
Abstract On a Riemannian manifold of dimension n we extend the known analytic results on Yang-Mills connections

to the class of connections called Ω -Yang-Mills connections, where Ω is a smooth, not necessarily closed, (n− 4)-
form on M. Special cases include Ω -anti-self-dual connections and Hermitian-Yang-Mills connections over general

complex manifolds. By a key observation, a weak compactness result is obtained for moduli space of smooth Ω -Yang-

Mills connections with uniformly L2 bounded curvature, and it can be improved in the case of Hermitian-Yang-Mills

connections over general complex manifolds. A removable singularity theorem for singular Ω -Yang-Mills connections

on a trivial bundle with small energy concentration is also proven. As an application, it is shown how to compactify

the moduli space of smooth Hermitian-Yang-Mills connections on unitary bundles over a class of balanced manifolds

of Hodge-Riemann type. This class includes the metrics coming from multipolarizations, and in particular, the Kähler

metrics. In the case of multipolarizations on a projective algebraic manifold, the compactification of smooth irreducible

Hermitian-Yang-Mills connections with fixed determinant modulo gauge transformations inherits a complex structure

from algebro-geometric considerations.
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1 Introduction

1.1 Ω -Yang-Mills equations

Let (M,g) be an oriented Riemannian manifold of dimension n ≥ 4, Ω a smooth (n− 4)-form on M, and E → M a

vector bundle with a Riemannian metric1. The Ω -Yang-Mills equations for a metric connection A on E with curvature

FA are

d∗
A (FA +∗(FA ∧Ω)) = 0 , (1.1)

and a solution A to (1.1) will be called an Ω -Yang-Mills connection (or Ω -YM connection, for short). This equation is

the Euler-Lagrange equation of the functional

YMΩ (A) =
∫

M
|FA|2 dV −

∫

M
tr(FA ∧FA)∧Ω (1.2)

which may be viewed as a gauge invariant function on the infinite dimensional space of metric connections on E. The

first term in (1.2) is the usual Yang-Mills functional YM(A). If we assume Ω is closed, then the second term in (1.2) is

topological for compact M (or with respect to compactly supported variations), and so the critical points of YMΩ are
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1 In this paper, if (M,g) is a hermitian complex manifold we assume bundles are also complex Hermitian; otherwise, E can be real or
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identical to those of YM, i.e. the Yang-Mills connections. Indeed, (1.1) reduces to d∗
AFA = 0 in this case. The main goal

of this paper is to extend the analysis of Yang-Mills connections to the more general solutions of (1.1) for the case where

Ω is not closed and Ω -YM connections are not necessarily Yang-Mills.

To provide some motivation, let us note an interesting special case. We define the Ω -ASD connections to be the

solutions to (1.1) of the form

∗FA +FA ∧Ω = 0 (1.3)

If n = 4, Ω = 1, then connections satisfying (1.3) are the much studied anti-self-dual instantons (cf. [9,8]). Higher

dimensional instanton equations of the type (1.3) have been considered in a variety of contexts, and their formulation

goes back to [4]. In the mathematics literature, we refer to [7,22,6], to list only a few of many recent papers. We again

point out that an Ω -ASD connection is not necessarily Yang-Mills unless Ω is closed.

If we assume the comass |Ω | ≤ 1, then YMΩ (A) ≥ 0, and we say A is an absolute minimizer if YMΩ (A) = 0. We

have the following simple lemma.

Lemma 1 Suppose |Ω | ≤ 1. Then a connection A is an absolute minimizer of YMΩ if and only if it is an Ω -ASD

connection.

Now let us suppose that M is an m-dimensional hermitian manifold, 2m = n, with Kähler form ω (not necessarily

closed). If the connection A is integrable (i.e. FA is of type (1,1)), then

YMΩ (A) =
∫

M
|ΛFA|2 dV

where iΛFA is the Hermitian-Einstein tensor, and Ω = ωm−2/(m− 2)!. It follows that in this case the Ω -ASD con-

nections are exactly the Hermitian-Yang-Mills (HYM) connections with iΛFA = 0. In case ω is a Gauduchon metric,

then nontrivial solutions arise from stable holomorphic vector bundles on M (see [13])2. Even when M is a projective

algebraic manifold, many interesting examples of solutions can be obtained from holomorphic bundles that are stable

with respect to multipolarizations [16,11]. For example, if ω1, . . . ,ωm−1 are Kähler forms on M, then solutions to the

equations

FA ∧ω1 ∧·· ·∧ωm−1 = 0 (1.4)

exist for holomorphic bundles that are stable with respect to ω1, . . . ,ωm−1. On the other hand, ω1∧·· ·∧ωm−1 determines

a balanced hermitian metric ω , in general not Kähler, and solutions to (1.4) are Ω -ASD for Ω = ωm−2/(m−2)!. Note

once more that these are not, in general, Yang-Mills, even though the ωi are Kähler forms. Multipolarizations are also

considered in more detail in [3]. Another motivation is to hopefully give new nontrivial ways to deform the moduli

space of Yang-Mills connections, which fits into the higher dimensional gauge theoretic picture described in [6,7]. As

indicated by the multipolarization case, the moduli space of HYM connections can be deformed nontrivially by moving

the metric on the base complex manifold while at the same time giving a uniform L2 bound on the curvature for all the

connections. In general, we know the Kähler condition is often too rigid to deform nontrivially. In a sense, the results

obtained here enrich the picture over complex manifolds by providing new structures to consider as well as examples

arising from algebraic geometry.

1.2 Main results

In this paper, we always assume that (M,g) has bounded geometry in the sense that (M,g) can be isometrically embedded

in a larger Riemannian manifold so that M has compact closure. In Section 2, we will prove a monotonicity formula and

an ε-regularity result for Ω -YM connections. As a consequence, we obtain the following version of Uhlenbeck’s weak

compactness theorem (cf. [17,24]).

2 HYM connections over hermitian manifolds are not Yang-Mills connections in general.
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Theorem 2 Let {Ai} be a sequence of smooth Ω -YM connections with ‖FAi
‖L2 uniformly bounded. Define the set Σ by

Σ = {x ∈ M : lim
r→0+

liminf
i→∞

r4−n

∫

Br(x)
|FAi

|2 ≥ ε2
0}.

Then Σ is a closed subset of finite (n−4)-dimensional Hausdorff measure. There is a bundle E∞ → M \Σ with a metric

that is locally isometric to E on M\Σ . Moreover, there is and a smooth Ω -YM connection A∞ on E∞ so that after passing

to a subsequence { ji} , and modulo to gauge transformations, A ji converges (locally in the C∞ topology) to an Ω -YM

connection A∞ outside Σ , i.e. for any compact subset K ⊂ M \Σ , there exists a sequence of isometries Φ
ji

K : E∞|K → E|K
so that (Φ ji

K )∗A ji converges to A∞ smoothly 3. Furthermore, at each point x ∈ Σ , by passing to a subsequence, up to

gauge transformations, {λ ∗
i A ji}i converges to a smooth nontrivial Ωx-YM connection over Rn = TxM endowed with the

flat metric given by gx. Here {λi}i denotes a sequence of blow-up rescalings centered at x.

Remark 3 – As pointed out in [17], we emphasize here that a priori we only know that E∞ and E|M\Σ are isometric

on compact subsets away from Σ . This is due to the possible complexity of the topology of M \Σ . But as we will see,

a global isometry does exist in the case of Hermitian-Yang-Mills connections (see Corollary 48). This is due to the

fact that we can show Σ is a subvariety in this case.

– A slightly more general statement about the bundle isometries can be obtained as [26]. We refer the interested reader

there.

We will refer to Σ as the bubbling set. By passing to a subsequence, we can assume

µi := |FAi
|2 dVol ⇀ µ∞

as a sequence of Radon measures. So the limit of {Ai}i consists of a pair (A∞,µ∞). As we will see later (see Lemma 24),

µ∞ can recover Σ intrinsically. We will refer it as Ai sub-converges to (A∞,µ∞).
We also generalize Tian’s results [22] for Yang-Mills connections to the case of Ω -YM connections.

Theorem 4 Σ is (n−4)-rectifiable.

Denote AΩ ,c to be the space of smooth Ω -YM connections A on a fixed bundle E with ‖FA‖ ≤ c. Now we consider

the space AΩ ,c by adding limits (A∞,µ∞) of smooth Ω -YM connections {Ai} with ‖FAi
‖L2(M) ≤ c (see Section 4 for

more details.) Since the space of Radon measures {µ∞}, which come from the limits of smooth ones, is compact, we get a

natural control of the singularities of Ai. In particular, the diagonal sequence argument gives the following (see Section

4 for details)

Theorem 5 AΩ ,c is weakly sequentially compact in the sense that every sequence {(Ai,µi)} in AΩ ,c sub-converges to

some (A∞,µ∞) ∈ AΩ ,c.

Remark 6 – Without assuming Ai coming from limits of smooth connections, even in the case of admissible YM

connections, we do not know whether such a limit exists or not due to lack of control of Sing(Ai).
– Again, we emphasize here that the limiting bundle E∞ is not known to be isometric to E|M\Σ for different subse-

quences in general. That is why we cannot directly take the quotient of AΩ ,c mod gauge here. Due to this, it does not

make sense to put a topology on the moduli space at this point. Later in the case of HYM connections over general

complex manifolds, the results can be improved.

Suppose Ai sub-converges to (A∞,µ∞) as above. In Section 5, it is straightforward by the argument in [22] to define

a notion of bubbling connections associated to the sequence. Also the tangent cones associated to (A∞,µ∞) are shown to

exist. Unlike [22] where the tangent cone is defined for stationary admissible Yang-Mills connections, the tangent cone

here is defined for the pair (A∞,µ∞) rather than just for A∞. This comes from the fact that a monotonicity formula still

holds for the energy density of µ∞ which suffices for our use.

By restricting to the case of Ω -ASD instantons, we can generalize Tian’s results ([22]) without requiring Ω be

closed.

3 Unless otherwise specified, convergence of connections is always taken in this sense.
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Proposition 7 Ω restricts to a volume form of TxΣ at H n−4 a.e. x ∈ Σ .

In Section 6, using the argument in [20], we generalize the removable singularities theorem for Yang-Mills connec-

tions of Tao-Tian [21] to the case of Ω -YM connections.

Theorem 8 The removable singularities theorem holds for Ω -YM connections on a trivial bundle with small energy

concentration away from a closed Hausdorff codimension 4 set.

In the last section, we restrict our discussion to the case of HYM connections over general complex manifolds. If

we assume (A∞,µ) is the limit of a sequence of Hermitian-Yang-Mills connections over a compact Hermitian manifold,

then by using the argument in [22] for Hermitian-Yang-Mills connections over Kähler manifolds and the extension

theorem in [1], we can show that (A∞,µ) are all holomorphic and Σ is a complex subvariety of codimension at least 2.

In particular, we can now take the quotient of AΩ ,c mod gauge to get MHY M,c. There exists a way to give it a topology

that coincides with the four dimensional case (see [8]) so that

Theorem 9 MHY M,c is a first countable sequentially compact Hausdorff space.

Assume now (X ,ω) is balanced of Hodge-Riemann type (see Section 7.2 for definitions). It turns out there ex-

ists a natural L2 bound for the HYM connections in this case. By choosing c large for MHY M,c, we get the analytic

compactification of smooth HYM connections on a fixed unitary bundle, which we denote it as MHY M .

Theorem 10 Over a compact balanced Hermitian manifold of Hodge-Riemann type, MHY M is a first countable sequen-

tially compact Hausdorff space.

Remark 11 Here the Hodge-Riemann type condition on the metrics can give us a uniform bound on the curvature of all

the Ω -YM connections considered. We also refer the interested readers to [6, Section 3.1 (Property B′)] where a notion

of taming forms has been introduced for almost Spin(7) manifold to achieve the L2 bound of the curvature as well as a

discussion reduced to dimension 6 (see [6, eqn. (28)]).

By the main results in [23], this gives the following

Corollary 12 Over a complex Hermitian manifold (X ,ω) so that ωm−1 = ω0 ∧ ·· ·ωm−2 where ωi are positive (1,1)
forms with dωm−1 = 0 and d(ω1 ∧·· ·ωm−2) = 0, MHY M is a first countable sequentially compact Hausdorff space.

Remark 13 We emphasize here that by [23], ω0 ∧ ·· ·ωm−2 is always strictly positive and thus defines a positive (1,1)
form on X through ωm−1 = ω0 ∧·· ·ωm−2.

In particular, we have

Corollary 14 Assume (X ,ω) is a compact Kähler manifold, MHY M is a first countable sequentially compact Hausdorff

space.

Remark 15 – As mentioned in Theorem 5 above, the novelty here is that we do not need to consider a larger space

as [22] (explained below). Rather, we use the crucial condition that the connections considered come from limits

of smooth connections. The latter gives a natural control of the singularities of the singular connections on the

boundary.

– In [22], in order to compactify the moduli space, a notion of ideal HYM connection is introduced that generalizes the

situation in four dimension (see [8]); namely, those pairs (A,Σ) with certain natural curvature conditions but not

necessarily coming from limits of smooth ones. In the case of four manifolds, the compactification works essentially

due to the good control of the bubbling set, which consists of points, and Uhlenbeck’s removable singularity theorem.

In higher dimensions, essential difficulties arise if we insist on such a large space of ideal objects. One is the lack of

control of Sing(A). Also, the removable singularity theorem does not automatically apply in this situation due to the

fact that the limiting bundle E∞, defined only away from the singular set, does not necessarily extend to all of M as

a smooth bundle.
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– In higher dimensions, and assuming (X ,ω) is projective, it is shown in [10] that the space of ideal HYM connections

modulo gauge is indeed compact. This is essentially due to a boundedness result from the algebraic geometric side

which gives control of Sing(A), and a version of the removable singularity theorem for HYM connections by Bando

and Siu ([1]). With this, one can take the closure of the space of smooth HYM connections mod gauge in such a

space to get a compactification.

– It is an interesting question to find a characterization of the ideal HYM connections added on to the boundary of

MHY M , i.e. determine whether a given ideal HYM connection be approximated by the smooth ones.

Following from the argument in [10], and using the results on compactification of semistable sheaves via multipolar-

izations in [11], we explain how to give a complex structure to the compactification M∗
HY M , where M∗

HY M is the moduli

space of smooth irreducible HYM connections with fixed determinant.

Finally, consider a finite energy HYM connection A∞ over a complex Hermitian manifold, and denote by E∞ the

corresponding reflexive sheaf. Given the analytic results above following from the argument in [2], to which we refer the

interested reader for the concepts involved, we know the analytic tangent cone of A∞ at a point x is uniquely determined

by the optimal algebraic tangent cones of E∞ at x. Here the tangent cone can be directly defined for A∞ (not necessarily

coming from the limit of smooth ones).

2 Sequential compactness of smooth Ω -Yang-Mills connections

2.1 Monotonicity

Following the argument used by Price for Yang-Mills connections [18], we will show that a monotonicity formula

holds for Ω -YM connections. We also refer to [22, Thm. 2.1.1] for a slightly more general version of the following for

Yang-Mills connections.

Theorem 16 There exist positive constants a and r0, depending only on the geometry of (M,g) and Ω , with the following

significance. If A is a smooth solution to (1.1) and 0 < r1 < r2 ≤ r0, then

∫

Br2
(x)\Br1

(x)
r4−near|ι∂r

FA|2 ≤ ear2 r4−n
2

∫

Br2
(x)

|FA|2 − ear1 r4−n
1

∫

Br1
(x)

|FA|2.

Remark 17 If we denote the scale invariant Lp norms by:

fp(x,r) :=

{
r2p−n

∫

Br(x)
|FA|pdV

}1/p

(2.1)

then Theorem 16 implies, in particular, that ear f2(x,r) is increasing for sufficiently small r.

Proof (Proof of Theorem 16) Let π : P→M be the orthogonal (or unitary) frame bundle of E. Given any connection B on

E, denote by B̃ the associated connection 1-form on the principal bundle P. Given a vector field X on M with compact

support, we denote by X̃ the unique horizontal lift of X to P. Let Φ̃t (resp. Φt ) be the family of diffeomorphisms

generated by X̃ (resp. X). As in [18], we consider the family of connection 1-forms Ãt = Φ̃∗
t ω , and we denote by At the

corresponding family of connections on E. We have

δ Ãt(0) = ι
X̃

dÃ = π∗ιX FA

since X̃ is the horizontal lift of X . In particular, δAt(0) = ιX FA. Indeed, choosing a local section σ of P, which gives a

trivialization of E, then by definition: At = σ∗Ãt . This implies

δAt(0) = σ∗ι
X̃

dÃ = σ∗π∗ιX FA = (πσ)∗ιX FA = ιX FA



Ω -Yang-Mills connections 7

since πσ = Id. Now we look at the variation of the Yang-Mills functional along At . As for this, there are two ways to

calculate it. First, since A satisfies (1.1), we have

d∗
AFA ±∗(FA ∧dΩ) = 0 . (2.2)

Then,
d

dt

∫

M
|FAt |2

∣∣
t=0

= 2

∫

M
〈dAδAt(0),FA〉= 2

∫

M
〈ιX FA,d

∗
AFA〉

=∓2

∫

M
〈ιX FA,∗(FA ∧dΩ)〉.

Alternatively, one may differentiate (1.2) at t = 0 and use the fact that A is critical for YMΩ . In any case, this implies

∣∣∣∣
d

dt

∫

M
|FAt |2

∣∣
t=0

∣∣∣∣≤ 2sup |dΩ |
∫

M
|ιX FA||FA|. (2.3)

Now the second way to calculate the variation is as in [18]. We include the details here. By definition, we know

∫

M
|FAt |2 =

∫

M
|FAt (dΦt ·,dΦt ·)|2(Φt ·)dV =

∫

M
|FAt (dΦt(ei),dΦt(e j))|2(x)Jφ−1

t
dV

where {ei} is a local orthonormal frame near the point x. Taking derivatives and evaluating at t = 0 gives

d

dt

∫

M
|FAt |2|t=0 =

∫

M
−|FA|2divX −4〈FA(LX ei,e j),FA(ei,e j)〉

=
∫

M
−|FA|2divX +∑

i, j

4

∫

M
〈FA(∇ei

X ,e j),FA(ei,e j)〉 .

Combined with (2.3), this implies

∣∣∣∣
∫

M
−|FA|2divX +∑

i, j

4

∫

M
〈FA(∇ei

X ,e j),FA(ei,e j)〉
∣∣∣∣≤ 2sup |dΩ |

∫

M
|ιX FA||FA|. (2.4)

Near the point x we fix the normal coordinates and let {e1 = ∂r,e2, · · · ,en} be a normal frame. In particular, ∇∂r
∂r = 0.

Choose X = ξ (r)r∂r, where ξ is a compact supported function supported over [0,1+ε] with ξ = 1 on [0,1] and ξ ′ ≤ 0.

Then

– ∇∂r
X = (ξ ′r+ξ ) ∂

∂ r

– for i ≥ 2, ∇ei
X = ξ r∇ei

∂
∂ r

= ξ ei +ξ O(r2)

which implies

∑
i, j

4

∫

M
〈FA(∇ei

X ,e j),FA(ei,e j)〉

=∑
j

4

∫

M
〈FA(∇∂r

X ,e j),FA(∂r,e j)〉+∑
i≥2

∑
j

4

∫

M
〈FA(∇ei

X ,e j),FA(ei,e j)〉

=
∫

M
4ξ ′r|ι∂r

FA|2 +∑
j

4

∫

M
ξ |FA(∂r,e j)|2 +∑

i≥2
∑

j

4

∫

M
ξ |FA(ei,e j)|2 +

∫

M
O(r2)ξ |FA|2

=
∫

M
4ξ ′r|ι∂r

FA|2 +4

∫

M
ξ |FA|2 +

∫

M
O(r2)ξ |FA|2.

(2.5)

and

divX = ξ ′r+nξ +ξ O(r2).
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Given this, we have

∫

M
|FA|2div(X)−2sup |dΩ |

∫

M
|X ||FA|2 =

∫

M
|FA|2(ξ ′r+nξ +O(r2)) (2.6)

−2sup |dΩ |
∫

M
|X ||FA|2

Plugging eqns. (2.5) and (2.6) into (2.4), we have

∫

M
|FA|2(ξ ′r+(n−4)ξ +O(r2))−2sup |dΩ |

∫

M
ξ r|FA|2

≤
∫

M
4ξ ′r|ι∂r

FA|2 +
∫

M
O(r2)ξ |FA|2

(2.7)

Now by replacing ξ with ξτ(r) = ξ (τ−1r) in (2.7), and using the fact that

τ
dξτ

dτ
=−rξ ′

τ ,

we have ∫

M
|FA|2(−τ

dξτ

dτ
+(n−4)ξτ)−2sup |dΩ |

∫

M
ξτ r|FA|2

≤−
∫

M
4τ

dξτ

dτ
|ι∂r

FA|2 +
∫

M
O(r2)ξτ |FA|2

i.e. ∫

M
|FA|2(τ

dξτ

dτ
+(4−n)ξτ)+2sup |dΩ |

∫

M
ξτ r|FA|2

≥
∫

M
4τ

dξτ

dτ
|ι∂r

FA|2 +
∫

M
O(r2)ξτ |FA|2.

Multiply the above by eaτ τ3−n where a is a constant to be determined later, and use the fact that ξτ r|FA|2 ≤ ξτ τ|FA|2,

since ξτ is supported over {|x| ≤ τ}. We conclude

eaτ d

dτ
(τ4−n

∫

M
ξτ |FA|2)+ eaτ τ4−n2sup |dΩ |

∫

M
ξτ |FA|2

≥4eaτ τ4−n

∫

M

dξτ

dτ
|ι∂r

FA|2 + eaτ τ3−n

∫

M
O(r2)ξτ |FA|2.

which implies
d

dτ
(eaτ τ4−n

∫

M
ξτ |FA|2)

≥4eaτ τ4−n

∫

M

dξτ

dτ
|ι∂r

FA|2 + eaτ τ3−n

∫

M
O(r2)ξτ |FA|2 +aeaτ τ4−n

∫

M
ξτ |FA|2

− eaτ τ4−n2sup |dΩ |
∫

M
ξτ |FA|2

.

Now choose a large so that a ≫ 2max{1,2sup |dΩ |}. Since
dξτ
dτ =− r

τ ξ ′
τ is nonnegative,

d

dτ
(eaτ τ4−n

∫

M
ξτ |FA|2)≥ 4eaτ τ4−n

∫

M

dξτ

dτ
|ι∂r

FA|2 ≥ 4

∫

M
earr4−n dξτ

dτ
|ι∂r

FA|2

if τ < r0 for some r0 so that eaτ τ4−n is decreasing over [0,r0]. By integrating the inequality above from r1 to r2 and

letting ε → 0, Theorem 16 follows.



Ω -Yang-Mills connections 9

2.2 ε-Regularity

The goal of this section is to prove the following ε-regularity result.

Theorem 18 There exist positive constants ε0, r0, and C, depending only on the geometry of (M,g) and Ω , with the

following property. If A is a smooth solution to the Ω -Yang-Mills equations (1.1) on M, and x ∈ M is a point for which

f2(x,r)≤ ε0 for some 0 < r ≤ r0, then

sup
Br/4(x)

r2|FA| ≤C f2(x,r)

There are two approaches to the regularity of Yang-Mills equations in higher dimensions, and both make use of

the monotonicity formula. Nakajima [17] uses a Bochner-Weitzenböck formula for the curvature to directly get the

bound in Theorem 18. This is similar to Schoen’s approach for the harmonic map problem. Uhlenbeck [24] derives Lp

estimates from L2, and then uses a continuity method to reduce to the case of connections with Lp bounds. This has the

advantage of applying to a larger class of connections satisfying curvature bounds rather than equations. Interestingly,

both methods apply directly to the case of Ω -YM connections, and we find it useful to present each one here.

2.2.1 Method I

Suppose A is a smooth solution to (1.1). Then (2.2) implies

∆AFA =∓dA ∗ (FA ∧dΩ).

In particular, by the Weitzenböck formula, we have

∇∗
A∇AFA =∓dA ∗ (FA ∧dΩ)+{FA,Rg}+{FA,FA} , (2.8)

where { , } denotes a general bilinear expression with smooth coefficients.

Proposition 19 A solution to (1.1) satisfies

1

2
∆ |FA|2 ≥−C1|FA|3 −C2|Rg||FA|2 −

c2

4
|dΩ |2|FA|2 − c|∇dΩ ||FA|2

for positive constants C1, C2, and c depending only on (M,g).

Proof Indeed, from (2.8) we have

1

2
∆ |FA|2 =−< ∇∗

A∇AFA,FA >+< ∇AFA,∇AFA >

≥−C1|FA|3 −C2|Rg||FA|2 −|dA ∗ (FA ∧dΩ)||FA|+ |∇AFA|2

≥−C1|FA|3 −C2|Rg||FA|2 − c(|dΩ ||∇AFA||FA|+ |∇dΩ ||FA|2)+ |∇AFA|2

≥−C1|FA|3 −C2|Rg||FA|2 −
c2

4
|dΩ |2|FA|2 − c|∇dΩ ||FA|2

The last inequality follows from completion of square.

Given this, we can repeat the argument in [17, Lemma 3.1] to prove Theorem 18.
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2.2.2 Method II

Everything is local, so we assume connections are on the trivial bundle in R
n. Uhlenbeck’s “good gauge” theorem states:

Theorem 20 ([25, Thm. 1.3]) Fix n/2 < p < n. There is ε0 > 0 and a constant cn such that if A ∈ L
p
1 is a connection

on B1(0) and fn/2(x,1)< ε0, then A is gauge equivalent to a connection (also denoted A) satisfying:

1. d∗A = 0;

2. ∗A vanishes on ∂B1(0);
3. ‖A‖

L
n/2
1

≤ cn fn/2(0,1);

4. ‖A‖L
p
1
≤ cn‖FA‖Lp .

We will also need

Lemma 21 There is ε(n) > 0 such that if A is a connection on B1(0) satisfying ‖A‖Ln ≤ ε(n) and items (1) and (2) of

Theorem 20, then for all p, 1 ≤ p < n item (4) holds for a constant depending upon p.

The following result will allow us to go from L2 estimates to Lp estimates. Let Lp(x,r) := Lp(Br(x)).

Theorem 22 There are positive constants κn,r0 and for every for every 2 ≤ p < n, Cp, with the following significance:

Suppose A is a solution to (1.1), and fn/2(x,r)≤ κn for r ≤ r0. Then

fp(x,r/2)≤Cp f2(x,r)

Proof Rescale to take r = 1. Use Theorem 20 and Lemma 21 for p = 2 to find a gauge where: d∗A = 0, and

‖A‖L2
1(x,1)

≤C‖FA‖L2(x,1) =C′ f2(x,1) (2.9)

Now write the equation for the laplacian of A as:

∆A+{A,dA}+{A,A,A}= d∗
AFA = ∗(FA ∧dΩ)

(∆ +1)A+{A,dA}+{A,A,A}= ∗(dA∧dΩ) (2.10)

where the brackets indicate multilinear expressions. Let L be the linear operator acting on A on the left hand side of

(2.10). Note that L
n/2

1 →֒ Ln, so [A,A] ∈ Ln/2, and both dA and [A,A] are small in Ln/2. We also have L
p
1 ×Ln/2 →֒ L

p
−1.

Hence, we see that L = L0 +L1 is a perturbation of L0 := ∆ +1 : L
p
1 → L

p
−1 by L1 : L

p
1 → L

p
−1 of small norm. As in

[24, p. 6], a Meyers type interior estimate for L0 implies one for L :

‖u‖L
p
1 (x,1/2) ≤Cp(‖u‖L2

1(x,1)
+‖L u‖L

p
−1(x,1)

) (2.11)

where u=A. Now using (2.9), the L
p
−1 norm of the right hand side of (2.10) is bounded by f2(x,1) for p= 2n/(n−2)> 2.

The estimate (2.11) then gives an improved L
p
1 bound on A for p slightly bigger than 2. Reiterating this argument, we

get L
p
1 bounds on A for any p < n.

Bootstrapping (2.10) gives the estimate:

sup
y∈Br/2(x)

r2|FA(y)| ≤Cn f2(x,r) (2.12)

Let us fill in some details. First, notice that for n/2 ≤ p < n, L
p
1 ×L

p
1 →֒ Lp. Moreover, L

p
1 ×Lp →֒ Lq, with q → n as

p → n. Hence, from (2.10) and the Lp-elliptic estimate for the Laplacian, we get that A ∈ L
p
2,loc, for n/2 < p < n. Again

applying multiplication theorems, we get that ∆A ∈ L
p
1 , and hence, A ∈ L

p
3,loc. This implies A is C1,α , and the estimate

follows.

There is one more step:
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Lemma 23 Suppose 4ρ < r0, f2(ξ ,4ρ) = ε < ε0. Moreover, assume fn/2(x,r)≤ κn for some r < ρ . Then:

fn/2(x,r/2)≤Cnε

sup
y∈Br/4(x)

r2|FA(y)| ≤ Knε

Proof Apply Theorem 22 with p = n/2, and use (2.12).

Notice that this Lemma says that once both fn/2 and f2 are sufficiently small, then fn/2 is even smaller than expected.

Now Theorem 16 and Uhlenbeck’s continuity method argument [24, proof of Thm. 1.6] gives the proof of Theorem 18.

2.3 Proof of Theorem 2

This follows from Theorems 16 and 18 as in the Yang-Mills case (see [17,25]).

3 Rectifiability of the blow-up locus

The results in this section are all local. We will fix a sequence of Ω -YM connections Ai over B1+δ0
:= {x ∈ R

n : |x| <
1+ δ0} ⊂ R

n with ‖FAi
‖L2(B1+δ0

) uniformly bounded and look at the convergence over B =: B1. Here, δ0 > 0 is fixed,

and B1+δ0
is endowed with any fixed smooth metric with volume form dV . We assume the standard coordinates are

geodesic normal with respect to the metric. Define

Σ = {x ∈ B : lim
r→0+

liminf
i

r4−n

∫

Br(x)
|FAi

|2dV ≥ ε2
0}. (3.1)

From the results in the previous section, we only know that Σ is a closed subset of B with locally finite (n−4)-Hausdorff

measure. We will show that Σ has better structure by generalizing the result in [22]; namely, we prove Theorem 4.

The proof closely follows the arguments in [15,22]. The monotonicity formula obtained in Theorem 16 is a key

component.

3.1 Elementary properties

By passing to a subsequence, we can assume

1. up to gauge transformations, Ai converges to A∞ locally away from Σ ;

2. µi := |FAi
|2dV converges weakly to µ as a sequence of Radon measures, i.e. for any compact supported continuous

function f , we have

lim
i

µi( f ) = µ( f ).

By Fatou’s lemma, we have

µ = |FA∞
|2dV +ν (3.2)

for some nonnegative Radon measure ν , which is called the defect measure.

Lemma 24 The following properties hold:

1. For a.e. 0 < r ≪ 1, limi µi(Br(x)) = µ(Br(x));
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2. r4−nµ(Br(x)) is increasing with r. In particular, the function

Θ n−4(µ,x) = lim
r→0+

r4−nµ(Br(x))

is well-defined, and it is called the energy density of µ at x. Furthermore, Θ n−4 is upper semi-continuous and H n−4

approximately continuous at H n−4 a.e. x ∈ Σ .

3. x ∈ Σ if and only if Θ n−4(µ,x)≥ ε2
0 ;

4. for H n−4 a.e. x ∈ Σ ,

limsup
r→0

r4−n

∫

Br(x)
|FA∞

|2dV = 0.

Proof (1) follows from the elementary fact that µ(∂Br(x)) = 0 for a.e. 0 < r ≪ 1. The first part of (2) now follows

from (1) and the fact that r4−nµi(Br(x)) increases as r increases. The upper semicontinuity follows directly from the

monotonicity formula. The H n−4 approximate continuity property follows as in [22, Lemma 3.2.2] (see also [15, p.

803]). For (3), suppose Θ n−4(µ,x)≥ ε2
0 , obviously, x /∈ Σ . Now suppose x ∈ Σ , if Θ n−4(µ,x)< ε2

0 , by (1), µi(Br(x))<
ε2

0 for 0 < r ≪ 1. By ε-regularity, Ai converges smoothly near x which implies x /∈ Σ . This is a contradiction. For (4),

see [22, p. 222].

Remark 25 From this, we know Σ = {x ∈ B : Θ n−4(µ,x)≥ ε2
0}, which recovers the statement that Σ a closed subset of

B of finite (n−4)-dimensional Hausdorff measure. Furthermore, Σ is intrinsically associated to µ .

In the following, we always denote

π(µ) = Σ . (3.3)

We also define

Sing(A∞) = {x ∈ B : limsup
r→0

r4−2n

∫

Br(x)
|FA∞

|2 > 0} (3.4)

Lemma 26 The following holds

1. Σ = Supp(ν)∪Sing(A∞);
2. ν is absolutely continuous with respect to the (n−4) Hausdorff measure on Σ . In particular, ν =Θ(x)H n−4

Σ where

ε2
0 ≤Θ(x)≤C =C(δ0,n)sup

i

‖FAi
‖L2(B1+δ0

)

for H n−4 a.e. x ∈ Σ .

Proof For (1), suppose x /∈ Σ , we know Θ(µ,x) < ε2
0 . By ε-regularity, Ai converges smoothly near x which implies

ν = 0 near x and A∞ is smooth near x. Suppose x ∈ Σ , if x /∈ Supp(ν), then

lim
r→0

r4−n

∫

Br(x)
|FA∞

|2 =Θ(µ,x)≥ ε2
0 .

i.e. x ∈ Sing(A∞). For (2), by Theorem 16 we know that

r4−nµ(Br(x))≤ δ 4−n
0 µ(Bδ0

(x))

which implies µ is absolutely continuous with respect to the (n−4)-Hausdorff measure. In particular, we have

µ|Σ =Θ(x)H n−4
Σ .

for some measurable function Θ(x). Since

lim
r→0

r4−n

∫

Bx(r)
|FA∞

|2 dVol = 0
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for H n−4 a.e. x ∈ Σ , we know

ν(x) =Θ(x)H n−4
Σ

for H n−4 a.e. x ∈ Σ . The conclusion follows from the density estimate above and the classical fact that

24−n ≤ limsup
r→0

VolH n−4(Σ ∩Br(x))

rn−4
≤ 1

for H n−4 a.e. x ∈ Σ .

3.2 Tangent cone measures

Fix x0 ∈ B, define

τλ : Bδ0
(x0)→ Bδ0

(x0) : x0 +ξ 7→ x0 +λξ

For E ⊂ Bδ0
(x0) measurable, let

µλ (E) = λ 4−nµ(τλ (E))

In this section we prove the following (cf. [22, Lemma 3.2.1])

Proposition 27 For any λ j ↓ 0 there is a Radon measure η such that (after passing to a subsequence) µλ j
→ η weakly.

Moreover, η is a cone measure, in the sense that

λ 4−nη(λE) = η(E)

for any λ > 0 and E ⊂ Bδ0
(x0) measurable.

Proof Let ds2
λ = λ−2τ∗λ ds2 be the pull-back metric and dVλ the associated volume form. Similarly, let Ai,λ = τ∗λ Ai. We

also pull back the hermitian structure. Then:

FAi,λ
= τ∗λ FAi

; |FAi,λ
|2(x) = λ 4|FAi

|2(τλ (x))

The weak convergence of µλi
→ η , for some Radon measure η , follows from the monotonicity. Notice that since

σ4−nµ(Bσ (x0))≤ ρ4−nµ(Bρ(x0))

we have

σ4−nη(Bσ (x0)) =Θ(µ,x0)

We wish to show η is a cone measure. For this it suffices to show that for any radially invariant function φ ≥ 0,

σ4−n

∫

Bσ (x)
φ dη = ρ4−n

∫

Bρ (x)
φ dη (3.5)

for all σ , ρ (cf. [22], top of p. 225). By a diagonalization argument we may assume

|FAi,λ
|2 dVλi

−→ η

weakly. To prove (3.5), note that

σ4−n

∫

Bσ (x)
φ |FAi,λi

|2 dVλi
−ρ4−n

∫

Bρ (x)
φ |FAi,λi

|2 dVλi

=
∫ ρ

σ
ds

d

ds

{
s4−n

∫

Bs(x)
φ |FAi,λi

|2 dVλi

}
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=
∫ ρ

σ
ds

d

ds

{
s4−n

∫

B1(x)
φ |Fτ∗s Ai,λi

|2 τ∗s dVλi

}
(3.6)

Now s4−nτ∗s dVλi
= (1+O(s2λi))dV0, so

d

ds
(s4−nτ∗s dVλi

)−→ 0

uniformly as λi → 0. Since FAi
has uniformly bounded L2-norm, this term vanishes. It suffices to estimate the term

coming from
d

ds
Fτ∗s Ai,λi

= dτ∗s Ai,λi
∂s(τ

∗
s Ai,λi

)

At this point we can assume Ai,λi
is in radial gauge, i.e. ı∂r

Ai,λi
= 0. Then

ı∂r
FAi,λi

= ∂rAi,λi

and so

∂s(τ
∗
s Ai,λi

) = rı∂r
Fτ∗s Ai,λi

It follows that
d

ds
(φ |Fτ∗s Ai,λi

|2) = 2〈dτ∗s Ai,λi
(rı∂r

Fτ∗s Ai,λi
),φ Fτ∗s Ai,λi

〉

Integrating by parts, we see that (3.6) is bounded by a constant times the integral of

r4−n|ı∂r
FAi,λi

||FAi,λi
|

over Bρ(x), where the constant depends on φ , dφ , and dΩ . By Theorem 16 we have

∫

Bρ (x)
r4−n|ı∂r

FAi,λi
|2dVλi

−→ 0

and so the result follows.

Remark 28 An alternative argument follows [14, Lemma 4.1.4]. In order to show η is a cone measure, it suffices to

show that for any compactly supported function ψ over B we have

d

ds
(s4−n(τ∗s η)(ψ)) = 0.

To prove this, note that
d

ds
(s4−n(τ∗s η)(ψ)) =

d

ds
(s4−n

∫

Rn
ψsdη)

=−s3−n

∫

Rn
((n−4)ψs + s−1x · (∇ψ)s)dV

where ψs(x) = ψ(x/s) and (∇ψ)s(x) = (∇ψ)(x/s). So it suffices to show that

∫

Rn
((n−4)ψs + s−1x · (∇ψ)s)dV = 0.

From the proof of Theorem 16, we have

∣∣∣∣
∫

M
|FA|2(x ·∇ψ +(n−4)ψ +ψO(r2))dV

∣∣∣∣

≤
∣∣∣∣−2sup |dΩ |

∫

M
ψr|ι∂r

FA||FA|dV +
∫

M
4ψ ′r|ι∂r

FA|2dV +
∫

M
O(r2)ψ|FA|2dV

∣∣∣∣ .
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for any Ω -YM connection A over (M,g) and compactly supported function ψ . We plug in (A,ψ) = (Ai,λi
,ψs) and get

∣∣∣∣
∫

Rn
|FAi,λi

|2(s−1x · (∇ψ)s +(n−4)ψs +ψsO(r2))dV

∣∣∣∣

≤
∣∣∣∣−2sup |dΩi|

∫

Rn
ψsr|ι∂r

F
Aλ

i
||F

Aλ
i
|dV +

∫

M
4ψ ′

sr|ι∂r
F

Aλ
i
|2dV +

∫

Rn
O(r2)ψs|FAλ

i
|2dV

∣∣∣∣

By taking limits the right hand side vanishes, and this gives
∫

Rn
((n−4)ψs + s−1x · (∇ψ)s)dη = 0.

Here, since the base metric converges smoothly to the flat metric on R
n, the O(r2) term vanishes in the limit.

Now we fix a tangent measure η . Define

Lη := {x ∈ R
n : Θ n−4(η ,x) =Θ n−4(η ,0) =Θ n−4(µ,x0)}.

The following can be deduced from the monotonicity formula and the dimension reduction argument of Federer (cf. [14,

p. 27]).

Lemma 29 For any y∈ Lη , η is invariant in the direction of y. In particular, Lη is a linear subspace of Rn. Furthermore,

dimLη ≤ n−4.

Define

Σ j := {x ∈ Σ : dimLη ≤ j for all the tangent measures η at x}.
Then we have

Proposition 30 There exists a filtration which consists of closed subsets

Σ0 ⊂ Σ1 ⊂ ·· · ⊂ Σn−4 = Σ

with the Hausdorff dimension satisfying dim(Σ j)≤ j.

3.3 Results parallel to stationary harmonic maps and Yang-Mills connections

The following geometric lemma can be obtained by directly replacing the energy density associated to the harmonic

map with Θ n−4 in [14] or the Yang-Mills case in [22]

Lemma 31 Suppose Θ n−4(µ, ·) is H n−4 approximately continuous at x ∈ Σ . For any 0 < r ≪ 1, there exists n− 4

points xr
1, · · ·xr

n−4 with

– Θ n−4(µ,xr
i )≥Θ n−4(µ,x)− εr where εr → 0 as r → 0;

– d(x1,x)≥ rs and d(xi,x+ span{x1 − x · · · ,xn−4 − x})≥ rs for some s ∈ (0,1) independent of r.

Given the geometric lemma, we have the existence of weak tangent planes as follows

Proposition 32 For any point x ∈ Σ and any δ > 0, there exists rx > 0 and a tangent plane L ∈ Gr(Rn,n− 4) so that

µ(Br(x)\Lδ r) = 0 where Lδ r denotes the δ r neighborhood of L in R
n.

As a corollary, this implies the null projection property.

Proposition 33 Suppose E ⊂ Σ is a purely (n−4)-unrectifiable set, then

VolH n−4(PV (E)) = 0

for any orthogonal projections PV : Rn →V ∈ Gr(Rn,n−4).

Remark 34 The fact that the result in Proposition 33 holds for all planes V , and not just almost all, will be important

for the proof of Theorem 4 below.
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3.4 Positive projection density

The argument for the following is the same as [14] and [22]. We will only point out where the change is necessary and

refer the reader there for more details.

Proposition 35 For H n−4 a.e. points x ∈ Σ ,

lim
r→0

VolH n−4(PV (Σ ∩Br(x)))

α(n−4)rn−4
≥ 1

2

for some projection PV : Rn →V ∈ Gr(Rn,n−4).

Proof Otherwise, we can find a point x0 ∈ Σ so that

limsup
r

r4−n

∫

Br(x0)
|FA∞

|2 = 0

and Θ n−4(µ, ·) is approximately continuous at x0 ∈ Σ but

lim
r→0

VolH n−4(PV (Σ ∩Br(x0)))

α(n−4)rn−4
<

1

2
.

In particular, any tangent measure of µ at x0 takes the form Θ n−4(x0)H
n−4
Rn−2 for some R

n−2 ⊂ R
n. Recall that from the

diagonalization argument we assume

(µi)λi
⇀Θ n−4(x0)H

n−4
Rn−4 .

Define

αλi
=

n−2

∑
α=1

|ι∂α
FAi,λi

|2 dVol

We know that for any fixed δ > 0 and i large, αλi
(B3/2)≤ δ . Now we define

Fλi
: (Rn−4 ×0)× (0,1)→ R

Fλi
(x,ε) =

∫

Bn
2

|FAi,λi
|2(x+ y)ψε(y1)φ

2(y2)dVoly

Here, y = (y1,y2)⊂ R
4 ×R

n−4, ψε(y1) = ε4−nψ(y1/ε) where ψ is a nonnegative compactly supported function on the

unit ball in R
4 with integral being 1, while φ is smooth and compactly supported on the unit ball in R

n−4. To simplify

the notation, we will denote F := FAi,λi
, ∂α = ∂

∂yα
and ∇α as the covariant derivatives. Viewing |F | as a function of y,

we have

∂α |F |2 =−2Tr(∇α Fγβ Fγβ )

= 4Tr(∇γ Fβα Fγβ )

= 4∂γ Tr(Fβα Fγβ (x+ y))±4(ι∂α
F,∗(F ∧Ω)).
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For any 1 ≤ α ≤ n−4, we have

∂

∂xα
Fλi

=
∫

Bn
2

∂

∂xα
(|F |2(x+ y))ψε(y1)φ

2(y2)dVoly

=
∫

Bn
2

∂α |F |2(x+ y)ψε(y1)φ
2(y2)dVoly

=
∫

Bn
2

4∂γ Tr(Fβα Fγβ )(x+ y)ψε(y1)φ
2(y2)dVoly

±
∫

Bn
2

4(ι∂α
F,∗(F ∧Ω)))(x+ y)ψε(y1)φ

2(y2)dVoly

=
n

∑
γ=n−4

∫

Bn
2

4Tr(Fβα Fγβ )ψε(y1)
∂

∂yγ
φ 2(y2)dVoly

±
∫

Bn
2

4(ι∂α
F,∗(F ∧Ω)))ψε(y1)φ

2(y2)dVoly

+
n−4

∑
γ=1

4
∂

∂xγ

∫

Bn
2

Tr(Fβα Fγβ )(x+ y)ψε(y1)φ
2(y2)dVoly

.

This implies ∇Fλi
= fλi

+divGλi
, where

(fλi
)α =

n

∑
γ=n−4

∫

Bn
2

4Tr(Fβα Fγβ )ψε(y1)
∂

∂yγ
φ 2(y2)dVoly

±
∫

Bn
2

4(ι∂α
F,∗(F ∧Ω)))ψε(y1)φ

2(y2)dVoly

and

(Gλi
)

γ
α =

∫

Bn
2

4Tr(Fβα Fγβ )(x+ y)ψε(y1)φ
2(y2)dVoly .

Here the divergence of Gλi
is taken for each vector component of Gλi

. Since αλi
⇀ 0, we know that for any δ > 0,

‖fλi
‖

L2(Bn−4
2 )+‖Gλi

‖
L2(Bn−4

2 ) ≤ δ

for i sufficiently large, and thus λi sufficiently small. Given this, by [14, Lemma 4.2.10] we know for any δ1 there exist

constants Cλi
(ε)

‖Fλi
(·,ε)−Cλi

(ε)‖
L1(Bn−2

2 ) ≤ δ1.

Letting ε → 0, we have for some constants Cλi
,

∣∣∣∣
∫

Bn−4
2

|FAi,λi
|2(a,y2)φ

2(y2)dy2 −Cλi

∣∣∣∣≤ δ1

when i large. As in [15,22], this then implies limCλi
= Θ n−4(µ,x0). It then follows as in those references that the

projection from R
n → R

n−4 ×0 will give a contradiction.
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3.5 Proof of Theorem 4

Now we are ready to finish the proof for Theorem 4 as in [15,22]. By the Besicovitch-Federer decomposition theorem,

we can write Σ = Σ r ∪ Σ u, where Σ r is (n− 4)-rectifiable while Σ u is purely (n− 4)-unrectifiable. Furthermore, if

Σ u 6= /0, then VolH n−4(Σ u)> 0. By Proposition 33, we know there exists x ∈ Σ u such that

VolH n−4(PV (Σ
u ∩Br(x))) = 0

while by Proposition 35, we have

VolH n−4(PV (Σ
u ∩Br(x)))> 0

for 0 < r ≪ 1. This is a contradiction. In particular, this implies VolH n−4(Σ u) = 0, and so Σ u = /0. Thus, Σ is (n− 4)-
rectifiable.

4 Weak compactification of the moduli space of smooth Ω -Yang-Mills connections

In this section, we will study the compactification of the moduli space of smooth Ω -YM connections on a fixed bundle

E with bounded L2 norm of curvature over (M,g). We denote the moduli space as

AΩ ,c := {A ∈ A : d∗
A(FA +∗(FA ∧Ω)) = 0,

∫

M
|FA|2 ≤ c}

Given a sequence Ai ∈ AΩ ,c, by passing to a subsequence, we can assume |FAi
|2 dVol converges to µ as a sequence of

Radon measures, and modulo gauge transformations, Ai converges to A outside π(µ). Define AΩ ,c to be the space of

such pairs (A,µ).

Definition 36 Given a sequence (Ai,µi) ∈ AΩ ,c, we say Ai converges to a finite energy Ω -YM connection (A∞,µ∞) if

1. µi converges to µ∞ weakly as a sequence of Radon measures;

2. up to gauge transforms, Ai converges to A∞ outside π(µ∞).

Theorem 37 AΩ ,c is weakly sequentially compact in the sense that every sequence {(Ai,µi)} in AΩ ,c sub-converges to

some (A∞,µ∞) ∈ AΩ ,c.

Proof Given a sequence (Ai,µi) ∈ AΩ ,c, by assumption, for each i, we can find a sequence of {Ai j} j so that µi j =
|FAi j

|2 dVol converges to µi weakly as a sequence of Radon measures. By a diagonal sequence argument, we can assume

µi j and µi both converge weakly to µ∞ as sequences of Radon measures. The following now is needed to guarantee the

existence of the limit of Ai

limsup
i

π(µi)⊂ π(µ∞). (4.1)

Suppose this is not true. By passing to a subsequence, there exists a sequence of points xi ∈ π(µi) which converges to

x∞ /∈ π(µ∞). In particular, we have for 0 < r < dist(x∞,π(µ∞))

µ∞(∂Br(x∞)) = 0,

which implies r4−nµi(Br(xi))≤ ε0/2, for r sufficiently small and i sufficiently large. This, of course, contradicts with the

assumption that xi ∈ π(µi). Given this, up to gauge transforms, we can assume Ai sub-converges to A∞ outside π(µ∞)

smoothly. Indeed, a priori, we only know that Ai converges to A∞ outside a closed subset Σ̃ ⊂ M \π(µ∞) of Hausdorff

codimension 4. However, since we already know that µ∞|M\π(µ∞) = |FA∞
|2 dVol, by Lemma 24, we know

r4−nµi(Br(x))≤ ε0/2

for i large. This implies that Ai converges to A∞ smoothly over Br(x). In particular, we know Σ̃ = /0, i.e. Ai sub-converges

to A∞ smoothly outside π(µ∞). Now by a diagonal sequence argument again, we can assume Ai j sub-converges to A∞

smoothly outside π(µ∞). The sequential compactness follows.
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Remark 38 – For general finite energy Ω -YM connections on a fixed bundle over M, or even YM connections, we do

not know whether we can take a limit or not due to lack of control of Sing(Ai). It is very crucial to assume they all

come from limits of smooth connections here.

– The compactness we obtain here is very weak due to the fact that the limiting bundles E∞ are not known to be

isometric to E|M\Σ . This does, however, hold in the case of Hermitian-Yang-Mills connections over general complex

manifolds (see Corollary 48)

5 Singularity formation

5.1 Bubbling connections at a generic point

Using the proof of Proposition 35, the argument in [22, Prop. 4.1.1] for the case of Yang-Mills connections gives

Proposition 39 Fix a point x ∈ Σ so that

– the tangent plane of Σ at x exists uniquely;

– Θ n−4(µ, ·) is H n−4-Hausdorff continuous at x ;

– limsupr r4−n
∫

Br
|FA∞

|2 = 0.

By passing to a subsequence, up to gauge transforms, Ai,λi
converges to a Ωx-YM connection B∞ over R

n with R
n =

TxΣ × (TxΣ)⊥ satisfying ιvFB∞ = 0, for any v ∈ TxΣ .

Following [22], we call B∞ a bubbling connection of the sequence {Ai} at x.

5.2 Tangent cones of the limits

Denote (Aλ
∞,µ

λ
∞) = λ ∗(A∞,µ∞) where λ : Bλ−1δ0

(x)→ Bδ0
(x).

Proposition 40 By passing to a subsequence,

– µλ
∞ converges to a cone measure η;

– up to gauge transforms, Aλ
∞ converges to Ac

∞ outside

π(η) = {x ∈ R
n : Θ n−4(η ,x)≥ ε2

0}

which is scaling invariant. Furthermore, ι∂r
FAc

∞
= 0.

Proof The first statement follows from Proposition 27. Given this, it follows the same as Theorem 37 that

limsup
λ

π(µλ
∞)⊂ π(η).

Now up to gauge transforms, we can assume Aλ
∞ sub-converges to Ac

∞ smoothly outside π(η). It follows from the

monotonicity formula that ι∂r
FAc

∞
= 0, outside π(η). Since η is a cone measure, we know also π(η) is also a cone.

We call (Ac
∞,η) a tangent cone of (A∞,µ∞) at the point x. A priori, we do not know whether it is unique or not since this

involves a choice of the subsequence.

Remark 41 In [22], the tangent cones of general stationary Yang-Mills connections are shown to exist where the

stationary condition is needed for the monotonicity formula. Here as long as we know (A∞,µ∞) comes from the limit of

smooth connections, it already has a monotonicity property that suffices for use.
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5.3 Ω -ASD instantons and calibrated geometries

Given the analytic results above, it is straightforward to see that the results in [22] hold for general Ω -ASD instantons

without assuming Ω to be closed. More precisely, we assume (A∞,µ∞) is an finite energy Ω -ASD instanton which

comes from the limit of a sequence of smooth Ω -ASD instantons with uniformly bounded L2 norm on curvature. We

also write

µ∞ = |FA∞
|2 dVol+Θ n−4(x)H n−4

Σ

as before. Similar to Proposition 4.2.1 in [22], the following holds

Proposition 42 A bubbling connection B∞ of (A∞,µ∞) at H n−4 a.e. x ∈ Σ is a Ωx-ASD instanton. In particular, Ωx

induces a volume form of Σ at x.

This implies the following, as pointed out in the Yang-Mills case in [22, p. 242, Remark 5]). The proof is exactly the

same.

Proposition 43 For the limiting connection (A∞,µ∞)

–
1

8π2
Θ n−4(x) is integer valued at H n−4 a.e. x ∈ Σ ;

– Ω restricts to a volume form of TxΣ at H n−4 a.e. x ∈ Σ .

6 Removable Singularities

In this section, using the main results in [20] we generalize the removable singularity theorem for stationary Yang-

Mills fields in [21] to the case of Ω -YM connections. The argument closely follows [20, Theorem 10]. Below we will

denote by A an Ω -YM connection defined on the trivial bundle over M \Σ , where M = [−4,4]n endowed with a smooth

Riemannian metric, Ω is a smooth (n− 4)-form on M, and Σ is a closed subset of U of finite (n− 4)-dimensional

Hausdorff measure.

Theorem 44 If supx∈M supr>0 f2(x,r) is sufficiently small, then for any Br(x) ⊂ Ω , there exists a gauge transform g

over Br(x)\Σ so that g(A) extends to a smooth connection over Br(x).

Proof Denote f = |FA|. It suffices to show that f satisfies

−∆ f +α
|d f |2

f
− c|FA|2 f ≤C f (6.1)

over M \Σ for some α > 0. Indeed, given (6.1), by [20, Thm. 9] we know that f ∈ L∞([−1,1]n). Now the existence of

the gauge transformation follows from [20, App. C, Thm. 19]. It remains to show that f satisfies the inequality (6.1). By

(2.8) we have

−1

2
∆ |FA|2 =−|∇AFA|2 +(∇∗

A∇AFA,FA)

=−|∇AFA|2 +({FA,FA},FA)+({Rg,FA},FA)+({dΩ ,∇AFA},FA)

which implies

− 1

2
∆ |FA|2 + |∇AFA|2 + |dAFA|2 + |d∗

AFA|2

≤({FA,FA},FA)+({Rg,FA},FA)+({dΩ ,∇AFA},FA)+ |dΩ ∧FA|2

≤C|FA|3 +Cε |FA|2 + ε|∇AFA|2
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where the last line follows from Hölder’s inequality, and 0 < ε ≪ 1 is to be determined later. This then implies

−1

2
∆ |FA|2 +(1− ε)(|∇AFA|2 + |dAFA|2 + |d∗

AFA|2)−C|FA|3 ≤Cε |FA|2. (6.2)

Now the improved Kato inequality (see [20, Thm. 5]) gives

|∇AFA|2 + |dAFA|2 + |d∗
AFA|2 ≥

n

n−1
|d|FA||2.

Combined with (6.2) this gives

−1

2
∆ |FA|2 +(1− ε)

n

n−1
|d|FA||2 −C|FA|3 ≤Cε |FA|2.

Substituting f = |FA| and u = |FA|2, we have

−1

2
∆ f 2 +

(1− ε)n

n−1
|d f 2|2 −Cu f ≤Cε f 2.

A straightforward calculation now shows

−∆ f +

(
(1− ε)n

n−1
−1

)∣∣∣∣
d f

f

∣∣∣∣
2

−Cu ≤Cε f .

Choose ε so that α =
(1− ε)n

n−1
−1 > 0, and (6.1) follows.

7 Hermitian-Yang-Mills connections over general complex manifolds

7.1 Improvement of the analytic results

In this section, we will generalize Tian’s holomorphic cycle theorem for Hermitian-Yang-Mills connections over Kähler

manifolds [22, Thm. 4.3.3] to the case of Hermitian manifolds. More precisely, we fix Ai to be a sequence of HYM

connections over an m-dimensional Hermitian manifold (X ,ω) with ‖FAi
‖ ≤ C. These are not Yang-Mills connections

in general. As before, let

Σ = {x ∈ B : lim
r→0+

liminf
i

r4−2m

∫

Bx(r)
|FA|2 ≥ ε2

0}.

Then we can assume

– µi := |FAi
|2 dVol ⇀ µ = |FA∞

|2 dVol+ν where supp(ν) is equal to the pure complex codimension 2 part of Σ ;

– up to gauge transforms, Ai sub-converges to A∞ outside Σ .

Remark 45 Strictly speaking, without assuming the Hermitian-Einstein constant vanishes, i.e.
√
−1ΛFA = 0, HYM

connections are not exactly Ω -ASD instantons in the sense of (1.3), where Ω = ωm−2/(m− 2)!. But it is projectively

Ω -ASD connections in the sense that

∗(F⊥
A ∧Ω) =−F⊥

A

where F⊥
A = FA − µ Idω satisfying F⊥

A ∧ωm−1 = 0. It is straightforward to see that the results for Ω -YM connections

holds for this case by using the same argument. There is another way to see this. By the Bochner-Kodaira-Nakano

identity (see [5, Theorem 1.1]), we have

d∗
AFA = ρFA

for some ρ = ρ([Λ ,∂ω], [Λ , ∂̄ω]), for which the same arguments as for Ω -YM connections apply. The results in the

previous sections hold in this case.
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The following can be deduced easily from [1, Thm. 2].

Proposition 46 1. E∞ can be extended uniquely as a reflexive sheaf E∞ over M. For any local section s∈ E∞, log+ |s|2 ∈
H1

loc∩L∞
loc. Furthermore, A∞ can be extended to be defined over M \Sing(E∞). In particular, Tr(FA∞

∧FA∞
) is closed

across Σ , thus the current

c2(Σ) = lim
ji

Tr(FA ji
∧FA ji

)−Tr(FA∞
∧FA∞

)

is closed.

2. Σ = Sing(E∞)∪∪kΣk is a complex subvariety of M and

c2(Σ) = ∑mk[Σk]. (7.1)

In particular, ν = ∑mkH
2n−4

Σk
where Σk are the irreducible pure codimension 2 components of Σ and

µ∞ = |FA∞
|2 dVol+∑

k

mkH
2n−4

Σk
. (7.2)

Proof For (1), locally by replacing ω with any Kähler metric, it does not change the fact that ‖FA∞
‖L2

loc
< ∞ . By

Theorem 2 in [1], we know that E∞ can be extended uniquely as a reflexive sheaf E∞ over M. Furthermore, for any local

section s ∈ E∞, log+ |s|2 ∈ H1
loc. Then the local L∞ bound follows from Moser iteration. Given this, one can directly

repeat the proof for Proposition 1 in [1] to extend A∞ by extending the metric H∞ locally. Now we use Simpson’s trick to

show the closedness of Tr(FA∞
∧FA∞

) (see [19, p. 71]). By proceeding with stratum of Sing(E∞) which has codimension

at least 6, we can choose a point x ∈ Sing(E∞) which is smooth at x ∈ Sing(E∞). Let ψ be a smooth (n−5)-form which

is compactly supported near x.

– Suppose ψ has vanishing constant coefficients. We can choose a family of cut-off function φε which vanishes over

an ε-neighborhood of x and d(φε ψ) is uniformly bounded. In particular, we have

∫

M
Tr(FA∞

∧FA∞
)∧dψ = lim

ε→0

∫

M
Tr(FA∞

∧FA∞
)∧d(φε ψ) = 0.

– In general, since Sing(E∞) has codimension at least 6, we know that ψ = ∑i dxi ∧ωi, where xi are defining coor-

dinates for Sing(E∞). Now ψ −∑i d(xiωi) vanishes along Sing(E∞) and satisfies d(ψ −∑i d(xiωi)) = dψ . By the

special case above, we know ∫

M
Tr(FA∞

∧FA∞
)∧dψ = 0.

Now we prove (2). We first show Sing(E∞)∪∪kΣk ⊂ Σ . From the above, we know Sing(A∞)⊂ Sing(E∞). It remains to

show that Supp(ν) is a pure codimension 2 subvariety of M. Indeed, we know Σ is calibrated by ωm−2/(m−2)!, which

implies TxΣ is a complex analytic subspace of TxM. Given this, it follows from part (1) and Proposition 43 that c2(Σ) is

a closed integral current. Then by King’s theorem [12] we can express c2(Σ) in the form (7.1) for some integers mk and

pure codimension 2 subvarieties Σk of M. This implies Σ ⊂ Sing(E∞)∪∪kΣk., through which the top pure codimension

2 parts are identified. For the other direction, suppose not, there exists a point x ∈ Sing(E∞) with Θ n−4(µ∞,x) = 0. As

Theorem 37, we can conclude that r4−2nµi(Br(x))< ε0/2, for i large and r small. This implies that Ai sub-converges to

A∞ smoothly near x, which gives a contradiction. In sum, we have Σ = Sing(E∞)∪∪kΣk.

Remark 47 – It follows by exactly the same argument that Proposition 46 (1) holds for general admissible Hermitian-

Yang-Mills connections over complex Hermitian manifolds, i.e. smooth Hermitian-Yang-Mills connections defined

away from a closed Hausdorff codimension 4 set.

– It is straightforward to see that the proof for the closedness part holds for general finite energy Ω -YM connections

with mild singularities; for example, when the singular set can be stratified by smooth manifolds of real codimension

at least 6. In general, it is conjectured that the set of essential singularities of finite energy Ω -ASD instantons when

Ω is closed has Hausdorff codimension at least 6 (see [22]).
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Corollary 48 As a smooth bundle, E∞|M\Σ
∼= E|M\Σ . In particular, we can assume there exists a sequence of bundle

isometries Φ ji : E∞ → E|M\Σ so that Φ∗
ji
A ji locally converges to A∞ smoothly away from Σ .

Given this, let E be a Hermitian bundle over a compact Hermitian manifold (M,ω). Denote MHY M,c to be the

space of limits of smooth Hermitian-Yang-Mills connections on E with L2 norm of curvature bounded by c mod gauge

(smooth wherever the connections are smooth). We give MHY M,c a topology by specifying a basis of open neighborhood

as Uε,φ ([A,µ]) consisting of [(A′,µ ′)] ∈ MHY M,c satisfying

– A′ lies in the ε1 neighborhood of A outside a ε1 neighborhood of π(µ);
– |µ(φ)−µ ′(φ)|< ε2.

Here ε = (ε1,ε2) with εi > 0 for i = 1,2 and φ is a continuous and bounded function.

Remark 49 When m = 2, this topology coincides exactly with the topology in the case of four dimensional manifolds

(see [8, Section 4.4]).

Given this, we have the following improved version of Theorem 37

Theorem 50 MHY M,c is a first countable sequentially compact Hausdorff space.

By Proposition 46, the moduli space can be also viewed as consisting of pairs (A∞,C an) mod gauge where C an =

∑k mkΣk is a integer linear combination of pure codimension two subvarities of X . Later we will not make a difference

between them.

7.2 HYM connections over a class of balanced manifolds of Hodge-Riemann type

Now we assume (M,ω) is an m-dimensional compact balanced Hermitian manifold of Hodge-Riemann type as defined

in [3, Def. 2.7]. This means we can write

ωm−1 = ω0 ∧Ω0

where ω0 is a strictly positive (1,1) form, Ω0 is of type (m−2,m−2), and

1. dωm−1 = 0;

2. dΩ0 = 0;

3. for any p+q = 2, there exists a pointwise Q-orthogonal decomposition

Λ p,q = Cω0 ⊕Pp,q

where Pp,q = {α ∈ Λ p,q : α ∧ω0 ∧Ω0 = 0};

4. Q(α,β ) := (
√
−1)p−q(−1)

(p+q)(p+q−1)
2 ∗ (α ∧β ∧Ω0) is positive definite on Pp,q.

In this case, a uniform bound for the L2 norm of curvature of all the smooth irreducible Hermitian-Yang-Mills connec-

tions is automatic by the following observation.

Lemma 51 Given any HYM connection A on E,

∫

X
|FA|2

ωm

m!
≤C

where C =C(c(E),ωi).
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Proof By conditions (3) and (4) we have

∫

X
|FA|2

ωm−1

(m−1)!
≤C1(

∫

X
Tr(FA ∧FA)∧Ω0 +C2

∫

X
| f |2ω0 ∧ω0 ∧Ω0)

where F⊥
A = FA − f Idω0. Here

f = µ
ωn

n!

ω0 ∧ω0 ∧Ω0

In particular, we have
∫

X
|FA|2

ωn

n!
≤C1(

∫

X
FA ∧FA ∧Ω0 +C2µ2

∫

X

ωn

n!

ω0 ∧ω0 ∧Ω0

ωn

n!
). (7.3)

The result follows.

In this case, we denote the compactification of the moduli space of HYM connections mod gauge as MHY M by choosing

c large.

Theorem 52 On a unitrary bundle over a compact balanced Hermitian manifold (X ,ω) of Hodge-Riemann type, MHY M

is a first countable sequentially compact Hausdorff space.

Now we would like to give an important class of balanced metrics of Hodge-Riemann type, which comes from multipo-

larizations. Namely, for any positive (1,1) forms ω0, · · · ,ωm−2 on a compact complex manifold X so that

ωm−1

(m−1)!
= ω0 ∧·· ·∧ωm−1

d(ω0 ∧ω1 ∧·· ·∧ωm−2) = 0

d(ω1 ∧·· ·∧ωm−2) = 0

(7.4)

then by the main result in [23] we get a balanced Hermitian metric ω of Hodge-Riemann type by setting Ω0 = ω1∧·· ·∧
ωm−2.

Corollary 53 On a unitrary bundle over a compact balanced Hermitian manifold (X ,ω) satisfying (7.4), MHY M is a

first countable sequentially compact Hausdorff space.

In particular, this gives the following

Corollary 54 On a unitrary bundle over a compact Kähler manifold (X ,ω), MHY M is a first countable sequentially

compact Hausdorff space.

Remark 55 When (X ,ω) is a projective algebraic manifold, i.e. ω = c1[L] for some line bundle L, it is known that

M∗
HY M , which denotes the closure of the space of irreducible HYM connections with fixed determinants in MHY M , admits

a complex structure coming from the algebraic geometric side. The induced complex structure makes it an algebraic

space (see [10]). We will explain how it can be generalized to the case of multipolarizations in the following by using

the same argument in [10] and the algebraic geometric results in [11].

7.3 M∗
HY M for multipolarizations

In this section, we fix (E,H) to be a unitary vector bundle over a compact complex Hermitian manifold (X ,ω) so that

ωm−1

(m−1)!
= ω0 ∧·· ·∧ωm−2

where [ωi] are all ample classes, i.e. [ωi] = c1(Li) for some ample line bundles Li. Set Ω0 = ω1 ∧ ·· · ∧ ωm−2. As

mentioned above, we can view the moduli space M∗
HY M consisting of pairs (A∞,C an) mod gauge. It is a sequentially

compact Hausdorff space. Using the argument in [10], we briefly explain how a complex structure could be given to

M∗
HY M to make it an algebraic space.
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7.3.1 Moduli space of semistable torsion free sheaves via multipolarizations

In this section, we will recall the construction for the compactification of the moduli space of semistable sheaves with

given numerical classes and fixed determinant. We refer the readers to [11] for more details. Recall that the space of slope

semistable sheaves having the same Chern classes as E over (X ,ω) is bounded, i.e. if we fix O(1) to be any polarization

of X , for fixed k large enough, for any E , we have H i(X ,E (k)) = 0, for i > 1, and E (k) is globally generated. Let

H = C
⊕τ(k)⊗O(−k)

where τ denotes the Hilbert polynomial of E . Now we know for k fixed large enough, all such sheaves can be viewed

as points [q : H → E ] in Quot(H ,τ) by choosing an isomorphism C
⊕τ(k) ∼= H0(X ,E (k)). Here Quot(H ,τ) denotes

the space of points given by surjective maps q : H → E , where the Hilbert polynomial of E is equal to τE , modulo

the equivalence: q : H → E and q′ : H → E ′ are equivalent if and only if there exists an isomorphism f ◦q = q′, i.e.

ker(q) = ker(q′). Furthermore, there exists a universal quotient

qU : OQuot(H,τE )⊗H → U .

over Quot(H,τE)×X which restricts to the natural quotient at each point [q]. Now we denote Rµss as the subscheme of

Quot(E ,H ) consisting of elements [q : H → E ] so that

– E is semistable;

– det(E ) = J ;

– E has the same numerical classes as E ;

– q induces an isomorphism between C
⊕τ(k) and H0(X ,E (k)).

Define Z as the weak normalization of the reduction of Rµss. Denote

qŨ : OQuot(H,τE )⊗H → Ũ

as the pull-back of the universal quotient [qU ] to Z ×X . Consider the class

un−1 =− rank(E)c1(L1) · · ·c1(Ln−1)+χ(c1(L1) · · ·c1(Ln−1).c(E))[Ox]

where x ∈ X is a fixed point. Now consider the line bundle

Ln−1 := λŨ (un−1)

of which the higher power is a semi-ample line bundle over Z . Then one can form a formal GIT quotient as

Mµss := Proj(⊕k≥0H0(Z ,L νN
n−1)

SL)

for some N. The conclusion is that this is a projective scheme with certain universal properties and the natural surjective

map π : Z → Mµss collapses the SL orbits and π(q) = π(q′) only if the sheaves E and E ′ associated to q and q′ share

the same graded sheaf GrHNS(E )∼= GrHNS(E ′) and C (E ) = C (E ′). When dimX = 2, the converse holds.
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7.3.2 Complex structure on M∗
HY M induced from a continuity map Φ

Given a stable unitary bundle over (E,H, ∂̄A) over (X ,ω), the most general version of the Donaldson-Uhlenbeck-Yau

theorem states that there exists a complex gauge transformation g so that the unitary connection given by (H,g(∂̄A))
is a HYM connection that is unique up to unitary gauge transformations. Now this can be generalized to the case of

stable reflexive sheaf using the notion of admissible HYM connections (i.e. finite energy on the smooth locus). Suppose

[q] ∈ Quot represents a semistable torsion free sheaf E . We can take the graded sheaf GrHNS(E ) associated to a Harder-

Narasimhan-Seshadri filtration of E . From this we can extract canonical algebraic data as

((GrHNS(E ))∗∗,C (E ))

from which the first factor gives a unique admissible HYM connection A(E ). Here

C (E ) = ∑m
alg
k Σk

where Σk is a pure codimension two subvariety of X and

m
alg
k = h0(∆ ,((GrHNS(E ))∗∗/GrHNS(E ))|∆ ).

Here ∆ is a generic holomorphic transverse slice of Σk.

Definition 56 We define Ms to be the closure of (Ms)wn in Mµss where (Ms)wn denotes the weak normalization of Ms.

Then we have

Proposition 57 There exists a continuous map

Φ : Ms → M∗
HY M

which restricts to the natural map

Φ : (Ms)wn → (M∗
HY M)wn.

More precisely, suppose [q : H → E ] represents a point in Ms, then Φ([E ]) = (A(E ),C (E )).

We very briefly explain how the proof is done and refer the reader to [10] for more details. We fix a sequence of smooth

HYM connections {Ai} on E which sub-converges to (A∞,C an). By the boundedness, we can put Ei = (E, ∂̄Ai
) in a fixed

Quot scheme and thus obtain an algebraic limit which can behave badly in general. More precisely, by fixing k large

and choosing an L2 orthonormal basis for H0(X ,Ei(k)), we get a sequence of elements [qi] in the corresponding Quot

scheme. Then we can take an algebraic limit [q∞] of [qi] in the Quot scheme. As in [10, Sec. 4], it can be concluded

that q∞ induces a sheaf inclusion F alg
∞ → E∞ which is an isomorphism outside some codimension two subvariety. In

particular, E∞ = (F alg
∞ )∗∗. Using the argument in [10, Sec. 4.3], the singular Bott-Chern formula applied to the filtration

of H induced by [q∞] gives C (F alg
∞ ) = C . In particular, as in [10], this gives that the map Φ is continuous. Given this,

since all the essential algebraic geometric results [11] used in [10] are done for multipolarizations, it is straightforward

to adapt the corresponding statements in [10] to the case of multipolarizations to obtain the following

Proposition 58 There exists a complex structure on M∗
HY M which makes M∗

HY M an algebraic space so that the natural

map Φ : Ms → M∗
HY M is an algebraic morphism.

Acknowledgements The authors are grateful for comments on this paper from Daniel Greb, Ben Sibley, Song Sun, Matei Toma, and Thomas

Walpuski. They also warmly thank the anonymous referee for a careful reading of the manuscript and for helpful suggestions.



Ω -Yang-Mills connections 27

References

1. Bando, S., Siu, Y.T.: Stable sheaves and Einstein-Hermitian metrics. In: Geometry and analysis on complex manifolds, pp. 39–50. World

Sci. Publ., River Edge, NJ (1994)

2. Chen, X., Sun, S.: Reflexive sheaves, Hermitian-Yang-Mills connections, and tangent cones. Invent. Math. 225(1), 73–129 (2021). DOI

10.1007/s00222-020-01027-9

3. Chen, X., Wentworth, R.: The nonabelian Hodge correspondence for balanced Hermitian metrics of Hodge-Riemann type (2021).

Arxiv:2106.09133

4. Corrigan, E., Devchand, C., Fairlie, D.B., Nuyts, J.: First-order equations for gauge fields in spaces of dimension greater than four. Nuclear

Phys. B 214(3), 452–464 (1983). DOI 10.1016/0550-3213(83)90244-4

5. Demailly, J.P.: Complex analytic and differential geometry. Online notes

6. Donaldson, S., Segal, E.: Gauge theory in higher dimensions, II. In: Surveys in differential geometry. Volume XVI. Geometry of special

holonomy and related topics, Surv. Differ. Geom., vol. 16, pp. 1–41. Int. Press, Somerville, MA (2011). DOI 10.4310/SDG.2011.v16.n1.a1

7. Donaldson, S., Thomas, R.: Gauge theory in higher dimensions. In: The geometric universe (Oxford, 1996), pp. 31–47. Oxford Univ.

Press, Oxford (1998)

8. Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds. Oxford Mathematical Monographs. The Clarendon Press, Oxford

University Press, New York (1990). Oxford Science Publications

9. Freed, D.S., Uhlenbeck, K.K.: Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1. Springer-

Verlag, New York (1984). DOI 10.1007/978-1-4684-0258-2

10. Greb, D., Sibley, B., Toma, M., Wentworth, R.: Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills

connections on a projective manifold. Geom. Topol. 25(4), 1719–1818 (2021). DOI 10.2140/gt.2021.25.1719

11. Greb, D., Toma, M.: Compact moduli spaces for slope-semistable sheaves. Algebr. Geom. 4(1), 40–78 (2017). DOI 10.14231/AG-2017-

003

12. King, J.R.: The currents defined by analytic varieties. Acta Math. 127(3-4), 185–220 (1971). DOI 10.1007/BF02392053

13. Li, J., Yau, S.T.: Hermitian-Yang-Mills connection on non-Kähler manifolds. In: Mathematical aspects of string theory (San Diego, Calif.,

1986), Adv. Ser. Math. Phys., vol. 1, pp. 560–573. World Sci. Publishing, Singapore (1987)

14. Lin, F., Wang, C.: The analysis of harmonic maps and their heat flows. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008).

DOI 10.1142/9789812779533

15. Lin, F.H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2) 149(3), 785–829 (1999). DOI

10.2307/121073

16. Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic geometry, Sendai, 1985, Adv. Stud. Pure

Math., vol. 10, pp. 449–476. North-Holland, Amsterdam (1987). DOI 10.2969/aspm/01010449

17. Nakajima, H.: Compactness of the moduli space of Yang-Mills connections in higher dimensions. J. Math. Soc. Japan 40(3), 383–392

(1988). DOI 10.2969/jmsj/04030383

18. Price, P.: A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43(2-3), 131–166 (1983). DOI 10.1007/BF01165828

19. Simpson, C.T.: Systems of Hodge bundles and uniformization. ProQuest LLC, Ann Arbor, MI (1987). Thesis (Ph.D.)–Harvard University

20. Smith, P., Uhlenbeck, K.: Removability of a codimension four singular set for solutions of a Yang-Mills-Higgs equation with small energy.

preprint (2018). Http://arxiv.org/abs/1811.03135

21. Tao, T., Tian, G.: A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc. 17(3), 557–593 (2004).

DOI 10.1090/S0894-0347-04-00457-6

22. Tian, G.: Gauge theory and calibrated geometry. I. Ann. of Math. (2) 151(1), 193–268 (2000). DOI 10.2307/121116

23. Timorin, V.A.: Mixed Hodge-Riemann bilinear relations in a linear context. Funktsional. Anal. i Prilozhen. 32(4), 63–68, 96 (1998).

DOI 10.1007/BF02463209

24. Uhlenbeck, K.K.: A priori estimates for Yang-Mills fields. Unpublished manuscript

25. Uhlenbeck, K.K.: Connections with Lp bounds on curvature. Comm. Math. Phys. 83(1), 31–42 (1982)

26. Waldron, A.: Uhlenbeck compactness for Yang-Mills flow in higher dimensions. arXiv:1812.10863 (2018)


