ ∈ Γ1 such that ΦU1
(g′) = h. We

have found g′ ∈ Γ1, such that g′ /∈ K1 and g′ ∈ K2. Therefore, K1 is a non-trivial proper subgroup
of K2.

Set K` = ker{ΦU`
: Γ` → Homeo(U`)} for ` ≥ 2, then by repeating the above arguments in (23),

we have K` ⊂ K`+1 ⊂ Γ is a proper inclusion for all ` ≥ 1. As the diameter of the sets U` tends
to 0 as ` increases, given any adapted set V ⊂ X for the action Φ, there exist ` > 0 and γ ∈ Γ
such that O = γ · U` ⊂ V . This implies that the dynamics of Γ` acting on U` is conjugate to the
restricted action of ΓV on the adapted clopen set O. Thus, there exists some element γ′ ∈ Γ such
that γ′ ·O = O and the action of Φ(γ′) restricted to O is non-trivial, but restricts to the identity on
some open set that is a translate of U`+1 in O. Thus, the action Φ is not locally quasi-analytic. �

We have the following consequence of the above proof of Proposition 7.3, which yields a proof of the
second conclusion of Theorem 1.6.

PROPOSITION 7.4. Suppose that the Cantor action (X,Γ,Φ) is renormalizable and locally quasi-
analytic, then the action is isomorphic to an action (Xϕ,Γ,Φϕ) associated to a renormalization
ϕ : Γ→ Γ, and in particular Γ is renormalizable.
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Proof. From the proof of Proposition 7.3, Gλ = {G` | ` ≥ 0} is the group chain associated to the
adapted neighborhood basis Uλ ≡ {U` | ` ≥ 0} at xλ for the action Φ. Let (Xλ,Γ,Φλ) be the Cantor
action associated to this group chain, as in Section 3 (see also [13, 20, 21].) It follows from the
results of these papers that the Cantor action (X,Γ,Φ) is isomorphic to the action (Xϕ,Γ,Φϕ).

The action (X,Γ,Φ) is quasi-analytic by Proposition 7.3, so we have isomorphisms Γ` ∼= H`, and in
particular the composition ϕ ≡ Φ−1

U1
◦Θ: Γ→ Γ is a proper inclusion with image Γ1 ⊂ Γ a subgroup

of finite index. Thus, ϕ is a renormalization of Γ whose associated Cantor action is isomorphic to
(X,Γ,Φ), as was needed to show. �

We next consider the invariance under continuous orbit equivalence for the renormalization property
of a Cantor action. We first give the proof of Theorem 1.8, which relies on results in the works [36, 37].

7.1. Proof of Theorem 1.8. Assume that (X,Γ,Φ) is renormalizable Cantor action which is locally
quasi-analytic, hence is quasi-analytic by Proposition 7.3. Let (X′,Γ′,Φ′) be a Cantor action which is
continuously orbit equivalent to (X,Γ,Φ). By Proposition 7.4, there exists a proper self-embedding
ϕ : Γ → Γ such that the action (X,Γ,Φ) is isomorphic to the action (Xϕ,Γ,Φϕ). We may thus
assume that the Cantor actions (Xϕ,Γ,Φϕ) and (X′,Γ′,Φ′) are continuously orbit equivalent, where
(Xϕ,Γ,Φϕ) is quasi-analytic. Then Theorem 6.9 of [37] implies that (X′,Γ′,Φ′) is locally quasi-
analytic.

The hypotheses of Theorem 1.5 in [36] are then satisfied, so that (Xϕ,Γ,Φϕ) is return equivalent
to (X′,Γ′,Φ′). Thus, there exists adapted sets V ⊂ Xϕ for the action (Xϕ,Γ,Φϕ) and V ′ ⊂ X′ for
the action (X′,Γ′,Φ′) so that the restricted actions (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) are isomorphic,
where HV = ΦV (ΓV ) ⊂ Homeo(V ) and H ′V ′ = Φ′V ′(Γ′V ′) ⊂ Homeo(V ′).

Let xϕ ∈ Xϕ denote the fixed-point for the contraction λϕ : Xϕ → Xϕ. The action (Xϕ,Γ,Φϕ) is
minimal, so by conjugating by an element of Γ, we can assume that xϕ ∈ V .

Let h : V → V ′ be a homeomorphism, and Θ: HV → H ′V ′ a group isomorphism, which realizes the
isomorphism between (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) as in Definition 2.6.

For the action (Xϕ,Γ,Φϕ), we have an adapted neighborhood basis {U` = λ`(Xϕ) | ` ≥ 0} and a
group chain Gϕ = {Γ` = ϕ`(Γ) | ` ≥ 0} as before.

Choose `0 > 0 sufficiently large so that U`0 ⊂ V and h(U`0) ⊂ V ′. Then set W = U`0 . Note that
λϕ(U`) = U`+1 for all ` ≥ 0, so W1 = λϕ(W ) ⊂ W . Set W ′ = h(W ) ⊂ V ′ and W ′1 = h(W1) ⊂ W ′.
Then the restriction of ϕ to ΓW = Γ`0 yields a proper self-embedding ϕW : ΓW → ΓW .

Since the action (Xϕ,Γ,Φϕ) is quasi-analytic, the map ΦW : ΓW → HW is an isomorphism. Thus,
ϕW induces a proper self-embedding ϕ̂W : HW → HW . Then set H` = ϕ̂`W (HV ) for all ` ≥ 0. It
then follows from the constructions that the Cantor action (W,HW ,ΦW ) is isomorphic with the
Cantor action associated to ϕ̂W : HW → HW .

Finally, the isomorphism between (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) restricts to an isomorphism be-
tween (W,HW ,ΦW ) and (W ′, H ′W ′ ,Φ′W ′) which then defines a self-embedding of H ′W ′ . Thus, the
Cantor action (X′,Γ′,Φ′) is virtually renormalizable.

This completes the proof of Theorem 1.8.

7.2. Proof of Theorem 1.9. Let (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) be Cantor actions associated

to renormalizations ϕ : Γ → Γ and ϕ′ : Γ′ → Γ′, respectively. Assume that (Xϕ,Γ,Φϕ) and
(X ′ϕ′ ,Γ′,Φ′ϕ′) are continuously orbit equivalent. We must show that the discriminant groups Dϕ
and D′ϕ′ for these actions are isomorphic.

Theorem 4.4 implies the profinite actions Φ̂ϕ : G×Xϕ → Xϕ and Φ̂′ϕ′ : G′ ×X ′ϕ′ → X ′ϕ′ are quasi-

analytic, and so also the actions (Xϕ,Γ,Φϕ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) are quasi-analytic. Theorem 1.5 in

[36] then implies that the actions (X,Γ,Φ) and (X ′ϕ′ ,Γ′,Φ′ϕ′) are return equivalent.



CANTOR DYNAMICS OF RENORMALIZABLE GROUPS 15

Thus, there exist adapted sets V ⊂ X for the action (X,Γ,Φ) and V ′ ⊂ X′ for the action (X′,Γ′,Φ′)
so that the restricted actions (V,HV ,ΦV ) and (V ′, H ′V ′ ,Φ′V ′) are isomorphic, where recall that
HV = ΦV (ΓV ) ⊂ Homeo(V ) and H ′V ′ = Φ′V ′(Γ′V ′) ⊂ Homeo(V ′). As the actions are quasi-analytic,
the maps ΦV and Φ′V ′ are monomorphisms, hence are isomorphisms. Thus, the actions (V,ΓV ,ΦV )
and (V ′,Γ′V ′ ,Φ′V ′) are isomorphic, induced by a homeomorphism h : V → V ′.

Let DV denote the discriminant group for the restricted action (V,ΓV ,ΦV ). Then by the arguments
in [35, Section 4], there is a surjective map ρX,V : Dϕ → DV which is an isomorphism when the

profinite action Φ̂ϕ : G × Xϕ → Xϕ is quasi-analytic. Likewise, for the discriminant D′V ′ of the
action (V ′,Γ′V ′ ,Φ′V ′), there is an isomorphism ρX′,V ′ : Dϕ′ → D′V ′ .

The isomorphism class of the discriminant group is an invariant for isomorphism of Cantor actions,
so we conclude Dϕ ∼= DV ∼= D′V ′

∼= D′ϕ′ as claimed.

This completes the proof of Theorem 1.9.

8. Applications and Examples

The classification of renormalizations has applications in a variety of contexts.

For a compact manifold M without boundary, an expansive diffeomorphism φ : M → M gives rise
to a renormalization ϕ : Γ → Γ of the fundamental group Γ = π1(M,x). In this case, Shub showed
in [53] that the universal covering of M has polynomial growth type, and hence by Gromov [33]
the group Γ has a finite-index nilpotent subgroup. There are a variety of constructions of expansive
diffeomorphisms on nilmanifolds, and the invariants associated to the renormalization ϕ of Γ are
then invariants of the expansive map φ.

The construction of generalized Hirsch foliations in [8, 34] is based on choosing a renormalization
ϕ : Γ→ Γ of the fundamental group of a compact manifold M . Thus, invariants of the renormaliza-
tion yield invariants for this genre of foliated manifolds.

The classification of M -like laminations, where M is a fixed compact manifold, is reduced to the
classification of renormalizations in the work [11].

These applications are all based on the constructions of renormalizations for groups with the non-
co-Hopfian property. Many finitely generated nilpotent groups are renormalizable, as shown for
example in [7, 12, 15, 16, 17, 40]. There is also a variety of examples of renormalizable groups which
are not nilpotent, as described for example in [18, 24, 28, 29, 30, 46, 48, 55]. While these works
show the existence of a proper self-embedding for a particular class of groups, they do not calculate

the groups Dϕ and N̂ϕ which are associated to an embedding ϕ by Theorem 5.3. In the following,
we make these calculations for a selected set of examples of renormalizable groups.

Example 8.2 calculates the discriminant Cantor group Dϕ and the induced map ϕ̂ : Dϕ → Dϕ for
an “untwisted” embedding ϕ : H → H of the Heisenberg group H. The work [42] has a discussion
of twisted and untwisted subgroups of the Heisenberg group.

Section 8.3 gives an example of a renormalizable group that arises in the study of arboreal repre-
sentations of absolute Galois groups of number fields.

8.1. Multihedral groups. This is the simplest example of a group Γ with self-embedding and
non-trivial finite discriminant group Dϕ ⊂ Γ.

Let Λ = Zk be the free abelian group on k generators. Let H ⊂ Perm(k) be a non-trivial subgroup
of the finite symmetric group Perm(k) on k symbols, and let Perm(k) ⊂ GL(k,Z) be the standard
embedding permuting the coordinates.
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Let Γ = Zk o H be the semi-direct product of these groups. For m > 1, define ϕ : Γ → Γ to be
multiplication by m on the Zk factor. That is, for (~v, g) ∈ Γ set ϕ(~v, g) = (m · ~v, g). Then

Γ` = {(m` · ~v, g) | ~v ∈ Zk , g ∈ H} = m`Zk oH(24)

K(Gϕ) = {(0, 0, g) | g ∈ H} ∼= H .(25)

where Gϕ = {Γ` | ` ≥ 0}. Then we have Xϕ
∼= Ẑkm. The subgroup H acts on Xϕ by permutations

of the coordinates, so the adjoint action on Xϕ of a non-identity element g ∈ H is a non-trivial
permutation of the coordinate axes, hence is non-trivial. Thus, the normal core C(Gϕ) ⊂ K(Gϕ) is
trivial, and we have K(Gϕ) ⊂ Dϕ. Thus, a calculation shows that the normal core C` ⊂ Γ` is the
subgroup of (24) where g = e ∈ H is the identity, so Γ`/C` ∼= H for all ` > 0. Thus, Dϕ ∼= H. Also,

the subgroup N̂ϕ is the product of k copies of Ẑm, or the m-adic k-torus.

Observe that the map ϕ restricts to the identity on the subgroup H, while ϕ acts as multiplication
by m on the normal subgroup Zk. Thus, ϕ̂ : Dϕ → Dϕ in Theorem 5.3.3 is the identity map, and

ϕ̂ : N̂ϕ → N̂ϕ in Theorem 5.3.2 is induced by coordinate-wise multiplication by m on Zk.

8.2. Nilpotent endomorphisms. The 3-dimensional Heisenberg group H is the simplest non-
abelian nilpotent group, and we give a self-embedding for which Dϕ is non-trivial, and in fact is
a Cantor group. This example is a special case of the general construction for self-embeddings of
2-step nilpotent groups given in Lee and Lee [40]. More generally, group chains in H were studied
in detail by Lightwood, Şahin and Ugarcovici in [42], where they give a complete description for
the subgroups of H and a characterization of which subgroups are normal. Group chains in H
whose discriminant invariant is a Cantor group were constructed by Dyer in her thesis [19], and
also described in [20, Example 8.1]. In the following, we construct such a group chain realized via a
self-embedding of H.

Let H be represented as (Z3, ∗) with the group operation ∗, so for x, u, y, v, z, w ∈ Z we have,

(26) (x, y, z) ∗ (u, v, w) = (x+ u, y + v, z + w + xv) , (x, y, z)−1 = (−x,−y,−z + xy) .

This is equivalent to the upper triangular representation in GL(Z3). In particular, we have

(27) (x, y, z) ∗ (u, v, w) ∗ (x, y, z)−1 = (u, v, w + xv − yu) .

For integers p, q > 0 define ϕ : H → H by a self-embedding by ϕ(x, y, z) = (px, qy, pqz). Then

H` = ϕ`(H) = {(p`x, q`y, (pq)`z) | x, y, z ∈ Z} .

Observe that the intersection ∩`>0 H` = {e}. Now assume that p, q > 1 are distinct prime numbers.
Formula (27) implies that the normal core for H` is given by

C` = core(H`) = {((pq)`x, (pq)`y, (pq)`z) | x, y, z ∈ Z} .

Thus, the finite group

(28) Q` = H/C` = {(x, y, z) | x, y, z ∈ Z/(pq)`Z} .

The profinite group Ĥ∞ is the inverse limit of the quotient groups Q` so we have

Ĥ∞ = {(x, y, z) | x, y, z ∈ Ẑpq}

with multiplication on each finite quotient induced given by the formula (27). To identify the
discriminant subgroup D∞ first note

H`/C` = {(p`x, q`y, 0) | x ∈ Z/q`Z, y ∈ Z/p`Z} ⊂ Q` ,(29)

H`+1/C`+1 = {(p`+1x, q`+1y, 0) | x ∈ Z/q`+1Z, y ∈ Z/p`+1Z} .(30)

The bonding map q`+1 : H`+1/C`+1 → H`/C` from the definition (12) for D∞ is induced from the
inclusion H`+1 ⊂ H` modulo quotient by

H`+1 ∩ C` = {(p`+1q`x, p`q`+1y, (pq)`+1z) | x, y, z ∈ Z} .
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Thus, in terms of the coordinates x, y in (30) the bonding map is given by

q`+1(x, y, 0) = (x mod q`Z, y mod p`Z, 0) .

It then follows by formula (12) that

(31) Dϕ ∼= D∞ = lim←− {q`+1 : H`+1/C`+1 → H`/C` | ` ≥ 0} ∼= Ẑq × Ẑp .

The induced map ϕ̂ : Dϕ → Dϕ is given by multiplication by p on Ẑq in the first x-coordinate, and

multiplication by q on Ẑp in the second y-coordinate, so that ϕ̂ acts as an isomorphism on Dϕ, as
asserted in Theorem 5.3.

Finally, consider the subgroup of Q` which is complementary to the subgroup H`/C`,

(32) N` = {(q`x, p`y, z) | x ∈ Z/p`Z, y ∈ Z/q`Z, z ∈ Z/(pq)`Z} ⊂ Q` .

The map ϕ induces a map on N` given by multiplication by p in the first x-coordinate, and multi-
plication by q in the second y-coordinate, so the action is nilpotent on N`. The inverse limit of the

groups N` is a subgroup of Ĥ∞ identified with

N̂ϕ ∼= Ĥ∞/D∞ ∼= {(x, y, z) | x ∈ Ẑp , y ∈ Ẑq , z ∈ Ẑpq} ,

and is a pro-nilpotent group as it has the finite nilpotent groups N` as quotients. Moreover, the

induced map ϕ̂ : N̂ϕ → N̂ϕ is a contraction, as asserted in Theorem 5.3.

Note that if we take p = q in the above calculations, so ϕ : H → H is the “diagonal expansion” by
p on the abelian factor Z2, then H2` ⊂ C`. So while each quotient H2`/C2` is non-trivial, its image
under the composition of bonding maps in (12) vanishes in H`/C`, hence Dϕ is the trivial group in
the inverse limit. Correspondingly, the inverse limit space Xϕ has a well-defined group structure.

8.3. Semi-direct product of dyadic integers with its group of units. This example can be
viewed as a more sophisticated version of Example 8.1. It arises, in particular, as the profinite arith-
metic iterated monodromy group associated to a certain post-critically finite quadratic polynomial,
as discussed in [44]. We give the most basic example in the following.

Let Γ̂ = Ẑ2 o Ẑ×2 , where Ẑ2 is the dyadic integers, and Ẑ×2 is the multiplicative group of dyadic

integers. Denote by a the topological generator of the abelian group Ẑ2, that is, a is identified with

([1]) ∈ Ẑ2, where [1] is the equivalence class of 1 in Z/2nZ, n ≥ 1.

Recall that Ẑ×2 is the automorphism group of Ẑ2. The multiplicative units in the 2-adic integers
can be computed by computing the units in Z/2nZ for any n, and taking the inverse limit (see [51,

Theorem 4.4.7]) so we have Ẑ×2 ∼= Z/2Z× Ẑ2. Here, Z/2Z is generated by ([−1]) ∈ Ẑ×2 , where [−1]
denotes the equivalence class of −1 in Z/2nZ for n ≥ 1, and the the second factor is generated by

([5]) ∈ Ẑ×2 , where [5] is the equivalence class of 5 in Z/2nZ for n ≥ 1. Denote these generators by b
and c respectively. Then let

Γ ∼= 〈a, b, c | b2 = 1, bab−1 = a−1, cac−1 = a5, bcb−1c−1 = 1〉,(33)

where b and c commute since they are generators of different factors of a product space.

Define a self-embedding ϕ : Γ→ Γ by setting ϕ(a) = a2, ϕ(b) = b and ϕ(c) = c. That is, we have

Γ1 = ϕ(Γ) ∼= 〈a2, b, c | b2 = 1, ba2b−1 = a−2, ca2c−1 = (a2)5, bcb−1c−1 = 1〉,

and so we obtain a group chain Γ` = 〈a2`

, b, c〉, ` ≥ 1. The discriminant group of the action defined
by this group chain was computed in [44, Section 7]. In particular, computing the normal cores of

the subgroups Γ` we obtain C` = 〈a2`

, c2
`−2〉 ⊂ Γ`, and it follows that

Dϕ = lim
←−
{Γ`+1/C`+1 → Γ`/C`} ∼= Ẑ×2 .
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9. Problems

The study of the properties of the dynamical systems of the form (Xϕ,Γ,Φϕ) suggest the following
approach to the classification problem for renormalizable groups and their proper self-embeddings.

PROBLEM 9.1. Classify the structure of renormalizable groups Γ which satisfy:

(1) Dϕ is the trivial group;
(2) Dϕ is a finite group;
(3) Dϕ is a Cantor group.

Case (1) is discussed further in Section 9.1 below. There are numerous and varied constructions of
examples of case (2), where Dϕ is a finite group. See Section 8.1 for some typical examples.

The most interesting problems arise for case (3), where Dϕ is a Cantor group. Theorem 1.2 implies
that all of the direct limit group invariants for Cantor actions defined in [37] are bounded for these
examples. Thus, the problem is to refine the invariants constructed from the adjoint action of Dϕ
on the pro-nilpotent normal subgroup N̂ϕ ⊂ Γ̂ϕ to distinguish these various examples. Note that if
the group chain Gϕ has trivial intersection, then the intersection Dϕ ∩ Γ is trivial, so the invariants

constructed using the adjoint action of Dϕ are only “seen” when considering the action of Γ̂ϕ.

9.1. Renormalizable nilpotent groups. Suppose that Γ admits a renormalization ϕ : Γ → Γ,
such that each of the subgroups Γ` = ϕ`(Γ) is a normal subgroup of Γ. Then the third author
showed in the work [54] that the quotient Γ/C(Gϕ) must be free abelian. In particular, if the group
chain Gϕ = {Γ` | ` ≥ 0} has trivial intersection, then Γ is free abelian. Theorem 1.1 is a more
general form of this result, where the assumption that Gϕ has finite discriminant implies that Γ is
virtually nilpotent.

The remarks at the end of Section 8.2 show that Dϕ is trivial when p = q for the construction in
Section 8.2. In fact, these remarks apply in general to the diagonal action on the nilpotent subgroup
of upper triangular integer matrices, where ϕ is given by multiplication by a constant factor p on
the super-diagonal entries; that is, those directly above the diagonal. This suggests that the non-
triviality of the discriminant invariant Dϕ for an endomorphism of a nilpotent group is a measure
of the “asymmetry” of the embedding ϕ. It is an interesting problem to make this statement more
precise for the general nilpotent group.

PROBLEM 9.2. Let Γ be a finitely generated torsion free nilpotent group, and ϕ a renormalization
such that Gϕ = {Γ` | ` ≥ 0} has trivial intersection. Develop the relationship between the properties
of the discriminant group Dϕ, the embedding ϕ, and the nilpotent structure theory of Γ, as developed
for example in [12, 17].

9.2. Algebraic invariants. The reduced group C∗-algebra C∗r (Xϕ,Γ,Φϕ) obtained from the group
action (Xϕ,Γ,Φ) is a source of invariants for the group Γ and the embedding ϕ. In the case when
Γ = Zn is free abelian, the work [26] shows that the ordered K-theory of this C∗-algebra is a complete
invariant of the action. It is natural to ask whether similar results are possible in more generality:

PROBLEM 9.3. Let Γ be a finitely generated nilpotent group, and ϕ a renormalization of Γ. What
information about the nilpotent structure constants of Γ and the embedding ϕ is determined by the
K-theory groups K∗(C

∗
r (Xϕ,Γ,Φϕ))?

Note that by Theorem 1.9, the isomorphism class of the discriminant group Dϕ is an invariant of the
continuous orbit equivalence class of the Cantor action (Xϕ,Γ,Φϕ), and the isomorphism class of
C∗r (Xϕ,Γ,Φϕ) is also invariant. It seems natural that these two invariants should be closely related.

PROBLEM 9.4. Let Γ be a renormalizable group. How does the algebraic structure of C∗r (Xϕ,Γ,Φϕ)
reflect the properties of the profinite group Dϕ?
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Theorem 5.3 shows that the profinite group Γ̂ϕ is a semi-direct product with Dϕ as a factor. One

approach to Problem 9.4 would be to relate the decomposition Γ̂ϕ ∼= N̂ϕ o Dϕ in Theorem 5.3 to
the algebraic structure of C∗r (Xϕ,Γ,Φϕ).

9.3. Realization. Given any pro-finite group D which is topologically countably generated, it was
shown in [35, 37], using the Lenstra method, that there exists a finitely generated group Γ and
Cantor action (X,Γ,Φ) whose discriminant is isomorphic to D.

PROBLEM 9.5. Let Γ be a renormalizable group which is not virtually nilpotent, so the discrim-
inant invariant Dϕ is a Cantor group. What profinite groups can be realized as the discriminant
group for a Cantor actions associated to a renormalization of Γ?

9.4. Renormalizable Cantor actions. A Cantor action (X,Γ,Φ) such that the group Γ̂ϕ ⊂
Homeo(X) is not locally quasi-analytic, and such that for every ` ≥ 0 the kernel ker Φ` is a fi-
nite group, are called wild of finite type in the work [37] of the first two authors. Examples of wild
actions constructed by the same authors in [35] are of finite type. However, the examples in [35] are
not renormalizable.

PROBLEM 9.6. Do there exist renormalizable Cantor actions which are wild of finite type?

PROBLEM 9.7. Suppose that (X,Γ,Φ) is a renormalizable Cantor action which is not quasi-
analytic. What can be said about the algebraic properties of Γ? For example, must Γ have exponential

growth type? What can be said about the profinite group Γ̂ϕ ⊂ Homeo(X) for such actions?

9.5. Representations of Galois groups. The works of the second author [43, 44] define the
discriminant invariants associated to arboreal representations of absolute Galois groups for number
fields and function fields. Such a representation is a profinite group, obtained as the inverse limit
of finite Galois groups, which act on finite extensions of the ground field, obtained by adjoining the
roots of the n-th iteration of the same polynomial, for n ≥ 1.

The example given in Section 8.3 is an example of an arboreal representation of an absolute Galois
group, which is isomorphic to a Cantor action associated to a renormalization. For many polynomials
the associated action is known to be not locally quasi-analytic [44] and, therefore, by Theorem 1.2
it cannot be associated to a renormalization of a group. This suggests the following problem:

PROBLEM 9.8. For which arboreal representations of absolute Galois groups does there exists a
dense finitely generated group Γ and a renormalization ϕ : Γ→ Γ, such that the arboreal representa-
tion of Γ is return equivalent to a Cantor action associated to (Xϕ,Γ,Φϕ)?

Although, as discussed above, many arboreal representations are not associated to an finite-index
embedding ϕ : Γ → Γ, since they are associated to a structure built using iterations of the same
polynomial, it is natural to look for a formalism similar to the non-co-Hopfian setting for the study
of these groups. This motivated the definition of renormalizable actions in Section 7, and suggest
the following interesting problem:

PROBLEM 9.9. Let (X,Γ,Φ) be an equicontinuous minimal Cantor action, and suppose that
(X,Γ,Φ) is renormalizable as in Definition 7.1. Develop a structure theory for the group obtained
as the closure of the action (X,Γ,Φ) in Homeo(X), analogous to Theorem 5.3.
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343, 1998.

[49] C. Reid, Endomorphisms of profinite groups, Groups Geom. Dyn., 8:553–564, 2014.
[50] J. Renault, Cartan subalgebras in C∗-algebras, Irish Math. Soc. Bull., 61:29–63, 2008.

[51] L. Ribes and P. Zalesskii, Profinite groups, Springer-Verlag, Berlin 2000.

[52] M. Sapir, Some group theory problems, Internat. J. Algebra Comput., 17:1189–1214, 2007.
[53] M. Shub, Expanding maps, In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif.,

1968), Amer. Math. Soc., Providence, R.I., 1970, 273–276.
[54] W. van Limbeek, Towers of regular self-covers and linear endomorphisms of tori, Geom. Topol., 22:2427–2464,

2018.

[55] W. van Limbeek, Structure of normally and finitely non-co-Hopfian groups, preprint, arXiv:1710.02179.

Steven Hurder, Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249), 851 S.

Morgan Street, Chicago, IL 60607-7045

Email address: hurder@uic.edu

Olga Lukina, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna,

Austria

Email address: olga.lukina@univie.ac.at

Wouter Van Limbeek, Department of Mathematics, University of Illinois at Chicago, 322 SEO (m/c 249),

851 S. Morgan Street, Chicago, IL 60607-7045

Email address: wouter@uic.edu


	1. Introduction
	2. Cantor actions
	2.1. Basic concepts
	2.2. The profinite model
	2.3. Equivalence of Cantor actions

	3. Renormalizable groups
	4. Regularity of Cantor actions
	5. Open embeddings
	6. Finite discriminant
	7. Renormalizable Cantor actions
	7.1. Proof of Theorem 1.8
	7.2. Proof of Theorem 1.9

	8. Applications and Examples
	8.1. Multihedral groups
	8.2. Nilpotent endomorphisms
	8.3. Semi-direct product of dyadic integers with its group of units

	9. Problems
	9.1. Renormalizable nilpotent groups
	9.2. Algebraic invariants
	9.3. Realization
	9.4. Renormalizable Cantor actions
	9.5. Representations of Galois groups

	References

