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Abstract—In the context of papers used in the graphic arts,
including silver gelatin, inkjet, and wove papers, prior work has
studied measures of texture similarity for purposes of classifying
such papers. The majority of prior work has been based on
classical image processing approaches such as Fourier, wavelet,
and fractal analysis. In this work, recent advances in deep
learning are used to develop a texture similarity approach for
measuring paper texture similarity. Since the available datasets
generally lack labels, the convolutional neural network is trained
using triplet loss to minimize the feature distance of tiles from the
same image while simultaneously maximizing the feature distance
of tiles drawn from different images. The approach is tested on
three paper texture image databases considered in prior works
and the results suggest the proposed approach achieves state-of-
the-art performance.

Index Terms—image texture analysis, machine learning, digital
humanities

I. INTRODUCTION

Surface texture is a critical, defining feature of paper used
in the graphic arts as it impacts the visibility of fine detail.
Texture analysis of paper used in the graphic arts provides
important insights to the community of art investigators at
museums and other art institutions, such as helping to vali-
date authenticity, identifying purpose, and making important
connections in the history of an artist or set of artists that may
have worked together [1], [2]. An effort to address the issue
of texture classification has been ongoing, starting with the
Historic Photographic Paper Classification Challenge (HPPC)
[1]. This effort has led to the creation of several datasets
as well as numerous works that have proposed measures of
texture similarity, including such approaches as multi-scale
analysis (using anisotropic wavelets [2] or fractals [3]), non-
semantic feature extraction (eigentextures [4], random-feature
textons [1], deviation of local Gabor features [5]), local radius
index [6], and restricted Boltzmann machines [7].

Advances in machine learning have raised the prospect
of automated classification of paper in which the learning
algorithm implicitly develops the classification features. It may
be used not only to reinforce the classifications of human
experts, but also to perhaps identify human -classification
errors. In this paper we explore the application of deep learning
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as a means to perform feature extraction for assessing the
similarity of two textures. While machine learning has been
used for clustering of art historical papers [8], [9], the prior
texture similarity approaches [1]-[7] in this domain generally
use more classical signal and image processing techniques, and
this work contributes a distinctly new approach to the diverse
toolbox of texture similarity methods.

A machine learning approach using so-called “triplet” neu-
ral networks [10] has shown success in the context of facial
recognition for measuring the likeness of images of faces [11].
The triplet neural network approach is interesting for its ability
to learn the features themselves. By simultaneously minimiz-
ing the distance between “like” images while maximizing the
distance between “unlike” images, the triplet loss approach
to training a neural netwok has shown promising results on
a number of known datasets [12]. In this paper, we employ
the triplet neural network approach for partially supervised
learning on datasets of image textures, and explore the use of
features extracted by the algorithm as a measure of texture
similarity between pairs of texture images.

We subsequently conduct experiments on benchmark
datasets to empirically validate the power of this neural
network approach for feature learning and as a means for
performing automated texture similarity assessment. We com-
pare the performance of this approach with the more classical
image-processing approaches that have published results on
these same datasets [1]—[7].

II. DATASETS

Since the available data for a particular application dictates
to some degree what range of machine learning approaches
is feasible (e.g., supervised or unsupervised), we begin with
a discussion of the texture datasets of art historical papers.
All the datasets used in this work consist of raking light
photomicrographs of papers, acquired with a digital imager
fitted with a zoom imaging lens. The field of view of the
digital imager spans a physical area of 1.00x1.35 cm on the
paper, and produces images with a resolution of 1536x2080
pixels. A 3-inch LED line light placed at a 25° raking angle to
the surface of the papers illuminates the surface, and serves to
enhance the highlights and shadows so that surface features are
more clearly visible during image capture. For this reason, the
raking light is used extensively in the examination of works
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Fig. 1. Three types of similarity groups used to create labeled datasets.

of art, and produces images that can be used for automated
texture classification.

Four datasets of photomicrographs illuminated with raking
light were used as part of this work:

o LML Silver Gelatin. The Yale Lens Media Lab (LML)
Reference Collection of Photographic Papers, perhaps the
largest database of silver gelatin papers in the world,
containing thousands of samples from 65 manufacturers
and more than 360 brands. The dataset includes over
2,000 photomicrographs [1], though only a subset of
1,597 images used as part of [8] were used here.

« HPPC Silver Gelatin. A set of 120 images of silver
gelatin paper, selected from the LML Reference Collec-
tion, and created as part of the HPPC. Ninety of the
images in this dataset are from one of three similarity
groups shown in Fig. 1. In addition, 30 sheets of interest
to art conservators representing the diversity of silver
gelatin photographic papers are included in the database.
This dataset has been described in more detail in [13].

« HPPC Inkjet. A set of 120 images of inkjet paper,
selected from the Henry Wilhelm Reference Collection,
also created as part of the HPPC. Identical to the HPPC
silver gelatin dataset just above, this dataset is comprised
of 90 images from the same three similarity groups
as well as 30 diversity samples. This dataset has been
described in more detail in [14].

« HPPC Wove. A set of 180 images of wove paper, imaged
from Specimens [15], a 1953 publication of the Stevens-
Nelson Paper Corporation, and also created as part of the
HPPC. The images in this dataset were obtained from
both the front (recto) and back (verso) sides of the paper,
thus there are 90 recto and 90 verso images. Furthermore,
120 of the images are from the first two similarity groups
shown in Fig. 1, while 60 of the images are again included
to represent the diversity of wove papers. This dataset has
been described in more detail in [16].

One constraint in using these datasets with machine learning
is that all of the prior texture similarity approaches reserved
all 300 images from the similarity groups for testing algo-
rithm performance. Thus, for a fair comparison any machine
learning-based texture classification scheme would need at
least those 300 images to be set aside into the test set, as
shown in Table I. Note that this partitioning results in the
maximally sized training set and minimally sized test set that
permits a fair comparison with prior work.

While in total there are nearly two thousand images across

TABLE I
TRAIN/TEST DATASET PARTITION

# assigned to | # assigned to
dataset Labeled? training set test set
LML Silver Gelatin N 1477 0
HPPC Silver Gelatin Y 30 90
HPPC Inkjet Y 30 90
HPPC Wove Y 60 120
Total - 1597 300

-

silver gelatin inkjet

Fig. 2. Four example paper textures for each of the three types.

these four datasets which ought to be a sufficiently large col-
lection of data to enable modern machine learning algorithms,
there are two limiting factors evident from Table 1. The first
factor is that the much larger LML collection consists of
unlabeled textures where texture affinities between all pairs
of images have not been categorized by a domain expert, thus
leaving just 30 4 30 + 60 = 120 labeled images in the (max-
imally sized) training set which is likely to pose a challenge
for traditional supervised learning approaches. The second
factor is that, collectively, there is a large imbalance across
the three types of paper (silver gelatin, inkjet, and wove).
Since the manufacturing processes and even the manufacturing
dates between these three categories of paper are so different
[1], [14], [16], it is reasonable to expect differences in the
surface features, and the presence of only 30 inkjet and 60
wove papers in the training set is likely to negatively impact
performance. The examples in Fig. 2 provide visual evidence
of these surface differences.

III. TECHNICAL APPROACH
A. Motivation for Triplet Loss

The prior approaches for assessing texture similarity of
art historical papers [1]-[7] work by first proposing some
mechanism to extract features from each image (e.g., wavelets,
Fourier bases, fractals) and the features are subsequently used
to compute pairwise distances between all images in the
dataset. We adopt the same basic operations consisting of
feature extraction followed by distance computation. Where
our approach differs significantly from the majority of prior,
more classical image processing approaches, however, is in
the feature extraction step: we employ a data-driven approach
where we attempt to learn an appropriate feature extraction
method (i.e., a mapping from the input image to an embed-
ding).

The idea of training a neural network to minimize so-
called triplet loss has been proposed [10], [11], and led to
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Fig. 3. Training a triplet neural network amounts to finding a function
f(-) that minimizes the Euclidean distance between f(A) and f(P) while
maximizing the Euclidean distance between f(A) and f(IV).

great improvements in the domain of facial recognition. The
approach trains a neural network to perform feature extraction
in a way that minimizes the distance between “matches”
while maximizing the distances between ‘“non-matches”. Let
us assume that the neural network accepts as input an image
A and produces at its output a feature vector f(A) of reduced
dimension. The network is trained by forming “triplets” con-
sisting of three inputs: an anchor image A and positive image
P which are known to be matches, and additional image N
called the negative which is known to not be a match to either
the anchor or the positive. The neural network f(-) is then
trained to minimize the loss given by

L(A,P,N) = max {[|f(4) — f(P)I[3 — [|£(4) — F(N)|[3 + 0}

where the parameter « is a constant (sometimes referred to as
the “margin”) added to avoid the trivial case where the network
outputs the same feature vector for all inputs. Note that the
term || f(A)— f(P)||3 is simply the squared Euclidean distance
between anchor and positive feature vectors (which we seek
to minimize), while || f(A) — f(N)||3 is the squared Euclidean
distance between anchor and negative feature vectors (which
we seek to maximize). An overview of the approach is shown
in Fig. 3. Because minimizing triplet loss results in an end-
to-end learning between the input image and distances in the
feature vector space, the approach directly optimizes the neural
network for the final task (i.e., computing distances between
images).

As described above in Section II, the available datasets
do not offer a training set that contains sufficient labeled
data to permit the use of conventional supervised learning
approaches, and the texture affinities within the training set are
unknown. Because the triplet neural network approach requires
knowledge of matches and non-matches to appropriately select
the anchor, positive, and negative images, it appears at first
glance that the unlabeled training data precludes the use of
triplet loss as a feasible training mechanism. To get around this
issue and permit the use of triplet loss in a partially-supervised
fashion, we do two things:
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Fig. 4. Convolutional neural network architecture.

1) We split the images into 16 tiles and use the tiles as
inputs to the neural network so that we can indeed form
triplets containing known matches.

2) We make the assumption that tiles from two different
images in the training set are not identical textures.

This assumption is almost certainly false on occasion because
some of the 1,477 unlabeled images in the training set are
likely to be identical textures, or nearly so. However, this
assumption allows us to create triplets by always selecting the
anchor A and positive P to be tiles from the same image, while
always selecting the negative IV to be a tile from a different
image (presumed, perhaps incorrectly, to be a distinct texture).

B. Convolutional Neural Network Details

Having motivated the use of triplet loss combined with
tiling of the images as the core idea of our partially su-
pervised technical approach, we now describe the details of
the underlying convolutional neural network (CNN). Through
experimentation we have shown that the choice of CNN
architecture used is perhaps not so important, as multiple
architectures yielded encouraging results. As such, we adopted
a fairly standard CNN architecture shown in Fig. 4.

We preprocess the raw images in the dataset using the fol-
lowing five steps: (i) extract a 1024 x 1024 pixel snippet from
the middle of each image to avoid the impact of vignetting,
(ii) convert the image to greyscale to focus on surface texture
rather than color, (iii) downsample the image by a factor of
4 to yield a 256x256 pixel image due to prior work which
suggested that the smallest scales are less helpful in classifying
texture [8], (iv) normalize all images to consist of pixel values
between 0 and 1, and (v) perform a 4x4 tiling of the images
which results in 16 tiles of size 64x64 pixels. In the training
stage, we use data augmentation by randomly sampling an
additional 16 tiles from each image and applying random
adjustments to brightness and contrast. Data augmentation is
known to improve the ability of a network to generalize, and
the adjustments to brightness and contrast are intended to
minimize the impact of camera exposure in the training of
the CNN. The augmented training set then consists of 32 tiles
per image, or 51,104 tiles. Three randomly selected tiles from



each image are set aside in a validation set to be used as part
of training.

As shown in Fig. 4, the preprocessed 64x64 pixel tiles are
input into the CNN which consists of 4 convolutional layers
with ReLU activation functions and 2x2 average pooling
between each layer, followed by a final fully connected layer
at the output which produces a length 16 feature vector.
The feature vector is subsequently ¢2-normalized to a unit
hypersphere. The resulting CNN consists of 171,152 trainable
parameters. During training a batch size of 512 randomly
selected triplets was used. The tiles reserved as part of the
validation set are used to compute the mean reciprocal rank
(discussed below in Section IV), and this metric is used to
determine when to halt training. The TensorFlow implemen-
tation is available at [17], and takes approximately 2 hours to
train on dual NVIDIA GTX 1080 GPUs.

While the CNN operates on tiles rather than whole images,
we ultimately desire to know the distance between two entire
images rather than the constituent tiles. As such, we compute
the feature vector for an entire image by taking the centroid of
its 16 tile feature vectors and then scaling by one half. That is,
if A;; represents the 16 tiles of image A for ¢, j € {1,2, 3,4},
then the image feature vector v is computed from the tile
% (% Zi,j f(Az‘j)>’ where
the unit-normalization of f(A;;) discussed previously guar-
antees that |[v|| < 1. The distance between any two images,
then, is computed by taking the Euclidean distance of their
corresponding image feature vectors. The factor of one half is
included so that the Euclidean distance between any two image
feature vectors vy and vy satisfies ||vy —va|| < [|vr]]+||v2]] <
1 by the triangle inequality. That is, distances are always
between 0 and 1.

feature vectors f(A;;) via v =

IV. RESULTS
A. Quantitative Results

To quantify similarity assessment performance, we adopt
metrics used in the information retrieval community to as-
sess the performance of our approach compared to prior
approaches. As in the prior work, here we consider perfor-
mance on the test set for each of the three types of paper
independently. The metrics employed are based not on the
distances themselves, but on the rank of true matches when, for
a given query image, all other images in the dataset are ordered
by increasing distance to the query image. In particular, we
consider three performance metrics: (i) precision at one (P@1)
which is the mean fraction of time that the top ranked match
(having smallest distance to the query image) is a true match,
(i) mean reciprocal rank (MRR) which measures the mean
inverse rank of the first true match [18], and (iii) mean average
precision (MAP) [18]. The MAP is calculated as follows: for
each query image and positive integer n less than or equal to
the size of the dataset, compute the fraction of the n highest
ranked images that are true matches, and then average these
fractions over all values of n for which the nth highest ranked
image was actually a true match; then, average these values

across all images. The compared performance metrics to the
top-performing prior works are reported for silver gelatin paper
in Table II, for inkjet paper in Table III, and for wove paper
in Table IV. Results for the prior approaches were reported in
(6], [16].

TABLE II
SILVER GELATIN RETRIEVAL MEASURES
Algorithm || P@] MRR MAP
Triplet NN 96.7%  971.7%  87.6%
LRI 989%  99.1% 91.5%
HWT 622% 76.9%  65.0%
PASFA 85.6% 89.9% 73.1%

These results provide compelling evidence that the triplet
CNN-based approach is among the top performing approaches,
and in some cases (such as the recto side of the wove paper), is
the top-performing approach. Given that only a small fraction
of the training set consisted of wove paper, it is somewhat
surprising that the algorithm is able to perform so well on the
WOVe papers.

B. Qualitative Results

Figure 5 visualizes the distances computed between each
pair samples in the silver gelatin test set and compares
them to the expert assessment. Here, dark shades represent
small distances whereas light shades represent large distances.
Figure 6 shows the same comparison for the case of inkjet
images. The results for wove paper have been omitted due
to lack of space. The 10 x 10 black squares along the main
diagonal correspond to 10 “like” images from one of the
three similarity groups depicted in Fig. 1; the presence of
these black squares in both the expert assessment as well as
the proposed approach provides visual evidence of very low
distances amongst the different samples from the same sheet,
same package, or same manufacturer designation.

Overall, this qualitative picture provides convincing evi-
dence of the feasibility of our proposed technique in per-
forming automated texture similarity assessment. While our
proposed technique is very different from prior techniques, we
note that in some cases our method yields results that disagree
with the expert assessment but agree with prior automated
approaches. For example, in the right side of Fig. 6, our results
suggest that the third sample in the inkjet test set is somewhat
of an outlier as evidenced by the grey band passing through
the third row and third column. While this is not present in
the expert assessment, it was indeed evident in the results of
several of the prior works reported in [14].

V. CONCLUSIONS AND ACKNOWLEDGMENTS

In this paper, we presented a triplet neural network-based
approach for performing automated texture similarity assess-
ment. The results are encouraging and demonstrate the promise
of this approach as a useful tool for texture classification;
however, rather than focusing on the minute performance
differences with respect to prior work we emphasize that
automated assessment of texture similarity can be achieved
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TABLE I ‘WOVE PAPER RETRIEVAL MEASURES
INKJET PAPER RETRIEVAL MEASURES
. Recto Verso

Algorithm_|| P@1__MRR _ MAP Algorithm P@I___ MRR __ MAP P@l __ MRR _ MAP

T“fﬁ;thN gg'gg’ 33'83” %SZ’ Triplet NN || 100.0% _ 1000% 914% || 100.0% 100.0% 93.6%
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Py 87'8; 90'8,; 77'7,; HWT 983%  992% 95.1% || 100.0% 100.0% 97.7%

e o R PASFA 95.0%  96.9%  73.6% 883%  922%  65.7%
ground truth Triplet NN automated classification of historic photographic papers from raking
| 5 K] light images,” Journal of the American Institute for Conservation,

. B [ " | |, | vol. 53, no. 3, pp. 159-170, 2014.

[2] P. Abry, S. G. Roux, H. Wendt, P. Messier, A. G. Klein, N. Tremblay,
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Fig. 5. Silver gelatin distances, with expert assessment (left) compared to the
distance matrices computed using our proposed approach. Distances range
from black (smallest distance) to white (largest distance).

ground truth Triplet NN

Fig. 6. Inkjet distances, with expert assessment (left) compared to the distance
matrices computed using our proposed approach. Distances range from black
(smallest distance) to white (largest distance).

from tools very different in principle, and this work here
provides yet one more for the toolbox of approaches. Future
work could investigate combining this approach with other,
prior work, or of incorporating this approach in a user-friendly
software tool that would broaden its use by domain experts.
In addition, future work might investigate texture affinities
in existing datasets focused on specific artists, such as F.
Holland Day [19], Moholy, Matisse, or others. Finally, the
authors wish to acknowledge Paul Messier (Institute for the
Preservation of Cultural Heritage at Yale University), Peggy
Ellis (Institute of Fine Arts at NYU), and Henry Wilhelm
(Wilhelm Imaging Research) for the use of images and data
that were instrumental to this work.
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