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Abstract—In the context of papers used in the graphic arts,
including silver gelatin, inkjet, and wove papers, prior work has
studied measures of texture similarity for purposes of classifying
such papers. The majority of prior work has been based on
classical image processing approaches such as Fourier, wavelet,
and fractal analysis. In this work, recent advances in deep
learning are used to develop a texture similarity approach for
measuring paper texture similarity. Since the available datasets
generally lack labels, the convolutional neural network is trained
using triplet loss to minimize the feature distance of tiles from the
same image while simultaneously maximizing the feature distance
of tiles drawn from different images. The approach is tested on
three paper texture image databases considered in prior works
and the results suggest the proposed approach achieves state-of-
the-art performance.

Index Terms—image texture analysis, machine learning, digital
humanities

I. INTRODUCTION

Surface texture is a critical, defining feature of paper used

in the graphic arts as it impacts the visibility of fine detail.

Texture analysis of paper used in the graphic arts provides

important insights to the community of art investigators at

museums and other art institutions, such as helping to vali-

date authenticity, identifying purpose, and making important

connections in the history of an artist or set of artists that may

have worked together [1], [2]. An effort to address the issue

of texture classification has been ongoing, starting with the

Historic Photographic Paper Classification Challenge (HPPC)

[1]. This effort has led to the creation of several datasets

as well as numerous works that have proposed measures of

texture similarity, including such approaches as multi-scale

analysis (using anisotropic wavelets [2] or fractals [3]), non-

semantic feature extraction (eigentextures [4], random-feature

textons [1], deviation of local Gabor features [5]), local radius

index [6], and restricted Boltzmann machines [7].

Advances in machine learning have raised the prospect

of automated classification of paper in which the learning

algorithm implicitly develops the classification features. It may

be used not only to reinforce the classifications of human

experts, but also to perhaps identify human classification

errors. In this paper we explore the application of deep learning
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as a means to perform feature extraction for assessing the

similarity of two textures. While machine learning has been

used for clustering of art historical papers [8], [9], the prior

texture similarity approaches [1]–[7] in this domain generally

use more classical signal and image processing techniques, and

this work contributes a distinctly new approach to the diverse

toolbox of texture similarity methods.

A machine learning approach using so-called “triplet” neu-

ral networks [10] has shown success in the context of facial

recognition for measuring the likeness of images of faces [11].

The triplet neural network approach is interesting for its ability

to learn the features themselves. By simultaneously minimiz-

ing the distance between “like” images while maximizing the

distance between “unlike” images, the triplet loss approach

to training a neural netwok has shown promising results on

a number of known datasets [12]. In this paper, we employ

the triplet neural network approach for partially supervised

learning on datasets of image textures, and explore the use of

features extracted by the algorithm as a measure of texture

similarity between pairs of texture images.

We subsequently conduct experiments on benchmark

datasets to empirically validate the power of this neural

network approach for feature learning and as a means for

performing automated texture similarity assessment. We com-

pare the performance of this approach with the more classical

image-processing approaches that have published results on

these same datasets [1]–[7].

II. DATASETS

Since the available data for a particular application dictates

to some degree what range of machine learning approaches

is feasible (e.g., supervised or unsupervised), we begin with

a discussion of the texture datasets of art historical papers.

All the datasets used in this work consist of raking light

photomicrographs of papers, acquired with a digital imager

fitted with a zoom imaging lens. The field of view of the

digital imager spans a physical area of 1.00×1.35 cm on the

paper, and produces images with a resolution of 1536×2080

pixels. A 3-inch LED line light placed at a 25◦ raking angle to

the surface of the papers illuminates the surface, and serves to

enhance the highlights and shadows so that surface features are

more clearly visible during image capture. For this reason, the

raking light is used extensively in the examination of works
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Fig. 3. Training a triplet neural network amounts to finding a function
f(·) that minimizes the Euclidean distance between f(A) and f(P ) while
maximizing the Euclidean distance between f(A) and f(N).

great improvements in the domain of facial recognition. The

approach trains a neural network to perform feature extraction

in a way that minimizes the distance between “matches”

while maximizing the distances between “non-matches”. Let

us assume that the neural network accepts as input an image

A and produces at its output a feature vector f(A) of reduced

dimension. The network is trained by forming “triplets” con-

sisting of three inputs: an anchor image A and positive image

P which are known to be matches, and additional image N

called the negative which is known to not be a match to either

the anchor or the positive. The neural network f(·) is then

trained to minimize the loss given by

L(A,P,N) = max
{

||f(A)− f(P )||2
2
− ||f(A)− f(N)||2

2
+ α, 0

}

where the parameter α is a constant (sometimes referred to as

the “margin”) added to avoid the trivial case where the network

outputs the same feature vector for all inputs. Note that the

term ||f(A)−f(P )||2
2

is simply the squared Euclidean distance

between anchor and positive feature vectors (which we seek

to minimize), while ||f(A)−f(N)||2
2

is the squared Euclidean

distance between anchor and negative feature vectors (which

we seek to maximize). An overview of the approach is shown

in Fig. 3. Because minimizing triplet loss results in an end-

to-end learning between the input image and distances in the

feature vector space, the approach directly optimizes the neural

network for the final task (i.e., computing distances between

images).

As described above in Section II, the available datasets

do not offer a training set that contains sufficient labeled

data to permit the use of conventional supervised learning

approaches, and the texture affinities within the training set are

unknown. Because the triplet neural network approach requires

knowledge of matches and non-matches to appropriately select

the anchor, positive, and negative images, it appears at first

glance that the unlabeled training data precludes the use of

triplet loss as a feasible training mechanism. To get around this

issue and permit the use of triplet loss in a partially-supervised

fashion, we do two things:
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Fig. 4. Convolutional neural network architecture.

1) We split the images into 16 tiles and use the tiles as

inputs to the neural network so that we can indeed form

triplets containing known matches.

2) We make the assumption that tiles from two different

images in the training set are not identical textures.

This assumption is almost certainly false on occasion because

some of the 1,477 unlabeled images in the training set are

likely to be identical textures, or nearly so. However, this

assumption allows us to create triplets by always selecting the

anchor A and positive P to be tiles from the same image, while

always selecting the negative N to be a tile from a different

image (presumed, perhaps incorrectly, to be a distinct texture).

B. Convolutional Neural Network Details

Having motivated the use of triplet loss combined with

tiling of the images as the core idea of our partially su-

pervised technical approach, we now describe the details of

the underlying convolutional neural network (CNN). Through

experimentation we have shown that the choice of CNN

architecture used is perhaps not so important, as multiple

architectures yielded encouraging results. As such, we adopted

a fairly standard CNN architecture shown in Fig. 4.

We preprocess the raw images in the dataset using the fol-

lowing five steps: (i) extract a 1024×1024 pixel snippet from

the middle of each image to avoid the impact of vignetting,

(ii) convert the image to greyscale to focus on surface texture

rather than color, (iii) downsample the image by a factor of

4 to yield a 256×256 pixel image due to prior work which

suggested that the smallest scales are less helpful in classifying

texture [8], (iv) normalize all images to consist of pixel values

between 0 and 1, and (v) perform a 4×4 tiling of the images

which results in 16 tiles of size 64×64 pixels. In the training

stage, we use data augmentation by randomly sampling an

additional 16 tiles from each image and applying random

adjustments to brightness and contrast. Data augmentation is

known to improve the ability of a network to generalize, and

the adjustments to brightness and contrast are intended to

minimize the impact of camera exposure in the training of

the CNN. The augmented training set then consists of 32 tiles

per image, or 51,104 tiles. Three randomly selected tiles from



each image are set aside in a validation set to be used as part

of training.

As shown in Fig. 4, the preprocessed 64×64 pixel tiles are

input into the CNN which consists of 4 convolutional layers

with ReLU activation functions and 2×2 average pooling

between each layer, followed by a final fully connected layer

at the output which produces a length 16 feature vector.

The feature vector is subsequently ℓ2-normalized to a unit

hypersphere. The resulting CNN consists of 171,152 trainable

parameters. During training a batch size of 512 randomly

selected triplets was used. The tiles reserved as part of the

validation set are used to compute the mean reciprocal rank

(discussed below in Section IV), and this metric is used to

determine when to halt training. The TensorFlow implemen-

tation is available at [17], and takes approximately 2 hours to

train on dual NVIDIA GTX 1080 GPUs.

While the CNN operates on tiles rather than whole images,

we ultimately desire to know the distance between two entire

images rather than the constituent tiles. As such, we compute

the feature vector for an entire image by taking the centroid of

its 16 tile feature vectors and then scaling by one half. That is,

if Aij represents the 16 tiles of image A for i, j ∈ {1, 2, 3, 4},

then the image feature vector v is computed from the tile

feature vectors f(Aij) via v = 1

2

(

1

16

∑

i,j f(Aij)
)

, where

the unit-normalization of f(Aij) discussed previously guar-

antees that ||v|| ≤ 1

2
. The distance between any two images,

then, is computed by taking the Euclidean distance of their

corresponding image feature vectors. The factor of one half is

included so that the Euclidean distance between any two image

feature vectors v1 and v2 satisfies ||v1−v2|| ≤ ||v1||+ ||v2|| ≤
1 by the triangle inequality. That is, distances are always

between 0 and 1.

IV. RESULTS

A. Quantitative Results

To quantify similarity assessment performance, we adopt

metrics used in the information retrieval community to as-

sess the performance of our approach compared to prior

approaches. As in the prior work, here we consider perfor-

mance on the test set for each of the three types of paper

independently. The metrics employed are based not on the

distances themselves, but on the rank of true matches when, for

a given query image, all other images in the dataset are ordered

by increasing distance to the query image. In particular, we

consider three performance metrics: (i) precision at one (P@1)

which is the mean fraction of time that the top ranked match

(having smallest distance to the query image) is a true match,

(ii) mean reciprocal rank (MRR) which measures the mean

inverse rank of the first true match [18], and (iii) mean average

precision (MAP) [18]. The MAP is calculated as follows: for

each query image and positive integer n less than or equal to

the size of the dataset, compute the fraction of the n highest

ranked images that are true matches, and then average these

fractions over all values of n for which the nth highest ranked

image was actually a true match; then, average these values

across all images. The compared performance metrics to the

top-performing prior works are reported for silver gelatin paper

in Table II, for inkjet paper in Table III, and for wove paper

in Table IV. Results for the prior approaches were reported in

[6], [16].

TABLE II
SILVER GELATIN RETRIEVAL MEASURES

Algorithm P@1 MRR MAP

Triplet NN 96.7% 97.7% 87.6%
LRI 98.9% 99.1% 91.5%

HWT 62.2% 76.9% 65.0%
PASFA 85.6% 89.9% 73.1%

These results provide compelling evidence that the triplet

CNN-based approach is among the top performing approaches,

and in some cases (such as the recto side of the wove paper), is

the top-performing approach. Given that only a small fraction

of the training set consisted of wove paper, it is somewhat

surprising that the algorithm is able to perform so well on the

wove papers.

B. Qualitative Results

Figure 5 visualizes the distances computed between each

pair samples in the silver gelatin test set and compares

them to the expert assessment. Here, dark shades represent

small distances whereas light shades represent large distances.

Figure 6 shows the same comparison for the case of inkjet

images. The results for wove paper have been omitted due

to lack of space. The 10 × 10 black squares along the main

diagonal correspond to 10 “like” images from one of the

three similarity groups depicted in Fig. 1; the presence of

these black squares in both the expert assessment as well as

the proposed approach provides visual evidence of very low

distances amongst the different samples from the same sheet,

same package, or same manufacturer designation.

Overall, this qualitative picture provides convincing evi-

dence of the feasibility of our proposed technique in per-

forming automated texture similarity assessment. While our

proposed technique is very different from prior techniques, we

note that in some cases our method yields results that disagree

with the expert assessment but agree with prior automated

approaches. For example, in the right side of Fig. 6, our results

suggest that the third sample in the inkjet test set is somewhat

of an outlier as evidenced by the grey band passing through

the third row and third column. While this is not present in

the expert assessment, it was indeed evident in the results of

several of the prior works reported in [14].

V. CONCLUSIONS AND ACKNOWLEDGMENTS

In this paper, we presented a triplet neural network-based

approach for performing automated texture similarity assess-

ment. The results are encouraging and demonstrate the promise

of this approach as a useful tool for texture classification;

however, rather than focusing on the minute performance

differences with respect to prior work we emphasize that

automated assessment of texture similarity can be achieved




