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Abstract

In a crisis, when faced with insolvency, banks can sell stock in a dilutive offering in the
stock market and borrow money in order to raise funds. We propose a simple model to find the
maximum amount of new funds the banks can raise in these ways. To do this, we incorporate
market confidence of the bank together with market confidence of all the other banks in the
system into the overnight borrowing rate. Additionally, for a given cash shortfall, we find the
optimal mix of borrowing and stock selling strategy. We show the existence and uniqueness of
Nash equilibrium point for all these problems. Finally, using this model we investigate if banks
have become safer since the crisis. We calibrate this model with market data and conduct an
empirical study to assess safety of the financial system before, during after the last financial
crisis.
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1 Introduction

Traditionally risk management has considered how the risks affect a particular institution, while
ignoring how these risks might affect the financial system as a whole. In contrast, systemic risk
considers how this risk spreads throughout the financial system through the interactions of the
banks in the system. Such a spread of defaults is also known as contagion. It can occur through
both local and global connections, e.g., contractual obligations and impacts on borrowing rates
and liquidity respectively. Such a systemic event caused the last financial crisis, during which the
entire financial network was threatened with insolvency. It became apparent that good models and
understanding of systemic risk are vital.

Eisenberg & Noe (2001) introduced a network framework which models default contagion
through contractual obligations and found the resulting equilibrium payments. The model has
been widely used by both regulators and academics e.g. Anand, Craig, & Von Peter (2015), Halaj
& Kok (2015), Boss, Elsinger, Summer, & Thurner (2004), Elsinger, Lehar, & Summer (2013),
Upper (2011), Gai, Haldane, & Kapadia (2011), Bardoscia, Barucca, Brinley Codd, & Hill (2017).
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DMS-1736414, and by the Acheson J. Duncan Fund for the Advancement of Research in Statistics.
†Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University,

3400 North Charles St., Baltimore, MD 21218, USA kchen78@jhu.edu.

1



Many other extensions have been considered, a survey of which can be found in e.g. Weber & Weske
(2017), Staum (2013), Hüser (2015). Liquidity, capital and the connectivity of the financial network
are highly related to systemic risk. Freixas, Parigi, & Rochet (2000) investigated the ability of the
banking system to withstand financial contagion and examined the too-big-to-fail policy. Diamond
& Rajan (2005) showed that financial contagion shrinks the common pool of liquidity, creating or
exacerbating aggregate liquidity shortage, which in turn leads to additional contagion and even a
total meltdown of the system. Cifuentes, Ferrucci, & Shin (2005) stated that capital requirements
can cause abnormal effects between portfolios valuations and systemic resilience. Gaspar, Pérez-
Quirós, & Rodŕıguez Mendizábal (2004) studied systemic risk from the perspective of monetary
policy. Their model showed how operational framework of monetary policy can affect the elasticity
of supply of funds by banks throughout the reserve maintenance period. Nier, Yang, Yorulmazer,
& Alentorn (2007) found that low level of equity increases number of contagious defaults and that
contagion is non-monotonic on degree of connectivity. The financial crisis also pointed out the need
of finding a signal that can help the banks to monitor the financial situation and survive during
the crisis. Gray, Merton, & Bodie (2007) used contingent claims analysis to measure systemic
risk in a structural approach. Acharya, Pedersen, Philippon, & Richardson (2017) used systemic
expected shortfall as a measure of systemic risk. Additional empirical research including Huang,
Zhou, & Zhu (2009) studied expected credit losses by data of CDS and stock return correlations.
De Jonghe (2010) estimated tail betas of European financial firms to measure systemic risk. Billio,
Getmansky, Lo, & Pelizzon (2012) measured systemic risk through Granger causality test. Mencia
(2009) stated that rating is a good factor to predict liquidity shock, with lower rating banks are
more likely to receive liquidity shocks. Akram & Christophersen (2010) argued that there is evi-
dence that credit ratings, liquidity demand and supply have stronger effects on interest rate since
the start of the current financial crisis, and there is a relatively large variation in actual overnight
interest rates over time and across banks. Their analysis has suggested that such variation, can be
partly ascribed to bank’s characteristics. In particular, domestic banks, which are considered to be
’too big to fail’ and ’too connected to fail’ are able to borrow at relatively lower rates than other
banks.

The size, connectivity degree and other such factors of the banks are all realizations of the
market confidence. Hence, many studies focus on how to incorporate confidence. Arinaminpathy,
Kapadia, & May (2012) emphasized the importance of market confidence. They pointed out that
the importance of relatively large, well-connected banks in system stability scales is proportionately
larger than their size: the impact of their collapse arise not only from their connectivity, but also
from their effect on confidence in the system. Confidence and liquidity have also been noted
in Glasserman & Young (2015) as examples of systemic contagion that may generate big losses.
Confidence is a natural way to measure this risk, and credit rating and overnight rates were found
to be important predictors of bank’s heath. Bräuning & Fecht (2016) investigated the effect that
lending relationship has on the availability and pricing of interbank liquidity. Their result implied
relationship lenders are more likely to provide cheaper liquidity to their closest borrowers, and
particularly opaque borrowers obtain liquidity at lower rates when borrowing from their relationship
lenders.

In this paper, we use equity price-to-book (P/B) ratio as a proxy of market confidence. Chan,
Hamao, & Lakonishok (1991) , Fama & French (1992) and Vassalou & Xing (2004) hypothesized
that P/B ratio can be used as a proxy for default risk and showed that it is an indicator for distress.
Similarly, Switzer & Wang (2013) showed that higher P/B ratio is associated with lower default
probability, and Pae, Thornton, & Welker (2005) hypothesized that it also affects liquidity. Higher
risk of default is associated with higher borrowing costs. Therefore, it is natural to use the P/B
ratio as confidence/liquidity proxy and to generalize it from individual firm level to a systemic level,
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which is what we propose.
It has been the practice to ensure that banks are well capitalized. However, arguably a major

reason for the downfall of Bear Stearns and Lehman Brother was the drying-up of liquidity to
support their day-to-day operations. While after the crisis the banks reduced their exposure to
short-term liquidity risks, Onaran (2018), they are still significantly exposed to drying up of the
repo market, and therefore confidence and liquidity need to be taken into account when considering
the capitalization of a bank. When banks need to raise funds, they can do it by borrowing.
Popular alternatives, include fire sales and dilutive offering, i.e. selling additional equity of the
company. While in reality these happen on a different time scale, because our model is static we
will assume that both borrowing and stock sale are instantaneous and happen at the same time.
This assumption is typical, e.g. Bichuch & Feinstein (2019) discussed fire sale and borrowing. In
this paper, we assume the means to raise funds are through borrowing and stock sales, by issuing
new shares or through a dilutive offering. We find the optimal strategy for the banks to recapitalize
using these two methods. Such transactions affect the entire financial sector, thus decreasing the
confidence in all the banks. It is assumed that both actions lower the market’s confidence in the
bank and increase the overnight rate, as shown e.g. by Rochet & Tirole (1996) and Elyasiani,
Mester, & Pagano (2014), and therefore leads to an increase in borrowing costs, and a decrease in
banks’ stock price. The overnight interest rate has been believed to be a good proxy for liquidity
issues as evidence provided by Furfine (2000), Furfine (2001) and Iori, Jafarey, & Padilla (2006).
Hence, we incorporate market confidence into the ability to cover shortfall and show that the
cash reserve on the balance sheet offer an incomplete picture of actual reserves of the bank. We
explain the lack of confidence spreads in the bank system when facing liquidity problem through
the increasing overnight borrowing rates of the banks in the system.

The rest of the paper is organized in the following way. In Section 2, we introduce the model and
study the maximal amount the banks can raise by only selling/issuing stocks, with no borrowing.
In Section 3, we add borrowing into consideration, and find the optimal strategy for the banks to
raise cash by borrowing and selling stocks. In both sections above, we model the overnight interest
rate of each bank as a function of: 1) the number of shares of stock this bank and other banks
sell, 2) the amount of money borrowed by this bank and the amounts borrowed by all other banks.
This sets up the optimization problems as a non-cooperate concave “n”-person game. We show
the existence and uniqueness of Nash equilibrium for these optimization problems, and establish a
slightly different sufficient condition for the uniqueness of equilibrium than Rosen (1965) [Theorem
6]. In Section 4, we study the optimal strategy for the banks to recover their cash shortfall while
minimizing their financing cost. In Section 5, we calibrate this model with real data to find the
maximum amount Citi and JP Morgan Chase banks could raise over the last decades and compare
how these amounts changed before, during and after the financial crisis. Finally, we conclude and
summarize the main results in Section 6.

2 Optimal Strategy Raising Funds by Selling Stock

Consider a system with m ≥ 2 banks which suffer a shortfall or alternatively face a stress test so
that they need to raise money. Our goal is to see how (the lack of) confidence spreads throughout
the system, or alternatively, how the liquidity contagion evolves. We first aim to find the maximum
amount of funds these m banks can raise in this scenario. In this paper, we assume that the banks
can raise funds in the two ways – 1) they can sell stocks; 2) they can borrow money. They can also
do both at the same time. In this section, we consider the case that the banks can only sell stocks
and borrowing is not allowed. We then relax this assumption in Section 3. The proposed model is
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static, so even though raising funds in the stock market takes time, we assume that stock sale is
done instantaneously and simultaneously with borrowing (when allowed).

Denote sj , j ∈ {1, ...,m} to be the number of stock shares that bank j sells, and let s =
(s1, s2, ..., sm), and s−j = (s1, ..., sj−1, sj+1, ...sm). Such a sale affects all banks, therefore the stock
price of bank j ∈ {1, ...,m} drops from pj(0,0) to pj(sj , s−j), after such sale. This transaction also
changes the book value of the bank by Bj(sj , s−j) − Bj(0,0) = pj(sj , s−j)sj . Finally, denote Cj
which is also a function of (sj , s−j) to be bank’s j market capitalization. Therefore, after the sale
transaction, the market capitalization becomes Cj(sj , s−j) = pj(sj , s−j)(Nj + sj), where Nj is the
number of outstanding shares before this transaction.

We will use bank j’s price-to-book ratio
Cj

Bj
as a proxy for the market’s confidence in the bank.

In turn, we assume that the bank’s overnight borrowing rate rj depends on the confidence in the
bank, and therefore it is a function of the price-to-book ratio. Additionally, we will assume that rj
depends also on the confidence in all other banks in the system. Since both Bj , Cj , j ∈ {1, ...,m}
are functions of s, for convenience and consistency with pj , we write rj(sj , s−j) as well.

Notice that high price-to-book ratio, suggests high confidence in a bank, resulting in low
overnight interest rate, and vice-versa. It follows that when the bank sells its shares, its book-
to-price ratio, (the reverse ratio) will increase. This implies that its overnight rate will increase
after this transaction as well. Moreover, since such a transaction will decrease the supply of funds
available for borrowing in the market and indicate a potential for an increase in systemic risk for
the whole banking sector, the overnight rates of all other banks will increase as well.

Together these are the two mechanism that are assumed in this paper that liquidity crisis, or
the lack of confidence spreads between banks. As bank j sells stocks, the stock price for all other
banks decrease, dragging down their proceed from stock sales. Moreover, the transaction of bank j
also changes its price-to-book ratio, which also raises the short-term borrowing rates for the other
banks, which in turn may cause a liquidity crisis.

Banks utilize the overnight lending market to cover its short-term liabilities. These accounted
for 44% of all banks debt in 2007, and still account for nearly a quarter of all debt in 2018 Onaran
(2018). Denote Lj to be the size of bank j’s overnight loan. Therefore, the funds, bank j can raise
from a stock sale, are given by

uj(sj , s−j) = pj(sj , s−j)sj − Lj(rj(sj , s−j)− rj(0,0)), (1)

where the first term accounts for the cash raised by stock sale, and the second term is the loss
on the short-term loan due to the rate increase. We assume that uj : [0, Sj ]×

∏m
i=1,i 6=j [0, Si]→ R,

where Si, i = 1, 2, ..,m is maximal number of shares bank i can sell/issue, and refer to uj as the
objective function of bank j. Denote the mapping s∗j :

∏m
i=1,i 6=j [0, Si] → [0, Sj ] to be the solution

of the optimization problem for bank j given s−j , i.e.

s∗j (s−j) = arg max
s∈[0,Sj ]

uj(s, s−j). (2)

Additionally, for any given s ∈
∏m
i=1[0, Si], define a mapping S∗ :

∏m
i=1[0, Si]→

∏m
i=1[0, Si] as

S∗ (s) =
(
s∗1 (s−1) , ..., s

∗
m (s−m)

)T
. (3)

Note that the funds function uj in (1) depends not only on the strategy sj of the bank j, but also on
the strategies of all other banks s−j . We assume that the banks can observe what other banks are
doing. Therefore, the problem in (2) is not an individual optimization problem but a “m”-person
non-cooperation game, and we aim to find a Nash equilibrium solution to it. We establish the
existence and uniqueness of Nash equilibrium to this game under the following assumptions:
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Assumption 2.1. 1. The stock price function of bank j given by

pj : [0, Sj ]×
m∏

i=1,i 6=j
[0, Si]→ R+ (4)

is a twice differentiable, convex function, for any j ∈ 1, 2, ..,m. Moreover, for any given
s−j ∈

∏m
i=1,i 6=j [0, Si], the function s 7→ pj(s, s−j) satisfies

∂pj(s, s−j)

∂sj
< 0, (5)

and for all j = 1, 2...,m, the function s 7→ spj(s, s−j) is an increasing concave function in s
satisfying

∂pj(Sj , s−j)

∂sj
Sj + pj(Sj , s−j) > 0,

∂2pj(s, s−j)

∂s2j
(Nj + s) + 2

∂pj(s, s−j)

∂sj
< 0, s ∈ [0, Sj ].

(6)

2. The overnight rate rj : [0, Sj ] ×
∏m
i=1,i 6=j [0, Si] → R+ is twice differentiable function. Addi-

tionally, for s−j ∈
∏m
i=1,i 6=j [0, Si], the function s 7→ rj(s, s−j) is a convex, and

∂rj
∂sj

(0, s−j) > 0.

Remark 2.2. Under Assumption 2.1, for any given j ∈ 1, 2, ..,m and s−j ∈
∏m
i=1,i 6=j [0, Si] the

function s 7→ uj(s, s−j) is a twice differentiable concave function in s.

Example 2.3. Examples of inverse demand price functions pj , j = 1, ...,m satisfying Assumption
2.1.1 include:

a. Linear inverse demand:

pj(sj , s−j) = pj(0,0)(1− ajsj − ε
m∑

i=1,i 6=j
si), 0 < aj <

1

2Sj
, 0 < ε� aj . (7)

b. Exponential inverse demand:

pj(sj , s−j) = pj(0,0)e−ajsj−ε
∑m

i=1,i 6=j si , 0 < aj <
1

Sj
, 0 < ε� aj . (8)

Example 2.4. Examples of interest rate functions rj , j = 1, ...,m that satisfy Assumption 2.1.2
include:

a. Linear interest rate:

rj(sj , s−j) = β0,j + β1,jsj + β2,j

m∑
i=1,i 6=j

si,

βk,j > 0, j = 1, ...,m, k = 0, 1, 2.

(9)

b. Quadratic interest rate:

rj(sj , s−j) = β0,j + β1,jsj + β2,js
2
j + β3,j

m∑
i=1,i 6=j

si + β4,j

m∑
i=1,i 6=j

s2i ,

βk,j > 0, j = 1, ...,m, k = 0, 1, ..., 4,

(10)

in addition to satisfying Assumption 2.1.2, is strictly convex on [0, Sj ]×
∏m
i=1,i 6=j [0, Si].

5



c. Interest rate as a function of book-to-price ratio:

rj(sj , s−j) = β2,j
∑
i 6=j

Bi(si, s−i)

Ci(si, s−i)
+ β1,j

Bj(sj , s−j)

Cj(sj , s−j)
+ β0,j

βk,j > 0, j = 1, ...,m, k = 0, 1, 2,

(11)

together with either linear inverse demand price function Example 2.3.a or exponential inverse
demand price function Example 2.3.b (used to define Bj(sj , s−j), Cj(sj , s−j)).
Let j = 1, ...,m. Since rj is a linear combination of Bi

Ci
with positive coefficients, to verify that

rj satisfies Assumption 2.1.2 it is sufficient to verify that

∂
Bj

Cj

∂sj
(0, s−j) > 0, (12)

∂2
Bj

Cj

∂s2j
(sj , s−j) ≥ 0, (13)

∂2Bi
Ci

∂s2j
(si, s−i) ≥ 0. (14)

In case of linear inverse demand price function further assume

Cj(0,0)

Bj(0,0)
< 2, 0 < ε <

1

20

1∑
i 6=j Sj

, and
3

Nj
≤ aj ≤

9

20

1

Sj
. (15)

Recall that

Bj(sj , s−j) = Bj(0,0) + sjpj(1− ajsj − ε
∑
i 6=j

si), (16)

Cj(sj , s−j) = (Nj + sj)pj(1− ajsj − ε
∑
i 6=j

si), (17)

= Cj(0,0)(1− ajsj − ε
∑
i 6=j

si) + sjpj(1− ajsj − ε
∑
i 6=j

si). (18)

We calculate that

∂
Bj

Cj

∂sj
(sj , s−j) =

∂Bj

∂sj
Cj −Bj ∂Cj

∂sj

C2
j

(sj , s−j), (19)

∂Bj
∂sj

(sj , s−j) = pj(1− 2ajsj − ε
∑
i 6=j

si), (20)

∂Cj
∂sj

(sj , s−j) = −ajpjNj + pj(1− 2ajsj − ε
∑
i 6=j

si). (21)

Conditions (15) ensure that
∂Cj

∂sj
< 0, which implies for (sj , s−j) ∈ [0, Sj ]×

∏
i 6=j [0, Si]

∂
Bj

Cj

∂sj
(sj , s−j) > 0. (22)
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Choosing sj = 0 leads to (12).

Using the fact that

∂2Bj
∂s2j

(sj , s−j) =
∂2Cj
∂s2j

(sj , s−j) = −2ajpj , (23)

we calculate that

∂2
Bj

Cj

∂s2j
=

(
∂2Bj

∂s2j
Cj −Bj ∂

2Cj

∂s2j
)C2

j − 2Cj
∂Cj

∂sj
(
∂Bj

∂sj
Cj −Bj ∂Cj

∂sj
)

C4
j

(24)

≥
2ajpjBj(0,0)

(
1 +

(Njaj−(1−ajsj−ε
∑

i6=j si))
2

Njaj

)
C2
j

(25)

−
ajpjCj(0,0)

(
(1− ε

∑
i 6=j si) +

(1−2ajsj−ε
∑

i 6=j si)
2

ajNj

)
C2
j

> 0, (26)

where the positivity follows again from (15). This shows (13).

Finally, to show (14), we have that

∂2Bi
Ci

∂s2j
=
−2Ci

∂Ci
∂sj

∂
Bi
Ci
∂sj

C4
i

. (27)

From (17),

∂Ci
∂sj

= −(Ni + si)piε < 0, (28)

and we have that

∂Bi
Ci

∂sj
=

∂Bi
∂sj

Ci −Bi ∂Ci
∂sj

C2
i

=
εpiBi(0,0)(Ni + si)

C2
i

> 0. (29)

Thus (14) holds.

For exponential inverse demand function case, we slightly modify the conditions to be

Cj(0,0)

Bj(0,0)
<

√
2− 1

2
, and

3

Nj
< aj <

1

Sj
. (30)

Equation (19) is still valid, and conditions (30), again ensure that
∂Cj

∂sj
< 0, which again leads

to (22) and (12) as before.

Next, similar to (24) we have that

∂2
Bj

Cj

∂s2j
≥ ajpj e−ajsj−ε

∑
i 6=j si

C2
j

(31)

×

(aj(Nj + sj)− 2 +
2

aj(Nj + sj)

)
Bj(0,0)−

(
1 + ajsj +

4(1− ajsj)
ajNj

)
Cj(0,0)

 .
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Conditions (30) again ensure that (13) holds.

Finally, we calculate that

∂Bi
Ci

∂sj
(si, s−i) =

ε(Ni + si)Bi(0,0)e−aisi−ε
∑

l 6=i sl

C2
i

> 0. (32)

Equation (27) still holds. Using (28) together with (32) we conclude that (14) holds.

The conditions (15) and (30) are only sufficient conditions and are most likely not necessary,
and hence not unique. They are used to ensure that interest rate as a function of book-to-price
ratio satisfies Assumption 2.1.2 when using linear inverse demand function and exponential
inverse demand function respectively. The financial intuition for the first assumption in
(15) is that (intuitively) we need the interest rate to be convex function of the stock sale
amounts. Because of the form of the interest rate function this requires an upper bound on
the price-to-book ratio. In other words, the market confidence needs to be bounded from
above. This is not a surprising assumption to hold, especially during a financial crisis. The
other assumptions on ε and aj in (15) provide bounds on the impact of additional stock sales
on the of stock price. Similar intuition holds for the assumptions in (30).

Theorem 2.5. (Existence of Nash Equilibrium) Under Assumptions 2.1, there exists Nash equi-
librium to the optimization problem (2) denoted by s∗∗ = (s∗1(s

∗∗
−1), ..., s

∗
m(s∗∗−m)) ∈

∏m
j=1[0, Sj ].

Proof. For any j ∈ 1, 2, ...,m and s−j ∈
∏m
i=1,i 6=j [0, Si] , the first order optimality condition for an

interior maximizer of the objective function uj(s, s−j) is

pj(s, s−j) + s
∂pj(s, s−j)

∂sj
− Lj

∂rj
∂sj

= 0, (33)

which is equivalent to (
pj(s, s−j) + s

∂pj(s, s−j)

∂sj

)(
∂rj
∂sj

(s, s−j)

)−1
= Lj , (34)

due to the fact that
∂rj
∂sj

(s, s−j) > 0, for s ∈ [0, Sj ], in turn which follows from Assumptions 2.1.

Moreover, according to the same assumption, the derivative of the left hand side of (34),(
s
∂2pj(s,s−j)

∂s2j
+ 2

∂pj(s,s−j)
∂sj

)
∂rj
∂sj
− ∂2rj

∂s2j

(
pj(s, s−j) + s

∂pj(s,s−j)
∂sj

)
(
∂rj
∂sj

)2 , (35)

is always negative, which implies the left hand side of (34) is strictly decreasing with respect to
s ∈ [0, Sj ].

Then, for this s−j ∈
∏m
i=1,i 6=j [0, Si], we have the following:

1. If
∂rj
∂sj

(0, s−j) ≤
pj(0, s−j)

Lj
, (36)

that is

p(0, s−j)

(
∂rj
∂sj

(0, s−j)

)−1
≥ Lj , (37)
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then as the left hand side of (34) is strictly decreasing in s, there is at most one s ∈ [0, Sj ]
that solves (34). Moreover, if such solution to (34) exists, it is unique. Denote it s0j (s−j).

Otherwise, if there is no solution on [0, Sj ], set s0j (s−j) = Sj . The intuition behind the
condition (36) is that an (infinitesimal) initial stock sale, raises more money than the cost
increase incurred on the short term obligation Lj due to an increase in the interest rate rj .
Therefore, it is optimal to sell stocks and s0j (s−j) ≥ 0, as we have obtained. If no solution of

(34) exist on [0, Sj ], then it is optimal to sell all the bank owns, and s0j (s−j) = Sj .

2. Otherwise, if
∂rj
∂sj

(0, s−j) >
pj(0, s−j)

Lj
, (38)

that is

p(0, s−j)

(
∂rj
∂sj

(0, s−j)

)−1
< Lj , (39)

then there is no solution to (34) on s ∈ [0, Sj ], because the left hand side of (34) is strictly
decreasing in s. The intuition in this case is that under the condition (38), an (infinitesimal)
stock sale, is insufficient to cover the additional interest rate expense, therefore selling stock
is not optimal. Thus set s∗j (s−j) = 0.

In summary, each bank j chooses to sell s∗j (s−j) shares provided that other banks are selling s−j
shares of their stock which is given by

s∗j (s−j) =

0 : ∂rj
∂sj

(0, s−j) >
pj(0,s−j)

Lj
,

s0j (s−j) : otherwise.
(40)

In fact, s∗j :
∏m
i=1,i 6=j [0, Si]→ [0, Sj ] is continuous in each of its components. Indeed, s∗j is continuous

as a function of s−j in the region where

∂rj
∂sj

(0, s−j) <
pj(0, s−j)

Lj
,

∂rj
∂sj

(0, s−j) >
pj(0, s−j)

Lj
.

(41)

As
∂rj
∂sj

(0, s−j) ↑ pj(0,s−j)
Lj

implies s∗j (s−j) ↓ 0, we get the continuity at point
∂rj
∂sj

(0, s−j) =
pj(0,s−j)

Lj
.

Hence, the mapping S∗ defined in (3) is also continuous.

Therefore, by Brouwer’s fixed point Theorem, there exists an equilibrium stock selling strategy
given by s∗∗ = (s∗1(s

∗∗
−1), ..., s

∗
m(s∗∗−m)) ∈

∏m
j=1[0, Sj ].

We now turn to focus on the uniqueness of the Nash equilibrium strategy.

Define

F (s) =

(
∂u1
∂s1

(s), ...,
∂um
∂sm

(s)

)T
, (42)

and let J(s) be the Jacobian matrix of the mapping F , given by

(J(s))k,j =
∂2uk
∂sj∂sk

(s), j, k = 1, ..,m. (43)
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Lemma 2.6. Under Assumptions 2.1, suppose also that the Jacobian matrix J(s) is strictly diag-
onally dominant for on

∏m
i=1[0, Si], i.e.∣∣∣∣∣∂2ui∂s2i

∣∣∣∣∣ >
m∑

k=1,k 6=i

∣∣∣∣∣ ∂2ui∂sk∂si

∣∣∣∣∣ , i = 1, ...,m, (44)

then there exists a unique Nash equilibrium.

Proof. According to Theorem 2.5, there exists a fixed point of the mapping S∗. This is a Nash
equilibrium. We prove the uniqueness of the fixed point by contradiction. Suppose that there are
two distinct fixed points S∗(s) = s, S∗(s̃) = s̃, for s, s̃ ∈

∏m
i=1[0, Si], s 6= s̃. The goal is to show

that in L∞ norm
‖s̃− s‖∞ =

∥∥S∗ (s̃)− S∗ (s)
∥∥
∞ <‖s̃− s‖∞ , (45)

thereby reaching a contradiction.
Let j ∈ {1, 2, ..,m}. There are three possible cases for the relationships between the values of

∂uj
∂sj

(
s∗j
(
s−j
)
, s−j

)
and

∂uj
∂sj

(
s∗j
(
s̃−j
)
, s̃−j

)
.

In case when
∂uj
∂sj

(
s∗j
(
s−j
)
, s−j

)
=
∂uj
∂sj

(
s∗j
(
s̃−j
)
, s̃−j

)
, (46)

then from Gabay & Moulin (1978) [Theorem 4.1], we get that∣∣∣s∗j (s−j)− s∗j (s̃−j)∣∣∣ <‖s− s̃‖∞ . (47)

Next, consider the case when

∂uj
∂sj

(
s∗j
(
s−j
)
, s−j

)
<
∂uj
∂sj

(
s∗j
(
s̃−j
)
, s̃−j

)
. (48)

In this case, either s∗j
(
s−j
)

or s∗j
(
s̃−j
)

is not an internal point of the interval [0, Sj ] (or both). Thus

either s∗j
(
s−j
)
∈ {0, Sj} or s∗j

(
s̃−j
)
∈ {0, Sj}. If s∗j

(
s−j
)

= s∗j
(
s̃−j
)
, then we trivially have that

0 =
∣∣∣s∗j (s−j)− s∗j (s̃−j)∣∣∣ <‖s− s̃‖∞ . Otherwise, s∗j

(
s−j
)
6= s∗j

(
s̃−j
)
. Then, from the optimality of

the mapping s∗j , it follows that either

s∗j
(
s−j
)

= 0, s∗j
(
s̃−j
)
∈ (0, Sj), (49)

or
s∗j
(
s−j
)
∈ (0, Sj), s

∗
j

(
s̃−j
)

= Sj , (50)

or
s∗j
(
s−j
)

= 0, s∗j
(
s̃−j
)

= Sj . (51)

Therefore in either case s∗j
(
s−j
)
< s∗j

(
s̃−j
)
. Define x =

(
s∗j
(
s−j
)
, s−j

)
and x̃ =

(
s∗j
(
s̃−j
)
, s̃−j

)
.

Let

f(t) =
∂uj

(
x + t(x̃− x)

)
∂sj

. (52)

According to Lagrange Mean Value Theorem, there exists t0 ∈ (0, 1) such that

f ′(t0) =

m∑
i=1,i 6=j

∂2uj (y)

∂sj∂si
(s̃i − si) +

∂2uj (y)

∂s2j

(
s∗j
(
s̃−j
)
− s∗j

(
s−j
))

> 0, (53)
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where y = x + t0 (x̃− x). From which we conclude that

−∂
2uj (y)

∂s2j

(
s∗j
(
s̃−j
)
− s∗j

(
s−j
))

<
m∑

i=1,i 6=j

∂2uj (y)

∂sj∂si
(s̃i − si) . (54)

By concavity of function uj , together with the strictly diagonal dominance condition (44), we get

that
∂2uj(y)

∂s2j
< 0 is strictly negative. Recall that s∗j

(
s−j
)
< s∗j

(
s̃−j
)
, thus it follows that the left

hand side of (54) is positive. Therefore∣∣∣∣∣∂2uj (y)

∂s2j

∣∣∣∣∣ (s∗j (s̃−j)− s∗j (s−j)) <
∣∣∣∣∣∣

m∑
i=1,i 6=j

∂2uj (y)

∂sj∂si
(s̃i − si)

∣∣∣∣∣∣ ≤
m∑

i=1,i 6=j

∣∣∣∣∣∂2uj (y)

∂sj∂si
(s̃i − si)

∣∣∣∣∣ (55)

≤
m∑

i=1,i 6=j

∣∣∣∣∣∂2uj (y)

∂sj∂si

∣∣∣∣∣‖s̃− s‖∞ <

∣∣∣∣∣∂2uj (y)

∂s2j

∣∣∣∣∣‖s̃− s‖∞ , (56)

where the last inequality follows from the strictly diagonal dominance property. We conclude that

|s∗j (s̃−j)− s∗j (s−j)| <‖s̃− s‖∞ . (57)

The case of reverse inequality in (48) can be treated by renaming s and s̃.
We have showed that∣∣∣s∗j (s−j)− s∗j (s̃−j)∣∣∣ <‖s− s̃‖∞ ,∀j ∈ {1, 2, ..,m}, (58)

and thus (45) follows, and we reach the desired contradiction. Hence, the fixed point of the mapping
S∗(·) is unique.

The strictly diagonally dominant condition of J(s) is not very intuitive, therefore we formulate
the uniqueness theorem with slightly more financially intuitive condition

Theorem 2.7. (Uniqueness of Nash Equilibrium) In addition to Assumptions 2.1, suppose also
that for each j = 1, 2, ..,m,

−sj
∂2pj
∂s2j

(s) + Lj
∂2rj
∂s2j

(s) ≥
m∑

i=1,i 6=j

∣∣∣∣∣sj ∂2pj
∂si∂sj

(s)− Lj
∂2rj
∂si∂sj

(s)

∣∣∣∣∣ , (59)

then the Nash equilibrium s∗∗ is unique.

Proof. According to Lemma 2.6, it suffices to prove the Jacobian matrix J(s) is strictly diagonally
dominant. We calculate that

J(s) =2



∂p1
∂s1

. 0
.

0 .
∂pm
∂sm


+

 s1
∂2p1
∂s21
− L1

∂2r1
∂s21

... s1
∂2p1

∂sm∂s1
− L1

∂2r1
∂sm∂s1

... ... ...

sm
∂2pm
∂s1∂sm

− Lm ∂2rm
∂s1∂sm

... sm
∂2pm
∂s2m
− Lm∂2rm

∂s2m

 . (60)
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Condition (59) ensures that the second matrix on the right hand side is a diagonally dominant
matrix with negative diagonal elements. Since the stock price pj is a strictly decreasing function

with respect to sj ,
∂pj
∂sj

< 0, the sum of the diagonal elements

2
∂pj
∂sj

+ sj
∂2pj
∂s2j

− Lj
∂2rj
∂s2j

< sj
∂2pj
∂s2j

− Lj
∂2rj
∂s2j

< 0. (61)

Then, for any j ∈ {1, 2, ...,m},∣∣∣∣∣2∂pj∂sj
+ sj

∂2pj
∂s2j

− Lj
∂2rj
∂s2j

∣∣∣∣∣ > −sj ∂2pj∂s2j
+ Lj

∂2rj
∂s2j

≥
m∑

i=1,i 6=j

∣∣∣∣∣sj ∂2pj
∂si∂sj

− Lj
∂2rj
∂si∂sj

∣∣∣∣∣ . (62)

That is the sum of the two matrix on the right hand side of equation (60), which equals J(s), is
strictly diagonally dominant. Hence, by Lemma 2.6, the equilibrium point is unique.

Remark 2.8. The intuition behind the condition (59) is that it ensures that the effect of bank’s
own transactions on its marginal cost is greater than the combined effects of all other banks.

Note also that the condition of Lemma 2.6 is very closely related to the sufficient condition of
Rosen (1965)[Theorem 6]. The latter being that J(s) + J(s)T is positive definite. However, they
are not equivalent as there exists strictly (row) diagonally dominant matrices J , not satisfying the
positiveness condition of J(s)+J(s)T . Finally, the simple self-containing proof is itself noteworthy.

Example 2.9. Consider m ≥ 2 identical banks. Suppose that the price function is given by the
linear inverse demand function from Example 2.3.a, and the quadratic interest rate function is given
in Example 2.4.b. Then, the sufficient and necessary condition for Nash equilibrium (s∗1, ..., s

∗
m) is

duj
ds

(s∗j , s
∗
−j)(s− s∗j ) ≤ 0, s ∈ [0, Sj ], j = 1, ...,m. (63)

Indeed, fix 1 ≤ j ≤ m, if s∗j ∈ (0, Sj) then to satisfy (63), we must have

duj
ds

(s∗j , s
∗
−j) = 0. (64)

Moreover, from Assumption 2.1, it follows that uj are concave functions, and therefore uj(·, s∗−j) is
maximized at s∗j . If s∗j is on the boundary of [0, Sj ], in order to satisfy (63) we must have{

duj
ds (s∗j , s

∗
−j) ≤ 0, s∗j = 0

duj
ds (s∗j , s

∗
−j) ≥ 0, s∗j = Sj .

(65)

In either case, from concavity, it again follows that uj is maximized at (s∗1, ..., s
∗
m). For convenience

we will drop the index identifying the bank, and denote

S1 = ... = Sm = S, L1 = ... = Lm = L, a1 = ... = am = a, (66)

p1(0,0) = ... = pm(0,0) = p0, βi,1 = ... = βi,m = βi, i = 1, 2. (67)

As the optimal strategies for the m identical banks must be the same, denote a Nash equilibrium
point for this game s∗ = (s∗, s∗, ..., s∗) ∈ Rm, and s∗− = (s∗, ..., s∗) ∈ Rm−1. From (63), the Nash
equilibrium s∗ is the unique solution to

du

ds
(s∗, s∗−)(s− s∗) =

(
−((2a+ (m− 1)ε)p0 + 2Lβ2)s

∗ + p0 − Lβ1
)

(s− s∗) ≤ 0, for all s ∈ [0, S].

(68)
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Moreover, assuming that ε < 2a/(m − 1) guarantees that the condition of Theorem 2.7 holds,
so that the Nash equilibrium point is unique. Therefore, either there exists s∗ ∈ (0, S) such
that du

ds (s∗, s∗−) = 0, or for s∗ = 0, we must have du
ds (s∗, s∗−) ≤ 0, or for s∗ = S, we must have

du
ds (s∗, s∗−) ≥ 0. A calculation then shows that the optimal choice for each bank is

s∗ =

(
0 ∨ p0 − Lβ1

(2a+ (m− 1)ε)p0 + 2Lβ2

)
∧ S. (69)

Thus, either the banks sells nothing, s∗ = 0, or it sells all its available stock s∗ = S, or its stock
sale is proportional to p0 − Lβ1, which is the maximum marginal profit the banks can get from
a stock sale. In this case, the sale is also inversely proportional to its marginal cost 2ap0 + 2Lβ2
together with the aggregate marginal cost of the other banks (m− 1)εp0.

3 Optimal Strategy Selling Stock and Borrowing

We now relax the original assumption and allow banks to borrow cash, in addition to selling stock.
Our goal is still to find the maximum amount of funds the banks in the system can raise. This
completes the contagion circle. Previously, a bank selling stock, will lower the stock price for all
banks, including itself, and also raise the short-term interest rate, again for all banks. Now, if a bank
takes on additional debt, we assume that it will both lower the stock price for the bank (and possibly
for other banks), and raise the interest rate for all the banks in the system. This is again because
of the decreasing confidence in this, and (possibly) other banks. Though note that borrowing, as
a debt, does not affect the total equity directly, according to International Accounting Standards
Committee and International Accounting Standards Board (2000). To accommodate this change,
we change the definitions introduced in the previous section by adding the dependency on debt d,
in addition to their dependencies on stock sale s. Denote

(s,d) = (s1, ..., sm, d1, ..., dm), (70)

and let
(s−i,d−i) = (s1, ..., si−1, si+1, ..., sm, d1, ..., di−1, di+1, ..., dm), i = 1, ...,m, (71)

where dj denotes the amount of money the bank j ∈ {1, ...,m} borrows. Then bank j stock price
function becomes pj(sj , dj , s−j ,d−j). After the joint stock sale and borrowing transaction, the
banks book value and market capitalization become

Bj(sj , dj , s−j ,d−j) = Bj(0, 0,0,0) + pj(sj , dj , s−j ,d−j)sj (72)

and
Cj(sj , dj , s−j ,d−j) = pj(sj , dj , s−j ,d−j)(Nj + sj). (73)

Similarly, the overnight interest rate now becomes

rj = rj(sj , dj , s−j ,d−j). (74)

Hence, for any fixed j ∈ 1, 2, ...,m, the amount of funds the bank j can raise as a function of
(sj , dj) given the actions of other banks (s−j ,d−j) is

vj(sj , dj , s−j ,d−j) = sjpj(sj , dj , s−j ,d−j) + dj − Lj
(
rj(sj , dj , s−j ,d−j)− rj(0, 0,0,0)

)
, (75)
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The effect of borrowing on stock price is complicated. When a large number of banks face shortfall,
the common sense is the stock prices decrease as borrowing increases, whereas the marginal costs
increases. These facts suggest that the stock price function pj is a decreasing concave function with
respect to d ∈

∏m
i=1[0, Di], for any given s ∈

∏m
i=1[0, Si], where Dj is the maximum amount of cash

the bank j ∈ {1, ...,m} can borrow.

Example 3.1. Examples of inverse demand price functions pj , j = 1, ...,m satisfying Assumption
2.1.1 include:

a. Linear inverse demand:

pj(sj , dj , s−j ,d−j) = pj(0, 0,0,0)(1− ajsj − bjdj − ε1
m∑

k=1,k 6=j
sk − ε2

m∑
k=1,k 6=j

dk),

0 < aj <
1

2Sj
, 0 < bj <

1

3Dj
, 0 < ε1 � aj , 0 < ε2 � bj .

(76)

b. 2nd order inverse demand:

pj(sj , dj , s−j ,d−j) = pj(0, 0,0,0)(1− ajsj − bjd2j − ε1
m∑

k=1,k 6=j
sk − ε2

m∑
k=1,k 6=j

d2k),

0 < aj <
1

2Sj
, 0 < bj <

1

3D2
j

, 0 < ε1 � aj , 0 < ε2 � bj .

(77)

c. Exponential inverse demand:

pj(sj , dj , s−j ,d−j) = pj(0, 0,0,0)exp(−ajsj − bjd2j − ε1
m∑
k=1
k 6=j

sk − ε2
m∑
k=1
k 6=j

d2k),

0 < aj <
1

Sj
, 0 < bj <

1

D2
j

, 0 < ε1 � aj , 0 < ε2 � bj .

(78)

Example 3.2. Examples of interest rate functions rj , j = 1, ...,m that satisfy Assumption 2.1.2
include:

a. Linear interest rate model:

rj(sj , dj , s−j ,d−j) = β0,j + β1,jsj + β2,j

m∑
i=1,i 6=j

si + β3,jdj + β4,j

m∑
i=1,i 6=j

di,

βk,j > 0, , k = 0, 1, ..., 4, j = 1, ...,m.

(79)

b. Quadratic interest rate model:

rj(sj , dj , s−j ,d−j) = β0,j + β1,jsj + β2,js
2
j + β3,j

m∑
i=1,i 6=j

si + β4,j

m∑
i=1,i 6=j

s2i + β5,jdj + β6,jd
2
j

+ β7,j

m∑
i=1,i 6=j

di + β8,j

m∑
i=1,i 6=j

d2i ,

βk,j > 0, k = 0, 1, .., 8, j = 1, ...,m.

(80)
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c. Interest rate as a function of book-to-price ratio:

rj(sj , dj , s−j ,d−j) = β0,j + β1,j
Bj(sj , dj , s−j ,d−j)

Cj(sj , dj , s−j ,d−j)
+ β2,j

∑
i 6=j

Bi(si, di, s−i,d−i)

Ci(si, di, s−i,d−i)
,

βk,j > 0, k = 0, 1, 2, j = 1, ...,m.

(81)

The calculation showing that this interest rate model satisfies Assumption 2.1.2 is identical
to the one in Example 2.4.c, because they have identical dependencies on s.

Define a mapping F̄ :
∏m
i=1[0, Si]×

∏m
i=1[0, Di]→ R2m as F̄ (s,d) =

(
∂v1
∂s1

, ∂v1∂d1
, · · · , ∂vm∂sm

, ∂vm∂dm

)T
,

and let J̄(s,d) be the Jacobian matrix of F̄ .
Similar to the argument in Section 2, we assume that all the banks in the system will take

actions at the same time so that this problem becomes a “m”-person non-cooperate game. Hence,
our goal is to investigate the existence and uniqueness of Nash equilibrium in this system. The
following assumption is then needed to give a definite answer.

Assumption 3.3. 1. For each j = 1, ...,m, given (s−j ,d−j) ∈
∏m
i=1,i 6=j [0, Si]×

∏m
i=1,i 6=j [0, Di],

the function vj(·, ·; s−j ,d−j) : [0, Sj ]× [0, Dj ] 7→ R is strictly concave and twice differentiable.

2. The Jacobian matrix J̄ is strictly (row) diagonally dominant on
∏m
i=1[0, Si]×

∏m
i=1[0, Di].

Equivalently to (2), we define the optimization mapping

(s∗j (s−j ,d−j), d
∗
j (s−j ,d−j)) :

m∏
i=1
i 6=j

[0, Si]×
m∏
i=1
i 6=j

[0, Di]→ [0, Sj ]× [0, Dj ], j = 1, ...,m, (82)

as

(s∗j (s−j ,d−j), d
∗
j (s−j ,d−j)) = arg max

(s,d)∈[0,Sj ]×[0,Dj ]
vj(s, d, s−j ,d−j). (83)

Theorem 3.4. Under Assumption 3.3 the Nash equilibrium for the optimization problem (83)

(s∗∗,d∗∗) = (s∗1(s
∗∗
−1,d

∗∗
−1), ..., s

∗
m(s∗∗−m,d

∗∗
−m), d∗1(s

∗∗
−1,d

∗∗
−1), ..., d

∗
m(s∗∗−m,d

∗∗
−m)) (84)

exists and is unique.

Proof. Define T ∗ :
∏m
i=1[0, Si]×

∏m
i=1[0, Di]→

∏m
i=1[0, Si]×

∏m
i=1[0, Di] as

T ∗(s,d) = (s∗1(s−1,d−1), ..., s
∗
m(s−m,d−m), d∗1(s−1,d−1), ..., d

∗
m(s−m,d−m))T , (85)

The first step is to show that T ∗ is subcontraction mapping, that is to show that for any two
distinct points (s0,d0), (s1,d1) ∈

∏m
i=1[0, Si]×

∏m
i=1[0, Di], we have that∥∥∥T ∗(s0,d0)− T ∗(s1,d1)

∥∥∥
∞
<
∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞
. (86)

Fix j ∈ {1, 2, ...,m}, and note that it is sufficient to show that∣∣∣s∗j (s1−j ,d1
−j)− s∗j (s0−j ,d0

−j)
∣∣∣ <∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞
, (87)∣∣∣d∗j (s1−j ,d1

−j)− d∗j (s0−j ,d0
−j)
∣∣∣ <∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞
. (88)
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Consider (87) first. If s∗j (s
1
−j ,d

1
−j) = s∗j (s

0
−j ,d

0
−j), then

0 =
∣∣∣s∗j (s1−j ,d1

−j)− s∗j (s0−j ,d0
−j)
∣∣∣ <∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞

(89)

and there is nothing to prove. Thus assume that s∗j (s
1
−j ,d

1
−j) 6= s∗j (s

0
−j ,d

0
−j).

Recall that
(
s∗j (s

i
−j ,d

i
−j), d

∗
j (s

i
−j ,d

i
−j)
)
, i = 0, 1 are the maximizers of (83). Then consider

the following cases, based on whether the partial derivatives are zero or not.
Let

xij = (s∗j (s
i
−j ,d

i
−j), d

∗
j (s

i
−j ,d

i
−j), s

i
−j ,d

i
−j), i = 0, 1, (90)

and consider the case when
∂vj(x

1
j )

∂sj
=
∂vj(x

0
j )

∂sj
. (91)

Define

φ(θ) =
∂vj

(
x0
j + θ(x1

j − x0
j )
)

∂sj
, θ ∈ [0, 1]. (92)

Then, φ(0) = φ(1). By Rolle’s theorem, there is a θ0 ∈ (0, 1) such that φ′(θ0) = 0. Let

z0 = x0
j + θ0(x

1
j − x0

j ), (93)

then

φ′(θ0) =

m∑
i=1,i 6=j

∂2vj(z0)

∂sj∂si
(s1i−s0i )+

m∑
i=1

∂2vj(z0)

∂sj∂di
(d1i−d0i )+

∂2vj(z0)

∂s2j
(s∗j (s

1
−j ,d

1
−j)−s∗j (s0−j ,d0

−j)) = 0.

(94)
Then, from the triangular inequality it follows that∣∣∣∣∣∂2vj(z0)∂s2j

∣∣∣∣∣∣∣∣s∗j (s1−j ,d1
−j)− s∗j (s0−j ,d0

−j)
∣∣∣ ≤ m∑

i=1,i 6=j

∣∣∣∣∣∂2vj(z0)∂sj∂si

∣∣∣∣∣∣∣∣s1i − s0i ∣∣∣+
m∑
i=1

∣∣∣∣∣∂2vj(z0)∂sj∂di

∣∣∣∣∣∣∣∣d1i − d0i ∣∣∣ . (95)

From strictly diagonal dominance condition of J̄ , it follows that m∑
i=1,i 6=j

∣∣∣∣∣∂2vj(z0)∂sj∂si

∣∣∣∣∣+
m∑
i=1

∣∣∣∣∣∂2vj(z0)∂sj∂di

∣∣∣∣∣
∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞

<

∣∣∣∣∣∂2vj(z0)∂s2j

∣∣∣∣∣∥∥∥(s0,d0)− (s1,d1)
∥∥∥
∞
.

(96)

Combining inequality (95) and (96), we get∣∣∣s∗j (s1−j ,d1
−j)− s∗j (s0−j ,d0

−j)
∣∣∣ <∥∥∥(s0,d0)− (s1,d1)

∥∥∥
∞
. (97)

Next, consider the case that
∂vj(x

0
j )

∂sj
<
∂vj(x

1
j )

∂sj
. (98)
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In this case, we assert that
s∗j (s

0
−j ,d

0
−j) ≤ s∗j (s1−j ,d1

−j). (99)

The condition (98) excludes the case
∂vj(x

0
j )

∂sj
=

∂vj(x
1
j )

∂sj
= 0, which is the case that both points

(s∗j (s
0
−j ,d

0
−j), d

∗
j (s

0
−j ,d

0
−j)), (s

∗
j (s

1
−j ,d

1
−j), d

∗
j (s

1
−j ,d

1
−j)) can be interior points of [0, Sj ] × [0, Dj ].

Therefore we need to consider two scenarios:

First, when
∂vj (̃s

0
j ,d̃

0
j )

∂sj
< 0, corresponds to the scenario when s∗j (s

0
−j ,d

0
−j) = 0. Therefore, we

readily get that 0 = s∗j (s
0
−j ,d

0
−j) ≤ s∗j (s1−j ,d1

−j).

Otherwise, we must have that
∂vj (̃s

1
j ,d̃

1
j )

∂sj
> 0. In this scenario, s∗j (s

1
−j ,d

1
−j) = Sj , and thus

s∗j (s
0
−j ,d

0
−j) ≤ s∗j (s1−j ,d1

−j) = Sj .

Again, we may assume that s∗j (s
0
−j ,d

0
−j) < s∗j (s

1
−j ,d

1
−j), and define φ(θ) as in (92). According

to Lagrange Mean Value theorem, there is θ0 ∈ (0, 1) such that for z0 = x0
j + θ0(x

1
j − x0

j ), we get

φ′(θ0) =

m∑
i=1,i 6=j

∂2vj(z0)

∂sj∂si
(s1i−s0i )+

m∑
i=1

∂2vj(z0)

∂sj∂di
(d1i−d0i )+

∂2vj(z0)

∂s2j
(s∗j (s

1
−j ,d

1
−j)−s∗j (s0−j ,d0

−j)) > 0.

(100)
We then have

−∂
2vj(z0)

∂s2j
(s∗(s1−j ,d

1
−j)− s∗j (s0−j ,d0

−j)) <
m∑

i=1,i 6=j

∂2vj(z0)

∂sj∂si
(s1i − s0i ) +

m∑
i=1

∂2vj(z0)

∂sj∂di
(d1i − d0i ). (101)

By the concavity of vj , the strictly diagonal dominance condition of J̄ , and the fact that
s∗(s1−j ,d

1
−j) > s∗j (s

0
−j ,d

0
−j), the left hand side of (101) is positive. Then, from strictly diagonal

dominant property and triangular inequality, we again get (97)
Similar argument shows (88), and therefore since (87) and (88) are true for any j ∈ 1, 2, ...m, it

follows that T ∗ is subcontraction mapping.
In particular, T ∗ is a continuous function, and thus by Brouwer’s fixed point Theorem there

exists a fixed point for T ∗ in
∏m
i=1[0, Si]×

∏m
i=1[0, Di]. Such a fixed point (84) is therefore a Nash

equilibrium, the uniqueness of which follows from the subcontraction property of T ∗.

Example 3.5. Similar to Example 2.9, consider the case when the m banks are identical. Let the
price function be the linear inverse demand function from Example 3.1.a, and the overnight interest
rate model be the quadratic interest model from Example 3.2.b. For convenience we will drop the
index identifying the bank, and in addition to the already defined notation in (66), denote also

D1 = ... = Dm = D, p1(0, 0,0,0) = ... = pm(0, 0,0,0) = p0, (102)

βi,1 = ... = βi,m = βi, i = 1, 2, ..., 6. (103)

As all the banks are identical, they must have the same optimal strategy denoted as (s∗, d∗). Also,
let s− = (s, ..., s) ∈ Rm−1,d− = (d, ..., d) ∈ Rm−1. The identical banks also have the same objective
function v, given by (75). Further assume that

β2 > 0 ∧ (b+ (m− 1)ε1 + (m− 1)ε2)p
0

2L
, and β6 >

bp0

2L
. (104)
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These conditions guarantee that the objective function v satisfies Assumption 3.3. The sufficient
and necessary condition for (s∗, d∗) being the optimal strategy of each bank is,

∂v

∂s
(s∗, d∗; s∗−,d

∗
−)(s− s∗) +

∂v

∂d
(s∗, d∗; s∗−,d

∗
−)(d− d∗) ≤ 0, for any s ∈ [0, S], d ∈ [0, D], (105)

where

∂v

∂s
(s, d; s−,d−) = −((2a+ (m− 1)ε1)p

0 + 2β2L)s− (b+ (m− 1)ε2)p
0d+ p0 − β1L, (106)

∂v

∂d
(s, d; s−,d−) = −bp0s− 2β6Ld+ 1− β5L. (107)

Given the concavity of v from Assumption 3.3, the intuition for this condition is similar to the
intuition for the condition (63) in Example 2.9. Let the unconstrained optimal point (s0, d0) be
the solution to the linear system ∂v

∂s (s, d; s−,d−) = 0, ∂v∂s (s, d; s−,d−) = 0,

s0 =
2β6L(p0 − β1L)− (b+ (m− 1)ε2)p

0(1− β5L)

2((2a+ (m− 1)ε1)p0 + 2β2L)β6L− (b+ (m− 1)ε2)b(p0)2
, (108)

d0 =
((2a+ (m− 1)ε1)p

0 + 2β2L)(1− β5L)− bp0(p0 − β1L)

2((2a+ (m− 1)ε1)p0 + 2β2L)β6L− (b+ (m− 1)ε2)b(p0)2
. (109)

We now need to consider the different cases, whenever (s0, d0) 6∈ [0, S] × [0, D]. A technical, but
straightforward calculation shows that the optimal strategy (s∗, d∗) is given by

(s∗, d∗) =



(s0, d0) : (s0, d0) ∈ [0, S]× [0, D],

(0, 0) : s0 < 0, d0 < 0,

(S,D) : s0 > S, d0 > D,

(0, 1−β5L2β6
∨ 0) : s0 < 0, d0 ∈ [0, D],

(S, (1−β5L)−bp
0S

2β6L
∧D) : s0 > S, d0 ∈ [0, D],

(0 ∨ p0−β1L
(2a+(m−1)ε1p0)+2β2L

, 0) : s0 ∈ [0, S], d0 < 0,

(p
0−β1L−(b+(m−1)ε2)p0D
(2a+(m−1)ε1p0)+2β2L

∧ S,D) : s0 ∈ [0, S], d0 > D,

(0, 0 ∨ 1−β5L
2β6L

∧D) : s0 < 0, d0 > D, p0 − β1L− (b+ (m− 1)ε2)D ≤ 0,

(p
0−β1L−(b+(m−1)ε2)p0D
(2a+(m−1)ε1p0)+2β2L

∧ S,D) : s0 < 0, d0 > D, p0 − β1L− (b+ (m− 1)ε2)D > 0,

(0 ∨ p0−β1L
(2a+(m−1)ε1)+2β2L

∧ S, 0) : s0 > S, d0 < 0, 1− β5L− bp0S ≤ 0,

(S, 1−β5L−bp
0S

2β6L
∧D) : s0 > S, d0 < 0, 1− β5L− bp0S > 0.

(110)
When (s∗, d∗) = (s0, d0), the optimal number of stock to sell and the optimal amount of money to
borrow are inversely proportional to the difference between two terms. The first term is the the
product of (2a + (m − 1)ε1)p

0 – the marginal cost from stock sale with respect to the amount of
stock sale s, and 2β6L – the marginal cost of borrowing with respect to d. The second term is the
product of exogenous effects: (b + (m − 1)ε2)p

0 – the marginal cost in stock sale with respect to
borrowing d, and bp0 – the marginal cost of borrowing with respect to s. While the magnitude of
optimal stock sale depends on the difference between two terms . The first term being the product
of marginal profit from the stock sale with respect to s and the marginal cost of borrowing with
respect to d. While the second term is the product of the marginal profit for borrowing with respect
to d and the marginal cost from the stock price with respect to d.
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4 Optimal Strategy to Recover Shortfall

In this section, we turn to discuss one more case that the banks in the system face a shortfall and
need to raise funds to cover it. This is a more classical scenario used e.g. in Bichuch & Feinstein
(2019). Without loss of generality, assume that all banks j = 1, ...,m in the system face shortfall
Mj > 0, otherwise, the system can be shrunk accordingly, and that none of the banks are in default.
In other words, they can sell and borrow so as to be able to cover their debt. Otherwise, similar to
Bichuch & Feinstein (2019), we may assume that these banks will not make any transaction and
will be taken over by the regulator. We also continue with our previous assumptions that the bank
j, j = 1, 2, 3, ...,m can raise fund through stock sale and borrowing, and it can sell at most Sj
shares of its stock and can borrow at most Dj dollars. Then, the cost of such a transaction as a
function of (s,d) to the bank j is given by

wj(sj , dj , s−j ,d−j) = sj(pj(0, 0; 0,0)− pj(sj , dj , s−j ,d−j)) + rj(sj , dj , s−j ,d−j)dj . (111)

Here, the first and the second terms represent the opportunity loss due to selling the stock at the
reduced stock price, and the cost of the newly issued debt respectively. The purpose of each bank
is to recover its shortfall with financing cost as small as possible. That is for the bank j minimizes

min
(sj ,dj)∈[0,Sj ]×[0,Dj ]

wj(sj , dj , s−j ,d−j), subject to dj + sjpj(sj , dj , s−j ,d−j) = Mj . (112)

As we argued in previous section, debt financing does not pull down the stock price significantly,
especially when the amount of borrowing is not so big. As the shortfall needed to be recovered, Mj ,
is not very large, for any given number of shares of its stock sj , the total amount of raising fund
increases with respect to borrowing dj . These facts lead to the assumptions below, with which we
can proof the existence and uniqueness of Nash equilibrium strategy in this scenario.

Assumption 4.1. 1. (s,d) 7→ dj + sjpj(sj , dj , s−j ,d−j) is a concave, twice continuously differ-
entiable function, j = 1, 2, ...,m.

2. Dj > Mj , j = 1, 2, ...,m.

3. For each j = 1, ...,m, given (s−j ,d−j) ∈
∏m
i=1,i 6=j [0, Si]×

∏m
i=1,i 6=j [0, Di],

wj(·, ·; s−j ,d−j) : [0, Sj ]× [0, Dj ] 7→ R (113)

is a strictly convex twice differentiable function.

4. Let F̃ (s,d) =
(
∂w1
∂s1

, ∂w1
∂d1

, · · · , ∂wm
∂sm

, ∂wm
∂dm

)T
, and let J̃(s,d) be the Jacobian matrix of F̃ .

J̃(s,d) is a strictly diagonal dominant matrix with any (s,d) ∈
∏m
i=1[0, Si]×

∏m
i=1[0, Di].

With these assumptions, we can prove the existence and uniqueness of Nash equilibrium in this
game.

Theorem 4.2. Under Assumptions 4.1, there exists an unique Nash equilibrium for the minimiza-
tion problem (112), selling stock and borrowing strategy:

(s∗∗,d∗∗) = (s∗1(s
∗∗
−1,d

∗∗
−1), ..., s

∗
m(s∗∗−m,d

∗∗
−m), d∗1(s

∗∗
−1,d

∗∗
−1), ..., d

∗
m(s∗∗−m,d

∗∗
−m)) ∈

m∏
i=1

[0, Si]×
m∏
i=1

[0, Di].
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Proof. First, we relax the restriction and show that there is an unique Nash equilibrium for

min
(sj ,dj)∈[0,Sj ]×[0,Dj ]

wj(sj , dj , s−j ,d−j), subject to dj + sjpj(sj , dj , s−j ,d−j) ≥Mj . (114)

For any j = 1, 2, ...,m, let Uj ⊂
∏m
i=1[0, Si]×

∏m
i=1[0, Di] be a set that satisfies constraint

dj + sjpj(sj , dj , s−j ,d−j) ≥Mj (115)

and U =
⋂m
j=1 Uj . According to Assumption 4.1.2, (0, D1, D2, ..., Dm) must be in U , then we know

U is not empty. By concavity and continuity of function dj + sjpj(sj , dj , s−j ,d−j), Assumption
4.1.2, Uj is compact and convex for each j = 1, 2, ...,m, therefore so is U .

Let also U
(s−j ,d−j)
j = {(sj , dj) : (s,d) ∈ Uj}, j = 1, ...,m. Then, any Nash equilibrium for

the constrained optimization problem (114), must also be a Nash equilibrium to the optimization
problem

min
(sj ,dj)∈U

(s−j ,d−j)

j

wj(sj , dj , s−j ,d−j) (116)

as well. And the opposite is also true. Hence, we only need to show the existence and uniqueness
of Nash equilibrium of optimization problem (116) and this can be proved by similar argument of
Theorem 3.4 with Assumption 4.1.3 and 4.1.4.

Next, let’s prove that it is also the Nash equilibrium of constrained optimization problem (112).
Assume (s∗∗,d∗∗) = (s∗1(s

∗∗
−1,d

∗∗
−1), ..., s

∗
m(s∗∗−m,d

∗∗
−m), d∗1(s

∗∗
−1,d

∗∗
−1), ..., d

∗
m(s∗∗−m,d

∗∗
−m)) is the Nash

equilibrium of optimization problem (114) with some j ∈ {1, 2, ...,m} such that

d∗j (s
∗∗
−j ,d

∗∗
−j) + s∗j (s

∗∗
−j ,d

∗∗
−j)pj(s

∗
j (s
∗∗
−j ,d

∗∗
−j), d

∗
j (s
∗∗
−j ,d

∗∗
−j), s

∗∗
−j ,d

∗∗
−j) > Mj . (117)

Then, (s∗j (s
∗∗
−j ,d

∗∗
−j), d

∗
j (s
∗∗
−j ,d

∗∗
−j)) must be a interior point of U

(s∗∗−j ,d
∗∗
−j)

j . Hence, we can reduce

d∗j (s
∗∗
−j ,d

∗∗
−j) a little to d̃∗j (s

∗∗
−j ,d

∗∗
−j)) to make sure that (s∗j (s

∗∗
−j ,d

∗∗
−j), d̃

∗
j (s
∗∗
−j ,d

∗∗
−j)) is still in U

(s∗∗−j ,d
∗∗
−j)

j

so that the shortfall coverage constraint is still satisfied. With the fact that given sj , s−j and d−j ,
wj is strictly decreasing function with respect to dj , we have

wj(s
∗
j (s
∗∗
−j ,d

∗∗
−j), d̃

∗
j (s
∗∗
−j ,d

∗∗
−j); s

∗∗
−j ,d

∗∗
−j) < wj(s

∗
j (s
∗∗
−j ,d

∗∗
−j), d

∗
j (s
∗∗
−j ,d

∗∗
−j); s

∗∗
−j ,d

∗∗
−j), (118)

which is a contradiction with the definition of Nash equilibrium. That is the Nash equilibrium

(s∗∗,d∗∗) = (s∗1(s
∗∗
−1,d

∗∗
−1), ..., s

∗
m(s∗∗−m,d

∗∗
−m), d∗1(s

∗∗
−1,d

∗∗
−1), ..., d

∗
m(s∗∗−m,d

∗∗
−m)) (119)

of optimization problem (114) must satisfy the equality constraint for optimization problem (112)
of any j = 1, 2, ...,m. Therefore, there exist an unique Nash equilibrium of optimization problem
(112).

Example 4.3. Consider again m ≥ 2 identical banks, and consider the linear inverse demand
function from Example 3.1.a with parameter b = ε1 = ε2 = 0 together with the linear interest rate
function from Example 3.2.a. For convenience we will again drop the index identifying the bank,
and use the same notation as in (102) and (103). Additionally, assume that

0 < β2 <
β1
2p0

, 0 < β4 <
β2
2p0

. (120)

These constraints guarantee that Assumption 4.1 is satisfied. Recall the constraint in the optimiza-
tion problem (112),

d = M − sp0(1− as). (121)
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We will assume that M ≥ p0

4a , which ensures that d ≥ 0. Additionally, Assumption 2.1.1 and
Assumption 4.1.2 guarantee that d = M − p0s + ap0s2 ≤ D holds true. This eliminates the
borrowing component in the original “m”-bank game (112), and the optimization problem becomes

min
s∈[0,S]

w̃(s, s−j), j = 1, 2, ..,m, (122)

where

w̃(s; s−j) = a2(p0)2β2s
4 +

(
ap0β1 − 2a(p0)2β2

)
s3

+

ap0 + ap0β0 − p0β1 + ((p0)2 + 2ap0M)β2 − ap0β3
m∑
i=1
i 6=j

si + ap0β4

m∑
i=1
i 6=j

(M − p0si + ap0s2i )

 s2

+

Mβ1 − p0β0 − 2p0Mβ2 − p0β3
m∑
i=1
i 6=j

si − p0β4
m∑
i=1
i 6=j

(M − p0si + ap0s2i )

 s

+ β0M + β2M
2 + β3M

m∑
i=1
i 6=j

si +Mβ4

m∑
i=1
i 6=j

(M − p0si + ap0s2i ).

(123)

As before, since all the banks are identical, their optimal choices must be the same. Similarly to
above, denote s− = (s, ..., s) ∈ Rm−1,d− = (d, .., d) ∈ Rm−1. The sufficient and necessary condition
for the optimal strategy s∗ in (122) is

dw̃

ds
(s∗, s∗−)(s− s∗) ≥ 0, s ∈ [0, S], (124)

where

dw̃

ds
(s; s−) =

(
4a2(p0)2β2 + (m− 1)a2(p0)2β4

)
s3

+
(

3ap0β1 − 6a(p0)2β2 + (m− 1)ap0β3 − 2(m− 1)a(p0)2β4

)
s2

+
(

2ap0 + 2ap0β0 − 2p0β1 + (p0 + 2ap0M)(2β2 + (m− 1)β4)− (m− 1)p0β3

)
s

+
(
Mβ1 − p0β0 − 2p0Mβ2 − (m− 1)p0Mβ4

)
.

(125)

The two conditions in (120) guarantee that dw̃
ds (s, s−) is strictly increasing on [0,∞). We now have

two cases:
If

Mβ1 − p0β0 − 2p0Mβ2 − (m− 1)p0Mβ4 > 0, (126)

dw̃
ds (s, s−) = 0 has no solution on [0, S], and for any s ∈ [0, S], dw̃

ds (s, s−) > 0. Hence, s∗ = 0, and
(s∗, d∗) = (0,M).

Otherwise, if
Mβ1 − p0β0 − 2p0Mβ2 − (m− 1)p0Mβ4 ≤ 0, (127)

dw̃
ds (s, s−) = 0 has an unique solution s0 on [0,∞), and for any s > s0, dw̃

ds (s, s−) > 0. Hence,
s∗ = s0 ∧ S, and d∗ = M − s∗p0(1− as∗).
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In summary,

(s∗, d∗) (128)

=

{
(0,M) : Mβ1 − p0β0 − 2p0Mβ2 − (m− 1)p0Mβ4 > 0,

(s0 ∧ S,M − (s0 ∧ S)p0(1− a(s0 ∧ S))) : Mβ1 − p0β0 − 2p0Mβ2 − (m− 1)p0Mβ4 ≤ 0.

5 Empirical Analysis

We now investigate if the current financial system is more stable than it was before the crisis by
considering the ability of banks to raise extra capital first through selling stocks alone, and then
through both selling stocks and borrowing. We concentrate on two examples: JP Morgan Chase
and Citi banks. Both banks were strong before the financial crisis 2008. The difference between
them is that the former became even (relatively) stronger by absorbing Bear-Stearns, while the
latter was on the brink of failing and survived, arguably, only due to government’s help.

Our model is a one step static model, in the sense that all actions such as borrowing and selling
stocks are assumed to be happening at the same time. Hence, the optimal strategies and other
empirical results are static and are independent of time. They reflect what banks should do based
on the conditions at each fixed time point if they were faced with liquidity issues at that time. We
then perform this computation repeatedly through time, to obtain a time series.

We use OLS to fit a linear model between overnight interest rate and banks’ book-to-price
ratios. Although the adjusted R2 for the interest rate models of both banks are higher using the
entire original data—31 March 1998 to 23 June 2017—for which we obtain 0.972 and 0.969 for
JP Morgan and Citi bank respectively, we decided to use the data from 31 Dec 2005 to 31 Dec
2016, corresponding to dates closer to the financial crisis and the subsequent recovery (the resulting
R2 are presented in Table 1). In Section 5.2, we use data with quarterly frequency in the entire
original dataset to estimate the optimal strategy for the banks to raise money. In Section 5.2.1,
we estimate the optimal strategy without borrowing. While in Section 5.2.2, the optimal choices
for the banks are studied when borrowing is allowed. In Section 5.3, we verify that the objective

functions vj , j ∈ {JPM,C} from (75), constructed using the 2nd order inverse demand price
function from Example 3.1.b, and the interest rate model from Example 3.2.c, satisfy Assumption
3.3 on domain

(s,d) ∈
2∏
i=1

[ηi, Si]× [0, Di], ηi > 0. (129)

Finally, in Section 5.4, we present the empirical result for optimal strategy to recover a given
shortfall from Section 4

5.1 Estimate Overnight Interest Rate Function

Denote

yj(s,d) =
Bj(sj , dj , s−j ,d−j)

Cj(sj , dj , s−j ,d−j)
, j ∈ {1, ...,m} (130)

to be the book-to-price ratios of the banks. Recall that we previously assumed that the short-term
rate is a function of the book-to-price ratios. Therefore, we write

rj(sj , dj , s−j ,d−j) = r̃j(yj(s,d), y1(s,d), ..., yj−1(s,d), yj+1(s,d), ..., ym(s,d)). (131)
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We then proceed to approximate the overnight interest rate functions r̃j of bank j by using Ordinary
Least Square method, as follows. The general regression model for the overnight interest rate r̃j is

r̃j(yj(s,d), y1(s,d), ..., yj−1(s,d), yj+1(s,d), ..., ym(s,d)) ∼ β0 + β1yj + β2
∑
i 6=j

yi + β3OIS, (132)

where OIS is the overnight interest swap rate . The parameters of linear estimations of JP Morgan
Chase and Citi bank are listed in Table 1.

Table 1: Overnight Interest Rate Model r̃j(yj(s,d), y1(s,d), ..., yj−1(s,d), yj+1(s,d), ..., ym(s,d)) ∼
β0 + β1yj + β2

∑
i 6=j yi + β3OIS, for JP Morgan Chase and Citi between 31 Dec 2005 and 31 Dec

2016.

Parameters JP Morgan Citi

β0 -0.15312 -0.13966

β1 0.17551 0.11374

β2 0.11146 0.19447

β3 1.1742 1.1636

R2 0.937 0.928

The high R2s suggest that the linear models are very good approximations for the short-rate
r̃j(yj(s,d), y1(s,d), ..., yj−1(s,d), yj+1(s,d), ..., ym(s,d)), j = {1, 2, ..,m}.

5.2 The Optimal Strategies to Raise Cash

5.2.1 The Optimal Strategies to Raise Cash only with Stock Sale

We first estimate the optimal strategy to raise money by selling stock alone. We use the linear
inverse demand price function from Example 2.3.a and choose aJPM = 1

900 for JP Morgan and
aC = 1

450 for Citi bank. The denominators in this choice of parameters correspond to approximately
a third of the number of outstanding shares in millions for each bank. We use SJPM = 400 for
JP Morgan and SC = 200 for Citi. We let ε = 10−5, chosen to be much smaller than aJPM ∧ aC .
For the interest rate, we use the model in (132), which is exactly the model in Example 2.4.c. As
the number of outstanding shares of JP Morgan during the 31 March 1998 to 23 June 2017 period,
was always above 3000 million, aJPM = 1

900 always satisfies condition (15). While for Citi, the
outstanding shares was around 500 million before 30 Sep 2009 and was above 2000 million starting
from 30 Sep 2009. To satisfies condition (15), we did a split adjustment to Citi’s data after which
the number of outstanding shares for Citi was always above 2000 million. These settings guarantee
that Assumption 2.1 is satisfied. The left and right graphs of Figure 1 show the maximal amount
of funds that JP Morgan Chase and Citi can raise respectively through only selling their stock as
a function of time and Figure 2 shows how the market’s confidence (price-to-book ratio) changes.
As expected, there is a peak of the amount of cash that can be raised, before the financial crash
for both banks, which then dramatically drops during the crash. Similarly, both banks’ confidence
hits a low during the crisis. For JP Morgan the minimum of funds that can be raised is reached
some time after the crash and the acquisition of Bear-Stearns, as the markets stabilized, and has
been increasing since, as both the market’s confidence in JP Morgan and banking system overall
recovers. Unlike JP Morgan, the recovery of Citi bank has been less significant. The main reason for
these different recoveries is shown in Figure 2. Although there is a recovery of market’s confidence,
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Figure 1: The maximum amount of funds JP Morgan and Citi banks can raise through stock sale
alone.
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for which we use price-to-book ratio as a proxy, for Citi bank, it has not recovered to its original
level, as compared with JP Morgan’s price-to-book ratio. The continuous low market’s confidence
prevents Citi bank from raising funds through stock sale. Additionally Figure 2 illustrates the dip
in confidence in case a bank decides to raise cash. We observe that for both JP Morgan and Citi,
such a dip is larger during normal times, than during the crisis, as during the crisis the confidence
is already low, and so an additional dip in confidence due to stock sale appears to be less significant
than it would have been during non-crisis times.

5.2.2 The Optimal Strategies to Raise Cash with Stock Sale and Borrowing

Next, we repeat the optimization when borrowing is also allowed. The book-to-price ratio used here

is identical to the book-to-price ratio without borrowing and the price function is the 2nd order
inverse demand price function from Example 3.1.b. For the interest rate, we use the model in (132),
which is exactly the model in Example 3.2.c. For the empirical experiment in this part, we continue
to use aJPM = 1

900 , SJPM = 400 for JP Morgan and aC = 1
450 , SC = 200 for Citi to be consistent

with previous setting, which ensures that the price functions pj(sj , dj , s−j ,d−j), j ∈ {JPM,C}
satisfy Assumption 2.1, and the additional requirements of Example 3.1.b. Additionally, we choose
bj = 1500, Dj = 15, j ∈ {JPM,C} for both banks, which is approximately equal to the market
capitalization sizes (in billions) of the banks during 2008 financial crisis and to match the fact that
a little borrowing has little effect on the stock price. Finally, we choose ε1 = 10−5, ε2 = 10−6 to
ensure that the effects of other banks are not as significant as that of the bank itself. Figures 3 and
4 are plotted based on the above parameters.

Figure 3 provides the optimal function value for each bank. Similar to the scenario in Section
5.2.1, when borrowing is not an option, we observe that both banks experienced a big decline in the
amount of money they can raise during the crash, and both recovered from these lows. However,
Citi’s recovery is only partial as opposed to a more robust recovery by JP Morgan. Figure 4 shows
the maximum amount of funds that can be raised by JP Morgan and Citi through both stock
sale and borrowing component-wise. Recall both stock sale and borrowing, incur costs and reduce
market confidence. Therefore, the actual amounts that can be raised in Figure 3, are the sum of
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Figure 2: Changes in market confidence (price-to-book ratio) of JP Morgan and Citi banks as a
result of stock sale transaction that raises the maximum amount of funds for each of the banks.
The blue solid curves are the market’s confidence of JP Morgan and Citi banks before the stock
sale transaction; the black dashed curves are the market’s confidence of the banks after the stock
sale respectively.
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the red curve and blue curve minus the black dashed curve in Figure 4.
Additionally, comparing Figure 3 with Figure 1, we observe that both banks can raise more funds

when borrowing is allowed, especially Citi. It appears that JP Morgan cannot raise substantially
more funds than before by using stock sale and borrowing together. The main reason appears to be
the significant cost increase that happened after the financial crisis, as is shown in the left graph of
Figure 4. This forces JP Morgan to rely more on stock sale than on borrowing. Moreover, Figure 4
points out that before the crash, the optimal strategy for Citi to raise fund was to sell its stock with
little borrowing, while after the crash it became optimal to rely almost exclusively on borrowing.
This is not surprising, since the government ultimately converted its loan to stock, and signifies a
continuation of low confidence in the bank, as debt holders are reimbursed before the shareholders,
who are always the last to be reimbursed in case of a default. Whereas it is commonly assumed
that Citi’s too big to fail status will prevent any losses to the debt holders. The situation is almost
reversed for JP Morgan, whose balance sheet now implies that it can raise significant funds by
selling stock, due to high market confidence. This in addition to borrowing funds cheaply, likely
partially due to its too big to fail status.

These findings are also supported in Figure 5, which similar to Figure 2 illustrates the changes
to price-to-book ratio (our proxy for confidence) as a result of raising the funds. We observe that
the original price-to-book ratio in Figure 5 reaches the lowest point of about 0.6 for JP Morgan
(which is above 1 for most of the time), while the average price-to-book ratio for Citi after the
crash is only about 0.5 comparing with values over 2, before the crash. The relatively more robust
market confidence of JP Morgan makes it possible for the bank to raise funds through stock sales
even in financial crisis period. Moreover, comparing with stock sale, borrowing is less sensitive to
market confidence, although it still declined during the crash. The change in confidence is very
similar to Figure 2, so even though the amount of funds that both banks can raise is larger, the
corresponding drop in confidence is almost identical, signifying that the fund raising can now be
done cheaper.
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Figure 3: Maximum amount of funds that JP Morgan and Citi banks can raise through stock sale
and borrowing.
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Figure 4: Changes in proceeds from stock sale and borrowing, together with the cost incurred in
a transaction where a maximum amount are being raised by JP Morgan and Citi banks. The red
solid curves are the funds that can be raised from stock sale, the blue solid curves are the funds
that can be raised from borrowing, the black dashed curves are the amount of cost increase of the
transaction.
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Figure 5: Changes in market confidence (price-to-book ratio) of JP Morgan and Citi banks from
a transaction to raise the maximum amount of funds, when both stock sale and borrowing are
utilized. The blue solid curves are the market’s confidence of JP Morgan and Citi banks before the
transaction; the black dashed curves are the market’s confidence of the banks after the stock sale
and borrowing transaction respectively.
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5.3 Assumption Verification

We now verify that Assumption 3.3 holds for the two banks case, where vj , j ∈ {JPM,C} is

constructed as in Section 5.2.2 using the 2nd order inverse demand price function from Example
3.1.b, and the interest rate, we use the model in (132), which is exactly the model in Example 3.2.c.
It is sufficient to check that

−∂
2vj
∂s2j

>

∣∣∣∣∣ ∂2vj∂di∂sj

∣∣∣∣∣+

∣∣∣∣∣ ∂2vj∂dj∂sj

∣∣∣∣∣+

∣∣∣∣∣ ∂2vj∂si∂sj

∣∣∣∣∣ , (133)

−∂
2vj
∂d2j

>

∣∣∣∣∣ ∂2vj∂si∂dj

∣∣∣∣∣+

∣∣∣∣∣ ∂2vj∂sj∂dj

∣∣∣∣∣+

∣∣∣∣∣ ∂2vj∂di∂dj

∣∣∣∣∣ . (134)

In practice in order to raise funds a bank will not sell a handful of stocks, but will have to
sell a substantial amount. Therefore, we assume that for j ∈ {JPM,C} there exists ηj > 0 such
that bank j will not sell less then ηj shares, and we restrict the domain of sj to [ηj , Sj ]. It is not
hard to verify that the results on the existence and uniqueness of the Nash equilibrium in Theorem
3.4 still hold with this additional restriction. Using our findings in Table 1 and the fact that
sj

Nj+sj
< yj , for any (s,d) ∈

∏2
i=1[ηi, Si]× [0, Di], it can be checked that all the second derivatives

∂2vj
∂s2j

,
∂2vj
∂dj∂sj

,
∂2vj
∂si∂sj

,
∂2vj
∂si∂sj

,
∂2vj
∂di∂sj

,
∂2vj
∂d2j

< 0 are strictly negative. Moreover, since the numerical value

of LC , LJPM are about 106, when the parameters aj , bj , j ∈ {C, JPM}, ε1, ε2 are small, then
ηj ≥ Dj and aj > bjDj are sufficient condition for (133) and (134) to hold. Thus, the functions
vj , j ∈ {C, JPM} given in (75) that is being used for the empirical calculation satisfies all the
assumption needed in Section 3.
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5.4 Optimal Strategy for Recovering Shortfall

In this section, we investigate the optimal strategy to minimize the financing costs, while raising

funds to cover a given shortfall. We use the 2nd order inverse demand price function from Example
3.1.b, and the interest rate function from the model in (132), which is exactly the model in Example
3.2.c, together with the parameters, aJPM = 1

900 , bJPM = 1
15000 for JP Morgan and aC = 1

450 , bC =
1

15000 for Citi, together with ε1 = ε2 = 0. These setting guarantee Assumption 4.1 holds. The
values of the parameters are slightly different from the values in Section 5.2, as bJPM , bC are much
smaller and ε1 = ε2 = 0, because in this section the banks are in danger of a default, and their
shortfall is not very big. Therefore, we assume that the stock sale and borrowing done by the other
bank does not affect the bank’s own stock price and new borrowing of the bank does not decrease
the stock price as significantly as in Section 5.2. However, these transactions are still systemic
events as they will affect the overnight interest rate of every bank through decreasing the market’s
confidence/price-to-book ratios.

We assume that the banks (JP Morgan and Citi) need to cover $10 billion dollar shortfall
(M = 10) and set SJPM = 400, SC = 200, DJPM = DC = 10. To satisfy Assumption 4.1, set lower
bound for stock sale to be ηJPM = ηC = 10 for JP Morgan and Citi respectively. That is, the
domains for sJPM and sC are [ηJPM , SJPM ], [ηC , SC ] respectively.

The results are presented in Figure 6. We observe that both banks would have faced high costs
to cover their shortfall around 2008. However, once the Federal Reserve implemented quantitative
easing (QE) policy from the late 2008, the borrowing costs for the banks have significantly decreased.
This ultimately helped Citi to survive the crisis, as it relied on debt financing much more than on
stock sale after the financial crisis 2008. This situation is completely inverted when comparing with
the situation before the crisis, where it was optimal for Citi to rely on stock sale. We attribute this
to the sharp decrease in market’s confidence during and after the crisis.

Figure 7 illustrates the change in confidence for both banks as a result of raising the funds
for covering a given fixed shortfall. We observe that the change in confidence for JP Morgan is
greatest before the crash. So not only the bank’s confidence has recovered after the crash, but also
an emergency fund raising would not lower the confidence as much as it would have before the
crash. In case of Citi bank, the change in confidence is not very significant both before and after
the crash. We hypothesize that before the crisis the market was overconfident, whereas during and
after the crisis the market believes that the bank is too big to fail, and since the majority of funds
are raised by borrowing, those will be repaid in any case.

6 Conclusion

In this paper, we consider the maximum amount of funds that banks can raise either through stock
sales alone, or through both stock sales and borrowing, and the problem of raising funds to cover a
given shortfall. We have created a simple model, incorporating the price-to-book ratio as proxy for
market’s confidence in these optimization problems. We have shown the existence and uniqueness
of Nash equilibrium in all the optimization problems, and performed a time series empirical analysis
of two banks to show how they weathered through the last financial crisis.

Our model is a one step model, in the sense that all actions such as borrowing and selling
stocks are assumed to be instantaneous and happening at the same time. However, in the empirical
section we use it repeatedly at every time periods, to try to repeatedly answer the same question
for each of the periods. We leave the work of an extension of the model to a truly dynamic one for
future research.
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Figure 6: Changes in proceeds from stock sale and borrowing, together with the cost incurred in
a transaction to cover a given shortfall by JP Morgan and Citi banks. The red solid curves are
the funds that can be raised from stock sale, the blue solid curves are the funds that can be raised
from borrowing, the black dashed curves are the amount of cost increase of the transaction.
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Figure 7: Changes in market confidence (price-to-book ratio) of JP Morgan and Citi banks from a
transaction to cover a given shortfall, when both stock sale and borrowing are utilized. The blue
solid curves are the market’s confidence of JP Morgan and Citi banks before the transaction; the
black dashed curves are the market’s confidence of the banks after the stock sale and borrowing
transaction respectively.
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Anne-Caroline Hüser. Too interconnected to fail: A survey of the interbank networks literature.
Journal of Network Theory in Finance, 1(3):1–50, 2015.

Giulia Iori, Saqib Jafarey, & Francisco G Padilla. Systemic risk on the interbank market. Journal
of Economic Behavior & Organization, 61(4):525–542, 2006.

Javier Mencia. An empirical analysis of the impact of ratings on the prices and risks of interbank
loans. Browser Download This Paper, 2009.

Erlend Nier, Jing Yang, Tanju Yorulmazer, & Amadeo Alentorn. Network models and financial
stability. Journal of Economic Dynamics and Control, 31(6):2033–2060, 2007.

31



Yalman Onaran. Can we survive the next financial crisis? 2018. www.bloomberg.com/graphics/

2018-lehman-anniversary/.

Jinhan Pae, Daniel B Thornton, & Michael Welker. The link between earnings conservatism and
the price-to-book ratio. Contemporary Accounting Research, 22(3):693–717, 2005.

Jean-Charles Rochet & Jean Tirole. Interbank lending and systemic risk. Journal of Money, credit
and Banking, 28(4):733–762, 1996.

J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econo-
metrica: Journal of the Econometric Society, pages 520–534, 1965.

Jeremy Staum. Counterparty contagion in context: Contributions to systemic risk. In Handbook
on Systemic Risk, pages 512–548. Cambridge University Press, 2013.

Lorne N Switzer & Jun Wang. Default risk estimation, bank credit risk, and corporate governance.
Financial Markets, Institutions & Instruments, 22(2):91–112, 2013.

Christian Upper. Simulation methods to assess the danger of contagion in interbank markets.
Journal of Financial Stability, 7(3):111–125, 2011.

Maria Vassalou & Yuhang Xing. Default risk in equity returns. The journal of finance, 59(2):
831–868, 2004.

Stefan Weber & Kerstin Weske. The joint impact of bankruptcy costs, fire sales and cross-holdings
on systemic risk in financial networks. Probability, Uncertainty and Quantitative Risk, 2(1):9,
June 2017.

32

www.bloomberg.com/graphics/2018-lehman-anniversary/
www.bloomberg.com/graphics/2018-lehman-anniversary/

	Introduction
	Optimal Strategy Raising Funds by Selling Stock
	Optimal Strategy Selling Stock and Borrowing
	Optimal Strategy to Recover Shortfall
	Empirical Analysis
	Estimate Overnight Interest Rate Function
	The Optimal Strategies to Raise Cash
	The Optimal Strategies to Raise Cash only with Stock Sale
	The Optimal Strategies to Raise Cash with Stock Sale and Borrowing

	Assumption Verification
	Optimal Strategy for Recovering Shortfall

	Conclusion
	Acknowledgement

