CANTOR DYNAMICS OF RENORMALIZABLE GROUPS
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ABSTRACT. A group I is said to be finitely non-co-Hopfian, or renormalizable, if there exists a
self-embedding ¢: I' — I' whose image is a proper subgroup of finite index. Such a proper self-
embedding is called a renormalization for I". In this work, we associate a dynamical system to a
renormalization ¢ of I'. The discriminant invariant D, of the associated Cantor dynamical system
is a profinite group which is a measure of the asymmetries of the dynamical system. If D, is a finite
group for some renormalization, we show that I'/C, is virtually nilpotent, where C, is the kernel
of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show
that the action associated to a renormalizable group is virtually renormalizable. We study the
properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an
invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable
Cantor action is an invariant of continuous orbit equivalence.

1. INTRODUCTION

A countable group T is co-Hopfian if every monomorphism ¢: I' — T is an isomorphism [4], and
is said to be non-co-Hopfian otherwise. If there exists a self-embedding ¢ whose image is a proper
subgroup of finite index, then T is said to be finitely non-co-Hopfian [55]. A proper self-embedding
@: I' = T with finite index is called a renormalization of I', in analogy with the case for I' = Z™. If
I' admits a renormalization, then it is said to be renormalizable.

The free abelian group Z" is renormalizable, as are many finitely generated nilpotent groups. There
are also many examples of renormalizable groups which are not nilpotent, as described for example
in [I8), 241 28], 291 [30] (46l 48] 55]. On the other hand, the free group Z*" = Z % --- xZ for n > 2
is non-co-Hopfian, but is not renormalizable. The classification of non-co-Hopfian groups in general
appears to be a difficult problem.

There is a related concept of a scale-invariant group, introduced by Benjamini (see [52] Section 9.2]).
A scale for T' is a descending chain of finite index subgroups & = {I'y | £ > 1} whose intersection is a
finite group, and such that for each ¢, there exists an isomorphism ¢y: I' — I'y. Benjamini asked if
a scale-invariant group must be virtually nilpotent? Nekrashevych and Pete [46, Theorem 1.1] gave
examples of scale-invariant groups which are not virtually nilpotent. In the same work, the authors
defined the notion of a strongly scale-invariant group, as a renormalizable group I' such that the
collection of subgroups {I'y = ¢¢(T") | £ > 0} is a scale for I'. Then [46, Question 1.1] asks if a strongly
scale-invariant group must be virtually nilpotent? The results of our work give a partial answer to
this question. We introduce a profinite group ﬁp naturally associated to a renormalization ¢, and
show in Proposition that ¢ induces an open embedding @ : ﬂ, — ﬁp. Corollary states that
if both the intersections Ny @*(I") and Nysg @S(ﬁa) are finite groups, then I' is virtually nilpotent.
In other words, we answer in the affirmative the question of Nekrashevych and Pete above under a
stronger assumption, that both I' and the profinite group @9 admit a scale.
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Our approach to the study of renormalizable groups is based on the study of the Cantor dynamical
systems naturally associated to their renormalizations. An action ®: T' x X — X is said to be
a Cantor action if T is a finitely generated group, X is a Cantor metric space, and the action
is minimal. The basic properties of Cantor actions are discussed in Section In Section (3} we
associate an equicontinuous Cantor dynamical system (X,,I',®,) to a renormalization ¢ of T
The renormalization map ¢ for I' induces a renormalization of the action of I', as explained in
Definitions [7.I] and [7.2} A key idea of this work is to study the regularity properties of the action,
as discussed in Section [4 which leads to a proof of the fundamental technical result Proposition

The discriminant invariant D of an equicontinuous Cantor action (X,T,®) is the profinite group
defined in Definition The isomorphism class of D depends only on the conjugacy class of the
action, and has other invariance properties [20, 21, 35, 37]. For the Cantor action (X,,I',®,)
associated to a renormalization ¢, its discriminant invariant is denoted by D, and is given by
formula which provides an effective way to calculate it. If I' is abelian, the discriminant D,, is
the trivial group for any renormalization.

Let C(G,) be the largest normal subgroup of the intersection K (Gy) = (N~ ¢*(I).
THEOREM 1.1. Let T" be a finitely generated group, and let ¢: T' — ' be a renormalization of T'.

(1) If D, is the trivial group, then I'/C(G,) is nilpotent.
(2) If Dy is a finite group, then I'/C(G,) is virtually nilpotent.

The proof of Theorem [L.1] given in Section [6] and uses Theorem [5.3] which is based on the results in
Reid [49], quoted as Theorem below, and Theorem and Proposition in this work.

We give an example in Section of a renormalization of the Heisenberg group for which D, is a
Cantor group. Thus, while the assumption that D, is finite is sufficient to conclude that I'/C(G,)
is nilpotent, it is not a necessary condition. On the other hand, there are renormalizations of the
Heisenberg group for which D,, is the trivial group. The known examples of renormalizations suggest
that it is an interesting problem to study the collection of all renormalizations for a given group I,
even for the simplest non-abelian nilpotent groups.

Next, we introduce some properties of the Cantor actions associated to renormalizations.

A Cantor action (X, G, ®) is free if for any g € T' which is not the identity, the action ®(g) has
no fixed points. The action is topologically free, as in Definition [2.1] if the set of points fixed by
at least one element of the group is a meager set. The notion of a quasi-analytic Cantor action,
as in Definition was introduced in the works [21l [35] as a generalization of the notion of a
topologically free action. The quasi-analytic property of a Cantor action is a fundamental property
of renormalizable groups and actions.

THEOREM 1.2. The Cantor action ®,: I' x X, — X, associated to a renormalization ¢ is
quasi-analytic. Hence, if the action ®, is also effective, then it is topologically free.

Given a Cantor action (X,T, ®), let ®(T') C Homeo(X) denote the image subgroup. If the action is
equicontinuous, then the closure &(®) = ®(I') C Homeo(X) in the uniform topology of maps is a
separable profinite group. This is discussed further in Section For the Cantor action (X, T, @)
associated to a renormalization ¢, we denote this closure by F . Then Theorem [4.4]implies that the

profinite action <I> I‘ x X, — X, is quasi-analytic, which 1mphes Theorem The quasi-analytic
property is used in the proof of the following, which is a restatement of Proposition

THEOREM 1.3. Let ¢ be a renormalization of the finitely generated group I'. Then ¢ induces an
injective homomorphism po: I'y — I'y, whose image is a clopen subgroup of T',.

This is proved in Section [5] where we use this to show Theorem which yields:

THEOREM 1.4. Let ¢ be a renormalization of the finitely generated group T', and @y : ﬁp — ﬁ(,

the induced contraction mapping on ﬁo. Then D, = m ?o (ﬁ(,).
n>0
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Theorems [I.1] and [T.4] yield an answer to the profinite version of the Nekrashevych-Pete question:
COROLLARY 1.5. Let ¢ be a renormalization of the finitely generated group T'. Suppose that

(1) K(G,)=[)¢'M) T , D= () &(T,) Ty
£>0 n>0

are both finite groups, then I' is virtually nilpotent, and if both are trivial, then T' is nilpotent.

The notion of isomorphism of Cantor actions, given in Definition [2.6] is a generalization of the usual
notion of conjugacy of topological actions. For I' = Z, isomorphism corresponds to the notion of
“flip conjugacy” introduced in the work of Boyle and Tomiyama [I0]. Return equivalence as given
in Definition [2.7] is a form of “virtual isomorphism” for equicontinuous Cantor actions.

The standard notion of continuous orbit equivalence for Cantor systems, as given in Definition [2.§
requires only that the orbits of two actions agree in a continuous manner. For a Cantor action
(X,, T, @), the isomorphism class of the reduced group C*-algebra C;(X,,T', ®,) and its K-theory
groups K, (C;(X,, T, ®,)), are invariants of its continuous orbit equivalence class. In particular,
they provide invariants of the conjugacy class of the renormalization ¢. For example, the limit
group invariants defined in [26] for I' = Z™ are of this form, and for I" nilpotent there are analogous
K-theoretic invariants of its renormalizations.

As mentioned above, our study of renormalizable groups naturally suggests a related notion, that
of a renormalizable equicontinuous Cantor action, as introduced in Definition It is modeled
on the concept of a renormalizable dynamical system, and also that of self-similar groups [45] and
percolation theory [52 Section 9.2]. We also introduce a variant of this notion in Definition
that of virtually renormalizable actions. The study of renormalizable Cantor actions is motivated,
in part, by the examples of Cantor actions defined recursively, in terms of the action of a finite
set of generators on a d-adic tree for d > 3, where there is an embedding ¢: I' — I' whose image
is a subgroup of the stabilizer group of a branch of a tree. The image ¢(I') C I' need not be of
finite index in I', even though the stabilizer group of a branch always has finite index in I'. The
following result shows that if an equicontinuous Cantor action is quasi-analytic, then it arises from
a renormalization of the acting group I'.

THEOREM 1.6. Let ¢ be a renormalization of I', then the Cantor action (X,,T', ®,) is virtually
renormalizable. Conversely, suppose that the equicontinuous Cantor action (¥X,T,®) is renormaliz-
able and locally quasi-analytic, then T is renormalizable, and there is a renormalization ¢ such that
(X,T, @) is isomorphic to (X,,I', ®,).

This is proved in Section [7} An equicontinuous Cantor action which is not locally quasi-analytic
must be wild, a notion introduced in the works [35] 36 37]. We thus obtain the following dichotomy:

COROLLARY 1.7. A renormalizable Cantor action (X,T',®@) is either quasi-analytic, and hence
T' is renormalizable, or the action is wild.

This result motivates the study of the invariants of renormalizable Cantor actions, both to under-
stand the invariants of the renormalization map, and to discover invariants of these actions which
distinguish between the quasi-analytic and wild cases of Corollary [I.7} Our final results in this work
considers their invariant properties under continuous orbit equivalence.

THEOREM 1.8. Let (X,T',®) and (X',T’,®’) be equicontinuous Cantor actions which are contin-
wously orbit equivalent. If (X,T, ®) is renormalizable and locally quasi-analytic, then (X',T7,®’) is
virtually renormalizable.

Theorems [1.6] and [I.8] combine to yield an important consequence, that the isomorphism class of the
discriminant group D,, associated to ¢ is an invariant of continuous orbit equivalence.

THEOREM 1.9. Let (X,,T',®,) and (X;,,F’,CI)ZP,) be equicontinuous Cantor actions associated
to renormalizations ¢: ' — T' and ¢': TV — T, respectively. If the actions are continuously orbit
equivalent, then the isomorphism class of their discriminants D, and Dfp, are isomorphic.
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Examples and applications of our results are discussed in Section [§]

Section |§| discusses open problems. In particular, the works [35] [37] study the relations between the
discriminant invariant for a Cantor action and the wild property for the action. It is an interesting
problem to further explore this relation for renormalizable actions, as these include many class of
branch groups and related constructions, as in [, [6] [45] [46] 47, [32].

2. CANTOR ACTIONS
In this section, we recall some of the properties of Cantor actions. A basic reference is [3].

2.1. Basic concepts. For an action ®: I' x X — X on a topological space X, let g - = ®(g)(x).

Let (%,T', @) denote an action ®: I' x X — X. The orbit of x € X is the subset O(z) = {g-z | g € T'}.
The action is minimal if for all z € X, its orbit O(x) is dense in X.

An action (X,T, ®) is equicontinuous with respect to a metric dx on X, if for all € > 0 there exists
d > 0, such that for all x,y € X and g € T we have dx(x,y) < 0 implies that dx(g-z,g-y) < e. The
property of being equicontinuous is independent of the choice of the metric on X.

An action (X, T, ®) is effective, or faithful, if the action homomorphism ®: I' — Homeo(X) has trivial
kernel. The action is free if for all x € X and g € G, g- = = x implies that g = e, the identity of the
group. The isotropy group of x € X is the subgroup

(2) Ip={gel|g-z=u}.
Let Fix(g) = {z € X | g - x = x}, and introduce the isotropy set

(3) Iso(®)={zeX|3gel, g#id, g-x=a}= ] Fix(g).
e#gel

DEFINITION 2.1. [0, 41, 50] (%X,T, ®) is said to be topologically free if Iso(®) is meager in X.

Note that if Iso(®) is meager, then Iso(®) has empty interior.

The notion of topologically free Cantor actions was introduced by Boyle in his thesis [9], and later
used in the works by Boyle and Tomiyama [I0] for the study of classification of Cantor actions, by
Renault [50] for the study of the C*-algebras associated to Cantor actions, and by Li [41] for proving
rigidity properties of equicontinuous Cantor actions.

Now assume that X is a Cantor space. Let CO(X) denote the collection of all clopen (closed and open)
subsets of X, which forms a basis for the topology of X. For ¢ € Homeo(X) and U € CO(X), the
image ¢(U) € CO(X). The following result is folklore, and a proof is given in [36, Proposition 3.1].

PROPOSITION 2.2. A Cantor action ®: T'x X — X is equicontinuous if and only if the orbit of
every U € CO(X) is finite for the induced action ®,: T' x CO(X) — CO(X%).

Let (X,T,®) be an equicontinuous Cantor action. We say that U C X is adapted to the action if
U is a non-empty clopen subset, and for any g € T', if ®(g)(U)NU # O then ®(g)(U) = U. The
proof of Proposition 3.1 in [36] shows that given z € X and a clopen set W with 2 € W, there is an
adapted clopen set U with x € U C W.

The key property of adapted sets, is that for U adapted, the set of “return times” to U,
(4) Iy={gel|g-UNU#0}

is a subgroup of I, called the stabilizer of U. Then for g,¢' € T" with g- U Ng' - U # () we have
g tg -U = U, hence g~'¢g’ € Ty. Thus, the translates {g-U | g € '} form a finite clopen
partition of X, and are in 1-1 correspondence with the quotient space Xy = I'/T'yy. Then T acts by
permutations of the finite set Xy and so the stabilizer group I'y C G has finite index. The action
of g € T' on Xy is trivial precisely when g is a stabilizer of each coset h - T'y, so g € Cy where
Cy = ﬂher h Ty ™! C Ty is the largest normal subgroup of I' contained in I'y;. The action of



CANTOR DYNAMICS OF RENORMALIZABLE GROUPS 5

the finite group Qu = I'/Cy on Xy by permutations is a finite approximation of the action of T on
X, and the isotropy group of the identity coset e - I'y is Dy =T'y/Cu C Qu.

DEFINITION 2.3. Let (X,T,®) be an equicontinuous Cantor action. A properly descending chain
of clopen sets U = {Uy, C X | £ > 0} is an adapted neighborhood basis at x € X for the action ®, if
x € Uppr C Uy for all £ > 0, each Uy is adapted to the action ®, and the intersection Ngso Uy = {x}.

Given z € X and ¢ > 0, Proposition implies there exists an adapted clopen set U € CO(X) with
x € U and diam(U) < e. Thus, one can choose a descending chain U of adapted sets in CO(X)
whose intersection is x, which shows the following:

PROPOSITION 2.4. Let (X,T,®) be an equicontinuous Cantor action. Given x € X, there exists
an adapted neighborhood basis U at x for the action ®.

2.2. The profinite model. Given an equicontinuous Cantor action (X,T", ®), let ®(I") C Homeo(X)
denote the image subgroup. Then the closure &(®) = ®(I') C Homeo(X) in the uniform topology
of maps is a separable profinite group. This group is identified with the Ellis group for the action,
as defined in [3], 22, 23]; see also [20, Section 2]. Each element g € &(®) is the uniform limit of a
sequence of maps {®(g;) | i > 1} C ®(T'). We sometimes denote the limit § by (g;).

For example, if G is an abelian group, then &(®) is a compact totally disconnected abelian group,
which can be thought of as the group of asymptotic motions of the system. When G is non-abelian,
the action closure B(®) can have much more subtle algebraic properties.

Let ®: &(®) x X — X denote the induced action of &(®) on X. For g € &(P) we write its action on
Xbyg-x= </IS(§) (z). If the action ®: G x X — X is minimal, then the group &(®) acts transitively
on X. Given x € X, introduce the isotropy group at =,

(5) (@), = {5 € B(G) | G- = o} C Homeo(X) ,
which is a closed subgroup of &(®), and thus is either finite, or is a Cantor group.

DEFINITION 2.5. The discriminant of an equicontinuous Cantor action (X,T',®) is D = &(P),_.

There is a natural identification X = &(®)/&(®), of left G-spaces, and thus the conjugacy class of
&(P), in &(P) is independent of the choice of . Thus, to be precise, D denotes the conjugacy class
of &(®) . If D is the trivial group, then X is identified with a profinite group, and the action is
free. However, there exists examples of free equicontinuous Cantor actions for which the group D is
non-trivial. The first such examples were constructed by Fokkink and Oversteegen in [25], Section 8],
and further examples are constructed in [2I], Section 10].

2.3. Equivalence of Cantor actions. We recall three notions of equivalence of Cantor actions
which we use in this work. The first and strongest notion is the following, as used in [I4, 36 [41]:

DEFINITION 2.6. Cantor actions (X;,T;,®;), fori = 1,2, are said to be isomorphic if there is
a homeomorphism h: X1 — X9 and a group isomorphism ©: 'y — 'y so that

(6) ®1(g) =h ' o ®1(6(g)) o h € Homeo(X;) for all g€ Ty .

The notion of return equivalence for equicontinuous Cantor actions is weaker than the notion of
isomorphism, and is natural when considering the Cantor systems in the works [35] [36] [37].

Throughout this work, by a small abuse of notion, for an equicontinuous Cantor action (X,T',®),
we use ®y to denote both the restricted action @y : I'y x U — U and the induced quotient action
&y Hy x U — U for Hy = ®(Gy) C Homeo(U).

DEFINITION 2.7. Equicontinuous Cantor actions (X,T, ®) and (X',I", ®') are return equivalent
if there exists an adapted set U C X for the action ® and an adapted set V. C X' for the action @',
such that the restricted actions (U, Hy, ®y) and (V, H{,,®},) are isomorphic.
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The notion of continuous orbit equivalence for Cantor actions was introduced in [9] [I0], and plays
a fundamental role in various approaches to the classification of these actions [50]. Consider the
equivalence relation on X defined by an action (X, G, ®),

(7) R(X, G, @) ={(,9 7)) [reX,ge G} CXxX.

Given actions (X,G, ®) and (X', H, V), we say they are orbit equivalent if there exist a bijection
h: X — X' which maps R(X, G, ®) to R(X’, H, V), and similarly for the inverse map h~1.

DEFINITION 2.8. Let (X,G,®) and (X', H, V) be Cantor actions. A continuous orbit equivalence
between the actions is a homeomorphism h: X — X' which is an orbit equivalence, and satisfies the
locally constant properties:

(1) for each x € X and g € G, there exists a(g,x) € H and an open set x € U, C X such that

(2) for each y € X' and k € H, there exists B(k,y) € G and an open set y € V, C X' such that
®(B(k,y)) o h|Vy = hoW(k)|V,.

Note in particular that these conditions imply that the functions a: GxX — H and 8: Hx X' — G,
defined by (1) and (2) in Definition are continuous, as the groups G and H have the discrete
topology. However, additional hypotheses are required to conclude that the maps « and [ are
cocycles over the actions. The works [14] 36, [41] discuss these notions of equivalences as they apply
to equicontinuous Cantor actions.

3. RENORMALIZABLE GROUPS

In this section, we construct the Cantor action (X, T', ®,) associated to a renormalization ¢: I' = T,
and give some of the basic properties of this action.

Set I’y =T, and for £ > 1, recursively define subgroups I'y C T', where T'y = p(T'y—1) = goé(I‘).

Let G, = {I'y | £ > 0} denote the descending group chain, where each I'y has finite index in T'.
Denote the intersection of the group chain by K(G,) = (1,50 e If K(G,) is a finite group, then
the group T is said to be strongly scale-invariant, in the terminology of Nekrashevych and Pete [46].

Let X, = I'/T'y be the finite coset space. Note that X, is not necessarily a group, as the subgroup I'y
is not assumed to be normal in I'. Note that I" acts transitively on the left on X, and the inclusion
T'¢yy1 C Ty induces a natural I'-invariant quotient map pyy1: Xey1 — Xy¢. The inverse limit space

(8) Xp =1lim {pry1: Xep1 = X¢ [ £ >0}

with the Tychonoff topology is a Cantor space. The actions of I' on the factors X, induce a minimal
equicontinuous action on X, denoted by ®,: I' x X, — X, or by (X,,T', D).

Let f C Homeo( ) denote the closure of the image ® ( ). That is, [, = &(® o) as defined in

Sectlon The 1somorphlsm class of the profinite group I‘gp is an 1nvar1ant of the conjugacy class
in Homeo( ») of the action @,

Let G denote the profinite completion of I'. Then there is a homomorphism ¢ : I' — G with dense
image, and the kernel of 1 is the group N (¢) given by the intersection of all normal subgroups of finite
index in T'. Thus, N(¢) is trivial exactly when the group I is residually finite. The map ®,: I' — F
induces a surjective map <I> G — I‘ of profinite groups, and an action <I> G x X, — X

The embedding ¢ induces a mapping denoted by A,: X, — X, which is defined as the shift
map on sequences as follows. A point z € X, is defined by an equivalence class of sequences
Z = (90,91, g2, - - .) with each gy € T" satisfying the relations g = go+1 mod I’y for all £ > 0. Then
Ao (Z) = (e,0(90), ¢(g1), ©(g2), . ..) is well-defined, and is a contraction on X,. Let z, € X, be the
unique fixed point for A,. Then z, = (e, e,e,...) where e € I is the identity.
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Let G, = G, C G denote the isotropy subgroup for z, of the action d,, and let N(®,) C G
denote the kernel of the action map ®,. Then N(®,) C G, and we have:

LEMMA 3.1. The discriminant group D, of (X,,I',®,) is D, = 5@((}@) C ﬁp.

For k > 0, define
9) Uw={(90,91.92,...) € X | gs =efor 0 <i <k} :yLn {pe+1: Tk/Toy1 = Tx/Te | £ >k},

which is a clopen subset of X, adapted to the action ®,, with stabilizer subgroup I'y, = I'i.

Recall that the proper embedding ¢: I' — T' induces a contraction mapping A,: X, — X, and
observe that A,: Uy = Upq1 is a homeomorphism onto for all £ > 0. The clopen sets {U, | k > 0}
form an adapted neighborhood basis at =, = [,~, U which is the unique fixed point for \,.

As the orbit of z, is dense in X, for any non-empty open subset U C X there exists g € I' so that
®(g)(z,) € U. It follows that there also exists £ > 0 such that ®(g)(Ux) C U.

For each ¢ > 1, let C; denote the largest normal subgroup (the core) of the stabilizer group I'y, so

(10) Cy = m gF5971 cry.

gel’
As T’y has finite index in I', the same holds for Cy. Observe that for all £ > 1, we have Cypy1 C Cy.
Introduce the quotient group @, = I'/C, with identity element e, € Q. There are natural quotient
maps qet+1: Qer1 — Qr, and we can form the inverse limit Cantor group

(11) To = Wm {qer1: Qeyr = Qe | £2 0} .

THEOREM 3.2. [20, Theorem 4.4] There is a natural isomorphism T : ﬁa — T'og which identifies
the discriminant group D, with the inverse limit group

(12) Doo = lim {ger1: Teg1/Coyr = Te/Cy [ £> 0} C T

There is an interpretation of the group D, as an asymptotic defect of the I'-action on X, which
we elaborate on. Suppose that I'y is a normal subgroup so that the quotient I'/T" is a group. Then
I'/T, acts transitively on X, without fixed points. For example, if T is abelian then this is always
true. In general, for the normal core Cy C Ty, the finite group Q, = I'/C, acts transitively on X,
and the finite subgroup Dy, = T';/Cy is the “defect” for the action of Q; on X, being a free action.
Then D, is the inverse limit of these finite defects, and provides a measure of the deviation of the
action EI;OO of foo on X, from being free.

Associated to the group chain G, there are two subgroups,

(13) K(Gy)=(Te . CGy)= (19K (G, g "

£>0 ger

where C(G,,) is the largest normal subgroup of I' contained in K(G,). Note that for any g € C(G,,),
the action of ®,(g) on X, is trivial.

4. REGULARITY OF CANTOR ACTIONS

A Cantor space X is totally disconnected, so one cannot define the usual notions of regularity for an
action based on the derivatives of the action maps. There is an alternative approach, based on the
notion of quasi-analytic actions, which was introduced in the works [T} 2] by Alvarez Lépez, Candel,
and Moreira Galicia.

DEFINITION 4.1. An action ®: H x X — X, where H is a topological group and X is a Cantor
space, is said to be quasi-analytic (or QA) if for each clopen set U C X, if the action of g € H
satisfies ®(g)(U) = U and the restriction ®(g)|U is the identity map on U, then ®(g) acts as the
identity on all of X.
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If X is a Cantor group for which the action ® is defined by group multiplication, so that the action
is induced by a group homomorphism ®: H — X, then the action is quasi-analytic. A topologically
free action, as in Definition is quasi-analytic. Conversely, the Baire Category Theorem implies
that an effective quasi-analytic action of a countable group is topologically free [50, Section 3].

A local formulation of the QA condition actions was introduced in the works [21] B5], and has proved
very useful for the study of the dynamical properties of equicontinuous Cantor actions.

DEFINITION 4.2. An action ®: H x X — X, where H is a topological group and X a Cantor
metric space with metric dx, is locally quasi-analytic (or LQA), if there exists € > 0 such that for
any non-empty open set U C X with diam(U) < e, and for any non-empty open subset V. C U, if
the action of g € H satisfies ®(g)(V) =V and the restriction ®(g)|V is the identity map on V, then
®(g) acts as the identity on all of U.

Examples of equicontinuous Cantor actions which are locally quasi-analytic, but not quasi-analytic,
are given in [21] [35].

If (%X, H,®) is an equicontinuous Cantor action which is not quasi-analytic, then the isotropy group
defined in is non-trivial. On the other hand, there are actions with non-trivial isotropy group
that are quasi-analytic (see Section below, and the examples in [21]). Finally, we define:

DEFINITION 4.3. An equicontinuous Cantor action (X,T',®) is said to be stable if the associated
profinite action ®: ' x X — X is locally quasi-analytic. The action is said to be wild otherwise.

Now let ¢: I' = I' be a renormalization of the finitely generated group I'. We assume the notation
and results from Sections and In particular, X, is the Cantor space defined in , and
(X, T, @) is the associated equicontinuous Cantor action on this space. Let G denote the profinite

completion of I'. Its action on X, is denoted ff%: Gx X, — X,. Then f@ = </I;¢(G) C Homeo(X,),
and G, = G, is the isotropy group at z, of the action ®, of G on X,,.

THEOREM 4.4. Let T be a finitely generated group and ¢: ' — T’ a renormalization of I'. Then
the profinite action ®,: G x X, — X, is quasi-analytic.

Proof. Let g € G be such that &)@(g) acts non-trivially on X,. Suppose there exists a non-empty
open set U C X, such that ®,(g) acts on U as the identity.

The orbit of every point of X, is dense in X, under the action of I, so there exists h € I' such that
P, (h)(z,) € U. Set ¢’ = h™1gh so that <T><p(g’) fixes the open set U’ = ®,(h~1)(U). In particular,
&’w(g/ ) fixes x, and hence ¢’ € G,. Thus, we can assume without loss of generality that (ISS(,(g) acts
as the identity on U and z, € U, so that g € G.,.

The nested clopen sets U = {U, | ¢ > 0} form a neighborhood basis at x, so there exists some
ko > 0 such that U, C U for all k£ > kqg. Thus, for all k > kg we have )\k(X ycU.

The ernbeddlng @ induces a continuous embedding p: G - G, whose image is a clopen subgroup
denoted by V1 More generally, we have the clopen subset V1g (@) C G for £ > 0.

The isotropy group is G, = Ng>0 $°(G), so for g € G, and all £ > 0, the element g_, = $~“(g) € G
is defined. Thus g, = $*(g) is defined for all £ € Z. Here is the first key observation:

LEMMA 4.5. Let g € G, and suppose g acts trivially on Uy,, for some ko > 0. Then for all
0 > ko, we have that the action of $~%(g) € G on X, is trivial. In particular, for £ > ko, g—¢ € G,.

Proof. For x € X, and ¢ > 0, set 2y = )\f;(z). Choose g, € G such that ¢ = g, - G, via the
identification X, = G/Gy,; that is, x is represented in X, by the coset g,G,. Recall that under
this identification, for h € G the action of ®,(h) on X, becomes multiplication by h. That is,
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‘f)g;(h)(x) =h-9.G, =hgs - Gy,. As : G — G is a homomorphism, for £ > ko we calculate

(14) Dp(g-0)(@) = Be(@(9))(x)
= 77 (9)9: Gy
= ¢ 9@ 0@ (g) Gy
= 7 (99" (9:) - Gy)
Recall that that )\5, (z) € Uy and that :I\)(p(g) acts trivially on U, for £ > ko, so we have

(15) P (98" (9:) - Gp) = 0P (92) - Gy) = 92 Gy =
That is, &)w(g_g)(x) =z for all x € X, and £ > kg, as was to be shown. O

The second key observation required for the proof of Theorem @ is that for g € G, the equicontin-
wous action of @ »(9) on X, is approximated by the action on the finite quotient spaces X, for £ > 0.
That is, the assumption that </IS¢,(g) acts non-trivially on X, implies there exists some mgy > 0 such
that the induced action of C/I;g, (9) on X,y = I'/Gyy, is non-trivial for some mg > 0. Without loss

of generality, we may assume that mg > kg. Denote this action by &)mo (9) € Perm(X,,,), where
Perm(X,,,) is the finite group of permutations of the finite set X,,,,.

LEMMA 4.6. There exists an increasing sequence of integers
Amo :{0<€1 <€2<£3<"'}
such that $mo (9-¢,) = (T)mo (g) for alli>0.

Proof. Recall that the elements g, = $~%(g) were introduced above, where each g_, € G, by
Lemma Thus, we can define a mapping o: N — Perm(X,,,) by o(f) = @, (g—¢) for £ > 0.
Note that Perm(Xmo) is a finite set, so by the pigeonhole prmc1ple there exists some A € Perm(X,,,)
such that the set Ay = {A >0 | @mo (g—x) = A} is infinite. Let A\g € A4 be the least value for the
set, then set
Ao ={li=Xi = Xo | Ni € Au}.

Then note that @y (g—r,) = Prmg (9—to) = Prmg (90) = Py (9), as was to be shown. O
We can now complete the proof that the action &@,: G x X, — X, is quasi-analytic. If not, then
there exists g € G such that <f>¢(g) acts non-trivially on X, and a non-empty open set U C X,
such that ® »(g) acts on U as the identity. Then by Lemma there exists x € X, such that
<I>¢( )(z) # x, while <I>m0 (g—¢;)(x) = x for ¢; > ko, which contradicts the conclusion of Lemma
Thus, the action of <I>¢ must be quasi-analytic. (|

Finally, note that Theorem shows that the profinite action (X, ﬁp, </15¢) is quasi-analytic, so the
same holds for the action (X,,T", ®,) restricted to the image of I in G. Then the Baire Category
Theorem implies (see [36, Proposition 2.2] for example) that if a Cantor action ®: I' x X — X of a
countable group I is quasi-analytic and effective, then it is topologically free. It follows that if the
action ®,, is effective, then the action (X,,I", ®,) is topologically free, as asserted in Theorem

5. OPEN EMBEDDINGS

In this section, given a renormalization ¢, we consider properties of the open embeddings of the
profinite groups G and I', associated to the Cantor action (X,,I',®,). This results in a structure
theory for the profinite group I', that is the key to the proof of Theorem

The universal property of the profinite completion of a group implies that ¢ induces a homomorphism
denoted by @: G — G of the profinite completion G of I, whose image is a clopen subgroup of G.
We then have the following result of Reid [49], as formulated in [55] Theorem 3.10].
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THEOREM 5.1 (Reid [49]). There ezist closed subgroups C, C G and Q, C G so that:

(1) G=C, xQy, where Cy, is a pro-nilpotent normal subgroup of G;
(2) Cy, is p-invariant, and @ restricts to an open contracting embedding on Cy;
(3) Qu is p-invariant, and § restricts to an automorphism of Q..

Moreover, let € € G be the identity element, then we have

(16) Co={geG| lm 3"(9)=2} . Q.=[) &)

n>0

Theorem implies that for g € G, the action of $(g) on X, is locally determined. In particular,
the action ¢(g) is determined by its restriction to the clopen subset A,(X,). We use this fact to

show that ¢ descends to a homomorphism of ﬁp.

PROPOSITION 5.2. Let ¢ be a renormalization of the finitely-generated group T'. Then ¢ induces
an injective homomorphism @o: I'y, — T'y, whose image is a clopen subgroup of I',.

Proof. Recall that N ( ») C G is the kernel of the homomorphism <I> G — F C Homeo(X,,). By
the universal property of profinite completions, the embedding ¢: I' — I 1nduces a homomorphism
»: G — G. We claim that ¢ descends to a homomorphism

(17) Go: T, 2 G/N(®,) — Ty = G/N(D,) .

For g € N( »), observe that @(g) acts as the identity on the clopen subset U = Ay(X,,). As the
action q)@ is quasi-analytic, this implies that ¢(g) acts as the identity on X, and thus @(g) € N(®,,).
This shows that @(N (®,)) C N(®,) C G, and thus we have the composition of homomorphisms

(18) o: Ty = G/N(®,) = §(G)/B(N(D,)) = G/B(N(D,)) = G/N(D,) =T,

which defines the map . We claim that @g is injective. If not, let v € Fw such that @g(vy) = id.
That is, @o(7y) € I'y, acts as the identity on X,,. In particular, Po(7y) acts as the identity on A, (X,,),
so for x € X,

/\sa(x) = Po(7) - )‘q)(x) = /\tp(7 ‘) .

As )\, is an injection, we have v -z =« for all x € X, as was to be shown. a

We use the conclusions of Theorem [5.1] and Proposition [5.2] to obtain:

THEOREM 5.3. Let p: I' — ' be a renormalization for the finitely generated group T, with
associated Cantor action (X,, I, ®,). Let ff)w : Gx X, — X, be the action of the profinite completion
G of I, and set f =3 »(G) C Homeo(X,,). Let @p: F — I‘ be the embedding induced from .
Then there exists a closed pro-nilpotent normal subgroup N - F«p so that:

(Z) [ & N X Dy, is a semi-direct product;

(2) N¢ 18 cpo -invariant, and @ o restricts to an open contracting embedding on N(P,
3) Dy is po-invariant, and @o restricts to an automorphism of D,.
® o ®

Moreover, let € € ﬁp be the identity element, then we have

(19) m:{gefﬂnlggo Zrlg) =2 , Dy=[) &,

Proof. First, we show:

LEMMA 5.4. D, = 3,(Q,) C T
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Proof. Recall that the clopen neighborhoods Uy of x,, are defined by @D, and for each ¢ > 0 we have
Up = X, (X,,). For each £ > 0, define the clopen subset Uy = {y € 'y | ®,(7)(Us) = U} C T,
Also, recall that D, = {y € Fso | VT = Tot. As ¥y, = (5o Ur, we then have Dy, = (5 Uy, and
so Uy = (F ) where @p: I‘ — F was defined in Proposition

Recall that V; = 3*(G) C G, and thus Uy = <I>¢(W). Then we have

(200 Du(Qe) =2, [ (@ p=() 2@ (@) =) (Vi) =[) U =D,

>0 >0 >0 >0

as was to be shown. O

Next, set J/\h, = (ip(C@) C ﬁp which is a pro-nilpotent closed subgroup. Then by an argument
exactly analogous to the proof of Lemma we have

(21) No={yel,|lim gi(y)=cel,}.
£— 00
This completes the proof of Theorem ]

Note that the identities in Theorem identify the images of the groups C, and @, in
Homeo(X,,) in terms of the dynamical properties of the action @y on I'y,.

The conclusions of Theorem are illustrated in various examples of renormalizable groups and
self-embeddings in Section |8, and also by the examples in the works [46], 54, [55]. Moreover, the
conclusion that ¢ induces an automorphism of the discriminant group D, has applications to the
constructions of examples of Cantor actions using the Lenstra method as given in [35], Section 8.2].

6. FINITE DISCRIMINANT

We next consider the consequences of Theorem for D, a finite group. We first assume that
the discriminant group D,, is trivial, and show that the quotient group I'/C(G,,) is nilpotent, where

C(G,) is the normal core of the intersection K(G,) C I associated to G, as defined in (13)). Recall
that C (g¢) C I is identified with the kernel of the homomorphism ®,: I' = F C Homeo(X<p), and
that Qg : F — F was defined in Proposition

Note that ¢ restricts to an isomorphism of K(G,) by its definition, and so ¢ also maps C(G,)
isomorphically to itself, and thus induces an embedding ¢': I'/C(G,) — I'/C(G,). Then without
loss of generality, we can replace I' with I'/C(G,,), so can assume that ®,: " — ﬁa is an embedding,
ind idsntify r w/i\th its image ®,(I"). As we assume that D, is trivial, by Theorem we have
'y =2 N, where N, is a closed pro-nilpotent normal group.

Section 3 of the work [55] gives an overview of some of the structure theory of pro—nilpotent groups,
and we recall those aspects as requlred for the proof of Theorem (1.1} First, N admits a sphttmg

by [27, Theorem B] as N@ i N X Ntor where NOO is a torsion- free nilpotent group and Ntor is a
torsion group with bounded exponent, by results of [38]. We now claim:

LEMMA 6.1. If D, is trivial, then NM is the trivial group.

Proof. Let iy : ]\A@ — ]Vtor be the projection, then the image 7, (I') C ]Vtm« is dense.

The abelianization Etor of Ntor is an abelian group of bounded exponent, which is trivial if and
only if Ny, is trivial. By Priifer’s First Theorem (see § 24 of [39]), Ayoy is a possibly infinite direct
sum of cyclic groups. As I' is finitely generated, the image of I in Ay is finite rank and dense, and
therefore the abelianization /Ttor has finite rank. Thus, /Ttor is a direct sum of finitely many cyclic
groups, hence is a finite group.
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Note that the contraction mapping @: ﬁw — J\Afg, induces a contraction mapping Qo : J\A]to,. — ]VtOT.

The second part of Theorem B in Glockner and Willis [27] proves the existence of a Jordan-Holder
series for bounded exponent contraction groups with each composition factor a simple contraction
group. Here we say a contraction group with contraction « is simple if it has no nontrivial, proper
closed normal a-invariant subgroup. Further, the simple contraction groups are classified as shifts
on FYN where F is a finite simple group. By considering the first composition factor, we see that ]\Aftor
has a quotient of the form FY where F is a finite simple group. Since Nwr is solvable of bounded
exponent [49], we conclude that F is abelian. In particular thor has an infinite abelian quotient,
which contradicts the fact that Etor is a finite group, as shown previously. O

Now observe that by Lemma the group I' C ]\700 and JVOO is a torsion-free nilpotent group, thus
T is nilpotent. This concludes the proof of Theorem in the case where D, is trivial.

Next, assume that D, is a finite group. By Theorem we have D, = <£¢(Q¢) C ﬁ,, and its
intersection with N, = ®,(C,,) is the trivial subgroup. It follows that N, is a clopen subset of I'y,,
and so A, ='N N, is a dense subgroup of N,

The restriction of @y defines a contraction mapping @g: Kﬁp — JVLP. We can thus apply the above

arguments for the trivial discriminant case to the action of A, on J\A@, to conclude that the group
A, is nilpotent with finite index in I'. This completes the proof of Theorem

Finally, we give the proof of Corollary Assume that both D, and the subgroup K(G,) in
are finite groups. Thus its core C(G,) C K(G,) is also finite. Recall that in the above proof of
Theorem we replaced I' with the quotient I'/C(G,), and concluded that I'/C(G,) contains a
nilpotent subgroup of finite index. In the case where both groups D, and K(G,,) are trivial, then the
claim of the corollary follows directly from Theorem and the identification in [19] of D, with the
second intersection in (I3)). In the case where both groups are finite, we have that C(G,) is a finite
normal subgroup of I and I'/C/(G,,) contains a nilpotent subgroup of finite index, which implies that
I" contains a nilpotent subgroup of finite index. This completes the proof of Corollary

7. RENORMALIZABLE CANTOR ACTIONS

In this section, we introduce the notions of (virtually) renormalizable Cantor actions, and study
their regularity properties and invariants, yielding proofs of Theorems and

For a Cantor action (X,T, ®) and an adapted set U C X, note that Hy = ®(I'y) C Homeo(U) acts
faithfully on U, so (U, Hy, ®y) is always an effective action.

DEFINITION 7.1. A Cantor action (X,T, ®) is renormalizable if it is equicontinuous, and there
exists an adapted clopen set U C X such that the actions (X,T,®) and (U, Hy, ®y) are isomorphic
(as in Deﬁmtion by a homeomorphism A: X — U and group isomorphism ©: ' — Hy, and the
intersection Ng>o A(X) is a point.

For example, let (X,,T", ®,) be the Cantor action associated to a renormalization ¢ of I'. Suppose
the action is topologically free, then it is renormalizable, where A = A, and © = @y o p: I' = Hy
is an isomorphism. In general, for a renormalizable action, there is no requirement that the map
®y: Gy — Hy is injective, and so Hyy need not be identified with a subgroup of I'.

DEFINITION 7.2. A Cantor action (X,T", ®) is virtually renormalizable if is equicontinuous, and
there exists an adapted set V- C X such that the restricted action (V, Hy,®v) is renormalizable.

The class of virtually renormalizable actions is much more general than the renormalizable actions,
as it allows for the case when the action map ®: I' — Homeo(X) has a non-trivial kernel. In the
following, we show some properties of these actions. We first show:

PROPOSITION 7.3. Suppose that the Cantor action (X,T, ®) is renormalizable and locally quasi-
analytic, then it is quasi-analytic.
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Proof. We assume there is given a homeomorphism \: X — U and group isomorphism ©: I' — Hy
implementing an isomorphism of (X,T", ®) with (U, Hy, ®y) as in @
Suppose that the map ®y: 'y — Hy is injective, and hence is an isomorphism as it is onto by

the definition of Hy. Then the composition ¢ = <I>E,1 00: T — I' is a proper inclusion with image
I'y c . As U is adapted, 'y has finite index in I", and thus ¢ is a renormalization of T".

It thus suffices to show that if &y : I'y — Hy has a non-trivial kernel Ky C I', then the action ® is
not locally quasi-analytic, which yields a contradiction. We show this using a recursive argument.

Set Uy = X, then U = A(X) is a clopen set by assumption. Then recursively define clopen sets
Uy = X(Uy) C Uyp_y for £ > 0. The assumption in Definition that the intersection Ny>o A*(X) is
a point, labeled x) € X, implies that {U, | £ > 0} is an adapted neighborhood basis at .

Now set I'y = TI'y, for £ > 0, and let Hy = &y, (') C Homeo(Uy) for £ > 0. The associated group
chain G, = {Ty = ¢*(T') | £ > 0}. Then U; = U, and H; = Hy. Recall that as the action of H; on
U; is effective, and the actions (X,T', ®) and (U, Hy, @) are isomorphic, so the action of " on X is

effective. That is, the kernel Ko C I' of ® is trivial, and ®: I' — Hj is an isomorphism onto. To
avoid cumbersome notation, we will identify I' = H, and write the action as g - © = ®(g)(x).

Now observe that

Fepi={9€l|g- U1 =Ur} ={9€lv|g-Up1 =Ut1} = (T'v,)v.s
since g - Upy1 = Uy implies g - Uy = Uy, as Uy is an adapted clopen set and Uy C Up.
We give the first step of the recursive argument. Define
(22) K, = ker {®y,: Ty - H; C Homeo(U)} € Ty CT'.

By assumption, the subgroup K; is non-trivial.

Let <I>%,1: Hy, x Uy — U; denote the action of Hy, and let (Hy)y, C Hy denote the elements of H;
which map Uy to itself. Then introduce the subgroup K} C (Hy)y, of elements which restrict to the
identity on Us. Then we have:

(23) K} =ker {®,: (H1)y, — Homeo(Us)} = ker {®},: (Hi)\w,) — Homeo(A(Uy)
= ker {®f,: O(T) ) — Homeo(A(Uy)
= O (ker{®y,: I'y, — Homeo(U7)}) = O(K) ,
where the last equality follows using the isomorphism of (X,T, ®) with (Uy, Hy, ®!).

By assumption K is a non-trivial subgroup, so by we have K} = O(K;) is also non-trivial.
That is, if ¢ € K7 C I'y is not the identity, then g acts non-trivially on Uy = X and restricts to
the identity on U; by the definition of K;. Thus, h = ©(g) € H; acts non-trivially on U; and
restricts to the identity on Us. Since Hy = @y, (I'1), there exists ¢’ € I'y such that @y, (¢") = h. We
have found ¢’ € T'1, such that ¢’ ¢ K3 and ¢’ € K. Therefore, K; is a non-trivial proper subgroup
of KQ.

Set K; = ker{®y,: I'y — Homeo(U,)} for £ > 2, then by repeating the above arguments in ,
we have Ky C Ky 1 C I' is a proper inclusion for all £ > 1. As the diameter of the sets U, tends
to 0 as ¢ increases, given any adapted set V' C X for the action ®, there exist £ > 0 and v € T’
such that O =~ - Uy, C V. This implies that the dynamics of I'y acting on Uy is conjugate to the
restricted action of Iy on the adapted clopen set O. Thus, there exists some element 7/ € I" such
that 7" - O = O and the action of ®(v') restricted to O is non-trivial, but restricts to the identity on
some open set that is a translate of Uy in O. Thus, the action ® is not locally quasi-analytic. O

We have the following consequence of the above proof of Proposition [7.3] which yields a proof of the
second conclusion of Theorem [L.6l

PROPOSITION 7.4. Suppose that the Cantor action (X,T, ®) is renormalizable and locally quasi-
analytic, then the action is isomorphic to an action (X,,I',®,) associated to a renormalization
p: I' = T, and in particular ' is renormalizable.
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Proof. From the proof of Proposition Gy = {Gy | £ > 0} is the group chain associated to the
adapted neighborhood basis Uy = {U, | £ > 0} at x for the action ®. Let (X, T, ®,) be the Cantor
action associated to this group chain, as in Section [3| (see also [I3] 20 21].) It follows from the
results of these papers that the Cantor action (X,T', ®) is isomorphic to the action (X,,T', ®,).

The action (X,T, ®) is quasi-analytic by Proposition so we have isomorphisms I'y & Hy, and in
particular the composition ¢ = <I>511 00O: T = I is a proper inclusion with image I'y C I' a subgroup
of finite index. Thus, ¢ is a renormalization of I' whose associated Cantor action is isomorphic to
(%,T,®), as was needed to show. O

We next consider the invariance under continuous orbit equivalence for the renormalization property
of a Cantor action. We first give the proof of T heorem which relies on results in the works [36}, 37].

7.1. Proof of Theorem Assume that (X,T", ®) is renormalizable Cantor action which is locally
quasi-analytic, hence is quasi-analytic by Proposition Let (X', T7, ®’) be a Cantor action which is
continuously orbit equivalent to (X,T", ®). By Proposition there exists a proper self-embedding
@: ' = T such that the action (X,T',®) is isomorphic to the action (X,,I',®,). We may thus
assume that the Cantor actions (X,,T', ®,) and (X’,I”, ®’) are continuously orbit equivalent, where
(X4, T, ®,) is quasi-analytic. Then Theorem 6.9 of [37] implies that (X',I”,®’) is locally quasi-
analytic.

The hypotheses of Theorem 1.5 in [36] are then satisfied, so that (X,,I",®,) is return equivalent
to (X',I",®’). Thus, there exists adapted sets V' C X, for the action (X,,I',®,) and V' C X’ for
the action (X',I”, ®’) so that the restricted actions (V, Hy, ®v) and (V', H{,,, ®,,) are isomorphic,
where Hy = @y (I'y) C Homeo(V) and H{,, = @}, (I'{,/) C Homeo(V").

Let z, € X, denote the fixed-point for the contraction A,: X, — X,. The action (X,,I',®,) is
minimal, so by conjugating by an element of I', we can assume that z, € V.

Let h: V — V' be a homeomorphism, and ©: Hy — H{,, a group isomorphism, which realizes the
isomorphism between (V, Hy, ®y) and (V’, H{,,, ®{,,) as in Definition

For the action (X,,I',®,), we have an adapted neighborhood basis {U, = \(X,,) | £ > 0} and a
group chain G, = {T'y = p*(I") | £ > 0} as before.

Choose ¢y > 0 sufficiently large so that Uy, C V and h(U,,) C V’'. Then set W = Uy,. Note that
Ap(Up) = Upyqq for all £ >0, so Wi = A, (W) C W. Set W = h(W) C V' and W = h(W1) C W',
Then the restriction of ¢ to I'yy =I'y, yields a proper self-embedding ¢w : I'yy — T'w.

Since the action (X,,T', ®,) is quasi-analytic, the map ®w : I'yy — Hy is an isomorphism. Thus,
ow induces a proper self-embedding gy : Hw — Hw. Then set H, = QE%V(HV) for all £ > 0. It
then follows from the constructions that the Cantor action (W, Hy, ®w) is isomorphic with the
Cantor action associated to ow : Hy — Hw .

Finally, the isomorphism between (V, Hy, ®y) and (V', H{,,, ®,,) restricts to an isomorphism be-
tween (W, Hy, ®w) and (W', Hyy,, ®};,,) which then defines a self-embedding of Hj;,. Thus, the
Cantor action (¥/,T”,®') is virtually renormalizable.

This completes the proof of Theorem [1.8

7.2. Proof of Theorem Let (X,,I',®,) and (X[,,I",®,) be Cantor actions associated
to renormalizations ¢: I' — I and ¢’: I' — TI”, respectively. Assume that (X,,T',®,) and
(X, I, @) are continuously orbit equivalent. We must show that the discriminant groups D,
and D:O, for these actions are isomorphic.

Theorem@ implies the profinite actions 6@ G x X, = X, and ;I:ZO,: G’ x X, — X[, are quasi-
analytic, and so also the actions (X, T, ®,) and (X[,,I", ®(,) are quasi-analytic. Theorem 1.5 in
[36] then implies that the actions (X,I", ®) and (X;,,F’ , (I)/w’) are return equivalent.



CANTOR DYNAMICS OF RENORMALIZABLE GROUPS 15

Thus, there exist adapted sets V' C X for the action (X,T',®) and V' C X’ for the action (X', T7, ®’)
so that the restricted actions (V,Hy,®y) and (V', H{,,, ®},,) are isomorphic, where recall that
Hy = &y (I'y) C Homeo(V) and Hy,, = @1, (I'},,) C Homeo(V’). As the actions are quasi-analytic,
the maps ®y and ®f, are monomorphisms, hence are isomorphisms. Thus, the actions (V,T'y, ®y/)
and (V', T, ®},,) are isomorphic, induced by a homeomorphism h: V — V.

Let Dy denote the discriminant group for the restricted action (V, Ty, @y ). Then by the arguments
n [35, Section 4], there is a surjective map px v: D, — Dy which is an isomorphism when the
profinite action ;I;y,: G x X, — X, is quasi-analytic. Likewise, for the discriminant Dj,, of the
action (V',I'{,/, @}, ), there is an isomorphism px/ v': Dy — Dy,

The isomorphism class of the discriminant group is an invariant for isomorphism of Cantor actions,
so we conclude D, = Dy, = Dy, =2 Dy, as claimed.

This completes the proof of Theorem [1.9

8. APPLICATIONS AND EXAMPLES

The classification of renormalizations has applications in a variety of contexts.

For a compact manifold M without boundary, an expansive diffeomorphism ¢: M — M gives rise
to a renormalization ¢: I' — T of the fundamental group I' = 71 (M, x). In this case, Shub showed
in [53] that the universal covering of M has polynomial growth type, and hence by Gromov [33]
the group I' has a finite-index nilpotent subgroup. There are a variety of constructions of expansive
diffeomorphisms on nilmanifolds, and the invariants associated to the renormalization ¢ of ' are
then invariants of the expansive map ¢.

The construction of generalized Hirsch foliations in [8, [34] is based on choosing a renormalization
@: ' = T of the fundamental group of a compact manifold M. Thus, invariants of the renormaliza-
tion yield invariants for this genre of foliated manifolds.

The classification of M-like laminations, where M is a fixed compact manifold, is reduced to the
classification of renormalizations in the work [11].

These applications are all based on the constructions of renormalizations for groups with the non-
co-Hopfian property. Many finitely generated nilpotent groups are renormalizable, as shown for
example in [7], 12} 15 16} 17, [40]. There is also a variety of examples of renormalizable groups which
are not nilpotent, as described for example in [I8, 24], 28| 29] B0, 46, 48], 55]. While these works
show the existence of a proper self-embedding for a particular class of groups, they do not calculate
the groups D, and ]\Aﬁp which are associated to an embedding ¢ by Theorem In the following,
we make these calculations for a selected set of examples of renormalizable groups.

Example calculates the discriminant Cantor group D, and the induced map @: D, — D, for
an “untwisted” embedding ¢: H — H of the Heisenberg group H. The work [42] has a discussion
of twisted and untwisted subgroups of the Heisenberg group.

Section [8.3] gives an example of a renormalizable group that arises in the study of arboreal repre-
sentations of absolute Galois groups of number fields.

8.1. Multihedral groups. This is the simplest example of a group I' with self-embedding and
non-trivial finite discriminant group D, C I'.

Let A = ZF be the free abelian group on k generators. Let H C Perm(k) be a non-trivial subgroup
of the finite symmetric group Perm(k) on k symbols, and let Perm(k) C GL(k,Z) be the standard
embedding permuting the coordinates.
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Let I' = ZF x H be the semi-direct product of these groups. For m > 1, define ¢: I' — T' to be
multiplication by m on the Z* factor. That is, for (7, g) € I set ©(¥,g) = (m - ¥,g). Then

(24) T, = {(m' 0,9 |vez", gcH =m'Z"xH

(25) K(G,) = {(0,0,9)|g€eH} =H.

where G, = {I'y | £ > 0}. Then we have X, = @“n The subgroup H acts on X, by permutations
of the coordinates, so the adjoint action on X, of a non-identity element g € H is a non-trivial
permutation of the coordinate axes, hence is non-trivial. Thus, the normal core C(G,) C K(G,,) is
trivial, and we have K(G,) C D,. Thus, a calculation shows that the normal core Cy C I’y is the
subgroup of where g = e € H is the identity, so I';/Cy = H for all £ > 0. Thus, D, = H. Also,
the subgroup N, is the product of k copies of Z,,, or the m-adic k-torus.

Observe that the map ¢ restricts to the identity on the subgroup H, while ¢ acts as multiplication
by m on the normal subgroup Z*. Thus, @: D, — D, in Theorem 3 is the identity map, and

Q: ]Vsp — NLF in Theorem 2 is induced by coordinate-wise multiplication by m on ZF.

8.2. Nilpotent endomorphisms. The 3-dimensional Heisenberg group #H is the simplest non-
abelian nilpotent group, and we give a self-embedding for which D, is non-trivial, and in fact is
a Cantor group. This example is a special case of the general construction for self-embeddings of
2-step nilpotent groups given in Lee and Lee [40]. More generally, group chains in H were studied
in detail by Lightwood, Sahin and Ugarcovici in [42], where they give a complete description for
the subgroups of H and a characterization of which subgroups are normal. Group chains in H
whose discriminant invariant is a Cantor group were constructed by Dyer in her thesis [19], and
also described in [20, Example 8.1]. In the following, we construct such a group chain realized via a
self-embedding of H.

Let H be represented as (Z3, ) with the group operation *, so for x,u,y,v, z,w € Z we have,
(26) (I,y,Z)*(U,U,’LU) = (x—|—u,y+v,z+w—|—mv) ) (1‘7yaz)71 = (—1’, —y,—z—|—xy) :
This is equivalent to the upper triangular representation in GL(Z?). In particular, we have

(27) (!L'7y,2) * (U,U,’LU) * ($,y72’)_1 = (u,v,w + v — yu) .

For integers p,q > 0 define ¢: H — H by a self-embedding by ¢(x,y, z) = (pzx, qy, pgz). Then
He = ¢"(H) = {(0°2,¢"y, (pg)'2) | w,y,2 € Z} .

Observe that the intersection Nysg He = {€}. Now assume that p, ¢ > 1 are distinct prime numbers.
Formula implies that the normal core for H, is given by

Cy = core(He) = {((pa) ‘=, (p9) "y, (pg)'2) | 2.y, 2 € Z} .
Thus, the finite group
(28) Qe =H/Co={(2,y,2) | 2,y,2 € Z/(pg) L} .
The profinite group 7:200 is the inverse limit of the quotient groups @y so we have

7/'200 = {(x,y,z) | T,Y,% € qu}

with multiplication on each finite quotient induced given by the formula . To identify the
discriminant subgroup Do, first note
(29) He/Co = {('z,q¢'y,0) |z €Z2/¢'Z, yeZ/p*Z} C Qy,
(30) Hew1/Conr = {0 '2,¢"y,0) |2 €Z/q¢™'Z, y e 2/ 2} .

The bonding map qp11: Het1/Corr1 — He/Ce from the definition for D, is induced from the
inclusion H¢+1 C H¢ modulo quotient by

Heer N Co = {0 x, p'd" My, (pg)'2) | 2y, 2 € Z} .
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Thus, in terms of the coordinates z,y in the bonding map is given by
qes1(2,9,0) = (z mod ¢‘Z,y mod p‘Z,0) .

It then follows by formula that

(31) D, =Dy = @ {@es1: Hog1/Cop1 = He/Cy | £ >0} = 2(1 X 21,

The induced map @: D, — D, is given by multiplication by p on Zq in the first z-coordinate, and

multiplication by ¢ on Z, in the second y-coordinate, so that & acts as an isomorphism on D,,, as
asserted in Theorem [5.3

Finally, consider the subgroup of @, which is complementary to the subgroup H,/Cy,

(32) Np = {(¢"z,p"y. 2) | © € Z/P'Z, y € Z/q"Z, 2 € Z)(pg)'Z} C Qo .

The map ¢ induces a map on N, given by multiplication by p in the first z-coordinate, and multi-
plication by ¢ in the second y-coordinate, so the action is nilpotent on N,. The inverse limit of the
groups Ny is a subgroup of H, identified with

Nw%ﬁm/Do@%{(:ﬂ,y,z)\mezP, yezq, zezpq},

and is a pro- mlpotent group as it has the finite nilpotent groups NNy as quotients. Moreover, the
induced map §: N — Ncp is a contraction, as asserted in Theorem [5 .

Note that if we take p = ¢ in the above calculations, so ¢: H — H is the “diagonal expansion” by
p on the abelian factor Z2, then Hoy C Cy. So while each quotient Hap/Cyy is non-trivial, its image
under the composition of bonding maps in vanishes in H,/Cy, hence D,, is the trivial group in
the inverse limit. Correspondingly, the inverse limit space X, has a well-defined group structure.

8.3. Semi-direct product of dyadic integers with its group of units. This example can be
viewed as a more sophisticated version of Example [8:1] It arises, in particular, as the profinite arith-
metic iterated monodromy group associated to a certain post-critically finite quadratic polynomial,
as discussed in [44]. We give the most basic example in the following.

Let T = 22 X ZQX, where ZQ is the dyadic integers, and ZQX is the multiplicative group of dyadic
integers. Denote by a the topological generator of the abelian group Zo, that is, a is identified with
([1]) € Z2, where [1] is the equivalence class of 1 in Z/2"Z, n > 1.

Recall that ZQX is the automorphism group of 22. The multiplicative units in the 2-adic integers
can be computed by computing the units in Z/2"Z for any n, and taking the inverse limit (see [51],
Theorem 4.4.7]) so we have Z = Z/27Z x Zy. Here, Z/2Z is generated by ([—1]) € Z5, where [—1]
denotes the equivalence class of —1 in Z/2"7Z for n > 1, and the the second factor is generated by
([5]) € ZQX, where [5] is the equivalence class of 5 in Z/2"Z for n > 1. Denote these generators by b
and c respectively. Then let

(33) = (a,bc|b®=1,bab" ' =a"', cac™? ,beb et = 1),

where b and ¢ commute since they are generators of different factors of a product space.

Define a self-embedding ¢: I' — T" by setting ¢(a) = a2, ¢(b) = b and p(c) = c. That is, we have
'y =) = (a® b,c|b? =1, ba*b ! =a2, ca’c™t = (a®)%, beb 1™ = 1),

and so we obtain a group chain I'y = (aQe, b,¢), £ > 1. The discriminant group of the action defined
by this group chain was computed in [44] Section 7]. In particular, computing the normal cores of

the subgroups I'y we obtain Cy = (aQZ,c2l_2> c I'y, and it follows that

Dy = lim{Ty41/Crir — Te/Co} = L5 .
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9. PROBLEMS

The study of the properties of the dynamical systems of the form (X, T', ®,) suggest the following
approach to the classification problem for renormalizable groups and their proper self-embeddings.

PROBLEM 9.1. Classify the structure of renormalizable groups I' which satisfy:

(1) D, is the trivial group;
(2) D, is a finite group;
(3) Dy is a Cantor group.

Case (1) is discussed further in Section below. There are numerous and varied constructions of
examples of case (2), where D,, is a finite group. See Section for some typical examples.

The most interesting problems arise for case (3), where D,, is a Cantor group. Theorem implies
that all of the direct limit group invariants for Cantor actions defined in [37] are bounded for these
examples. Thus, the problem is to refine the invariants constructed from the adjoint action of D,
on the pro-nilpotent normal subgroup ]/\710 C f@ to distinguish these various examples. Note that if
the group chain G, has trivial intersection, then the intersection D, NI is trivial, so the invariants
constructed using the adjoint action of D, are only “seen” when considering the action of lqg,.

9.1. Renormalizable nilpotent groups. Suppose that [' admits a renormalization ¢: I' — T,
such that each of the subgroups I'y = ¢*(T') is a normal subgroup of T'. Then the third author
showed in the work [54] that the quotient I'/C(G,) must be free abelian. In particular, if the group
chain G, = {I'y | £ > 0} has trivial intersection, then I' is free abelian. Theorem is a more
general form of this result, where the assumption that G, has finite discriminant implies that I" is
virtually nilpotent.

The remarks at the end of Section @ show that D, is trivial when p = ¢ for the construction in
Section In fact, these remarks apply in general to the diagonal action on the nilpotent subgroup
of upper triangular integer matrices, where ¢ is given by multiplication by a constant factor p on
the super-diagonal entries; that is, those directly above the diagonal. This suggests that the non-
triviality of the discriminant invariant D, for an endomorphism of a nilpotent group is a measure
of the “asymmetry” of the embedding ¢. It is an interesting problem to make this statement more
precise for the general nilpotent group.

PROBLEM 9.2. LetT be a finitely generated torsion free nilpotent group, and ¢ a renormalization
such that G, = {T'y | £ > 0} has trivial intersection. Develop the relationship between the properties
of the discriminant group D, the embedding o, and the nilpotent structure theory of I, as developed
for example in [12} [17T].

9.2. Algebraic invariants. The reduced group C*-algebra C(X,,T', ®,) obtained from the group
action (X, T, @) is a source of invariants for the group I' and the embedding ¢. In the case when
I’ = Z™ is free abelian, the work [26] shows that the ordered K-theory of this C*-algebra is a complete
invariant of the action. It is natural to ask whether similar results are possible in more generality:

PROBLEM 9.3. Let T be a finitely generated nilpotent group, and ¢ a renormalization of I'. What
information about the nilpotent structure constants of I' and the embedding ¢ is determined by the
K-theory groups K.(C}(X,,T',®,))?

Note that by Theorem the isomorphism class of the discriminant group D, is an invariant of the
continuous orbit equivalence class of the Cantor action (X,,T",®,), and the isomorphism class of
Cr(X,,T', ®,) is also invariant. It seems natural that these two invariants should be closely related.

PROBLEM 9.4. LetT' be a renormalizable group. How does the algebraic structure of C;(X,,T', @)
reflect the properties of the profinite group Dy, ?
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Theorem shows that the profinite group ﬁa is a semi-direct product with D, as a factor. One

approach to Problem would be to relate the decomposition ﬁo >~ ]TCP X D, in Theorem to
the algebraic structure of C}(X,,,T', ®,).

9.3. Realization. Given any pro-finite group D which is topologically countably generated, it was
shown in [35, [37], using the Lenstra method, that there exists a finitely generated group I' and
Cantor action (%,T', ®) whose discriminant is isomorphic to D.

PROBLEM 9.5. Let I' be a renormalizable group which is not virtually nilpotent, so the discrim-
inant invariant D, is a Cantor group. What profinite groups can be realized as the discriminant
group for a Cantor actions associated to a renormalization of I'?

9.4. Renormalizable Cantor actions. A Cantor action (X,T",®) such that the group fso C
Homeo(X) is not locally quasi-analytic, and such that for every ¢ > 0 the kernel ker &, is a fi-
nite group, are called wild of finite type in the work [37] of the first two authors. Examples of wild
actions constructed by the same authors in [35] are of finite type. However, the examples in [35] are
not renormalizable.

PROBLEM 9.6. Do there exist renormalizable Cantor actions which are wild of finite type?

PROBLEM 9.7. Suppose that (X,T,®) is a renormalizable Cantor action which is not quasi-
analytic. What can be said about the algebraic properties of I'? For example, must I' have exponential
growth type? What can be said about the profinite group I', C Homeo(X) for such actions?

9.5. Representations of Galois groups. The works of the second author [43| 44] define the
discriminant invariants associated to arboreal representations of absolute Galois groups for number
fields and function fields. Such a representation is a profinite group, obtained as the inverse limit
of finite Galois groups, which act on finite extensions of the ground field, obtained by adjoining the
roots of the n-th iteration of the same polynomial, for n > 1.

The example given in Section [8.3]is an example of an arboreal representation of an absolute Galois
group, which is isomorphic to a Cantor action associated to a renormalization. For many polynomials
the associated action is known to be not locally quasi-analytic [44] and, therefore, by Theorem [1.2
it cannot be associated to a renormalization of a group. This suggests the following problem:

PROBLEM 9.8. For which arboreal representations of absolute Galois groups does there exists a
dense finitely generated group I' and a renormalization p: I' — T, such that the arboreal representa-
tion of T' is return equivalent to a Cantor action associated to (X,,I',®,)?

Although, as discussed above, many arboreal representations are not associated to an finite-index
embedding ¢: I' — T, since they are associated to a structure built using iterations of the same
polynomial, it is natural to look for a formalism similar to the non-co-Hopfian setting for the study
of these groups. This motivated the definition of renormalizable actions in Section [7} and suggest
the following interesting problem:

PROBLEM 9.9. Let (X,I',®) be an equicontinuous minimal Cantor action, and suppose that
(X,T,®) is renormalizable as in Definition . Develop a structure theory for the group obtained
as the closure of the action (X,T, ®) in Homeo(X), analogous to Theorem .
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