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The field of deep learning has become increasingly important for particle physics experiments,
yielding a multitude of advances, predominantly in event classification and reconstruction tasks.
Many of these applications have been adopted from other domains. However, data in the field
of physics are unique in the context of machine learning, insofar as their generation process and
the laws and symmetries they abide by are usually well understood. Most commonly used deep
learning architectures fail at utilizing this available information. In contrast, more traditional
likelihood-based methods are capable of exploiting domain knowledge, but they are often
limited by computational complexity. In this contribution, a hybrid approach is presented that
utilizes generative neural networks to approximate the likelihood, which may then be used in a
traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector
characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by
the example of event reconstruction in IceCube.
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Combining Maximum-Likelihood with Deep Learning

1. The Importance of Domain Knowledge

The reconstruction of neutrino events in the IceCube detector has traditionally relied on
maximum-likelihood based methods [1, 2]. More recently, deep learning architectures such as
convolutional neural networks (CNN) [3] have surpassed traditional reconstruction methods in cer-
tain areas including high-energy cascade reconstruction [4]. Further applications in IceCube, also
utilizing recurrent and graph neural networks, are illustrated in Refs. [5-10].

These deep learning based applications illustrate a paradigm shift from explicit to implicit use
of available information. In likelihood based methods, domain knowledge, such as translational and
rotational invariance, detector characteristics and physics laws, are implemented directly into the
likelihood prescription. The aforementioned deep learning applications, however, must learn this
information implicitly through the training data. CNNs are able to explicitly utilize translational
invariance to a certain degree, but they lack the ability to directly include other information.

The strength of deep learning lies in the universality of its methods. Typical deep learning
architectures were developed for a generalized usage in a wide field of applications. While this
enables the application across many different domains, it neglects potential benefits from explicit
exploitation of domain knowledge. One such application is the field of image recognition. Input data
in this field consist of an array of pixel values. Due to the broad range of this domain, the underlying
generating process for these pixel values may not be known. However, certain information, such as
scale, rotational and translational invariance, may still be shared across applications. Amongst other
reasons, CNNs led to a breakthrough [11] in this field by exploiting common domain knowledge
such as the importance of local pixels and translational invariance.

In contrast to image data, the underlying generating processes for data in particle physics exper-
iments are well understood. These experiments often employ extensive simulations, which implies
that the physical processes and detector response are known to great detail. Maximum-likelihood
based methods aim to utilize the full extent of this information. However, due to computational
limitations, these methods are often forced to apply simplifications and approximations. Standard
deep learning architectures perform well for these tasks, but they lack the ability to fully exploit
available domain knowledge. Similarly to CNNs for image recognition, the explicit utilization of
domain knowledge in these architectures may help to advance the field of event reconstruction in
particle physics experiments.

In this contribution, a hybrid approach is presented that combines the strengths of deep learning
with those of maximum-likelihood based methods. The presented method utilizes a generative
neural network to approximate the detector response for a given injected event. Once trained,
the generative model may then be used in a traditional maximum-likelihood setting for event
reconstruction. In contrast to standard deep learning architectures, this approach allows for direct
exploitation of available domain knowledge.

2. Domain Knowledge in IceCube

IceCube is a cubic-kilometer neutrino detector consisting of 5160 digital optical modules
(DOMs) installed on 86 strings in the ice at the geographic South Pole between depths of 1450 m
and 2450 m [12]. Reconstruction of the direction, energy and flavor of the neutrinos relies on the
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Figure 1: An event view of a cascade interaction just below the dust layer is shown for the Monte Carlo
simulation on the left and the generative model on the right. Both events match well within the expected
statistical fluctuations. The generative model is able to capture the attenuating effect of the dust layer.
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optical detection of Cherenkov radiation emitted by charged particles produced in the interactions
of neutrinos in the surrounding ice or the nearby bedrock. The amount of detected photons scales
linearly with deposited energy, and the shape of the pulse arrival time PDF, as shown in Figure 2,
may be used to infer the incident angle and distance of the particle shower from which the photons
originated. In the context of this contribution, emphasis is put on the reconstruction of cascade
events (see Figure 1 for an example event view), which are induced by interactions of charged
current electron neutrinos and neutral current interactions of all neutrino flavors.

The geometry of the detector, the translational and rotational invariance of the neutrino inter-
action, the linear scaling between collected charge and deposited energy, and the optical properties
of the ice including the dust layer, as depicted in Figure 1, constitute examples of domain knowledge
that may be utilized in the event reconstruction task.
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The convolutional layers of the CNN based reconstruction method [4] assume a regular DOM
geometry and translational invariance in the measured pulses, which is only approximately valid.
Irregularities in the hexagonal detector grid, as well as ice properties that break the translational
and rotational symmetry in measured data, must be compensated in later stages of the architecture.
Although the CNN performs well, these limitations indicate potential for a better adapted network
architecture.

The standard maximum-likelihood based event reconstruction is able to explicitly utilize more
domain knowledge than the CNN, but due to computational constraints, it is forced to use simplifica-
tions. The pulse arrival time PDF for a given cascade is obtained from splines fit to tabulated Monte
Carlo (MC) simulations. Due to the high dimensionality, simplifications, such as the approximate
azimuthal symmetry, must be used to reduce the size of the look-up tables.

3. Combining Maximum-Likelihood and Deep Learning

The main limitation of the standard maximum-likelihood method lies in its inability to effi-
ciently model the pulse arrival time PDF and expected charge at each DOM for a given cascade
hypothesis. The employed look-up table scales poorly with increasing dimensions. Neural net-
works, on the other hand, are universal approximators that excel at interpolating high-dimensional
data. A hybrid reconstruction method is defined [13] that makes use of this property, by replacing
the look-up tables with a generative neural network. The generative model G

G(é) = {4, P(1)} (1)

is trained to map the cascade hypothesis 5 = (x,¥,20,D,E, 1) to the expected charge 1 and
pulse arrival time PDF ﬁ(t) at each DOM. The pulse arrival time PDF P,(t) at the d-th DOM is
parameterized by a mixture model

K
Pa(t) = ) wj - AG(t|H(ap T(aj i) )
j

of K asymmetric Gaussians [14]:

exp (—M), X<

AG(x|g o, r) = N - (532)2 3)
exp (— 2(0’: " ), otherwise
2
N=——— @)
V2r-o(r+1)

where r parameterizes the asymmetry. The mixture model allows for a good description of the
PDF, while keeping the number of free parameters reasonably low as illustrated in Figure 2.

The architecture of the generator NN is therefore setup to output the parameters of the mixture
model {4, Gy, 7, wa} and expected charge 1, for each DOM. In order to utilize the exact detector
geometry and rotational and translational invariance in physics parameter space of the neutrino
interaction, relative displacement vectors and angles to each individual DOM are computed and
provided as input to the NN, as illustrated in Figure 3. The neural network performs a series of con-
volutional layers with 1x 1-kernels. Internally this is implemented in the tensorflow framework [15]
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Figure 3: A sketch of the generator neural network architecture is shown. Due to the construction in "forward
direction", similar to the Monte Carlo simulation, domain knowledge (examples indicated in orange) can be
explictily included into the architecture.

via two dimensional convolutions. The first layer uses locally connected layers, i.e. it does not apply
weight sharing across DOMs. This allows the NN to model the position and direction dependent,
symmetry breaking optical properties of the ice. Subsequent layers utilize standard convolution
operations with weight sharing. Therefore, after the initial locally connected layer, every DOM
is treated equally. Additional domain knowledge, such as the linear scaling of collected charge to
cascade energy or the differing quantum efficiency €; of the DOMs, is directly incorporated into
the architecture, by scaling the expected charge output:

E
10 TeV

Aa €d. )
In general, the architecture may be configured analogously to the MC simulation, while computa-
tionally expensive parts are replaced by a neural network approximation. Any domain knowledge
that goes into the MC simulation, may therefore also be utilized in the generator NN. This is possible
in contrast to standard deep learning architectures, because the generator NN is defined in the same
"forward" direction as the simulation. Standard deep learning applications, such as the CNN based
method, attempt to infer the posterior distribution of the quantities of interest from measured data,
i.e. in "backward" direction compared to the simulation.

Although the focus in this contribution is on the reconstruction of cascades, this method can
be generalized to arbitrary light sources. In IceCube, any event topology can be built up from a
linear superposition of cascades and track segments, such that only two generative models for these
elementary source types are required. Systematic uncertainties may also be included in the event
hypothesis 5 as nuisance parameters. An alternative method to account for systematic uncertainties,
is to marginalize over these during the training process of the generator NN. This is accomplished by
utilizing a traning dataset that employs the SnowStorm [16] method, which samples new systematic
parameters from a continuous prior distribution for every batch of simulated events.

For the training procedure, an extended unbinned likelihood over the measured pulses is used.
For the case without systematic parameters or systematic parameters as nuisance parameters, the
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per-event likelihood is defined as

Lowen (¥ = (271 1€) = ﬂPolsson(ch,ud( )) ]_[Pdadlm‘d' (6)

where D = 5160 is the total number of DOMs, Ny is the number of pulses at the d-th DOM, and
cq.; and t4; are the charge and time of the i-th pulse at the d-th DOM. When instead marginalizing
over systematics, one must account for the over-dispersion in measured charge. In this case, the
measured charge at a DOM does not follow a Poisson distribution anymore. A Gamma-Poisson
mixture distribution may be used as shown in Figure 4. The Gamma-Poisson mixture distribution
is a real-valued pendant to the negative binomial distribution that is capable of modeling the
over-dispersion. The parameterization from Ref. [17] is chosen:

1 L
GammaPoisson (z|4, @) = e+ o) ( ! )a ( ad )Z 7
I(z+ 1)1"(%) 1+ a2l 1 +ad
which introduces the shape parameter « that leads to over-dispersion when @ > 0. As a result, the
generator NN must also output the shape parameter @ for each DOM and the likelihood is modified
to:
Nyg

Loen (=27} 1E) = [ ] sammaoisson (Z cail a(®), ad(f)) ]—[Pd@dl B ®)

d

1

Model Performance and Applications

An additional benefit of the generator NN over the standard deep learning architectures lies in
the improved interpretability of the model. Individual components of the model may be investigated
and cross-checked. Figure 2 demonstrates that the model is capable of correctly modeling the arrival
time PDF on unseen data. It is also possible to investigate how the PDFs change for individual
DOMs when modifying the event hypothesis. In Figure 5, an example is shown in which the cascade
zenith values and the z-coordinate of the interaction vertex are shifted. As expected, the generator
NN models a smooth transition from one hypothesis to another.

The trained generative model may be used in a maximum-likelihood setting to reconstruct
events via the likelihoods provided in Equations (6) and (8). The novel hybrid method is able
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Figure 5: The pulse arrival time PDF, approximated by the generative model, is shown for three different
DOMs of the same event. The left panel shows the effect of modifying the z-coordinate of the cascade
interaction vertex, while the right panel illustrates the change due to the varying zenith angle.
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Figure 6: The angular resolution of charged-current NuE interactions for a typical cascade event selection
is compared between IceCube’s default reconstruction (MLE) [1], a CNN based method [4] and the newly
developed hybrid method. The hybrid method leads to a significantly improved angular resolution over the
whole energy range. The plateau towards higher energies is induced by systematic uncertainties.
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to improve upon the CNN and the standard reconstruction method over the whole energy range,
leading to a significant boost in angular resolution (see Figure 6). This is possible, because the
hybrid method is not subject to simplifications and because it can benefit from available domain
knowledge. The generative model can also be employed to simulate events as illustrated in the right
panel of Figure 1. Other applications such as likelihood scans and Markov-Chain Monte Carlos are
also possible.

4. Conclusions

A novel hybrid reconstruction method is presented that combines the strengths of deep learning
with those of maximume-likelihood. This is accomplished by utilizing a generator NN to approximate
the high-dimensional likelihood. Due to the construction in "forward direction", domain knowledge
implemented in the MC simulation may easily be incorporated in the neural network architecture.
The resulting generative model is a versatile tool that may also be applied in other applications such
as event simulation.
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