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Abstract—This work explores the use of a triplet neural net-
work for assessing the similarity of paper textures in a collection
of Henri Matisse’s lithographs. The available dataset contains
digital photomicrographs of papers in the lithograph collection,
consisting of four views: two raking light orientations and both
sides of the paper. A triplet neural network is first trained
to extract features sensitive to anisotropy, and subsequently
used to ensure that all papers in the dataset are in the same
orientation and side. Another triplet neural network is then
used to extract the texture features that are used to assess
paper texture similarity. These results can then be used by art
conservators and historians to answer questions of art historical
significance, such as artist intent.

I. INTRODUCTION

The last decade has seen growing interest in the use of

signal/image processing and machine learning to help answer

research questions in cultural heritage, including those in art

scholarship and preservation [1]–[3]. The increasing avail-

ability of vast datasets combined with the rapid advance of

machine learning techniques has served, in part, to fuel this

cross-disciplinary research area, and has permitted the com-

munity of researchers to ask questions which were previously

impossible to answer. In this work, we apply recent machine

learning techniques to a dataset of 215 lithographs by the

French artist Henri Matisse with the goal of identifying paper

texture similarities or clusters within this dataset.

Texture analysis of papers of art historical interest has been

studied extensively (see for example [4]–[6]), and a wide range

of signal and image processing techniques have been applied

to this problem, such as hyperbolic wavelet transforms [7],

fractals [8], local radius index [9], and restricted Boltzmann

machines [10], among others. Recently, a machine-learning-

based approach to paper texture analysis that uses a triplet

neural network was developed and shown to yield promising

results in this domain when applied to several test datasets

comprised of multiple paper types, including wove, silver

gelatin, and inkjet papers [11].

In this paper, we review the triplet neural network approach

that we developed previously in [11], and we adapt this

approach to address the unique challenges posed by this

dataset of Matisse lithographs. All of the prior datasets on
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which the triplet neural network approach was tested were

relatively controlled test sets created from reference collections

of example papers, and all papers were imaged with the same

orientation and consistent front/back side as much as possible.

In this dataset consisting of paper textures from an actual art

collection, the orientation of the papers varies considerably,

as the orientations may have varied purposefully by the artist,

or may have varied due to inconsistencies in the print studio.

Thus, before assessing texture similarity of the textures, the

multiple images (orientation and paper side) of each paper

texture need to be considered for possible permutations to

achieve a consistent orientation of all the paper textures in

the dataset. We develop and report on an approach that adapts

the training process of the triplet neural network to extract

features that can be used to permute the images as needed.

Once the images in the dataset are appropriately permuted

to have consistent orientation, we apply the texture feature

extraction approach in [11] and then subsequently assess

similarity between textures in the Matisse lithograph dataset.

Prior work that first analyzed this dataset [12] has used

the Hyperbolic Wavelet Transform, and also gave attention to

the problem of permuting images in the dataset to achieve

consistent orientation. We compare the results generated by

our approach to those reported by the authors of [12]. Our

approach is quite different in that we use a triplet neural

network; however, it is very encouraging that the two very

different approaches agree on a large number of permutations

and affinities within the dataset.

II. MATISSE LITHOGRAPH DATASET

The images in the dataset consist of digital photomicro-

graphs of 215 of Matisse’s lithographs, and are from the

collection of The Pierre and Tana Matisse Foundation. The

prints date from 1925 through 1951, and the vast majority

are printed on papers with an Arches watermark. While [12]

provides more details of the dataset including example images,

the papers are primarily wove papers and have attributes

typical of high-quality printing papers made during the 20th

century. The 215 prints are organized across 50 editions, where

an edition is a group of numbered prints made at the same

time; usually, but not always, prints within an edition are made

on the same paper type.
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Fig. 1. Digital imager and raking light

In wove papermaking, the two sides of paper are referred to

as the screen and felt sides, referring to the wire screen used

to drain water from the pulp, and the felt on which the pulp

is subsequently placed to dry. For paper made in this way, it

is common for the screen and felt sides to exhibit different

textures; as such, all papers were imaged on both the front (or

recto) and back (or verso) sides.

The photomicrographs were acquired with a digital imager

fitted with a zoom imaging lens, as shown in Fig. 1. The field

of view of the digital imager spans a physical area of 1.0 cm

× 1.2 cm on the paper, and produces images with a resolution

of 2048×2448 pixels. A 3-inch LED line light placed at a

25◦ raking angle to the surface of the papers illuminates the

surface and also enhances the highlights and shadows so that

surface features are more clearly visible during image capture.

Due to the possibility that these papers may exhibit anisotropy,

the papers were imaged with the raking light oriented in two

positions relative to the printed image: (i) parallel to the top of

the print, and (ii) parallel to the side edge of the print. This led

to four views for each paper, and we adopt the convention of

referring to them as Recto-Top (RT), Recto-Side (RS), Verso-

Top (VT) and Verso-Side (VS).

Finally, we note that cropped, downsampled, greyscale ver-

sions of these source images are used throughout this work, ex-

cept occasionally in some of the figures. Cropping minimizes

the impact of vignetting and lens distortion, downsampling is

performed since the image resolution is higher than needed for

performing texture analysis, and greyscale images prevent the

machine learning algorithms from relying too heavily on color

rather than texture. After performing these steps, the source

images are transformed into 256×256 pixel greyscale images,

which are subsequently tiled.

III. TRIPLET NEURAL NETWORK

Here, we review the triplet neural network structure pre-

viously developed for paper texture classification in [11].

This approach uses a relatively traditional convolutional neural

network (CNN) to perform feature extraction, thus mapping

each image to a length-16 feature vector containing the rele-

vant texture information. Subsequently, the feature vectors are

used to arrive at the “distance” or dissimilarity of any pair

of images; this is accomplished by computing the Euclidean

distance between the two feature vectors. In this work, we

use this same neural network structure for two different tasks,

each with a different set of weights/kernels: (i) one whose

weights we train to extract features sensitive to anisotropy,

and (ii) a structurally identical CNN with weights trained as

in [11], thus leading to a CNN that extracts features suitable

for texture classification.

To train the CNN, we use a loss function called triplet loss

which has been proposed in [13] for use in facial recognition

applications. The approach trains a neural network to perform

feature extraction in a way that minimizes the distance be-

tween “like” textures while maximizing the distances between

“unlike” textures. The neural network accepts as input an

image A and produces at its output a feature vector f(A)
of reduced dimension. The network is trained by forming

“triplets” consisting of three inputs: an anchor image A and

positive image P which are known to be identical textures, and

an additional image N called the negative which is known to

be a different texture from either the anchor or the positive.

The neural network f(·) is then trained to minimize the loss

given by

L(A,P,N) = max
{

||f(A)− f(P )||22 − ||f(A)− f(N)||22 + α, 0
}

where the parameter α is a constant added to avoid the trivial

case where the CNN outputs the same feature vector for all

inputs. The term ||f(A) − f(P )||22 is the squared Euclidean

distance between anchor and positive feature vectors which

we seek to minimize, while ||f(A) − f(N)||22 is the squared

Euclidean distance between anchor and negative feature vec-

tors which we seek to maximize. A graphical overview of

the approach is shown in Fig. 2. Because minimizing triplet

loss results in an end-to-end learning between the input image

and distances in the feature vector space, the approach directly

optimizes the neural network for the final task (i.e., computing

distances between images).

The CNN structure we employ consists of four convolu-

tional layers with ReLU activation functions and 2×2 average

pooling between each layer, followed by a final fully connected

layer at the output which produces a length 16 feature vector

that is ℓ2-normalized to a unit hypersphere. Additional details

of the various hyperparameters can be found in [11] or by

reviewing the source code available in [14].

IV. METHODOLOGY AND RESULTS

In this section we describe how we train and use the two

aforementioned CNN’s to first permute the images in the

dataset to have consistent orientation, and subsequently to
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Fig. 2. Training a triplet neural network amounts to finding a function
f(·) that minimizes the Euclidean distance between f(A) and f(P ) while
maximizing the Euclidean distance between f(A) and f(N).

extract texture features, compute pairwise distances between

textures, and perform clustering to identify “like” textures

within the dataset. Along the way, we provide results specific

to the Matisse dataset and compare with prior work. Below,

we refer to the CNN which is used to extract features sensitive

to anisotropy as CNNpermute, while the CNN used to extract

texture features is denoted CNNtexture. Again, we note that

the structure of CNNpermute and CNNtexture is identical, and

it is only the values of the weights which differ due to a

different training process for each as described below.

A. Training CNNpermute

Since texture affinities within most art historical datasets are

not known a priori and thus the data is generally unlabeled,

and since the selection of the anchor, positive, and negative

triplets requires labeled data, we make use of a tiling trick to

train the neural network. Recall that a texture in the dataset

consists of 4 images corresponding to the 4 views RT, RS,

VT, and VS. We first split each 256×256 image in the dataset

into 16 tiles of size 64×64 pixels. All tiles from the same

image are of course identical textures, so we always draw

the anchor and positive portions of the triplet as distinct

tiles from the same image. To encourage the CNN to extract

features sensitive to anisotropy, we draw the negative tile

from the same paper, but from one of the other 3 views.

Thus, the loss function implicitly selects features such that

the distance between feature vectors from different views

are maximized. At the same time, the loss function selects

features such that the distance between two tiles from the same

view of a single texture is minimized. In training this neural

network, all images in the Matisse dataset are used, and before

training begins the weights are pre-initialized to the values

of CNNtexture described below. Training of CNNpermute is

stopped after 400 epochs, using a batch size of 512 triplets.

B. Permuting images within editions

Next, we describe a procedure that uses the features com-

puted by CNNpermute to permute the images of a given paper

TABLE I
VIEW PERMUTATIONS

Notation Description Order

A original order RT, RS, VT, VS
B recto/verso flip VT, VS, RT, RS
C top/side rotation RS, RT, VS, VT
D recto/verso and top/side VS, VT, RS, RT

so that all papers have the same orientation. For each of the

215 papers in the dataset and each of the 4 views per paper

– giving 860 total textures – we use CNNpermute to compute

the length-16 feature vector for each texture, and subsequently

we compute the Euclidean distance between all pairs of

feature vectors within an edition. There are only four possible

permutations of the four views that need to be considered,

shown in Table I. Let πi ∈ {A,B, C,D} denote a permutation

for the ith paper, let vi ∈ {RT,RS,VT,VS} denote one of

the four views of the ith paper, and let D̃ij(vi, vj) denote the

Euclidean distance between the feature vectors corresponding

to view vi of paper i and view vj of paper j. Let Dij(πi, πj)
denote the summed Euclidean distance between each of the

4 pairs of feature vectors for matched views of the ith and

jth papers under permutations πi and πj . For example, if

πi = πj = A, then

Dij(πi, πj)|πi=πj=A
= D̃ij(RT,RT ) + D̃ij(RS,RS)

+D̃ij(V T, V T ) + D̃ij(V S, V S).

Note that the right hand side of this expression is also the

value of Dij(πi, πj) more generally whenever πi = πj due to

the associativity of addition. As another example, if πi = A
but πj = B so that image i has the original ordering but image

j has a recto/verso flip, then

Dij(πi, πj)|πi=A,πj=B
= D̃ij(RT, V T ) + D̃ij(RS, V S)

+D̃ij(V T,RT ) + D̃ij(V S,RS).

Let (π1, π2, . . . , πN ) be an N -tuple of permutations corre-

sponding to the N papers within an edition. Since there

are four possible choices of πi for each i, there are 4N

possible permutations of the N papers, though without loss

of generality we could fix π1 = A, resulting in 4N−1 possible

permutations. To find the best set of permutations π∗
i over a

given edition, we use an exhaustive search to pick all the πi

to minimize the sum distance:

(π∗
1 , π

∗
2 , . . . , π

∗
N ) = arg min

(π1,π2,...,πN )

∑

i,j

Dij(πi, πj)

where the sum is over all N images in a given edition. The

rationale for this choice is that papers, when permuted to be

in the same orientation, ought to have the smallest possible

sum distance over all matched views. That is, the “correct”

permutation π∗
i , π

∗
j ought to satisfy Dij(π

∗
i , π

∗
j ) ≤ Dij(πi, πj)

for all possible πi, πj .

While an exhaustive search can be prohibitively time con-

suming if N is large, we note that of the 50 editions in the

Matisse dataset, the largest edition contains 10 papers, and



thus there are at most a modest 49 ≈ 2.6× 105 permutations

to search over for each of the 50 editions. Moreover, while this

approach is more computationally expensive than the voting

approach proposed in [12], it avoids the problem of having to

break ties.

The result of applying this procedure was that permutations

were needed across the following 14 of 49 editions in the

dataset: 1249∗, 1256, 1300, 1301, 1313∗, 1324, 1327, 1367,

1403, 2589, 2592∗, 2600, 2603∗, 2607∗. In most all cases, only

a single paper needed to be permuted, and the vast majority

of permutations were recto/verso flips (i.e., permutation B).

Moreover, half of the papers that needed permutations were

designated as essai or epreuve prints which is encouraging as

it is suspected that these are cases involving experimentation

with different papers, orientations, and sides. The editions

above with asterisks coincide with permutations identified in

[12]. While our results suggest more flips than were identified

by the authors of [12], we note that the list here includes all

but one of those found in the prior work. Finally, an example

of papers from edition 1313 where a permutation was required

is shown in Fig. 3. There, it can be seen that permuting the

second row leads to more consistent textures within columns.

C. Permuting images across editions

Having permuted the papers within editions to have the

same orientation, we now address the problem of inter-edition

permutations. First, we represent each edition with the centroid

of all permuted feature vectors within the edition. Because

there are 50 editions, we cannot directly adopt the exhaustive

search used above since we would need to test 449 ≈ 3×1029

permutations. Thus, we adopt a hierarchical approach by

partitioning the 50 editions into 5 groups of 10, and applying

the exhaustive search described above to resolve permutations

within the partitions. Then, we repeat the process for all 5

groups by replacing the 10 images in each group with the

centroid of its permuted feature vectors, and finally we resolve

permutations across the 5 groups.

The results indicate that there are a large number of inter-

edition permutations identified, much more than the relatively

small number of intra-edition permutations above. Indeed, the

permutations suggested by this approach resulted in a roughly

equal number of the four permutation types shown in Table I,

and thus roughly 75% of the editions needed a permutation

that was different from the original ordering. It is reasonable to

expect that intra-edition orientations would be fairly consistent

since prints within an edition were generally made all at once.

Meanwhile, across editions, there were much larger breaks in

the workflow, with a new lithographic stone for each edition,

and thus it is reasonable to expect that the papers between

editions could differ significantly, both in the type of paper

as well as the orientation and side. An example of several

papers, each a representative from distinct editions, is shown

in Fig. 4 in original and permuted views. Even though the rows

are likely different papers with different textures, permuting

rows again leads to more consistent textures within columns,

suggesting that this is a compelling approach.

D. Using CNNtexture to extract features, computing pairwise

distances between all textures, and performing clustering

With all 215 papers in the dataset now permuted to have a

consistent orientation across all 4 views, we finally extract tex-

ture features using the second triplet neural network, denoted

CNNtexture, which was developed in [11]. Again, this neural

network has the same structure as CNNpermute, though the

weights are different since the training process is also different.

We refer the reader to [11] for the details. Next, we use

the texture features computed by CNNtexture to compute the

pairwise distances between all papers in the dataset, and subse-

quently we cluster the papers using k-medoids clustering with

18 clusters. A visual inspection of the clusters confirms that

the approach yields very compelling results; however, deeper

analysis and validation of these clusters requires collaboration

with a domain expert in the area of art conservation.

V. CONCLUSION

Previously, the triplet neural network approach to paper tex-

ture classification was validated as a useful tool for assessing

paper texture similarity on controlled datasets across a wide

range of paper textures, including wove, silver gelatin, and

inkjet papers. Here, we have provided evidence confirming that

the approach is also suitable for use on a dataset of a single

artist, where the texture differences between papers are likely

to be more nuanced. Moreover, the approach was shown to

be a useful technique for reorienting images and determining

paper side. We have shown our results to domain experts in

the field of art conservation, and they have found the results

to be very compelling.

Future work will involve collaboration with experts in the

domain of paper conservation and art history to provide a

rigorous validation of these results as well as asking yet

deeper questions about such issues as Matisse’s preferences

and artistic intent. The source code to produce these results

was written primarily in TensorFlow, and is freely available at

[14].

ACKNOWLEDGMENTS

The authors would like to thank Paul Messier and his team

in the Institute for the Preservation of Cultural Heritage at

Yale University, Peggy Ellis at the Institute of Fine Arts NYU,

Patrice Abry at ENS Lyon / CNRS, and The Pierre and Tana

Matisse Foundation for the use of images and data that were

instrumental to this work.

REFERENCES

[1] IEEE Signal Processing Magazine (special issue on “Recent Advances

in Applications to Visual Cultural Heritage”), vol. 22, no. 4, Jul. 2008.
[2] Signal Processing (special issue on Image Processing for Digital Art),

vol. 93, Mar. 2013.
[3] P. Abry, A. Klein, W. Sethares, and C. Johnson, “Signal processing

for art investigation: A shift to image feature mining (special issue
editorial),” IEEE Signal Processing Magazine, vol. 32, pp. 14–16, Jul.
2015.



(a) Original permutation (b) After applying a recto/verso flip to 2nd row

Fig. 3. Edition 1313 in both original and permuted order. Each row contains images corresponding to the four views of a single print.

(a) Original permutation (b) After applying permutations A, B, C, C, A to each of the
five rows

Fig. 4. Representative papers from Editions 1249, 1253, 1256, 1265, and 1294, in both original and permuted order. Each row contains images corresponding
to the four views of a single print from a different edition.

[4] P. Messier and C. R. Johnson, “Automated surface texture classification
of photographic print media,” in Proc. Asilomar Conf. on Signals,

Systems and Computers, Nov. 2014, pp. 1105–1108.

[5] A. G. Klein, P. Messier, A. L. Frost, D. Palzer, and S. L. Wood, “Deep
learning classification of photographic paper based on clustering by
domain experts,” in 2016 50th Asilomar Conference on Signals, Systems

and Computers. IEEE, 2016, pp. 139–143.

[6] C. R. Johnson, P. Messier, W. A. Sethares, A. G. Klein et al., “Pursuing
automated classification of historic photographic papers from raking
light images,” Journal of the American Institute for Conservation,
vol. 53, no. 3, pp. 159–170, 2014.

[7] P. Abry, S. G. Roux, H. Wendt, P. Messier, A. G. Klein, N. Tremblay,
P. Borgnat, S. Jaffard, B. Vedel, J. Coddington et al., “Multiscale
anisotropic texture analysis and classification of photographic prints:
Art scholarship meets image processing algorithms,” IEEE Signal Pro-

cessing Magazine, vol. 32, no. 4, pp. 18–27, 2015.

[8] A. G. Klein, A. H. Do, C. A. Brown, and P. Klausmeyer, “Texture
classification via area-scale analysis of raking light images,” in Proc.

Asilomar Conf. on Signals, Systems and Computers, Nov. 2014, pp.
1114–1118.

[9] Y. Zhai and D. L. Neuhoff, “Photographic paper classification via
local radius index metric,” in Image Processing (ICIP), 2015 IEEE

International Conference on, Sept 2015, pp. 1439–1443.
[10] A. Sangari and W. Sethares, “Paper texture classification via multi-

scale restricted Boltzman machines,” in Proc. Asilomar Conf. on Signals,

Systems and Computers, Nov 2014, pp. 482–486.
[11] L. Lackey, A. Grootveld, and A. G. Klein, “Semi-supervised convolu-

tional triplet neural networks for assessing paper texture similarity,” in
Proc. Asilomar Conf. on Signals, Systems, and Computers, Nov. 2020.

[12] P. Abry, S. Roux, P. Messier, M. Ellis, and S. Jaffard, “Multiscale
anisotropic analysis for assessment of similarity between papers in
a large matisse print dataset,” in 2020 54th Asilomar Conference on

Signals, Systems, and Computers. IEEE, 2020, pp. 137–141.
[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-

bedding for face recognition and clustering,” in Proc. IEEE Conf. on

computer vision and pattern recognition, 2015, pp. 815–823.
[14] ASPECT Lab at WWU. (2021) Source code for paper texture

classification and permutation of Matisse dataset. [Online]. Available:
https://github.com/aspectlab/flippingmatisse


