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Microbial communities are a key part to tackling global
challenges in human health, environmental conservation, and
sustainable agriculture in the coming decade. Recent
advances in synthetic biology to study and modify microbial
communities have led to important insights into their
physiology and ecology. Understanding how targeted changes
to microbial communities result in reproducible alterations of
the community’s intrinsic fluctuations and function is important
for mechanistic reconstruction of microbiomes. Studies of
synthetic microbial consortia and comparative analysis of
communities in normal and disrupted states have revealed
ecological principles that can be leveraged to engineer
communities towards desired functions. Tools enabling
temporal modulation and sensing of the community dynamics
offer precise spatiotemporal control of functions, help to
dissect microbial interaction networks, and improve
predictions of population temporal dynamics. Here we discuss
recent advances to manipulate microbiome dynamics through
control of specific strain engraftment and abundance,
modulation of cell-cell signaling for tuning population
dynamics, infiltration of new functions in the existing
community with in situ engineering, and in silico modeling of
microbial consortia to predict community function and ecology.
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Introduction

Microbial communities are complex and dynamic ecosys-
tems that play a crucial role in a variety of important
ecologies from soil to marine and host-associated
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environments. The physiology and ecology in microbial
communities are dependent on the spatial organization
and temporal dynamics of their members. Spatial struc-
turing can promote microbial interactions, enabling met-
abolic co-dependencies that strengthen community
robustness, resiliency and homeostasis [1]. Microbial
communities undergo temporal dynamics where fluctua-
tions in community composition, metabolism, and func-
tion can lead to community trajectories that manifest
complex phenotypes [2,3,4°°]. Dissecting the governing
spatiotemporal principles within a microbiome is funda-
mental to our understanding of its physiology and
ecology.

Temporal dynamics in microbial communities reflect
constant fluctuations and recurrent variations in the com-
munity structure, composition or function, and are gov-
erned by both intrinsic and extrinsic factors [4°°]. Intrinsic
factors include the metabolism and colonization potential
of individual species as well as intra-species and inter-
species interactions, while extrinsic factors are associated
with periodic changes in environmental conditions such
as pH and nutritional availability. Intrinsic factors can
potentially be engineered through modulation of com-
munity composition or genctic alterations of specific
member species. For example, a microbiota can be engi-
neered with metabolic capacities to modulate the fitness
of other community members. Extrinsic factors can be
more easily tuned in a time-dependent manner by intro-
ducing growth-promoting or inhibiting metabolites or
changing the biochemistry of the environment. For
instance, antibiotic exposure or nutritional changes can
result in alterations to the composition and temporal
dynamics of microbiomes in soil and the gut [5,6].

Controlling temporal dynamics through alteration of
intrinsic and extrinsic factors can therefore serve as an
important route to engineer microbial communities for a
variety of applications (Figure 1a) [4°°]. For example,
changing temporal dynamics of communities that have
detrimental effects on the host during dysbiosis can
rescue healthy homeostasis. For instance, in patients with
irritable bowel disease, shifts in temporal dynamics could
prevent increased abundance (or presence) of pro-colito-
genic strains and thus avoid inflammation flare-ups [7].
On the other hand, engineering temporal population
dynamics in the soil community could directly affect
plants’ growth, health state, and life cycle. For example,
modulating the abundance of nitrogen-fixing bacteria or
bacteria that regulate the phytohormones balance can
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Schematic of the fundamental principle of spatiotemporal community dynamics.

lead to significant physiological changes in the plant
growth and life cycle [8].

Engineering permanent changes in the community and/
or its members can shift the intrinsic community fluctua-
tions, thus resulting in long-lasting alterations of temporal
dynamics. Through advances in synthetic biology, micro-
bial communities can now be engineered to carry out a
variety of novel functions such as sensing dynamic signals
and actuating tailored responses. The ability to modulate
and sense the community’s intrinsic fluctuations enables
transient modifications in the community function and

dynamics that can help to elucidate the fundamental
principles that govern the overall temporal dynamics.
In this article, we discuss emerging approaches to ratio-
nally engineer temporal modulations and sensing in
microbial communities. We focus on new emerging tools
including rewiring signal transduction systems, modulat-
ing biophysical characteristics, engineering metabolism
and cell-cell interactions, and quantitative modeling of
community dynamics (Figure 1b). We highlight mostly
work involving temporal dynamic modulation in the
human microbiome as an example community. Temporal
modulation and sensing of intrinsic factors are a subset of
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perturbations that can affect the overall temporal dynam-
ics in microbial communities. Using synthetic biology to
modify these factors will enable a more accurate predic-
tion and specific long-lasting intervention of the commu-
nity temporal dynamics. Furthermore, temporal modula-
tions and sensing offer a deeper understanding of the
environmental context that other forms of engineering
temporal dynamics can leverage to alter extrinsic factors.
Because of space constraints, we refer the reader to other
excellent reviews focused on systems and computational
biology aspects of the topic [9,10].

Molecular signaling mediated temporal
dynamics

Bacteria utilize a variety of mechanisms to sense the
environment and modulate population dynamics in
response to specific stimuli. Quorum sensing (QS) is
one strategy to gain precise spatiotemporal control in
an environment and regulate cell functions through coor-
dinate gene expression at a population level (Figure 2a).
Quorum sensing signaling relies on small molecule indu-
cers such as acyl-homoserine lactones (AHLs) or auto-
inducers (Als) that regulate genetic outputs. QS systems
have been repurposed in many ways, such as for con-
trolled release of a therapeutic in a population density-
dependent manner or for coordinating the geography of
cells into specific spatial patterns [11-13]. In order to
increase the tunability of QS, inducible QS (1QS) can be
used to couple a gene of interest with QS and allow
external control of gene expression outputs [14]. For
instance, a lysis gene can be developed with 1QS for
temporal and spatial control of population death and
release of a protein cargo [15]. These approaches can
be extended with well-characterized and orthogonal QS
systems with minimal cross-talk to enable control of
multiple strains in a community [14]. To maintain the
stability of synthetic QS genetic circuits over time, a
strategy that leverages ecological interactions and cyclical
population control has been devised using strains that
could Kkill or be killed by one another [16°°]. This
approach provides a way to control synthetic ecosystems
and maintain gene circuits without the use of antibiotic
selection [16°°]. In addition, more complex genetic cir-
cuits using CRISPRIi or other inducers [17] can be used to
expand the communication capacity towards engineering
more sophisticated temporal community dynamics such
as programmed cellular differentiation, multicellular pat-
tern formation, and the coordination of multiple meta-
bolic pathways between strains in a community.

Two-component systems (T'CSs), a large family of bac-
terial signal transduction pathways [18], can also be
leveraged to rewire and record population dynamics
[19°°]. By swapping TCS components from different
bacterial species, it is possible to create new sensing
modules that can coordinate novel signal transduction
pathways to environmental stimuli such as pH, nitrate

and different metabolites [19°°]. For example, a biosensor
to detect inflammation in the mammalian gut was devel-
oped by linking thiosulfate sensor (ThsSR) and tetra-
thionate sensor (TtrSR) with a reporter gene (Figure 2b)
[20,21]. We and others have utilized these natural and
engineered biosensor systems to record information about
temporally fluctuating signals in the population, using
DNA-based cellular recorders [26]. To record environ-
mental signals, these systems either leveraged natural
CRISPR adaptation based on Cas1-Cas2 spacer acquisi-
tion (Figure 2c¢) [22,23] or used Cas9 endonuclease pro-
pricties to deplete DNA molecules in a sequence-specific
manner [24]. Biosensor outputs can trigger a DNA-
recording module to chronicle oscillatory states in the
population. Furthermore, T'CSs can be interfaced with
synthetic gene circuits for more complex tuning of signal
transformation or to add more sophisticated functionality,
such as signal integration and computation [25]

Biophysical mechanisms for controlling
population dynamics

Cells exist in complex environments with diverse sets of
biochemical and biophysical factors that can be exploited
for population engineering. Control of localization and
retention of microbiota in a complex environment, such as
the gastrointestinal (GI) tract with spatiotemporally
dynamic and heterogencous niches, requires genetic cir-
cuits that can detect and respond to a myriad of chemical
and environmental gradients [26]. Numerous approaches
have been developed for engineering populations by
leveraging these environmental gradients. Recent
advances in the use of non-biochemical stimuli such as
light, heat or electricity could drastically expand the
cellular capacity to temporally regulate functions in an
environment. T'CS have been engineered to create light-
responsive optogenetic systems [27,28] that link a light
stimulus to the activation of metabolic functions or
expression of synthetic genetic circuits to precisely
deliver a target metabolite. For example, a green light-
activated, red light de-activated two-component system
CcaSR has been used to spatially and temporally induce a
gut bacterium to produce colanic acid, which increased
longevity in a C. elegans model of aging (Figure 3a) [29].
Gene regulation using temperature offers several advan-
tages over chemicals or light because temperature
changes can be applied to biological samples globally
by heat or electromagnetic radiation. Exquisite spatial
and temporal patterns with penetrating depth can be
generated with heat using techniques such as focused
ultrasound. For instance, TIpA, a temperature-sensitive
transcriptional repressor from Sa/monella typhimurium, was
engineered into a modular protein—protein dimerization
system to transduce heat inputs into regulated gene
expression (Figure 3b) [30]. This platform could be safely
translated clinically because high-intensity focused ultra-
sound is a non-invasive, FDA-approved therapeutic pro-
cedure that can be used to regulate blood and lymph flow
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Figure 2
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Molecular signal-mediated temporal dynamics. (a) Quorum sensing (QS) harnessed to gain precise population spatiotemporal control and regulate
cell functions through coordinated gene expression at the population level. (b) Two-component signal transduction pathways leveraged to rewire
and record population dynamics. The thiosulfate (ThsSR) and tetrathionate (TtrSR) TCS combined with a reporter gene have been used as
biosensor to detect inflammation in the mammalian gut. (c) CRISPR systems engineered to record information about temporally fluctuating signals
in the population. The natural CRISPR adaptation based on spacer acquisition (Cas1-Cas2) has been used to record environmental signals.

and to treat cancers by ablating localized tumors. Beyond
heat, electrical signals have also been used to modulate
community dynamics. Redox responsive genetic circuits
using the SoxRS regulon have been engineered to con-
trol gene expression using external electronic inputs
[31]. In combination with QS systems, population-level
bioelectronic circuits have been developed to relay
clectrical signals between cells to form engineered
microbial communication networks (Figure 3¢) [32°].
Redox imbalance is often associated with gut dysbiosis
[33,34] thus, these systems could be customized to
monitor the redox state within the gut microbiome
and produce antioxidant metabolites able to rescue
homeostasis in response.

Other non-biochemical stimuli including magnetism and
acoustics have also emerged as potential modulators of
population dynamics. Magnetically responsive genetic

systems have been demonstrated where bacteria are
engineered to produce iron-rich bodies by overexpressing
iron-storage ferritins or iron-binding proteins inside their
cytoplasm (Figure 3d) [35]. A magnetic field or a ferro-
magnetic matrix (i.e. ferromagnetic beads) can then be
used to capture these magnetically tagged cells [35] for
precise control of their localization in an environment.
Another orthogonal system that leverages the generation
of gas vesicles in bacteria enable both acoustic reporting
and monitor of cellular function across a population with
high temporal and spatial resolution using focused ultra-
sound [36]. The co-expression of structural gopA genes
from Aphanizomenon flos-aquae with the accessory genes
gupR—gopU from Bacillus megaterium enables the produc-
tion of intracellular gas vesicles in bacteria and mamma-
lian cells to allow the non-invasive imaging of acoustic
reporter cells inside an animal (Figure 3e) [36]. These and
future non-biochemical modulation modalities are poised
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Biophysical mechanisms for controlling population dynamics (a) Light inducible system that activate metabolic pathways in vivo. Colanic acid was
used to increase longevity in C. elegans. (b) Temperature-dependent dimerization of the TIpA repressor from S. typhimurium used to modulate
gene expression. (c) Redox responsive genetic circuits using the SoxRS regulon engineered to control gene expression using external electronic
inputs in combination with QS for population-level bioelectronic control. (d) Magnetic responsive system employed for spatial localization of
strains. (e) Acoustic signals used for both high temporal and spatial resolution of strains.

to have a significant impact on spatiotemporal control of
community dynamics.

Cell-cell mediated strategies to engineer
temporal dynamics

Numerous inter-microbial interactions mediated by
direct cellular contact can result in population-level
dynamics. Horizontal gene transfer (HGT) is an evolu-
tionary strategy by which cells can alter their fitness
through acquisition of new genetic material (i.e. antibi-
otic resistance or metabolic genes) in a changing envi-
ronment. Transduction, conjugation and natural trans-
formation are main routes to mediate microbial exchange
of genetic material and have been engineered to provide
community-wide control. Phage therapy relies on the life
cycle of bacteriophages and their stringent host tropism
to target-specific members of a microbiome. This
approach can be used to selectively eliminate target
strains or transfer-specific genes into defined species
[37-39]. The narrow and specific tropism of phages
makes this platform very appealing for its safety, but
it reduces the power of this technology for broader
applications. Different CRISPR systems can be loaded
into a phage to allow programmable and sequence-spe-
cific modification of the host DNA and RNA to elicit cell
death. For instance, Cas9/Cas3 has been used as a

warhead in phages to target virulence genes in pathogens
for selective killing (Figure 3a) [40,41] and Casl3a has
been used to degrade host mRNA and kill the host via
‘collateral’ RNase activity (Figure 3a) [42]. Endogenous
Cas systems in target cells can also be leveraged to
trigger cell death by delivering self-targeting crRNAs
[43]. Community-wide modulation using phage therapy
remains an open challenge in many applications since
phages exhibit a very narrow host range and are difficult
to reengineer [44]. CRISPR technology used in bacteria
offers multiple levels of safety. Indeed, these systems (1)
rely on sequence specificity, (ii) need to be delivered or
endogenously re-purposed into the recipient cells, (iii)
elicit cell death, thus eliminating any unwanted propa-
gation of the systems within the community.

Bacterial conjugation is a widespread mechanism by
which cells share DNA with one another through a
contact-dependent manner over large phylogenetic dis-
tances [45]. Thus, conjugation is a highly flexible delivery
platform for community-scale modulations. For example,
a conjugation-based microbiome engineering approach,
MAGIC, that uses modular mobile vectors was used to
deliver genetic payloads to diverse members of the mam-
malian gut microbiome [46]. This system achieved high
efficiency gene transfer in diverse bacterial species
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Engineering cell-cell communication. (a) Horizontal gene transfer paired with CRISPR technologies to genetically engineer microbial communities
at sequence level resolution. CRISPR systems in engineering microbiome have been mostly used for sequence-specific strain depletion. (b)
Molecular antagonism provides a platform to modulate strain depletion in complex communities. (c) Niche partitioning leverages principles of
microbial ecology by altering the metabolic interactions and introduces substrate exclusivity to enable temporal control of strain-specific growth.

spanning multiple phyla, while minimally impacting the
native microbiome. To improve host targeting, strategies
leveraging genome targeting enzymes such as integrative
and conjugative elements (ICE) [47] and programmable
CRISPR-Cas based transposases have been developed to
allow payload introduction at a nucleotide-level resolu-
tion in a specific recipient within a complex community
(Figure 4a) [48]. These powerful technologies allow
alterations of metabolism and functional selection of
species within the population that can offer spatial and
temporal control at an unprecedented capacity. Systems
for biocontainment and cargo stability such as sequence
entanglement of the cargo gene with a toxin or an essen-
tial gene [49] and environmental dependency of the
synthetic cargo stability can be employed to control the
dissemination and the persistence of the engineered
function.

Various types of diffusible microbial inhibitors such as
soluble small molecules, peptides, and proteins have
evolved during the evolution of microbial warfare [50].
As such, these antagonistic systems can be repurposed to
modulate community dynamics. Broad-spectrum inhibi-
tors such as bacteriocins and microcins are effective
against numerous gram-negative Enterobacteria patho-
gens by disrupting essential cellular machineries [50].
More narrow inhibitors include the type VI secretion
system (T'6SS), which is a contact-dependent, mem-
brane-associated apparatus used by gram-negative bacte-
ria to inject target-specific ‘effector’ toxins into adjacent
foreign cells [51]. Effector proteins determine the speci-
ficity of T'6SS antagonism and can be reprogrammed for
defined bacterial targeting (Figure 4b) [52]. These sys-
tems can be harnessed to manipulate and modulate taxa
presence and extinction within the microbial community
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to enable temporal and spatial control of interspecies
dependencies.

Modeling and engineering metabolism for
analysis of population dynamics

Quantitative metabolic modeling of the microbiome can
help to identify the core and accessory biochemical path-
ways that could be tuned, added, or removed to control
community dynamics [53,54]. However, genome-scale
modeling is limited by the quality of the functional gene
annotations. As such, bottom-up approaches to build and
characterize synthetic microcosms offer the opportunity
to deconvolute complex community interactions. Syn-
thetic microbial consortia from the human gut [55] and
soil [56] have shown that dynamic models based on
pairwise interactions could predict community assembly.
These efforts can yield deeper insights into the impact of
various environmental factors such as pH [57], nutrient
availability [58], toxins [59], and temperature [60] on
community dynamics. For example, 7z si/ico multi-level
trophic models of the human gut microbiome led to
mechanistic links between microbial abundances and
specific metabolites [61]. This model aimed to approxi-
mate the metabolic flow through the intricate cross-feed-
ing network of microbes in the human lower intestine and
allowed the authors to simultaneously capture the meta-
bolic activities of hundreds of species consuming and
producing hundreds of metabolites contributing to the
ever-changing ecosystem. This advancement enabled the
prediction of the metabolic environment and the associ-
ated microbial abundances based on their metabolic
capacities,

Combining experimental characterizations with mathe-
matical modeling can help to dissect metabolite changes
by individual species in a community [62]. However,
models that can predict both community dynamics and
functional outputs require integration of quantitative
datasets from experimental measurements of micro-
biomes and interaction networks. Such a data-driven
approach has been taken to model butyrate production
by human gut communities /# vitro [63]. Heuristic meta-
bolic modeling approaches have also been used to predict
cross-feeding interactions and dynamic population
changes [64°]. Other experimental platforms using micro-
fluidic systems can further improve the throughput of
data generation and investigation of spatially structured
environments [65°]. Such systems offer exquisite spatio-
temporal control of various experimental parameters and
enable systematic quantification of community proper-
ties, such as diffusion-mediated processes in governing
interspecies interactions.

From an engineering perspective, altering metabolic
interactions or resistances to environmental metabolites
arc useful strategies to modulate population growth. For
instance, polysaccharide utilization enzymes can enhance

microbial colonization in the GI tract [66] and bile salt
hydrolases can mediate resistance to otherwise toxic
primary bile acids in the chemical milicu of the gut
[67]. Modifying a strain to have access to an exclusive
metabolic niche enables precise temporal control over its
engraftment capacity and abundance in the gut. Admin-
istration of the unique substrate that can be exclusively
accessed by the engineered strain can shape the micro-
biota membership (Figure 4c) [68°69]. For example, a
Bacteroides species was engineered with a rare gene
cluster for porphyran utilization that enabled nutrient-
driven temporal control of its abundance in the mouse gut
through varying the amount of porphyran available to the
animal [68°,69]. Thus, these approaches can be used to
control and modulate site-specific engraftment and spa-
tiotemporal abundance of natural probiotics and live
bacterial therapeutics.

Conclusions and future prospects

A multdisciplinary approach combining synthetic and
systems biology to study microbial community dynamics
will offer new possibilities to engineer natural and defined
microbiota. These advances are poised to propel engi-
neered microbiomes into innovative applications for
many different sectors. Outstanding challenges remain
in these areas including 1) better methods to collect
temporal datasets at higher resolution, 2) obtaining mean-
ingful spatial biogeography information across a popula-
tion, and 3) assessing transcriptional and metabolic
changes at a species resolution across the entire commu-
nity. Improved annotations of microbial genomes and
higher accuracy and more efficient genomic tools and
gene delivery technologies could transform our capacity
to tune microbiomes at an unprecedented resolution in
space and time.
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