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Two new heterometallic clusters exhibiting related cores, [MngNia(j3-0)10(p3-Cl)2(02CMe)11(py)4(H20)4]-2H20
(1-2H,0) (py = pyridine) and [MngCox(3-0)10(p3-OH)2(02CEL); o(EtOH)3(H20)(py)s]1(ClO4)-Cl (2) are reported.
Compounds 1:2H20/2 were prepared from reactions of [Mn3O(02CMe)g(py)s]-py/[MnzO(O2CEt)s(py)s](ClO4)
with MCl,-6H20 (M = Ni%*, Co?") and (Bu4N)MnOy in a 1:3:0.1/1:1:0.1 molar ratio in MeCN (15 ml)/MeOH-
EtOH (15-0.5 ml) in ~ 28 %/< 2 % yields, respectively. Their cores consist of two [MnIVMnIHzM’H(pg—O)g(pg—
X)1™" cubanes (M™" = Ni**, X = Cl7, m = 5+, 1.2H,0; M"" = Co®*, X = OH™, m = 6+, 2) at the terminal
positions linked through a central [Mn'"3(j3-0)4]" slightly V-shaped sub-unit. Interestingly, this core has
appeared as a fragment in the giant [Mng4] and [Mny(] torus-like single-molecule magnets (SMMs). Magnetism
studies of 1-2H,0 revealed the presence of competing ferromagnetic and antiferromagnetic exchange in-
teractions leading to a fairly low spin ground state value of St ~ 4 or 3 and fully visible out-of-phase ac signals

(above 1.8 K) indicative of slow relaxation of the magnetization and SMM behavior.

1. Introduction

Polynuclear clusters of paramagnetic 3d metal ions have attracted
significant attention because of their fascinating crystal structures and
interesting magnetic properties. [1-5] In particular, they often display
aesthetically pleasing crystal structures with novel characteristics
including large size, high nuclearities and, high symmetry structural
cores. [1] In addition, they sometimes exhibit unusual magnetic prop-
erties with several of them displaying ferromagnetic exchange
interactions between their metal ions, large spin ground state values,
and single-molecule magnetism (SMM) behavior. [2-10] For this reason
there have been continuing efforts focusing on the development of new
synthetic methods leading to high nuclearity clusters [5-7].

Apart from the large size and high nuclearities, polynuclear com-
plexes also exhibit additional interesting structural features that have
attracted the attention of research community. These include their

similarity with various inorganic solids such as a variety of metal ox-
ides/hydroxides, [11-14] polyoxometallates, [15 —17] perovskites, [18]
etc. In addition, significant attention has been attracted to the con-
struction of high nuclearity compounds based on oligonuclear sub-units
and the identification/isolation in a discrete form of oligonuclear
building units appearing in polynuclear aggregates. For example,
several polynuclear clusters including wheels, disks, rods and others
have been reported based on oxido-centered triangles, [19-22] tetra-
nuclear cubanes [23] and other oligonuclear complexes. [24] The
isolation of such compounds may provide information about the syn-
thetic steps and intermediates that lead to the formation and aggrega-
tion of selected oligonuclear units and about how the overall magnetic
behavior of the high nuclearity compounds is affected by the presence of
these units. Another interesting example of an oligonuclear unit
appearing fairly often in Mn cluster chemistry either in a discrete form
[25] or as a fragment of high nuclearity clusters [9,10,23,26,27] is the
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[MnmeMnHA;(p‘;-O)‘;]18+ supertetrahedron. Selected examples of high
nuclearity clusters based on this unit are the [Mn;7], [10] [MnasNay]
and [Mngo] [24] aggregates consisting of two, four and eight edge-
sharing decametallic supertetrahedra, respectively. In addition, the
same repeating sub-unit has appeared in the family of [MnzgNis] and
[Mn32Cog] “loops-of-loops-and-supertetrahedra” aggregates consisting
of two loops and two supertetrahedra. [26,27] Interestingly, in all cases
the decametallic supertetrahedral sub-unit affected dramatically the
magnetic properties of these compounds since they all display dominant
(or entirely in the case of [Mn;7]) ferromagnetic exchange interactions,
large spin ground states, up to St = 37 in the case of the [Mn;7] cluster,
and very small zero - field splitting parameter, D (as a result of its highly
symmetric structure).

Another family of compounds that has attracted significant attention
mainly because of their high nuclearity and size are the giant [Mng4] and
[Mnyo] compounds exhibiting a torus structure with outer/cavity di-
ameters of 4.2/1.9 Aand 3.7/1.4 [o\, respectively. [28,29] They are based
on alternating [Mn""4(u5-0)4]*" cubanes and [Mn"'5(ji3-0)4]" “V-sha-
ped” sub-units with the asymmetric unit of [Mng4] being a [Mnj4]
cluster consisting of two pairs of alternating [Mn4]/[Mns] sub-units.
These compounds exhibit SMM behavior with Ueg = 18 K ([Mng4])
and 23 K ([Mny,-OEt]), and are the highest nuclearity Mn clusters and
SMMs.

Herein we report the synthesis and crystal structures of the hetero-
metallic clusters [MngNis(u3-0)10(p3-CD2(02CMe)11(py)4(H20)4]1 (1)
(py = pyridine) and [MngCox(p3-O)10(p3-OH)2(02CEt)10(EtOH)3(H20)
(py)s1(ClO4)Cl (2) consisting of two [MnVMn,M™ (j3-0)3(ps-X)1™"
cubanes (M™" = Ni®",X =Cl-,m =5+, 1; M*" =Co®>", X =OH ,m =
6+, 2) linked through a [MIIIH3(|,I3-O)4]+ “V-shaped” sub-unit. These two
compounds are similar to a fragment of the giant [Mng4] and [Mnyg]
wheels since they consist of related repeating oligonuclear units.
Magnetism studies of compound 1-2H0 revealed the presence of
competing ferromagnetic and antiferromagnetic exchange interactions
and a spin ground state value St =~ 4 or 3. Ac studies revealed the
presence of fully visible above 1.8 K out-of-phase ac signals and a U
value ~ 15 K.

2. Materials and methods

All manipulations were performed under aerobic conditions using
materials (reagent grade) and solvents as received. [Mn3zO
(02CMe)¢(py)sl-py, [MnzO(O2CEt)e(py)sl(ClO4) and (Bu"4N)MnOy4
were prepared as described elsewhere. [30-32]

2.1. Compound preparation

2.1.1. [MngNia(u3-0)10(13-CD2(02CMe) 11(py) 4(H20) 4] (1)

Method A: To a stirred solution of [Mn3O(O2CMe)s(py)sl-py (0.14
g, 0.17 mmol) in MeCN (15 ml) were added solid NiCly-6H20 (0.12 g,
0.50 mmol) and (Bu"4N)N3 (0.05 g, 0.17 mmol), and the resulting so-
lution was stirred for ~ 1.5 hr. The yellowish-brown solution was
filtered, and the filtrate left undisturbed at room temperature in a closed
flask. After one week, X-ray quality, brown, polyhedral-shaped crystals
of compound 1-2H,0 were obtained. The crystals were collected by
filtration, washed with cold MeCN and dried under vacuum. The reac-
tion yield was ~ 28% based on total Mn content. The dried solid
analyzed satisfactorily as 1-2H30 (C42HesN4O35CloMngNiy): Anal. Calc.:
C 26.32; H 3.42; N 2.92; Found: C 26.52; H 3.17; N 3.21. Mn and Ni
analysis of the dried solid was performed by inductively coupled plasma
optical emission spectrometry (ICP-OES). Anal. Calc. for 1-2H,0: Mn
25.80; Ni 6.12; Found: Mn 26.15; Ni 5.90. Selected IR data: (KBr): v’
(em™) = 3429(m, br), 1529(s, br), 1413(s, br), 1045(w), 640 (s, br).

Method B: Method A was repeated using (Bu"4N)MnO, (0.007 g,
0.017 mmol) instead of (Bu"4N)N3. The resulting brown mixture was
filtered and after one week brown, polyhedral-shaped crystals of 1-2H,0
were observed. The yield was ~ 29%.

Table 1

Selected crystal data for 1 and 2.
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Empirical formula
Formula weight
Temperature (K)
Wavelength A)
Crystal system
Space group

Unit cell dimensions

Volume (%)

Z

Density (calculated)(g/
cm®)

F(000)

Crystal size (mm®)

6 range for data
collection (°)

Index ranges

Reflections collected

Independent reflections

Completeness to 6 =
67.684° (1) 24.999°
(2

Refinement method

Data/restraints/
parameters

Goodness-of-fit

Final R indices [I > 20
D]

R indices [all data]

Largest diff. peak and
hole

C42Hs3CloMnoN4NipOgg
1872.66

100(2)

1.54184

Orthorhombic

Pnma

a=23.9117(9) A

b = 29.5063(6) A

¢ =10.3785(4) A

7322.5(4)
4
1.699

3744
0.08 x 0.03 x 0.01
2.995 to 73.028

—29<h<27,
—28<k<36,
~12<I<12

30418

7350 [Rint = 0.0631]
0.985

Full-matrix least-squares
on F?
7350/96/445

1.727
Robs” = 0.0967, WRops” =
0.2264

Ran® = 0.1266, WR.” =

0.2432

1.907 and —1.940 e-A~3

Ce1Ho7Cl2C02MngN5049
2223.65

100(2)

0.71073 A
Monoclinic
P2;/n
a=13.4853(2) A
b = 24.9254(4) A
¢ = 26.2398(4) A
B =92.818 (2)°
8809.2(2)

4

1.677

4524
0.24 x 0.08 x 0.05
3.109 to 24.999

—15<h<16,
—29<k<18,
—29<I1<31

37405

15436 [Rinc = 0.0364]
0.995

Full-matrix least-squares
on F?
15436/49/1174

1.043
Robs” = 0.0373, WRops” =
0.0909

Ran® = 0.0468, WR.;)” =

0.0951

0.811 and —0.474 e-A~3

* R =X|[Fol-|Fe|[/Z[Fo|, "WR = {ZIW(|Fo|? - [Fe|H*1/ZIW(|Fo|)1}/* and w =
1/[6%(Fo®)+(mP)? + nP] where P=(Fo? + 2Fc?)/3 and m and n are constants.

2.1.2. [MngCoz(ys-0)10(u3-OH)2(02CEL) 190(EtOH) 3(H20) (py) 5]

(Cl04)oCL (2)

To a stirred solution of [Mn3O(O2CEt)s(py)3](ClO4) (0.20 g, 0.21

mmol) in MeOH/EtOH (15/0.5 ml) were added solid CoCl,-6H50 (0.05
g, 0.21 mmol) and (Bu"4N)MnO4 (0.008 g, 0.021 mmol), and the
resulting dark brown solution was stirred for 2 h. Then the solution was
filtered and the filtrate maintained undisturbed at room temperature in
a closed flask. After two weeks, a few X-ray quality, dark brown,
polyhedral-shaped crystals of compound 2 were observed. The crystals
were collected by filtration, washed with cold MeOH and dried under
vacuum. The reaction yield was < 2% based on total Mn content.

2.2. Physical measurements

Microanalyses (C, H, N) were performed by the in-house facilities of
the University of Florida, Chemistry Department. IR spectra (4000-400
em™!) were recorded on a Shimadzu Prestige-21 spectrometer with the
samples prepared as KBr pellets. Variable-temperature dc and ac mag-
netic susceptibility data were collected at the University of Florida using
a Quantum Design MPMS-XL SQUID instrument equipped with a 7 T
magnet and operating in the 1.8-300 K range. Samples were embedded
in solid eicosane to prevent torquing. The ac magnetic susceptibility
measurements were performed in an oscillating ac field of 3.5 G and a
zero dc field. Pascal’s constants were used to estimate the diamagnetic
corrections, which were subtracted from the experimental susceptibil-
ities to give the molar paramagnetic susceptibility (ypp).

2.2.1. Single-crystal X-ray crystallography
Single-crystal X-ray diffraction data were collected on a Rigaku
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Fig. 1. Partially labeled representation® of the molecular structure of complex 1. Color code: Mn'Y, blue; Mn'", turquoise; Ni, lavender; Cl, green; O, red; N, yellow; C,
grey. The hydrogen atoms are omitted for clarity. * Symmetry code: (') = x, 1.5-y, z.

Supernova A X-ray diffractometer, equipped with a CCD area detector
and a graphite monochromator utilizing Cu-Ka (A = 1.54184 [o\) and Mo-
Ka radiation (A = 0.71073 A) for 1 and 2, respectively. Suitable crystals
covered with paratone-N oil were mounted on the tip of glass fibers or
scooped up in cryo-loops at the end of a copper pin and transferred to a
goniostat where they were cooled for data collection. Empirical ab-
sorption corrections (multi-scan based on symmetry-related measure-
ments) were applied using CrysAlisRED software. [33] Software
packages used: CrysAlisCCD for data collection, CrysAlisRED for cell
refinement and data reduction, [33] SHELXL for structure solution, [34]
WINGX for geometric calculations, [35] while DIAMOND [36] and
MERCURY [37] were used for molecular graphics. The non-H atoms
were treated anisotropically, whereas the aromatic hydrogen atoms
were placed in calculated, ideal positions and refined as riding on their
respective carbon atoms. Electron density contributions from disordered
guest molecules including one ClO4~ counter-anion of 2 that was located
but could not be modelled properly were handled using the SQUEEZE
procedure from the PLATON software suit. [38] In order to limit the
disorder of bridging carboxylate (in 1 and 2) and EtOH terminal ligands
(in 2), various restraints (DFIX, DELU, SIMU, ISOR) have been applied in
the refinement of the crystal structures. Selected crystal data for 1 and 2
are summarized in Table 1.

3. Results and discussion
3.1. Synthesis

Our group has been investigating reactions of Mn reagents with other
3d metal compounds targeting mixed Mn/M (M = 3d metal ion) clusters.
This approach has proven successful, especially for the synthesis of mixed
Mn/Ni clusters, and led to a variety of new heterometallic clusters. Some
examples of such Mn/Ni heterometallic clusters are the high nuclearity
[Mn"1,Mn";5Ni'3030(02CED16(MeO)12(MeOH)g(Hx0)2]  ([Mn24Nia])
consisting of a [Ml‘lHIlzNiz] loop incorporating a [anlz] [3 x 4] grid-like
unit, [39] and the [Mn™;Ni"g(14-0)2(p3-OH)4(113-CD2(02CMe)s(py)s]® "
([MnyNig]) cluster containing two [MnHINng] cubanes linked through
oxide and carboxylate ligands. [26] These compounds were prepared from
reactions of an oxido-centered Mn triangle with NiCly-6H20 and an

oxidant or a salt in an alcohol (for [Mny4Nis]: [MngO(O2CEt)s(py)3]ClO4,
Bu"yNMnO,4, MeOH; for [MnyNigl: [Mn3O(02CMe)s(py)s]l-py, NaClOg,
EtOH). Compound 1 was prepared from modifications of the above reac-
tion scheme that included use of various different salts and solvents. In
particular, the reaction of [Mn3gO(O2CMe)e(py)s]-py with NiCly-6Ho0 and
(Bu"4N)N3 in a 1:3:1 molar ratio in MeCN afforded compound 1-2H50 in
~ 28% yield based on total Mn content. It was noted that the average
oxidation state of the Mn ions in the reaction mixture (MnIHgMnH; 2.66)
was lower that the corresponding value in the isolated product (Mn" M-
n'; 3.22); the oxidizing agent in this reaction was probably atmospheric
O, or a disproportionation. For this reason, and because none of the ions of
(Bu"4N)N3 are present in the structure of 1-2H»0, we repeated the same
reaction using (Bu"sN)MnO4 in place of (Bu"4N)N3 targeting an
improvement in the reaction yield. However, although compound 1-2H,0
was successfully synthesized with this procedure, the reaction yield was
not improved. The formation of compound 1 is summarized in Eq. (1):

3[Mn;0(0,CMe), (py); | -py + 2NiCl,-6H,0

MeCN

+12502 - [MngNizOmClz(OZCMe)u(py)4(H20)4}-2H20
4 2HCI + 8py + 7CH;COOH + 1.5H,0 1

Several other modifications were performed to the reaction that
afforded 1-2H50 targeting the isolation of additional heterometallic
[MngM;] analogues. These involved variations in the MClp-xHO salts of
different 3d metal ions, the oxido-centered Mn triangles (involving use
of triangles possessing different carboxylate groups), the solvents, etc.
Thus, the reaction of [Mn3gO(02CEt)¢(py)3](ClO4) with CoCly-6H0 and
(Bu"4N)MnOy in 1:1:0.1 M ratio in MeOH afforded a few single crystals
of compound 2, which allowed the determination of its crystal structure.
However, several other attempts to obtain this compound by employing
this reaction did not succeed. The crystal structure of 2 revealed the
presence of coordinated EtOH molecules. This solvent was not used in
the reaction mixture but appeared in the compound probably due to its
existence in the lattice of [Mn3O(O2CEt)s(py)3]ClO4 (its synthesis takes
place in EtOH). [31] Thus, the same reaction was repeated in MeOH in
the presence of 0.5 ml EtOH affording a few crystals of 2. The isolation of
compound 2 was reproducible, however the reaction yield was very low
(<2%) and despite several attempts to increase it, this was not achieved.
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For this reason, the compound was not further characterized.

3.2. Description of structures

Representations of the molecular structure of compound 1 are shown
in Fig. 1 and S1 in Supplementary information, SI and selected inter-
atomic distances and angles are listed in Table 2.

Complex 1 (Fig. 1 and S1) crystallizes in the orthorhombic space group
Pnma and its asymmetric unit consists of one half of the Mn",;Mn™,Ni"]
cluster. Its [MnIVzMnHI7Nin(pg—O)lo(pg—Cl)Z]11+ structural core consists of

Table 2
Selected bond lengths (A) for 1.™

Label Distances Label Distances
Nil-N1 2.085(8) Mn3-011 2.184(7)
Nil-N2 2.077(7) Mn3-012 1.962(8)
Nil-01 2.125(7) Mn3-Cl1 2.723(3)
Ni1-02 2.063(6) Mn4-05 1.869(6)
Nil-06 2.034(6) Mn4-015 1.971(6)
Nil-Cl1 2.433(3) Mn4-017 2.18(2)
Mnl1-01 1.841(7) Mn4-020 2.29(2)
Mn1-02 1.835(7) Mn4-05' 1.869(6)
Mnl-03 1.848(5) Mn4-015’ 1.971(6)
Mn1-07 1.963(5) Mn5-04 1.916(6)
Mn1-08 2.004(7) Mn5-05 1.902(6)
Mn1-010 1.993(7) Mn5-016 2.20(2)
Mn2-01 1.901(5) Mn5-021 2.321(8)
Mn2-03 1.902(7) Mn5-05 1.902(6)
Mn2-05 1.866(5) Mn5-04' 1.916(6)
Mn2-09 2.183(8) Mn6-04 1.857(6)
Mn2-014 1.959(7) Mn6-013 1.973(7)
Mn2-Cl1 2.702(3) Mn6-018 2.19(2)
Mn3-02 1.896(5) Mn6-019 2.23(2)
Mn3-03 1.899(7) Mn6-04' 1.857(6)
Mn3-04 1.879(5) Mn6-013’ 1.973(7)

# Symmetry code: () = x, 1.5-y, z.
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two mixed metal [MnIVMnHI2NiH(pg;-O)3(p3-Cl)]5+ cubanes connected
through a “V-shaped” [MnIHg(pg—O)4]+ sub-unit. The oxidation states of
the Mn ions [40] and the protonation levels of the O atoms [41] were
determined by bond valence sum (BVS) calculations (Table S1 in SI),
charge considerations, and inspection of metric parameters. All metal ions
are hexacoordinated with the Mn'™" jons possessing distorted octahedral
coordination geometry and exhibiting the expected (for high spin d* ions)
Jahn-Teller (JT) elongations (the JT axes are not co-parallel) (Fig. S2 in
SI). The three Mn and one Ni ions of each cubane sub-unit are connected
by three j3-02~ and one p-Cl~ anions forming the [Mn"Mn™,Ni(js-
0)3(pg-C1)]5+ core. The Mn'Y ion of the cubane (Mn1) is also linked to the
other three metal ions through three acetate ligands bridging in the
common syn,syn-n':n':p coordination mode. In addition, the two Mn™ jons
of the cubane are linked to the central [Mn'"3] sub-unit through two more
syn,syn-niinl:p acetate ligands and two p3-O%~ anions. Each of the latter
connects one Mn™ jon of each cubane with two Mn™ jons of the central
[Mnm3] sub-unit thus forming two vertex — sharing [Mnmzoz] rhombs.
The Mn ions of one of the rhombs are also bridged by one syn,syn-nm':p
acetate ligand forming a [Mn"50,(j-02CMe)] " unit. The three Mn ions of
the [MngO4] sub-unit are not linear but slightly V-shaped (Mn4-Mn5-Mn6
= 169.4(2)°). The peripheral ligation of complex 1 is completed by
terminally ligated solvent molecules and in particular by four pyridine
ligands coordinated to the Ni®* ions and four water molecules to the Mn™
ions of the V-shaped [MnIHg(pg—O)é;]+ sub-unit. A close examination of the
packing of 1 revealed the existence of intramolecular H - bonding
interactions involving the terminal HyO molecules of the central
[MnHIg(ug—O)A‘]Jr sub-unit and the 02’/02CMe’ anions of the cubane.
Despite the presence of intramolecular interactions, no significant direct
intermolecular interactions between neighboring [MngNiz] clusters exist.

Compound 2 crystallizes in the monoclinic space group P2;/n and its
asymmetric unit consists of a [anzMnIH7C0HIz] cluster cation (Fig. 2
and S3) and two ClO4  and one Cl™ counter - anions. Selected inter-
atomic distances and Mn/Co BVS calculations data [40,42] are included

Fig. 2. Partially labeled representation of the molecular structure of complex 2. Color code: Mn", blue; Mn'", turquoise; Co, pink; O, red; N, yellow; C, grey. The

hydrogen atoms are omitted for clarity.
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(b)

(©)

Fig. 3. Representations of the (a) [Mnml4(p3-0)12(u3-0Me)4]14*, (b) [MnlsznHl7Nin(u3-O)10(}13-(:1)2]11+ and (c) [Mnlsznm7Comz(u3-O)10(u3-OH)2] 13+ cores of
the [Mn; 4] asymmetric unit of [Mng4] torus-like cluster [28] and compounds 1 and 2, respectively, emphasizing on their structural similarity. Color code: Mn", blue;

Mn'™, turquoise; Ni, lavender; Co, pink; O, red; Cl, green, C, grey.

in Tables S2 and S3, respectively, in SI.

The [MDIVQMHHI7COIHz(|J.3-O)1o(pg-OH)z]13+ structural core (Fig. 3)
consists of two mixed metal [MnIVMnHIzCOIH(ug,-O)g,(pg-OH)]6+ cubanes
connected through a “V-shaped” [Mnmg(pg,-O)‘;]+ sub-unit and is related to
the [MnIVZMnHI7NiHg(pg,-O)1()(pg-Cl)2]HJr core of compound 1 described
above (vide supra). For this reason, only the main differences of the
structures of compounds 2 and 1 shall be discussed. In particular, the most
obvious differences between the two structures involve: (i) the 3d

heterometals and their oxidation state values [40,42] (two Co™ ions in 2

versus two Ni'l ions in 1); (ii) the type of monoatomic bridging ligands in
each cubane sub-unit (three ji5-0%~ and one p3-OH™ in 2 versus three jig-
0% and one y3-Cl ™~ in 1); (iii) the type and number of carboxylate ligands
(ten O,CEt ligands in 2 versus eleven O3CMe ones in 1; the missing
carboxylate group in 2 is the one connecting two Mn ions of the Mn3O4
sub-unit); (iv) the number and type of terminal solvent molecules (five py,
three EtOH and one H»O in 2 versus four py and four H,O molecules in 1;
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and (v) the coordination number and coordination geometry of selected
metal ions (all metal ions in 1 are hexacoordinated adopting a distorted
octahedral coordination geometry, whereas in 2 the central Mn ion of the
[Mn304] sub-unit is pentacoordinated exhibiting a distorted tetragonal
pyramidal coordination geometry). In the case of compound 2 there are
also intramolecular interactions involving the EtOH and HyO terminal
solvent molecules of the [Mn3O4] sub-unit and the O;CEt/OH™ ligands
and ClO4 /Cl™ counter anions but no significant direct intermolecular
interactions between neighboring [MngCoz] clusters was observed.

Compounds 1 and 2 join a small family of undecanuclear Mn-
containing clusters, and are unusual examples of heterometallic ones.
[43] Their [MnoMa(p3-0)10(p3-X)2]™" (M = Ni?*, X =Cl~, 1; M = Co>*, X
= OH, 2) structural core or its analogous one [Mnmn(ug-O)g(pg-
OMe),4]'3" have appeared previously in a discrete homometallic Mn
cluster [44] and also as a fragment of higher nuclearity clusters. In
particular, the homometallic [Mnyj;(p3-O)10(p3-CD2(02CMe)11(bpy)a(-
MeCN),(H20)2]1(Cl04)2-8MeCN (bpy = 2,2'-bipyridyl) [Mn;;] displays a
[MWgMnmg(pg-O)10(;13-Cl)2]13+ core similar to those of 1 and 2; however,
its magnetic properties have not been investigated. In fact, it would be
interesting to study the magnetic properties of this [Mnj;] cluster (and of
its heterometallic analogues) since it is based on [anMnIIIZM”(pg—
O)a(us-X)] M™" = Mn>", X = Cl~, [Mny] [44]; M =Ni*", X =Cl,1; M
= C03+, X = OH', 2) cubanes, which are known to exhibit interesting [45]
and sometimes unique [46] magnetic properties. Another reason to pre-
pare and investigate the magnetic properties of compounds consisting of
alternating [Mny(p3-0)4x(p3-X)x] cubane and [Mnlllg(p3-0)4]+ V-shaped
sub-units is their presence in the family of giant [Mng4] [28] and [Mnyg]
[29] torus-like clusters exhibiting SMM behavior, which are the highest
nuclearity Mn clusters and SMMs reported in the literature. The structural
relation of the [MnIV2MnHIyNin(p3-O)lo(pg-Cl)g] 11+ and
Mn"Y,Mn™, o™y (i5-0)10(us-OH)21 '3t cores of 1 and 2 and the
[Mn'™;4(113-0)12(n3-OMe)4]1*** one of the [Mng4] torus cluster is high-
lighted in Fig. 3.

3.3. Magnetic properties

Solid-state, variable-temperature magnetic susceptibility measure-
ments were performed on vacuum-dried microcrystalline sample of
complex 1-2H50 suspended in eicosane to prevent torquing. The dc
magnetic susceptibility (yy) data were collected in the 5.0-300 K range
in a 0.1 T magnetic field and are plotted as ymT vs T in Fig. 4a.

The y,T for 1-2H,0 steadily decreases from 19.16 cm® mol ! K at 300
K to 13.41 at 50 K, and then rapidly decreases further to 9.34 cm® mol ! K
at 5 K. The 300 K value is lower than the spin-only (g = 2) value of 26.75
em® mol ! K for 2 Mn", 7 Mn'" and 2 Ni"! non-interacting ions, indicating
the presence of dominant antiferromagnetic exchange interactions within
the molecule. The 5.0 K value is indicative of a small ground-state spin
value in the S = 0 — 4 range; the spin-only (g = 2) values for S = 1, 2, 3 and
4 are 1.0, 3.0, 6.0 and 10 cm® mol ! K, respectively.

Given the size of the MngNi; molecule, and the resulting number of
inequivalent exchange constants, it is not possible to apply the Kambe
method [47] to determine the individual pairwise Mny exchange
interaction parameters. Thus, variable field - variable temperature
magnetization measurements were performed at applied magnetic fields
and temperatures in the 1-40 kG and 1.8-10.0 K range, respectively to
obtain additional information concerning the values of the ground-state
spin, S, and the zero-field splitting parameter, D. The data for complex
1-2H,0 are shown in Fig. 4b, as a reduced magnetization (M/Nug) vs H/T
plot, where M is the magnetization, N is Avogadro’s number, 4 is the Bohr
magneton, and H is the magnetic field. For complexes populating only the
well-isolated ground state and possessing no axial zero-field splitting
(ZFS), i.e. D = 0, the magnetization versus field plot follows the Brillouin
function and the isofield lines superimpose and saturate at a value of gS.
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However, the experimental data of complex 1-2H50 in Fig. 4b clearly do
not superimpose, indicating low-lying excited states consistent with the
high nuclearity and/or significant magnetic anisotropy (ZFS) in the
ground state.

The M/Nug versus H/T data were fit using the program MAGNET to a
model that assumes that only the ground state is populated at these tem-
peratures and magnetic fields, includes isotropic Zeeman interactions and
axial zero-field splitting (DS,?), and incorporates a full powder average.
The corresponding spin Hamiltonian is given by Eq. (1).

~2 ~
H = DS, + guppyS-H (€]

where D is the axial ZFS parameter, S, is the easy-axis spin operator, y is
the vacuum permeability, and H is the applied field. The last term in eq 1
is the Zeeman energy associated with an applied magnetic field. The best
fit for 1-2H,0 is shown as the solid lines in Fig. 4b and was obtained with
S=4,g=1.83(1),D=-0.57 cm L. Alternative fits with S = 3 or 5 were
rejected because they gave unreasonable values of g and D. The g value
is<2.0, however, it is pointed out that the fit of the reduced magneti-
zation data provides a rough estimation of g and D values; for their
accurate determination, additional measurements are required that are
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Fig. 4. Plots of (a) ymT vs T at 0.1 T and (b) reduced magnetization (M/Nyug) vs
H/T at the indicated fields for complex 1-2H,0. The solid lines are the fit of the
data; see the text for the fit parameters.
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Fig. 5. Plots of (a) the in-phase (y'y) signal as y'uT vs. T and (b) the out-of-
phase (y"u) signal as y”p vs. T in a 3.5 G field oscillating at the indicated
frequencies for complex 1-2H,0. Inset in Fig. 5b: Plot of the natural logarithm
of relaxation rate, In(1/7), vs. inverse temperature (T™Y for 1-2H,0, using y'm
vs. T data at different frequencies. The solid line is fit to the Arrhenius equation.

beyond the scope of this paper.

Alternating current (ac) magnetic susceptibility data were collected
for compound 1-2H»0 to obtain more information about its St value and
the possibility to exhibit slow relaxation of the magnetization indicative
of SMM behavior. The in-phase (Fig. 5a) ac signal displays a decrease in
x'mT with lowering of the temperature, assigned to depopulation of low-
lying excited states with S greater on average than that of the ground
state. It is usually possible to identify the ground state by extrapolating
the data to 0 K from a T that avoids other effects such as the onset of slow
relaxation or intermolecular interactions; in this case, however,
extrapolation of the ') T data from above ~ 5.0 K to 0 K, at which point
only the ground state should be populated, gives a value of ~ 8 cm®
mol~! K or slightly higher. This corresponds to neither an S = 3 or § = 4
value, and suggests that the excited state(s) is(are) too low-lying for this
approach. The combined dc and ac data thus suggest that 1 has either an
St = 3 or 4 value. At lower temperatures (below 4 K), there is a
frequency-dependent decrease in y')T and a concomitant appearance of
a frequency-dependent out-of-phase (y"'5) signal (Fig. 5b), indicative of
the presence of slow relaxation of the magnetization.

Polyhedron 213 (2022) 115551

The temperature dependence of the magnetization relaxation rate
(1/7, t is the relaxation time) was deduced from the out-of-phase y'/j; vs.
T data collected at multiple frequencies (v), (Fig. S7). The 1/, vs. T data
were used to construct an Arrhenius plot, shown as In(1/7) vs. T 'in
Fig. 5b, inset, based on the Arrhenius equation (Eq. (2)),

1/t = (1/70)exp( — U /kT) (2)

where Ugfs is the effective energy barrier, k is the Boltzmann constant
and 1/7 is the pre-exponential factor. The obtained fit parameters were
70=1.3 x 10795 and Uett = 15 cm~ L. The 70 is smaller than normally
seen for SMMs but this is sometimes the case for higher nuclearity ones.
[10,48]

4. Conclusions

The reactions of oxido - centered Mn triangles with NiCly-6HoO or
CoCly-6H50 in the presence of (Bu"4N)MnO, afforded two heterometallic
[MnIVZMnHI7NiHZ] and [MnIVZMnIH7CoHIZ] carboxylate clusters. They are
based on structurally related [Mn"sMn™,M™" 5(j15-0)10(p3-X)2]™" (M =
Ni2t, X =Cl7, m = +11, 1; M = Co®", X = OH™, m = +13, 2) cores
consisting of two [MnNMnHIZM(ug-O)g(pg-X)] cubanes at the terminal
positions linked through a central [Mnlllg(p3-0)4]+ slightly V-shaped sub-
unit. Interestingly this core has appeared as a fragment in the giant tor-
us-like [Mng4] and [Mnyg] SMMs. Magnetism studies on compound
1-2H,0 indicated the presence of competing ferromagnetic and antifer-
romagnetic exchange interaction and a spin ground state value St = 4 or 3.
Ac studies revealed the presence of fully visible (above 1.8 K) out-of-phase
signals indicating that compound 1-2H50 is a new SMM with a Ueg = 15
em™L. Compounds 1-2H,0 and 2 are new additions in the family of het-
erometallic mixed Mn/M (M = a 3d metal ion) clusters that contain car-
boxylates as the only type of organic bridging ligands establishing Mn/3d
metal ion cluster chemistry as source of high nuclearity clusters with
aesthetically pleasing structures and interesting magnetic properties.
Further studies in this area will involve attempts to synthesize the
homometallic [Mn;1] analogue and also other heterometallic [MngM]
clusters with 3d and 4f metal ions.
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Appendix A. Supplementary data

CCDC 2101802 and 2101674 contain the supplementary crystallo-
graphic data for compounds 1 and 2, respectively. These data can be
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obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.
html, or from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1 EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk. Supplementary material includes various struc-
tural and magnetism figures and tables. Supplementary data to this article
can be found online at https://doi.org/10.1016/j.poly.2021.115551.
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