Abstract On a Riemannian manifold of dimension n we extend the known analytic results on Yang-Mills connections
to the class of connections called Q-Yang-Mills connections, where £ is a smooth, not necessarily closed, (n —4)-
form on M. Special cases include 2-anti-self-dual connections and Hermitian-Yang-Mills connections over general
complex manifolds. By a key observation, a weak compactness result is obtained for moduli space of smooth Q-Yang-
Mills connections with uniformly L? bounded curvature, and it can be improved in the case of Hermitian-Yang-Mills
connections over general complex manifolds. A removable singularity theorem for singular -Yang-Mills connections
on a trivial bundle with small energy concentration is also proven. As an application, it is shown how to compactify
the moduli space of smooth Hermitian-Yang-Mills connections on unitary bundles over a class of balanced manifolds
of Hodge-Riemann type. This class includes the metrics coming from multipolarizations, and in particular, the Kédhler
metrics. In the case of multipolarizations on a projective algebraic manifold, the compactification of smooth irreducible
Hermitian-Yang-Mills connections with fixed determinant modulo gauge transformations inherits a complex structure
from algebro-geometric considerations.
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1 Introduction
1.1 ©-Yang-Mills equations

Let (M,g) be an oriented Riemannian manifold of dimension n > 4, Q a smooth (n —4)-form on M, and E — M a
vector bundle with a Riemannian metric'. The Q-Yang-Mills equations for a metric connection A on E with curvature
Fy are

d5 (Fy+%(FAAQ)) =0, (1.1)

and a solution A to (1.1) will be called an Q-Yang-Mills connection (or £2-YM connection, for short). This equation is
the Euler-Lagrange equation of the functional

YMg (A) :/ |FA|2dV7/ tr(Fy AFy) AQ (1.2)
M M
which may be viewed as a gauge invariant function on the infinite dimensional space of metric connections on E. The

first term in (1.2) is the usual Yang-Mills functional YM(A). If we assume £2 is closed, then the second term in (1.2) is
topological for compact M (or with respect to compactly supported variations), and so the critical points of YMg, are
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! In this paper, if (M, g) is a hermitian complex manifold we assume bundles are also complex Hermitian; otherwise, E can be real or
complex.
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identical to those of YM, i.e. the Yang-Mills connections. Indeed, (1.1) reduces to d;F4 = 0 in this case. The main goal
of this paper is to extend the analysis of Yang-Mills connections to the more general solutions of (1.1) for the case where
€ is not closed and ©2-YM connections are not necessarily Yang-Mills.
To provide some motivation, let us note an interesting special case. We define the £2-ASD connections to be the
solutions to (1.1) of the form
*Fy +F ANQ =0 (1.3)

If n =4, Q =1, then connections satisfying (1.3) are the much studied anti-self-dual instantons (cf. [9,8]). Higher
dimensional instanton equations of the type (1.3) have been considered in a variety of contexts, and their formulation
goes back to [4]. In the mathematics literature, we refer to [7,22,6], to list only a few of many recent papers. We again
point out that an 2-ASD connection is not necessarily Yang-Mills unless €2 is closed.

If we assume the comass || < 1, then YMg (A) > 0, and we say A is an absolute minimizer if YMg (A) = 0. We
have the following simple lemma.

Lemma 1 Suppose |Q| < 1. Then a connection A is an absolute minimizer of YMgq if and only if it is an Q-ASD
connection.

Now let us suppose that M is an m-dimensional hermitian manifold, 2m = n, with Kihler form @ (not necessarily
closed). If the connection A is integrable (i.e. Fy is of type (1, 1)), then

YMg(A) = /M |AFy?dV

where iAF) is the Hermitian-Einstein tensor, and Q = @"2/(m — 2)!. It follows that in this case the 2-ASD con-
nections are exactly the Hermitian-Yang-Mills (HYM) connections with iAF, = 0. In case @ is a Gauduchon metric,
then nontrivial solutions arise from stable holomorphic vector bundles on M (see [13])2. Even when M is a projective
algebraic manifold, many interesting examples of solutions can be obtained from holomorphic bundles that are stable

with respect to multipolarizations [16,11]. For example, if @;,...,®,_ are Kédhler forms on M, then solutions to the
equations

EANoyN---Nwy_1=0 (1.4)
exist for holomorphic bundles that are stable with respect to @, . .., @,—_. On the other hand, @; A - - - A @,,—; determines

a balanced hermitian metric @, in general not Kihler, and solutions to (1.4) are 2-ASD for Q = @"2/(m—2)!. Note
once more that these are not, in general, Yang-Mills, even though the @; are Kéhler forms. Multipolarizations are also
considered in more detail in [3]. Another motivation is to hopefully give new nontrivial ways to deform the moduli
space of Yang-Mills connections, which fits into the higher dimensional gauge theoretic picture described in [6,7]. As
indicated by the multipolarization case, the moduli space of HYM connections can be deformed nontrivially by moving
the metric on the base complex manifold while at the same time giving a uniform L? bound on the curvature for all the
connections. In general, we know the Kihler condition is often too rigid to deform nontrivially. In a sense, the results
obtained here enrich the picture over complex manifolds by providing new structures to consider as well as examples
arising from algebraic geometry.

1.2 Main results

In this paper, we always assume that (M, g) has bounded geometry in the sense that (M, g) can be isometrically embedded
in a larger Riemannian manifold so that M has compact closure. In Section 2, we will prove a monotonicity formula and
an g-regularity result for Q2-YM connections. As a consequence, we obtain the following version of Uhlenbeck’s weak
compactness theorem (cf. [17,24]).

2 HYM connections over hermitian manifolds are not Yang-Mills connections in general.
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Theorem 2 Let {A;} be a sequence of smooth -YM connections with ||Fy,|| ;2 uniformly bounded. Define the set X by

X={xeM: lim liminfr4’"/ |Fa,)* > €5}
r—0t i—oo B(x)

Then X is a closed subset of finite (n — 4)-dimensional Hausdorff measure. There is a bundle E.. — M \ X with a metric
that is locally isometric to E on M\ X. Moreover, there is and a smooth Q-YM connection A« on E. so that after passing
to a subsequence {j;} , and modulo to gauge transformations, A, converges (locally in the C* topology) to an Q-YM
connection A outside X, i.e. for any compact subset K C M\ X, there exists a sequence of isometries (IJIJ;" ‘Exlk — Elk
so that (CD/(’ )*Aj, converges to Aw smoothly 3. Furthermore, at each point x € X, by passing to a subsequence, up to
gauge transformations, {A;*A}, }i converges to a smooth nontrivial Q.-YM connection over R" = T,M endowed with the
flat metric given by g.. Here {A;}; denotes a sequence of blow-up rescalings centered at x.

Remark 3 - As pointed out in [17], we emphasize here that a priori we only know that E. and E| M\x are isometric
on compact subsets away from X. This is due to the possible complexity of the topology of M\ X. But as we will see,
a global isometry does exist in the case of Hermitian-Yang-Mills connections (see Corollary 48). This is due to the
fact that we can show X is a subvariety in this case.
— A slightly more general statement about the bundle isometries can be obtained as [26]. We refer the interested reader
there.

We will refer to X as the bubbling set. By passing to a subsequence, we can assume
Wi == |Fa.|*dVol — p.

as a sequence of Radon measures. So the limit of {A;}; consists of a pair (A«, U ). As we will see later (see Lemma 24),
U can recover X intrinsically. We will refer it as A; sub-converges to (Ac, teo)-
We also generalize Tian’s results [22] for Yang-Mills connections to the case of 2-YM connections.

Theorem 4 X is (n—4)-rectifiable.

Denote @/ . to be the space of smooth 2-YM connections A on a fixed bundle E with ||Fy || < c. Now we consider
the space /o by adding limits (Aw, He) of smooth Q-YM connections {A;} with ||Fy, |12y < ¢ (see Section 4 for
more details.) Since the space of Radon measures { s }, which come from the limits of smooth ones, is compact, we get a
natural control of the singularities of A;. In particular, the diagonal sequence argument gives the following (see Section
4 for details)

Theorem 5 .o/,  is weakly sequentially compact in the sense that every sequence {(A;, i)} in 2/ . sub-converges to
some (Aw, o) € 3 .

Remark 6 — Without assuming A; coming from limits of smooth connections, even in the case of admissible YM
connections, we do not know whether such a limit exists or not due to lack of control of Sing(A;).

- Again, we emphasize here that the limiting bundle E.. is not known to be isometric to E| m\x for different subse-
quences in general. That is why we cannot directly take the quotient of o/q . mod gauge here. Due to this, it does not
make sense to put a topology on the moduli space at this point. Later in the case of HYM connections over general
complex manifolds, the results can be improved.

Suppose A; sub-converges to (A, L) as above. In Section 5, it is straightforward by the argument in [22] to define
anotion of bubbling connections associated to the sequence. Also the tangent cones associated to (Ac, Ueo) are shown to
exist. Unlike [22] where the tangent cone is defined for stationary admissible Yang-Mills connections, the tangent cone
here is defined for the pair (A, lle) rather than just for A.. This comes from the fact that a monotonicity formula still
holds for the energy density of ., which suffices for our use.

By restricting to the case of ©2-ASD instantons, we can generalize Tian’s results ([22]) without requiring 2 be
closed.

3 Unless otherwise specified, convergence of connections is always taken in this sense.
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Proposition 7 Q restricts to a volume form of T,X at 7" * a.e. x € X.

In Section 6, using the argument in [20], we generalize the removable singularities theorem for Yang-Mills connec-
tions of Tao-Tian [21] to the case of 2-YM connections.

Theorem 8 The removable singularities theorem holds for Q-YM connections on a trivial bundle with small energy
concentration away from a closed Hausdorff codimension 4 set.

In the last section, we restrict our discussion to the case of HYM connections over general complex manifolds. If
we assume (A, 1) is the limit of a sequence of Hermitian-Yang-Mills connections over a compact Hermitian manifold,
then by using the argument in [22] for Hermitian-Yang-Mills connections over Kidhler manifolds and the extension
theorem in [1], we can show that (A, it) are all holomorphic and X is a complex subvariety of codimension at least 2.
In particular, we can now take the quotient of %7 . mod gauge to get Myyy .. There exists a way to give it a topology
that coincides with the four dimensional case (see [8]) so that

Theorem 9 Myyy . is a first countable sequentially compact Hausdorff space.

Assume now (X, w) is balanced of Hodge-Riemann type (see Section 7.2 for definitions). It turns out there ex-
ists a natural L? bound for the HYM connections in this case. By choosing ¢ large for Mpym ., we get the analytic
compactification of smooth HYM connections on a fixed unitary bundle, which we denote it as Mgy .

Theorem 10 Over a compact balanced Hermitian manifold of Hodge-Riemann type, Mgy is a first countable sequen-
tially compact Hausdorff space.

Remark 11 Here the Hodge-Riemann type condition on the metrics can give us a uniform bound on the curvature of all
the Q-YM connections considered. We also refer the interested readers to [6, Section 3.1 (Property B')] where a notion
of taming forms has been introduced for almost Spin(7) manifold to achieve the L? bound of the curvature as well as a
discussion reduced to dimension 6 (see [6, eqn. (28)]).

By the main results in [23], this gives the following

Corollary 12 Over a complex Hermitian manifold (X,®) so that @' = @y A --- ®,_» where @; are positive (1,1)
forms with do" ' =0 and d(@y A--- @,_2) =0, Myyy is a first countable sequentially compact Hausdorff space.

Remark 13 We emphasize here that by [23], gy A\ - - @7 is always strictly positive and thus defines a positive (1,1)
form on X through 0" =y A @p.

In particular, we have

Corollary 14 Assume (X, ) is a compact Kéihler manifold, Myy is a first countable sequentially compact Hausdorff
space.

Remark 15 - As mentioned in Theorem 5 above, the novelty here is that we do not need to consider a larger space
as [22] (explained below). Rather, we use the crucial condition that the connections considered come from limits
of smooth connections. The latter gives a natural control of the singularities of the singular connections on the
boundary.

— In [22], in order to compactify the moduli space, a notion of ideal HYM connection is introduced that generalizes the
situation in four dimension (see [8]); namely, those pairs (A,X) with certain natural curvature conditions but not
necessarily coming from limits of smooth ones. In the case of four manifolds, the compactification works essentially
due to the good control of the bubbling set, which consists of points, and Uhlenbeck’s removable singularity theorem.
In higher dimensions, essential difficulties arise if we insist on such a large space of ideal objects. One is the lack of
control of Sing(A). Also, the removable singularity theorem does not automatically apply in this situation due to the
fact that the limiting bundle E.., defined only away from the singular set, does not necessarily extend to all of M as
a smooth bundle.
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— In higher dimensions, and assuming (X, ®) is projective, it is shown in [10] that the space of ideal HYM connections
modulo gauge is indeed compact. This is essentially due to a boundedness result from the algebraic geometric side
which gives control of Sing(A), and a version of the removable singularity theorem for HYM connections by Bando
and Siu ([1]). With this, one can take the closure of the space of smooth HYM connections mod gauge in such a
space to get a compactification.

— It is an interesting question to find a characterization of the ideal HYM connections added on to the boundary of
Mpyyy, i.e. determine whether a given ideal HYM connection be approximated by the smooth ones.

Following from the argument in [10], and using the results on compactification of semistable sheaves via multipolar-
izations in [11], we explain how to give a complex structure to the compactification Mj;y,,, where Mj;y,, is the moduli
space of smooth irreducible HYM connections with fixed determinant.

Finally, consider a finite energy HYM connection A.. over a complex Hermitian manifold, and denote by & the
corresponding reflexive sheaf. Given the analytic results above following from the argument in [2], to which we refer the
interested reader for the concepts involved, we know the analytic tangent cone of A.. at a point x is uniquely determined
by the optimal algebraic tangent cones of & at x. Here the tangent cone can be directly defined for A.. (not necessarily
coming from the limit of smooth ones).

2 Sequential compactness of smooth Q-Yang-Mills connections
2.1 Monotonicity

Following the argument used by Price for Yang-Mills connections [18], we will show that a monotonicity formula
holds for 2-YM connections. We also refer to [22, Thm. 2.1.1] for a slightly more general version of the following for
Yang-Mills connections.

Theorem 16 There exist positive constants a and ry, depending only on the geometry of (M, g) and Q, with the following
significance. If A is a smooth solution to (1.1) and 0 < r;y < ry < rg, then

ey e
JBry (X)\Bry (x) JBy, (x) JB,, (x)
Remark 17 If we denote the scale invariant LP norms by:
. 1/p
fplx,r) = {rZH / IFAIPdV} @2.1)
B (x)

then Theorem 16 implies, in particular, that e*" f5(x,r) is increasing for sufficiently small r.

Proof (Proof of Theorem 16) Let &t : P — M be the orthogonal (or unitary) frame bundle of E. Given any connection B on
E, denote by B the associated connection 1-form on the principal bundle P. Given a vector field X on M with compact
support, we denote by X the unique horizontal lift of X to P. Let & (resp. @) be the family of diffeomorphisms
generated by X (resp. X). As in [18], we consider the family of connection 1-forms A; = & ®, and we denote by A, the
corresponding family of connections on E. We have

5;4;(0) = lidAv: ﬂ*leA

since X is the horizontal lift of X. In particular, 64;(0) = 1xFy. Indeed, choosing a local section ¢ of P, which gives a
trivialization of E, then by definition: A; = 6*A,. This implies

6At(0) = G*lid‘x: O'*ﬂ*leA = (EG)*leA =1xFy
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since 7o = Id. Now we look at the variation of the Yang-Mills functional along A,. As for this, there are two ways to
calculate it. First, since A satisfies (1.1), we have

diFy £ +(FANdQ) =0. 2.2)
Then,
d *
E/M|FA1‘2‘,:Q:2A<dA5At(O)7FA> :2/M<1XFA,dAFA>
:ZFZ/ (leA,*(FA Adﬂ»
M

Alternatively, one may differentiate (1.2) at # = 0 and use the fact that A is critical for YMg,. In any case, this implies

d 2
a LBl

Now the second way to calculate the variation is as in [18]. We include the details here. By definition, we know

SZsup|dQ|/M|lXFA||FA|. 2.3)

/M Py, 2 = /M \F (A, ddy-) P (By-)dV = /M [Ea, (dbi(er), dBr(e;)) P (x), 1 dV
where {¢;} is a local orthonormal frame near the point x. Taking derivatives and evaluating at 7 = 0 gives
%/M B Plico = [ —IFaPdivX —4(Fa(Lxerse;), Falerse))
- /M —|Fy[PdivX +;4/}W(FA(VeiX,ej),FA(e,-,ej)> :
Combined with (2.3), this implies

‘/ —|Fy| 2d1VX+Z4/ (Fa(VeX,ej),Fa(eie))) <29up\d_Q|/ |tx Fal|Fal. (2.4)

Near the point x we fix the normal coordinates and let {¢; = dr,e3,--- ,e,} be a normal frame. In particular, V; d, = 0.
Choose X = &(r)rd,, where & is a compact supported function supported over [0,1+¢] with & =1 on [0,1] and &’ < 0.
Then

- Vo X=(Er+8)%
- fori>2,V,X = &rvei% =Ee;i+E0(r)

which implies
24/ Fa(VeX,ej),Falei,e;))

_24/ FA VaX (ZJ) FA(8,,ej +ZZ4/ FA(Vel.X,ej),FA((Z,',(Zj»
22 j M 2.5)

_/ 41, FA|2+Z4/ EE(dne;) \2+224/ E|Ex(ere; |2+/ o HIAG

i>2 j
_ 2 2 2
/45 A +4/ E|Fal +/ NI

and
divX = E'r+né +E0(r).
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Given this, we have
/ |Fa[Pdiv(X) — 2sup|d| / X[ 2 = / FuP(E'r+nE +0(%)) 2.6)
M M M
~2supld®| [ [XIFiP
M
Plugging eqns. (2.5) and (2.6) into (2.4), we have
[ IEPE =98 +00%) ~ 2suplag| [ EriFaf
M M

. 2.7)
< [ agrin Bl + [ 0GPEIE P

M M

Now by replacing & with &;(r) = £(t7!r) in (2.7), and using the fact that

d
odor
we have
[ IBPSE g -2suplaal [ srlmp
- [ P+ [ 0GR
ie.

[ PSS+ @ =mE) +2swlag) [ gl
/4r “11 FA\2+/ O(r)&e| Fal.

Multiply the above by e“*73~" where a is a constant to be determined later, and use the fact that Er|Fy|> < E:7|Fa %,
since &; is supported over {|x| < T}. We conclude

d

at =

/éﬂFA ?)+e"Trt- ”28up\dﬂl/ Sl
>4ear 4— n/ %|larFA|2+earT3—n/ 0(”2)51|FA|2‘
T M

which implies
d at 47n/. 2
— T E,
et [ IR
d
246(”’547”/ J|la,FA|2+€MT37n/ 0(1‘2)§T|FA|2+(1€‘1‘ET4 n/ 51:‘FA‘2
M dT M

T2 sup|d Q)| / EdlFal?

M

Now choose a large so that a > 2max{1,2sup|d€|}. Since déf

d d d
(601747"/ ér‘FA‘z) 246‘”1’47,1/ 7’[‘18 FA|2 > 4/ earr47"£|la FA‘Z
Jm mdt M dt 7

__regel; :
= —Z&; is nonnegative,

if T < ry for some ry so that e**7*~" is decreasing over [0,rp]. By integrating the inequality above from r| to r, and
letting € — 0, Theorem 16 follows.
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2.2 g-Regularity
The goal of this section is to prove the following &-regularity result.
Theorem 18 There exist positive constants €y, ro, and C, depending only on the geometry of (M,g) and Q, with the

following property. If A is a smooth solution to the Q-Yang-Mills equations (1.1) on M, and x € M is a point for which
fa(x,r) < & for some 0 < r < r, then
sup 2|Fy| < Chr(x,r)
Br/4<x>

There are two approaches to the regularity of Yang-Mills equations in higher dimensions, and both make use of
the monotonicity formula. Nakajima [17] uses a Bochner-Weitzenbock formula for the curvature to directly get the
bound in Theorem 18. This is similar to Schoen’s approach for the harmonic map problem. Uhlenbeck [24] derives L?
estimates from L2, and then uses a continuity method to reduce to the case of connections with L” bounds. This has the
advantage of applying to a larger class of connections satisfying curvature bounds rather than equations. Interestingly,
both methods apply directly to the case of 2-YM connections, and we find it useful to present each one here.

2.2.1 Method 1
Suppose A is a smooth solution to (1.1). Then (2.2) implies
ApFy = Fdax (Fy NdQ).
In particular, by the Weitzenbock formula, we have
ViaVaFy = Fdy* (FANdQ) +{Fs,Re} +{Fa,Fa} , (2.8)
where {, } denotes a general bilinear expression with smooth coefficients.

Proposition 19 A solution to (1.1) satisfies

1 2

54 [l > —Ci|Fa > = Ca|Rg| | Fal” — Z|019\2|FA|2 —c|VdQ|[Fy
for positive constants Cy, Cy, and ¢ depending only on (M, g).
Proof Indeed, from (2.8) we have

1
§A|FA|2 =—< VZVAFA,FA >4+ < VaAFs,VaFy >

> —Ci|Fal® — Co|Rg||Fa|* — |da % (FA AdQ)||Fa| + |VaFa|*
> —Ci|FsP — Co|Ry||Fa|* — c(|dQ| |V aFA||Fa| + |VAQ||F4|*) + [VaFa |

2
c
> —CilEa = GoIRq[|Fa* = 7 [dQP|Fal* = c[VALQ|Fx
The last inequality follows from completion of square.

Given this, we can repeat the argument in [17, Lemma 3.1] to prove Theorem 18.
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2.2.2 Method 11

Everything is local, so we assume connections are on the trivial bundle in R”. Uhlenbeck’s “good gauge” theorem states:

Theorem 20 ([25, Thm. 1.3]) Fix n/2 < p < n. There is & > 0 and a constant ¢, such that if A € L’f is a connection
on B1(0) and Jup2 (x,1) < &, then A is gauge equivalent to a connection (also denoted A) satisfying:

1. &*A=0;

*A vanishes on dB1(0);

: ”A”L;'/2 < Cﬂfn/2(07 1)’

- Al < cul|Fallo-

A W

We will also need

Lemma 21 There is €(n) > 0 such that if A is a connection on B1(0) satisfying ||A||r» < €(n) and items (1) and (2) of
Theorem 20, then for all p, 1 < p < n item (4) holds for a constant depending upon p.

The following result will allow us to go from L? estimates to L” estimates. Let L (x, r) := LP (B, (x)).

Theorem 22 There are positive constants Ky,,ro and for every for every 2 < p < n, Cp, with the following significance:
Suppose A is a solution to (1.1), and f,, >(x,r) < K, for r < ro. Then

fox,r/2) <Cp fa(x,r)
Proof Rescale to take r = 1. Use Theorem 20 and Lemma 21 for p = 2 to find a gauge where: d*A =0, and
1Al 21y < ClEAll 2 (1) = C'fa(x, 1) 2.9
Now write the equation for the laplacian of A as:

AA + {A7dA} + {A,A,A} = dXFA = *(FA /\d.Q)

(A+1)A+{A,dA} +{A,A,A} = x(dANdQ) (2.10)
where the brackets indicate multilinear expressions. Let . be the linear operator acting on A on the left hand side of
(2.10). Note that LT/Z < L", 50 [A,A] € L"/?, and both dA and [A,A] are small in L"/?. We also have L} x L/ — L .
Hence, we see that ¥ = % + .2 is a perturbation of % :=A+1: L} — L", by £ : LY — L” | of small norm. As in
[24, p. 6], a Meyers type interior estimate for .% implies one for .Z:

ull 2 eny2) < Colllll 2 ey + 120l 7 (21) 2.11)

where u = A. Now using (2.9), the L” | norm of the right hand side of (2.10) is bounded by f>(x, 1) for p=2n/(n—2) > 2.
The estimate (2.11) then gives an improved L} bound on A for p slightly bigger than 2. Reiterating this argument, we
get L’l’ bounds on A for any p < n.

Bootstrapping (2.10) gives the estimate:

sup P|Fa(y)| < Cu folx,r) 2.12)
YEB, /5 (%)

Let us fill in some details. First, notice that for n/2 < p < n, L} x L} < LP. Moreover, L} x L? < L4, with ¢ — n as
p — n. Hence, from (2.10) and the L?-elliptic estimate for the Laplacian, we get that A € LSZOC, forn/2 < p < n. Again
applying multiplication theorems, we get that AA € L?, and hence, A € Lg, loc- This implies A is C 1@ and the estimate
follows.

There is one more step:
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Lemma 23 Suppose 4p < ro, f2(&,4p) = & < &. Moreover; assume f,>(x,r) < K, for some r < p. Then:

fn/2(x7 r/2) < Cue

sup  2|Fy(y)| < Kne
YEB,/4(x)

Proof Apply Theorem 22 with p =n/2, and use (2.12).

Notice that this Lemma says that once both f, 5 and f, are sufficiently small, then f,, /> is even smaller than expected.
Now Theorem 16 and Uhlenbeck’s continuity method argument [24, proof of Thm. 1.6] gives the proof of Theorem 18.

2.3 Proof of Theorem 2

This follows from Theorems 16 and 18 as in the Yang-Mills case (see [17,25]).

3 Rectifiability of the blow-up locus

The results in this section are all local. We will fix a sequence of 2-YM connections A; over By 5, := {x € R": |x| <
148} C R" with HFAi||L2(31+50) uniformly bounded and look at the convergence over B =: Bj. Here, & > 0 is fixed,

and By g, is endowed with any fixed smooth metric with volume form dV. We assume the standard coordinates are
geodesic normal with respect to the metric. Define

r—07t

I ={x€B: lim liminfr“’”/ |Fa,|2dV > €2} 3.1
! By (x)

From the results in the previous section, we only know that X is a closed subset of B with locally finite (n —4)-Hausdorff
measure. We will show that X has better structure by generalizing the result in [22]; namely, we prove Theorem 4.

The proof closely follows the arguments in [15,22]. The monotonicity formula obtained in Theorem 16 is a key
component.

3.1 Elementary properties

By passing to a subsequence, we can assume

1. up to gauge transformations, A; converges to A« locally away from X;
2. U= |Fy, \ZdV converges weakly to i as a sequence of Radon measures, i.e. for any compact supported continuous
function f, we have

limpi(f) = p()-

By Fatou’s lemma, we have
W=|Fy|?dV +v (3.2)

for some nonnegative Radon measure v, which is called the defect measure.

Lemma 24 The following properties hold:
1. Fora.e. 0 <r< 1, lim; ;(B,(x)) = u(B,(x));
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2. r*7"u(B,(x)) is increasing with r. In particular, the function

0" *(u,x) = lim r*"u(B,(x))
r—0+
is well-defined, and it is called the energy density of |t at x. Furthermore, @"~* is upper semi-continuous and 5"*
approximately continuous at " * a.e. x € X.
3. x€ X ifand only if @"*(u,x) > €2;
4. for A4 ge xelX,
limsup r47”/ |Fy|?dV = 0.
r—0 B (x)
Proof (1) follows from the elementary fact that ((dB,(x)) = 0 for a.e. 0 < r < 1. The first part of (2) now follows
from (1) and the fact that 7*~" Ui(B,(x)) increases as r increases. The upper semicontinuity follows directly from the
monotonicity formula. The "~ approximate continuity property follows as in [22, Lemma 3.2.2] (see also [15, p.
803]). For (3), suppose ©"*(,x) > &2, obviously, x ¢ X. Now suppose x € X, if ©"*(u,x) < &2, by (1), w;(B,(x)) <
83 for 0 < r < 1. By e-regularity, A; converges smoothly near x which implies x ¢ X. This is a contradiction. For (4),
see [22, p. 222].

Remark 25 From this, we know £ = {x € B: ©@"*(u,x) > €2}, which recovers the statement that X a closed subset of
B of finite (n — 4)-dimensional Hausdorff measure. Furthermore, X is intrinsically associated to L.

In the following, we always denote

w(u)==x. (3.3)
We also define
Sing(Aw) ={x€B: limsupr472”/ |Fa|* >0} (34)
r—0 Br(x)

Lemma 26 The following holds

1. £ = Supp(v)USing(A);
2. v is absolutely continuous with respect to the (n —4) Hausdorff measure on X. In particular, v = @(x)jfznf4 where

& < O(x) <C=C(d,n)sup | Falli2(s, )
1
for A" 4 ae. x€ L.

Proof For (1), suppose x ¢ X, we know O(l,x) < &5. By e-regularity, A; converges smoothly near x which implies
v = 0 near x and A is smooth near x. Suppose x € X, if x ¢ Supp(v), then

1imr4*"/B " |Fo. > =0(u,x) > .

r—0
i.e. x € Sing(A<). For (2), by Theorem 16 we know that
P (B, (x) < 8" 1(Ba, (x)
which implies u is absolutely continuous with respect to the (n — 4)-Hausdorff measure. In particular, we have
wlz =0(x) "

for some measurable function @ (x). Since

lim /4" / |Fy_|*dVol =0
By (r)

r—0
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for "% ae. x € X, we know
v(x) =0(x) 5

for 5" a.e. x € X. The conclusion follows from the density estimate above and the classical fact that

Vol ,n-4(ZNB.(x))
rn—4

247" < limsup <1

r—0

for #" % ae.xeX.

3.2 Tangent cone measures

Fix xo € B, define
T2 :Bao(xo) —)Bgo(xo) ZXO“ré '—)xo-i-lﬁ

For E C B, (xo) measurable, let
(E) = A4 (i (E))
In this section we prove the following (cf. [22, Lemma 3.2.1])

Proposition 27 For any A; | 0 there is a Radon measure 1 such that (after passing to a subsequence) My, =M weakly.
Moreover, 1 is a cone measure, in the sense that

AY"(AE) = n(E)
forany & >0 and E C Bg,(xo) measurable.

Proof Let dsi = l_zr}z ds? be the pull-back metric and dV;, the associated volume form. Similarly, let Ajp = TA;. We
also pull back the hermitian structure. Then:

2 4 2
Fa, =0kFa 5 [Fa, [7(0) = A7 Fa |7 (12(x))
The weak convergence of p,, — 1, for some Radon measure 7, follows from the monotonicity. Notice that since

o " Uu(Bs(x0)) < p* "1 (Bp(x0))

we have
6" (Bs(x0)) = O (1, x0)

We wish to show 1 is a cone measure. For this it suffices to show that for any radially invariant function ¢ > 0,
4—n _ ~4-n
o [ gan=p* [ oan (3.5)
Bs(x) Bp(x)
for all o, p (cf. [22], top of p. 225). By a diagonalization argument we may assume
|FA,-11 |2dV7L,- —1n

weakly. To prove (3.5), note that

047"/ 91Fa,, I7dVy, —P47"/ 91Fa,, I7dVy,
Bg(x) ! Bp(x) '

0 d
= ds — s47"/ Fy . [2dv }
[ass { [ ol Pav,
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P d g
= [ ds— s“*"/ Foa 27:*dV.} 3.6
/o‘ ds{ .Bl(x)¢| s AV 3-6)

Now s*™7dV), = (14 O(s*A;))dVy, so

d

;(S4_nf:dVAi) —0
s

uniformly as A; — 0. Since Fj, has uniformly bounded L?-norm, this term vanishes. It suffices to estimate the term

coming from
d

*

%FT;A[,&- = dr;Ai,li aS(TSAi-,li)

At this point we can assume A, 3, is in radial gauge, i.e. 15 A; 5, = 0. Then
larFAi.l[ = 8,A,-’;Ll.

and so
(T A 2) = 1o, Frza, .

It follows that d
$(¢|FT.\*A,~,A[ ?) = 2<dfx*Ai,/1[ (r’t?»-Ff?Ai,A[)v ¢FT3AI',/1[>

Integrating by parts, we see that (3.6) is bounded by a constant times the integral of
|

19, ;5 |IEa; |

over B (x), where the constant depends on ¢, d¢, and d€2. By Theorem 16 we have
/ r47n|18rFA-l, |2dV,1. —0
Bp(x) s '

and so the result follows.

Remark 28 An alternative argument follows [14, Lemma 4.1.4]. In order to show 1M is a cone measure, it suffices to
show that for any compactly supported function W over B we have

d —N (% _
S () =0,

To prove this, note that

S ) = 26 [ van)

ds
== [ (= 4y (V) )av
JRrn

where y(x) = y(x/s) and (Vy)s(x) = (V) (x/s). So it suffices to show that

/Rn((n — 4yt 5% (Vy),)aV = 0.

From the proof of Theorem 16, we have
[P GTy - 4y w0y

g‘—Zsup|d.Q| / wrlis, EallEaldV + / a1 Fa 2V + / O(rz)u/|FA|2dV’.
M M M
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for any Q-YM connection A over (M, g) and compactly supported function y. We plug in (A, w) = (A; 4,, W) and get

1

[ (5™ (7). 0= ) 202V |

< ‘—ZSup |dQ;] /Rn Wr|tg, Fyu||[Fya |dV + /M41//§r|larFM |2dv + /Rn O(r) | Fyo [PdV
By taking limits the right hand side vanishes, and this gives
/]Rn((n — )y 5 x (Vy),)dn =0.

Here, since the base metric converges smoothly to the flat metric on R", the O(r*) term vanishes in the limit.
Now we fix a tangent measure 7). Define
Ly:={xeR":0"*(n,x) = 0" *(n,0) = 0" *(1t,x0)}.
The following can be deduced from the monotonicity formula and the dimension reduction argument of Federer (cf. [14,

p. 27)).

Lemma 29 Foranyy € Ly, 1 is invariant in the direction of y. In particular, Ly is a linear subspace of R". Furthermore,
dimLy, <n—4.

Define
Xj:={x€ X :dimL, < j for all the tangent measures 1 at x}.

Then we have

Proposition 30 There exists a filtration which consists of closed subsets
YoCXC---CEyy=2X

with the Hausdorff dimension satisfying dim(Z;) < j.

3.3 Results parallel to stationary harmonic maps and Yang-Mills connections

The following geometric lemma can be obtained by directly replacing the energy density associated to the harmonic
map with ©"*in [14] or the Yang-Mills case in [22]

Lemma 31 Suppose @”’4(,11, -) is S approximately continuous at x € X. For any 0 < r < 1, there exists n — 4

points xi,--- X, _, with

- O *(u,xl) > @ *(u,x) — & where & — 0 as r — 0;
— d(x1,x) > rs and d(x;,x+ span{x; —x-++ ,x,—4 —x}) > rs for some s € (0,1) independent of r.
Given the geometric lemma, we have the existence of weak tangent planes as follows

Proposition 32 For any point x € X and any § > 0, there exists ry > 0 and a tangent plane L € Gr(R",n — 4) so that
W(B,(x)\ Ls,) = 0 where Lg, denotes the dr neighborhood of L in R".

As a corollary, this implies the null projection property.
Proposition 33 Suppose E C X is a purely (n — 4)-unrectifiable set, then
Voll%dnféi (H/ (E)) = O
for any orthogonal projections Py : R" —V € Gr(R",n—4).

Remark 34 The fact that the result in Proposition 33 holds for all planes V, and not just almost all, will be important
for the proof of Theorem 4 below.
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3.4 Positive projection density

The argument for the following is the same as [14] and [22]. We will only point out where the change is necessary and
refer the reader there for more details.

Proposition 35 For 57" a.e. points x € Z,

i YoLypn 4 (A (£ B,(x))

>
r—0 o(n—4)rm-4 -

1
2
for some projection Py : R" =V € Gr(R",n—4).

Proof Otherwise, we can find a point xp € X so that
limsup r47"/ |Fa|>=0
r Br(xp)
and ©@"*(u,-) is approximately continuous at xo € X but

| P XNB, 1
lim Vo H 4(PV( N ()C()))) < —.
r—0 aln—4)rm—4 2

In particular, any tangent measure of U at xo takes the form @”‘4(x0),%’i€ni‘2‘ for some R"~2 C R”. Recall that from the
diagonalization argument we assume

(Wi)p, — O (x0) A4,

Define
n—2
0‘/1,- = Z |laocFAi,l,- |2dV01
a=1

We know that for any fixed 6 > 0 and i large, &y, (B3/») < 6. Now we define

Fpt (R x0) x (0,1) > R

Za(we)= [ 1, P+ ve)92(0)avol,
2

Here, y = (y1,y2) C R* x R"™*, y(y1) = €*"wy(y /€) where y is a nonnegative compactly supported function on the
unit ball in R* with integral being 1, while ¢ is smooth and compactly supported on the unit ball in R*~*. To simplify
the notation, we will denote F := Fjy_, , Oq = B;L'a and V¢ as the covariant derivatives. Viewing |F| as a function of y,

we have
Ou|F|> = —2Tt(VoFyp F7P)
= 4Tr(VyFpa F™P)
=49, Tr(Fpo F™P (x+y)) £ 4(15, F, *(F A Q)).
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Forany 1 < oo < n—4, we have

d
500 = [ o UFE ) ) 02) Vol

:/Bn 9a|FI* (x+)We (1)9° (v2) dVol,
- /,3 49y Tr(FpoF ) (x4 y) We (v1)97 (v2) dVol,

£ [ 415, .4 (F 1)+ ) ¥e)9 (02) dVol,

n

J
= Y [ AT (FpaF " )ye (1) 5 - 97 (2) dVol,
Y=n—4 B'Zl Yy

+/, n4<zaaF,*(FAQ)))%(yl)w(yz)dVoly

+Z4

p) Tr(Fpo ™) (x+y) We(y1)9” (y2) dVol,
x,y Bn

This implies V.7, = £ +divGy,, where

)= X[ ATl yeln) 5002) Vol
Y=n—4

= [ 400, F (A Q)Y (1)902) aVol
and
(Ga)l = [ 4Te(Fpa™)(x-+3)Ye(31)9(2) Vol
2
Here the divergence of G, is taken for each vector component of Gy,. Since o, — 0, we know that for any 6 > 0,
13,012 y-5) + 16,2 g0y < 8

for i sufficiently large, and thus A; sufficiently small. Given this, by [14, Lemma 4.2.10] we know for any §; there exist
constants C, (€)

||ﬂll(7£) - CA,‘(S)HLI(Bg*z) S 51

Letting € — 0, we have for some constants C, s
‘ /B"—4 |FAi.)Li |2(avy2)¢2(y2)dy2 - Cl,- <4
/By

when i large. As in [15,22], this then implies limC,, = @”‘4(/.L,x0). It then follows as in those references that the
projection from R” — R"~* x 0 will give a contradiction.
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3.5 Proof of Theorem 4

Now we are ready to finish the proof for Theorem 4 as in [15,22]. By the Besicovitch-Federer decomposition theorem,
we can write X = X" U X%, where X" is (n — 4)-rectifiable while X" is purely (n — 4)-unrectifiable. Furthermore, if
X" 50, then Vol ,, 4 (Z*) > 0. By Proposition 33, we know there exists x € X* such that

Vol 4 (Py (2N B, (x))) = 0

while by Proposition 35, we have
Vol n-4(Py (2" NB,(x))) >0

for 0 < r < 1. This is a contradiction. In particular, this implies Vol ,,»—4(X") = 0, and so Z* = (. Thus, X is (n —4)-
rectifiable.

4 Weak compactification of the moduli space of smooth Q-Yang-Mills connections

In this section, we will study the compactification of the moduli space of smooth £2-YM connections on a fixed bundle
E with bounded L? norm of curvature over (M, g). We denote the moduli space as

Age={Ac o di(Fy++(FANQ)) = o,/ Fal? < ¢}
M

Given a sequence A; € @/ ., by passing to a subsequence, we can assume |Fy, |>dVol converges to u as a sequence of
Radon measures, and modulo gauge transformations, A; converges to A outside (). Define 27 . to be the space of

such pairs (A, ).

Definition 36 Given a sequence (A;, 1) € g ., we say A; converges to a finite energy 2-YM connection (Ace, o) if

1. U; converges to U.. weakly as a sequence of Radon measures;
2. up to gauge transforms, A; converges to Ac outside Tt(l).

Theorem 37 </, . is weakly sequentially compact in the sense that every sequence {(A;, W)} in o . sub-converges to
some (Ao, o) € 3 .

Proof Given a sequence (A;, ll;) € g ., by assumption, for each i, we can find a sequence of {A;;}; so that y;; =
\FAU |> dVol converges to ; weakly as a sequence of Radon measures. By a diagonal sequence argument, we can assume
u;j and u; both converge weakly to L. as sequences of Radon measures. The following now is needed to guarantee the
existence of the limit of A;

limsup 7 () C 7 (o). 4.1)

Suppose this is not true. By passing to a subsequence, there exists a sequence of points x; € () which converges to
Xoo & T(Us). In particular, we have for 0 < r < dist (Xe, T (oo ))

Hea (9B (xe)) = O,

which implies =" u;(B,(x;)) < &/2, for r sufficiently small and i sufficiently large. This, of course, contradicts with the
assumption that x; € w(y;). Given this, up to gauge transforms, we can assume A; sub-converges to A., outside ()
smoothly. Indeed, a priori, we only know that A; converges to A outside a closed subset IcM \ 7(Uoo) of Hausdorff
codimension 4. However, since we already know that Ll M\T (o) = |F4..|? dVol, by Lemma 24, we know

7" i(B,(x)) < €0/2

for i large. This implies that A; converges to Ao, smoothly over B, (x). In particular, we know I=0,ie. A; sub-converges
to A.. smoothly outside 7(H..). Now by a diagonal sequence argument again, we can assume A;; sub-converges to Ao
smoothly outside 7 (). The sequential compactness follows.
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Remark 38 - For general finite energy Q2-YM connections on a fixed bundle over M, or even YM connections, we do
not know whether we can take a limit or not due to lack of control of Sing(A;). It is very crucial to assume they all
come from limits of smooth connections here.

— The compactness we obtain here is very weak due to the fact that the limiting bundles E. are not known to be
isometric to E| wm\z- This does, however, hold in the case of Hermitian-Yang-Mills connections over general complex
manifolds (see Corollary 48)

5 Singularity formation
5.1 Bubbling connections at a generic point

Using the proof of Proposition 35, the argument in [22, Prop. 4.1.1] for the case of Yang-Mills connections gives
Proposition 39 Fix a point x € X so that

— the tangent plane of X at x exists uniquely;
- 0" *(u,-) is A" *-Hausdorff continuous at x ;
— limsup, r*~" Js, | [>=o.

By passing to a subsequence, up to gauge transforms, A; ;, converges to a £,-YM connection Be over R" with R" =
T.X x (T,X)* satisfying 1,Fp, =0, for any v € T, X.

Following [22], we call B, a bubbling connection of the sequence {A;} at x.

5.2 Tangent cones of the limits

Denote (A%, ut) = A*(Aw, Uoo) Where A :By-15,(x) = B, (x).
Proposition 40 By passing to a subsequence,

— 2 converges to a cone measure n;
— up to gauge transforms, Ai converges to AS, outside

n(n) = {xeR": 0" *(n,x) > &}
which is scaling invariant. Furthermore, 15 Fac = 0.

Proof The first statement follows from Proposition 27. Given this, it follows the same as Theorem 37 that

limsupz(ul) c n(n).
A

Now up to gauge transforms, we can assume A% sub-converges to AS, smoothly outside m(n). It follows from the
monotonicity formula that 15, Fyc = 0, outside 7(n7). Since 1) is a cone measure, we know also 7(1) is also a cone.

We call (AS,, 1) a tangent cone of (A, ) at the point x. A priori, we do not know whether it is unique or not since this
involves a choice of the subsequence.

Remark 41 In [22], the tangent cones of general stationary Yang-Mills connections are shown to exist where the
stationary condition is needed for the monotonicity formula. Here as long as we know (Aw, le) comes from the limit of
smooth connections, it already has a monotonicity property that suffices for use.
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5.3 ©-ASD instantons and calibrated geometries

Given the analytic results above, it is straightforward to see that the results in [22] hold for general 2-ASD instantons
without assuming Q to be closed. More precisely, we assume (A, lo) is an finite energy Q-ASD instanton which
comes from the limit of a sequence of smooth 2-ASD instantons with uniformly bounded L? norm on curvature. We
also write

oo = |Fa.|* dVol 40" (x) 58~
as before. Similar to Proposition 4.2.1 in [22], the following holds

Proposition 42 A bubbling connection Be Of (Aw, o) at "4 g.e. x € X is a Q-ASD instanton. In particular, £,
induces a volume form of X at x.

This implies the following, as pointed out in the Yang-Mills case in [22, p. 242, Remark 5]). The proof is exactly the
same.

Proposition 43 For the limiting connection (Ac, oo )

1
- @@”_4()6) is integer valued at 7" * a.e. x € X;

— Q restricts to a volume form of T,.X at 7" * a.e. x € X.

6 Removable Singularities

In this section, using the main results in [20] we generalize the removable singularity theorem for stationary Yang-
Mills fields in [21] to the case of £2-YM connections. The argument closely follows [20, Theorem 10]. Below we will
denote by A an Q-YM connection defined on the trivial bundle over M \ X, where M = [—4,4]" endowed with a smooth
Riemannian metric, Q is a smooth (n —4)-form on M, and X is a closed subset of U of finite (n — 4)-dimensional
Hausdorff measure.

Theorem 44 If sup,.,,Sup,~ f2(x,r) is sufficiently small, then for any B,.(x) C L, there exists a gauge transform g
over B,(x)\ Z so that g(A) extends to a smooth connection over B,(x).

Proof Denote f = |Fy|. It suffices to show that f satisfies

2
—Af+a@—c|FA|2fSCf (6.1)

over M\ X for some o > 0. Indeed, given (6.1), by [20, Thm. 9] we know that f € L*([—1,1]"). Now the existence of
the gauge transformation follows from [20, App. C, Thm. 19]. It remains to show that f satisfies the inequality (6.1). By
(2.8) we have

—%A|FA|2 = —|VaFA|* + (VAVaFs, Fr)
= —|VaFal* + ({Fa,Fa}, Fa) + ({Rg, Fa}, Fa) + ({dQ,V4Fs }, Fa)
which implies
- %A\FA\Z—F VAEP +daFal? + di Fa
<({Fa,Fa}, Fa) + ({Rg, Fa}, Fa) + ({dQ,VaEs }, Fy) +|dQ A Fy|?
<C|Fp|* + Ce|Fa|? + €| VaF4|?
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where the last line follows from Holder’s inequality, and 0 < € < 1 is to be determined later. This then implies
—lA\F 2+ (1= &)(|VaFA|]* + |daFa* + |di Fa|*) — C|Fa|* < Ce| Fal? (6.2)
S Al ala AfA Al'a Al” = Cellal™ .
Now the improved Kato inequality (see [20, Thm. 5]) gives
VaBal* +|daFal* + diFal > ——[d|Fa|.
Combined with (6.2) this gives
S+ (1 —e) P~ CUEA < CelFa P

Substituting f = |Fs| and u = |F4|?, we have

1 1—-¢
dap+ U Mape_cup <,
2 n—1
A straightforward calculation now shows
1—¢ df |*
Af+ <( n —1) ’f —Cu<Cef.
n—1
1—
Choose € so that o = (781)n —1>0, and (6.1) follows.
n—

7 Hermitian-Yang-Mills connections over general complex manifolds
7.1 Improvement of the analytic results

In this section, we will generalize Tian’s holomorphic cycle theorem for Hermitian-Yang-Mills connections over Kihler
manifolds [22, Thm. 4.3.3] to the case of Hermitian manifolds. More precisely, we fix A; to be a sequence of HYM
connections over an m-dimensional Hermitian manifold (X, ®) with ||F4,|| < C. These are not Yang-Mills connections
in general. As before, let

Z={xeB: lim

liminf 42" / Fi? > €2},
r—0+ i Bx(r)‘ A‘ - 0}

Then we can assume

- Wi :=|Fy,|*dVol — u = |Fy_|*>dVol +v where supp(V) is equal to the pure complex codimension 2 part of X;
— up to gauge transforms, A; sub-converges to A outside X.

Remark 45 Strictly speaking, without assuming the Hermitian-Einstein constant vanishes, i.e. /—1AFy = 0, HYM
connections are not exactly Q-ASD instantons in the sense of (1.3), where Q = @™ ~2/(m—2)\. But it is projectively
Q-ASD connections in the sense that

*(Ff-NQ) = —Ff-

where FAL = Fy — uld o satisfying FAl A" = 0. It is straightforward to see that the results for Q-YM connections
holds for this case by using the same argument. There is another way to see this. By the Bochner-Kodaira-Nakano
identity (see [5, Theorem 1.1]), we have

szA = pFA

for some p = p(|A,dw],[A,dw)), for which the same arguments as for Q-YM connections apply. The results in the
previous sections hold in this case.
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The following can be deduced easily from [1, Thm. 2].

Proposition 46 1. E.. can be extended uniquely as a reflexive sheaf &.. over M. For any local section s € &., log™ |s|2 €
H] (L7, Furthermore, A can be extended to be defined over M \ Sing(&..). In particular, Tr(Fy AFy.) is closed
across X, thus the current

() (2) = lijmTI’(FAji VAN FAji) — TI'(FAW /\FAN)

is closed.
2. X =Sing(&w) UULE is a complex subvariety of M and

e (Z) =Y m[E]. (7.1)

In particular, v = ka%zk”% where Xy, are the irreducible pure codimension 2 components of X and

_ 2 2n—4
Peo = |Fa..| dVol+zk:mk%k : (7.2)

Proof For (1), locally by replacing @ with any Kihler metric, it does not change the fact that ||Fy_|| n <. By
Theorem 2 in [1], we know that E., can be extended uniquely as a reflexive sheaf & over M. Furthermore, for any local
section s € &, logJr |s\2 S Hlloc. Then the local L bound follows from Moser iteration. Given this, one can directly
repeat the proof for Proposition 1 in [1] to extend A by extending the metric H., locally. Now we use Simpson’s trick to
show the closedness of Tr(Fy, A Fy.,) (see [19, p. 71]). By proceeding with stratum of Sing(&.) which has codimension
at least 6, we can choose a point x € Sing(&.) which is smooth at x € Sing(&.). Let y be a smooth (n — 5)-form which
is compactly supported near x.

— Suppose y has vanishing constant coefficients. We can choose a family of cut-off function ¢s which vanishes over
an e-neighborhood of x and d(¢s y) is uniformly bounded. In particular, we have

/ TI'(FAM /\FAN) Ady = lim TI'(FA°<1 /\FAw) /\d((])g l[/) =0.
M e—=0JMm

— In general, since Sing(&.) has codimension at least 6, we know that ¥ = Y;dx; A @;, where x; are defining coor-
dinates for Sing(&.). Now v — Y, d(x;@;) vanishes along Sing(&.) and satisfies d(y — Y;d(x;@;)) = dy. By the
special case above, we know

/ TI‘(FAOQ /\FAw) ANdy =0.
M

Now we prove (2). We first show Sing(&.) UU X, C X. From the above, we know Sing(A.) C Sing(&x ). It remains to
show that Supp(V) is a pure codimension 2 subvariety of M. Indeed, we know X is calibrated by @”~2/(m —2)!, which
implies T,.X is a complex analytic subspace of T,M. Given this, it follows from part (1) and Proposition 43 that ¢»(Z) is
a closed integral current. Then by King’s theorem [12] we can express ¢;(Z) in the form (7.1) for some integers my;, and
pure codimension 2 subvarieties X of M. This implies X C Sing(&w) UU;Zy., through which the top pure codimension
2 parts are identified. For the other direction, suppose not, there exists a point x € Sing(&) with @"* (.., x) = 0. As
Theorem 37, we can conclude that *~2"i;(B,(x)) < &/2, for i large and r small. This implies that A; sub-converges to
Ao smoothly near x, which gives a contradiction. In sum, we have X = Sing(&.) U U Y.

Remark 47 - Itfollows by exactly the same argument that Proposition 46 (1) holds for general admissible Hermitian-
Yang-Mills connections over complex Hermitian manifolds, i.e. smooth Hermitian-Yang-Mills connections defined
away from a closed Hausdorff codimension 4 set.

— It is straightforward to see that the proof for the closedness part holds for general finite energy Q-YM connections
with mild singularities; for example, when the singular set can be stratified by smooth manifolds of real codimension
at least 6. In general, it is conjectured that the set of essential singularities of finite energy Q-ASD instantons when
Q is closed has Hausdorff codimension at least 6 (see [22]).
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Corollary 48 As a smooth bundle, E.| mz ZE | m\z- In particular, we can assume there exists a sequence of bundle
isometries @j, : Eeo — E| M\x SO that <1>;-‘I_A j; locally converges to A, smoothly away from X.

Given this, let E be a Hermitian bundle over a compact Hermitian manifold (M, ®). Denote Mpyu . to be the
space of limits of smooth Hermitian-Yang-Mills connections on E with L? norm of curvature bounded by ¢ mod gauge
(smooth wherever the connections are smooth). We give Myyuy . a topology by specifying a basis of open neighborhood
as Y, ([A, 1]) consisting of [(A’, u")] € Mpyu . satisfying

— A’ lies in the & neighborhood of A outside a €] neighborhood of 7(1);
- [u(9) —1'(9) <&

Here € = (g1,&) with & > 0 for i = 1,2 and ¢ is a continuous and bounded function.

Remark 49 When m = 2, this topology coincides exactly with the topology in the case of four dimensional manifolds
(see [8, Section 4.4]).

Given this, we have the following improved version of Theorem 37
Theorem 50 Mpyyy . is a first countable sequentially compact Hausdorff space.

By Proposition 46, the moduli space can be also viewed as consisting of pairs (A, ") mod gauge where € =
Y. mi Xy is a integer linear combination of pure codimension two subvarities of X. Later we will not make a difference
between them.

7.2 HYM connections over a class of balanced manifolds of Hodge-Riemann type

Now we assume (M, ®) is an m-dimensional compact balanced Hermitian manifold of Hodge-Riemann type as defined
in [3, Def. 2.7]. This means we can write

0" =@y AQ
where @y is a strictly positive (1,1) form, Qy is of type (m —2,m —2), and

I do™ ' =0;
2. dQy=0;
3. for any p+ g = 2, there exists a pointwise Q-orthogonal decomposition

AP4 = Cay @ PP

where PP4 = {a € AP : aAwyNQy=0};

(pt+a)(p+q—1)

4. O, B):= (vV/=1)P~9(=1)" T — (& AB A&yp) is positive definite on PP,

In this case, a uniform bound for the L2 norm of curvature of all the smooth irreducible Hermitian-Yang-Mills connec-
tions is automatic by the following observation.

Lemma 51 Given any HYM connection A on E,

a)m
JIER <c
X !

where C = C(c(E), @;).
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Proof By conditions (3) and (4) we have

. (Dm71 .
/ |FAl> ——— SCI(/Tr(FA/\FA)AQO—&-Cg/ |f12 00 A o A Q)
Jx (m—1)! Jx Jx

where FAl = F4 — f1d ay. Here

"

_ !
f=u wp A @y A Qo
In particular, we have
" n
n! @

— ), 7.3
wp N\ wy A\ o n!) (7:3)

wn
/ |FA|27 < C](/ FAxNFqp N +C2[,l2 /
b's n! b Jx

The result follows.
In this case, we denote the compactification of the moduli space of HYM connections mod gauge as Mpyy by choosing
c large.
Theorem 52 On a unitrary bundle over a compact balanced Hermitian manifold (X, @) of Hodge-Riemann type, Myyy
is a first countable sequentially compact Hausdorff space.
Now we would like to give an important class of balanced metrics of Hodge-Riemann type, which comes from multipo-

larizations. Namely, for any positive (1, 1) forms @y, -- -, @,_» on a compact complex manifold X so that

wmfl

— =W A AW,

(m_1)| (04 O—1
d(@wyNoy N+ AN®y—2)=0

d(wl/\---Awm,z):O

(7.4)

then by the main result in [23] we get a balanced Hermitian metric @ of Hodge-Riemann type by setting Qo = @; A--- A
Wyp—2.

Corollary 53 On a unitrary bundle over a compact balanced Hermitian manifold (X, ®) satisfying (7.4), Myyy is a
first countable sequentially compact Hausdorff space.

In particular, this gives the following

Corollary 54 On a unitrary bundle over a compact Kdiihler manifold (X,®), Myyu is a first countable sequentially
compact Hausdorff space.

Remark 55 When (X, w) is a projective algebraic manifold, i.e. ® = c|[L] for some line bundle L, it is known that
M,y \, which denotes the closure of the space of irreducible HYM connections with fixed determinants in Mgy, admits
a complex structure coming from the algebraic geometric side. The induced complex structure makes it an algebraic
space (see [10]). We will explain how it can be generalized to the case of multipolarizations in the following by using
the same argument in [10] and the algebraic geometric results in [11].

7.3 Mj;y,, for multipolarizations

In this section, we fix (E,H) to be a unitary vector bundle over a compact complex Hermitian manifold (X, @) so that

wmfl

=Wy A A Oy
(m—l)‘ o m—2

where [@;] are all ample classes, i.e. [@;] = ¢1(L;) for some ample line bundles L;. Set Qy = @ A+ A Opy_2. As
mentioned above, we can view the moduli space Mj;,,, consisting of pairs (A, %") mod gauge. It is a sequentially
compact Hausdorff space. Using the argument in [10], we briefly explain how a complex structure could be given to
My, to make it an algebraic space.
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7.3.1 Moduli space of semistable torsion free sheaves via multipolarizations

In this section, we will recall the construction for the compactification of the moduli space of semistable sheaves with
given numerical classes and fixed determinant. We refer the readers to [11] for more details. Recall that the space of slope
semistable sheaves having the same Chern classes as E over (X, ®) is bounded, i.e. if we fix &'(1) to be any polarization
of X, for fixed k large enough, for any &, we have H (X, & (k)) =0, for i > 1, and & (k) is globally generated. Let

A =C¥W @ 6(—k)

where 7 denotes the Hilbert polynomial of &. Now we know for k fixed large enough, all such sheaves can be viewed
as points [q : # — &) in Quot(.#,T) by choosing an isomorphism C®*%) = HO(X & (k)). Here Quot (.7, T) denotes
the space of points given by surjective maps ¢ : 7 — &, where the Hilbert polynomial of & is equal to Tz, modulo
the equivalence: ¢ : # — & and ¢’ : ¥ — &’ are equivalent if and only if there exists an isomorphism foqg = ¢/, i.e.
ker(q) = ker(q). Furthermore, there exists a universal quotient

qu - ﬁQltot(H,‘cE) QI — U.

over Quot(H,Tg) x X which restricts to the natural quotient at each point [g]. Now we denote R*** as the subscheme of
Quot (&, consisting of elements [g : 7 — &] so that

& is semistable;

det(6) = _7;

& has the same numerical classes as &;

¢ induces an isomorphism between C2**) and HO(X, & (k)).

Define 2 as the weak normalization of the reduction of R***. Denote
Qo ﬁQ,m(H,TE) QA — U
as the pull-back of the universal quotient [g4 ] to 2 x X. Consider the class
up—1 = —rank(E)ci(Ly)---c1(Ln—1) + x(c1(L1) - -c1(Ly—1).c(E))[ O]

where x € X is a fixed point. Now consider the line bundle

L1 = M;(un—l)
of which the higher power is a semi-ample line bundle over 2. Then one can form a formal GIT quotient as

M*S = Proj(@=0H (2, 2)Y)

for some N. The conclusion is that this is a projective scheme with certain universal properties and the natural surjective
map 7 : Z — MM collapses the SL orbits and 7(q) = 7m(q’) only if the sheaves & and &’ associated to g and ¢’ share
the same graded sheaf Gr'/N5 (&) 2 GrIVS (&) and € (&) = € (&”). When dimX = 2, the converse holds.
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7.3.2 Complex structure on Myyy,, induced from a continuity map ®

Given a stable unitary bundle over (E,H,dy) over (X,®), the most general version of the Donaldson-Uhlenbeck-Yau
theorem states that there exists a complex gauge transformation g so that the unitary connection given by (H,g(d4))
is a HYM connection that is unique up to unitary gauge transformations. Now this can be generalized to the case of
stable reflexive sheaf using the notion of admissible HYM connections (i.e. finite energy on the smooth locus). Suppose
[q] € Quot represents a semistable torsion free sheaf &. We can take the graded sheaf GrftV S(éd ) associated to a Harder-
Narasimhan-Seshadri filtration of &. From this we can extract canonical algebraic data as

(G5 (&), 6(6)
from which the first factor gives a unique admissible HYM connection A(&"). Here
(&)=Y m"5;
where X is a pure codimension two subvariety of X and
s = (A, (G5 (6)) /G (6))]a).
Here A is a generic holomorphic transverse slice of 2.

Definition 56 We define M* to be the closure of (M*)*" in MM*S where (M*)*" denotes the weak normalization of M.

Then we have

Proposition 57 There exists a continuous map

DM — My,

which restricts to the natural map
D (M) — (Mpyu)""-

More precisely, suppose [q : 7 — &) represents a point in M5, then ®([&)) = (A(&), € (&)).

We very briefly explain how the proof is done and refer the reader to [10] for more details. We fix a sequence of smooth
HYM connections {A;} on E which sub-converges to (A, 4"). By the boundedness, we can put &; = (E, ds,) in a fixed
Quot scheme and thus obtain an algebraic limit which can behave badly in general. More precisely, by fixing k large
and choosing an L? orthonormal basis for H(X,&}(k)), we get a sequence of elements [g;] in the corresponding Quot
scheme. Then we can take an algebraic limit [g.] of [¢;] in the Quot scheme. As in [10, Sec. 4], it can be concluded
that ¢.. induces a sheaf inclusion .Z%¢ — &, which is an isomorphism outside some codimension two subvariety. In
particular, &, = (.Z%8)**. Using the argument in [10, Sec. 4.3], the singular Bott-Chern formula applied to the filtration
of # induced by [¢..] gives € (F4/€) = €. In particular, as in [10], this gives that the map @ is continuous. Given this,
since all the essential algebraic geometric results [11] used in [10] are done for multipolarizations, it is straightforward
to adapt the corresponding statements in [10] to the case of multipolarizations to obtain the following

Proposition 58 There exists a complex structure on Mj;y,, which makes Mj;y,, an algebraic space so that the natural
map D : M* — My, is an algebraic morphism.
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