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ABSTRACT

In the simulation of biological pattern forming, it has been observed that the numerical solution is more sensitive
to the spatial mesh resolution than the temporal one. Such a higher sensitivity to the spatial resolution is
mainly originated from an inaccurate approximation of diffusion differential operators, which might violate
the rotational symmetry to be seriously erroneous in low spatial resolutions. Also, it has been known that the
second-order Crank-Nicolson time-stepping procedure may introduce spurious oscillations when the initial data
or the source term is nonsmooth and the temporal step size is set relatively large. This article studies 9-point
finite difference schemes for the diffusion operator to enhance the rotational symmetry, employs the variable-0
method to achieve a nonoscillatory second-order time-stepping procedure, and adopts an effective relaxation
linear solver to solve the algebraic systems efficiently. The variable-0 method is proved to satisfy the maximum
principle, which guarantees that the time-stepping procedure is unconditionally stable. When the successive
over-relaxation method with an optimal relaxation parameter is adopted for the algebraic solver, the iteration
converges in 2-4 iterations in most time steps. The overall algorithm is second-order in accuracy and scalable
in efficiency. Various examples are given to show the accuracy and efficiency of the proposed algorithm for the
numerical solution of the system of nonlinear reaction-diffusion equations.

1. Introduction

which is often nonlinear with respect to u. In this article, we consider
the RD systems with d =2 to investigate accuracy issues, concerning

Let Q be a connected, bounded open domain in R¢ with a piecewise
smooth boundary I' = 0Q. Let J = (0, T] for T > 0. Consider the following
system of reaction-diffusion (RD) equations for u = [u,u,, ... ,um]T, m>2:

Ju

E—DAu:f(u), QxJ,
u_y, r'xJ, a.n
v
u(x,0) =u’, Qx {r=0},

where u; are real-valued functions, D = diag[D,, D,. ..., D,,] is the dif-
fusion tensor whose elements D,’s are strictly positive constants, A
denotes the Laplace operator, d/dv is the outward normal derivative
on the boundary I, and f(u) is the reaction kinetics of the system given
as

f = [, @), ..., f,]", (1.2)

* Corresponding author.

approximations of spatial derivatives in high dimensions.

Since Turing [19] proposed an RD problem to explain biological
pattern formation in 1952, there have been many efforts to solve RD
problems numerically. In [21], Zegeling and Kok proposed an adaptive
moving mesh method and its application to RD models, and Madz-
vamuse [14] integrated it with a special form of linearization of the
reaction terms and a second-order semi-implicit backward differenti-
ation formula. McCourt et el. [15] provided numerical results for an
RD problem (the Geirer-Meinhardt model) by employing a high-order
spectral collocation method. Then the spectral method was collaborated
with finite volume technique by Shakeri and Dehghan [17]. Recently,
Fernandes and Fairweather applied the orthogonal spline collocation
method to solve RD problems and also introduced a time-stepping pro-
cedure integrated with alternating direction implicit (ADI) methods; see
[3-5].
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In 2020, the authors [10] introduced a nonoscillatory second-order
time-stepping procedure called the variable-0 method, as a perturba-
tion of the Crank-Nicolson (CN) method, for the numerical solution of
parabolic problems of nonsmooth data. Then, in [11], we performed a
sensitivity analysis for the numerical solution of one-dimensional (1D)
biological pattern formation problems and concluded that the accuracy
of the numerical solution might be much more sensitive to the spa-
tial mesh resolution than the temporal one. Also, it was experimentally
verified that the sensitivity to the spatial resolution might introduce un-
desirable numerical solutions in low spatial resolutions and deteriorate
biological patterns.

For 1D cases, this sensitivity issue can be well-explained via grid
effect. That is, the accuracy of the numerical solution degenerates when
the spatial spacing becomes large (low resolution) compared with a
desired characteristic length of reaction and diffusion. However, in two
and higher dimensions, biological patterns can be affected not only by
the grid effect but also by whether or not the approximation scheme
enforces the rotational invariance. The property of rotational invariance
is often translated into rotational symmetry in the finite difference (FD)
discrete domain [13]. It has been numerically verified that the standard
FD approximation of the Laplace diffusion operator may fail to hold
rotational symmetry in biological pattern formation.

In this article, to study the effect of rotational symmetry, we per-
form a sensitivity analysis of two-dimensional (2D) RD problems with
various FD approximations for the Laplace operator. In order to investi-
gate the spatial sensitivity issue, we study the averaging scheme A, for
the approximation of the negative Laplacian (—A), which is defined as
an average of the standard 5-point scheme A, and the skewed 5-point
scheme A,:

Ag=ad, +(1 —a)A,. (1.3)

It has been numerically verified that such an averaging scheme can
effectively suppress certain deterioration in biological patterns; the av-
eraging scheme lets the numerical solution evolve in desired biological
patterns. An effective strategy is considered to optimize the averaging
parameter «, which minimizes the leading truncation error of the Lapla-
cian approximation.

In addition to incorporating the averaging scheme, the resulting
algorithm for solving the nonlinear RD problem is equipped with an ef-
fective extrapolation for the linearization of nonlinear source terms and
the variable-6 method for time-stepping, which is effective particularly
when a larger time step or a lower spatial mesh resolution is desir-
able. The variable-6 method is a variant of the CN method (6 = 1/2), in
which 0 =1 at grid points where the numerical solution shows a certain
portent of oscillations. This article proves that the variable-9 method
satisfies the maximum principle unconditionally, i.e. for all choices of
spatial and temporal grid sizes.

The article is organized as follows. The next section presents a
brief review on state-of-the-art FD methods for nonlinear RD systems,
and their accuracy issue concerning rotational symmetry is discussed
by exemplifying a biological pattern problem in 2D. In Section 3, an
averaging scheme for the Laplace operator is suggested to enhance
the rotational symmetry of the numerical solution. Then, an effective
time-stepping procedure is formulated the averaging scheme and the
variable-0 method. Section 4 states and proves the maximum principle
for the variable-9 method incorporated with the averaging scheme. Sec-
tion 5 discusses an optimization procedure for the averaging scheme,
which minimizes the leading truncation error of the Laplacian approx-
imation. In Section 6, numerical examples are included to verify the
effectiveness of the suggested methods. Section 7 concludes the article
summarizing our experiments and findings.

For error analysis, the accumulated L?-error E,[0,T] is measured
over the whole time period (7 € [0, T]) and the eventual L*-error E_[T]
is measured at the last moment (r =T7):

ny
E[0,T):=7 ) [u" -, and Eg[T]:=u" -@",

n=1

1.4

192
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where 1 is the exact solution (or a desirable solution),
,\1/2
lully == (e, 3 luyl?) . and e = maxu |
ij

Here h, and h, are respectively the x- and y-directional spatial step
sizes and 7 is the temporal step size.

2. Preliminaries

This section presents a brief review on state-of-the-art FD methods
for nonlinear RD systems and certain accuracy issues related to spatial
approximation.

2.1. FD schemes for the second-order spatial derivatives

We begin with FD schemes for the negative Laplace operator —A. Let
Q be a rectangular domain in R?*: Q = (a,,b,) X (a,.b,). By partitioning
Q x J, we obtain the space-time grid points

(Xijvln) = (xi,yj,ln)§

(2.1)
i=0,1,,ne, j=0,1,--,n,, n=0,1,-,n,
where n,, n,, and n, are prescribed positive integers and
X;=ay+i-hy, yj=a,+j-h, t"=n-1
h. = bx —ay _ by - ay I (22)

x n, 7 n, n,

Define the discrete domain, the set of the spatial grid points, by
Qu=1{(xpy): 0<i<n,, 0<j<n}, 2.3

and denote the set of boundary grid points by I'; = Q, NTI" and the set of
interior grid points by 92 =Q,\TI',. Moreover, we define gl."/. 1= g(x;;,1")
for all functions g defined in (x,1).

For convenience, we assume the uniform grid 4, = h, = h. Then, the
Taylor series gives us the following FD approximations for each grid
point x;; = (x;,y;). The standard 5-point FD approximation A, of —A
(=—-0% - 05) reads

—Ui_y ;= Uy AU — U
n2

where the truncation error £,

Gl (2.4

Aju; =

; at the grid point x;; = (x;,y;) becomes
h? 4
Erij= E(uxxxx +uyy,) + O7).

On the other hand, applying a 45°-rotated FD approximation to the
negative Laplacian operator, we can obtain the following skewed 5-
point scheme:

—Ui_pjo1 ~ Wimy gt T AU — Uiy e~ Ui
2h?

where the truncation error &, ;; is

Ay, = , (2.5)

h2
0T 12
When averaging A, and A, with the weight « =2/3, we obtain the
9-point FD approximation of the Laplacian known as the Mehrstellen
discretization [1]:

&y (tyex + Oty + Uy) + ORY).

2 1
—Au;; = §A+u[j+§AXu[j+5ij
1| -4]|-1 (2.6)
1
= @ —-4120 | -4 ul-j+£Mw,-j,
1] -4]-1

where the truncation error &, ;; reads



P. Lee, G.V. Popescu and S. Kim

(I1)

0
X

Computers and Mathematics with Applications 109 (2022) 191-203

(I3)

0
X

Fig. 1. Numerical solutions for Gierer-Meinhardt model (2.8)-(2.9) of the steady-state (T = 500) approximated by the standard 5-point scheme at the fixed time
step 7 =0.01 and various spatial resolutions. Each image column I, represents the numerical solution and its aerial view obtained with the spatial resolution

n,=n, = 502771,

h2

Enrij = 5 Whuxcr + 2y FUyy0) + o).

Note that the leading truncation error of the Mehrstellen discretization
coincides with a scaled biharmonic operator:

h2

B2 K
12

2
A(Au).

o,
A
D)

12 2.7)

L e

Thus, for harmonic (Au = 0) and biharmonic (A%u = 0) solutions, the
Mehrstellen discretization can achieve the fourth-order truncation er-
ror. Moreover, it is known that Mehrstellen discretization can give the
best approximation of rotational invariant when it applies to the heat
equation; see [13] for details.

2.2. Accuracy issues on the spatial resolution

As pointed out in one of the authors’ earlier publications [11], the
accuracy of the numerical solution is much more sensitive to the spatial
mesh resolution than to the temporal one. This sensitivity phenomenon
might be significant in low spatial resolution (of large 4), in which the
RD process does not have enough time to grow to reach the margins of
the spatial mesh. In this case, the RD pattern deteriorates and neither
evolves in an appropriate speed nor reaches a condition to replicate it-
self on time; see [7, §4.2] for similar observations. To investigate this
issue, we carried out a sensitivity analysis with the Gierer-Meinhardt
model in 2D, applying two different numerical methods: the standard 5-
point scheme and the ADI extrapolated Crank-Nicolson orthogonal spline
collocation (CNOSC) method [4]. The CNOSC method is a state-of-the-
art algorithm for the numerical solution of various scalar transient
problems [2-5,12].

The Gierer-Meinhardt model [6] is a two-component RD system de-
fined in Q = (-1, 1)* with the following reaction kinetics:

1 u% T
W]

We employ the following parameters and initial conditions used in [16]:

2
D=[e%x/ul", fu)= [Z—l —u, (2.8)
2

€=0.04, u=0.1, x=0.0128,

2¢

20
u (x,y,0) = % [1 +0.001 Zc:os (%
k=1

cosh(l — \/m)

3cosh(1)

ot (L),

(2.9)
uy(x,,0) =

Fig. 1 and Fig. 2 present the numerical solutions associated with the
Gierer-Meinhardt model (2.8)-(2.9) at the steady-state at T = 500, vary-
ing spatial resolutions, respectively for the standard 5-point scheme and
the CNOSC method with r = 3. Here, for simplicity, we restrict our atten-
tion to the dynamics of u; of the model. We set the time step size 7 = 0.01
and choose the comparable numbers of spatial grid points for the two
methods: n, =n, =50 - 2¢-1, ¢ =1,2,3. In both figures, one can ob-
serve that the numerical solutions in the lowest resolution (Figs. 1(1;),
2(J,)) show quite different steady-state patterns from the patterns of
the higher resolutions (Figs. 1(1,, I3), 2(J,,J3)). It should be noticed
that the CNOSC method has produced an unreliable steady-state pattern
in the low spatial resolution, although it is of fourth-order accuracy in
spatial direction. We can see from the example that higher-order spa-
tial schemes may not be advantageous over the second-order scheme,
when the spatial resolution is low.

For RD problems in 1D, the sensitivity to the spatial resolution can
be explained by the grid effect. For an accurate solution, it requires the
spatial spacing to be small (high resolution) compared with a desired
characteristic length of physical evolution. Thus, as aforementioned, the
RD patterns can be deteriorated mostly by the grid effect, in low spatial
resolutions. However, in two and higher dimensions, the RD patterns
can be deteriorated by not only the grid effect but also the asymmetry
of the approximation schemes. The Laplacian is rotationally invariant
in two and higher dimensions; however, its numerical approximation
may not guarantee the rotational invariance, depending on the point
stencil utilized in the scheme. Effective schemes for the Laplace opera-
tor should be designed to enhance the rotational symmetry as much as
possible. To enhance the symmetry, we consider the averaging scheme
(1.3), with the parameter « being selected adaptively; see Section 5 for
details.
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Fig. 2. Numerical solutions for Gierer-Meinhardt model (2.8)—(2.9) of the steady-state (T = 500) approximated by the CNOSC method computed with r =3 at the
fixed time step = = 0.01 and various spatial resolutions. Each image column J, represents the numerical solution and its aerial view obtained with the mesh resolution

n,=n, = 502771,
3. The time-stepping procedure

In this section, we introduce an effective time-stepping procedure
for the nonlinear RD system (1.1). The resulting algorithm involves an
averaging scheme for the Laplace operator to enhance the rotational
symmetry, takes the linearization through extrapolation as introduced
in [4], employs the variable-6 method in [10] to achieve a nonoscilla-
tory time-stepping procedure, and adopts an effective relaxation linear
solver to solve the algebraic systems efficiently.

3.1. The averaging scheme for the Laplace operator

First, we would recall an approximation .4, for the negative Laplace
operator, which is derived from averaging .4, and A, as follows: for
O<a<l,

Aty =aA u;+ (1 —a) Ay u;;

-1
4
-1

-1 -1

l—a (3.1)
-1 -1 ui1+W

-1 -1

Then the negative Laplacian at the grid point x;; can be written as

-14+a —2a —-l1+a
—Au;; = Y] —2¢ |4(+a) | —2a |y;
-1+a —2a -l1+a (3.2)

h2
+ 5 [t + 61 — ity + 11y, + OHH).

Here, it is noticeable that the averaging scheme becomes Mehrstellen
discretization when a =2/3.

In [8], Jo, Shin, and Suh proposed the above averaging scheme for
the numerical solution of the Helmholtz wave equation. They gave an
optimized parameter by minimizing the numerical dispersion error of
the phase velocity. Their optimal averaging scheme with 5 points per
wavelength could achieve the same accuracy as the standard 5-point

scheme with 10 points per wavelength. Also one of the authors intro-
duced a fourth-order 9-point compact scheme for the Helmholtz wave
equation by employing the method of modified equations [9]. However,
for nonlinear RD systems, it is difficult to derive mathematical formu-
las for such optimal averaging (or fourth-order compact) schemes. We
will discuss an effective numerical strategy in Section 5 for an optimal
averaging parameter for the nonlinear RD system (1.1).

3.2. The extrapolated relaxation algorithm

Let u” be the numerical solution at the n-th time level, n > 0. For the
numerical solution in the (n+ 1)-th level, we first extrapolate numerical
solutions in the two previous levels to approximate the solution at an
intermediate point 1"+ = (1 + )" — 91"*1:

'l =(1+40)u" —ou"!, (3.3)
where u~! = . For example, for 6 = 1/2,
gl . 3wt (3.4)
2
See [4] for details of second-order extrapolation schemes.
Recall the averaging scheme:
—1+a —2a —1+4+a
1
Agujj = Y 2 | 4(+a) | 20 |u; ~ —Au;. (3.5)
—1+4+a —2a —1+a

Then the time-stepping procedure for the system of RD equations (1.1),
incorporating the linearization through extrapolation (3.3) and the pro-
posed averaging scheme A, simply reads:

un+1 —

n
L =W L DA6u"™! + (T - 0" = @), (3.6)
T

where u" = [u'l',u;,
0,,...,6,1.

..,u" T, D =diag[D,D,,...,D,], and 0 = diag[6),
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The linearized problem (3.6) can be resolved by solving for m sepa-
rate components: u’l’“,ug“, ’MZH' Each component in (3.6) is formu-
lated as follows:

urH—l —u

% + DA6uH + (1= Ol ] = £ @)

3.7)

ij>

where u, D, 6, and f denote respectively u;, D;, 6;,, and f; for I =
1,2,...,m. We rewrite (3.7) in a vector form as

(I +0tDA U™ =[I — (1 = )t DA " + 7 f@"9). (3.8)
Define
B,=1+01DA,,
Ro=1-(1-0)tDA,, (3.9)
" =R u" +Tf @)

Then (3.8) reads

B =" (3.10)
It is often the case that relaxation methods solving an algebraic sys-

tem begin with a regular splitting of the coefficient matrix B,. Given an

initialization

un+l.0:2un —Mn_l, (311)

and a regular splitting

By=M,—N,, (3.12)
a relaxation algorithm for (3.10) can be formulated as
fork=1,2,-
for x; € Q)
7]_+1,k = [l M e = Bt ] e RA)
end
end
(3.13)

Remark 3.1. It has been well known [20] that if B= M- N is a regular
splitting and B! > 0, then the spectral radius of the iteration matrix
(M~'N =1 — M~'B) is strictly less than 1. That is,

p(B~'N)

71 _
PMENY = T <

(3.149)
Thus relaxation methods of regular splittings (such as the Jacobi, the
Gauss-Seidel (GS), and the successive over-relaxation (SOR) iterations)
are all convergent. In this article, we will utilize the SOR with an op-
timal relaxation parameter, because of the following three reasons. It
is simple to implement, not difficult to find an optimal parameter, and
convergent faster than most of modern sophisticated algebraic solvers,
particularly for such an evolutionary problem (1.1).

4. Maximum principle for the variable-60 method

In this section, we analyze the maximum principle for the variable-0
method. In the absence of sources and sinks, it is known mathematically
and physically that the extreme values of the solution appear either in
the initial data or on the boundary. This property is called the maximum
principle. Once a numerical algorithm satisfies the maximum principle,
its numerical solution will never introduce interior local extrema. Thus
the maximum principle guarantees the stability of the algorithm.

Computers and Mathematics with Applications 109 (2022) 191-203

4.1. The variable-0 method

Prior to proving the maximum principle for the variable-6 method,
we briefly describe the variable-0 method presented by the authors in
[10]. The method takes the advantage of the CN method (6 =1/2; a
second-order accuracy in time) and the implicit method (6 = 1; the im-
munity to spurious oscillations). It is well-known that the CN method of
a second-order accuracy may introduce spurious oscillations near non-
smooth data points. In order to suppress the undesirable oscillations,
the authors simply allow the parameter 6 to become a variable; § =1 in
the vicinity of nonsmoothness, while § remains 1/2 at other grid points.
It is claimed that spurious non-physical oscillations of the CN method
arise from its explicit half step.

The wobble set is defined as the collection of grid points showing
non-physical oscillations so that the grid points would be treated by the
implicit method (0 = 1) to resolve the oscillations. In order to determine
it, an effective strategy is introduced as follows.

For simplicity, we begin with a linear heat equation in 1D and its
#-method with an appropriate FD approximation A of —d,,:

ou—oyu=f, 4.1)
(I +0r "™ =[I - (1 - ) Al" + [0 (4.2)
Recall the explicit half step of the CN method and denote it as
n+ls — _r n
u _(1 2A)u. (4.3)
Define an index function for local extrema (idxt) as
0, if min(a,c) < b < max(a,c),
1, if b=max(a,c),
idxt(a,b,c)=< —1, if b=min(a,c), 4.4)
2, if max(a,c)<b,
-2, if b<min(a,c).

Then, the wobble set of 4" is defined, to be used for the computation of
un+l ,as

Wi, = {xeE1D] axe

+1,5%
) £0 and

(4.5)

i-1 7 i+l

|idxt(u"+l”'F ytHLE gy idxt(u;’_l,u,'.’,u['.'ﬂ)) < 4} R

where u"+!* is the result of the explicit half step of the CN method given
in (4.3). Thus the wobble set in 1D is a collection of interior points x;
where u;"H’* becomes a local extremum while ! is either a non-extreme
value or an extremum in the opposite sense. The wobble set in (4.5)
excludes cases where a strict extremum in «" becomes a strict extremum

in the same sense as in u"*!*; that is,

n+1,%
i—-1

n+1,%
(e}

n+1,s% . n non _
Ui )+1dxt(u‘._1,ui,ui+1) =4.

idxt(u (4.6)

The above 1D wobble set can be easily expanded to the 2D case
by considering the four partial directions as in Fig. 3. Applying the 1D
wobble scheme (4.5) to the four partial directions; if at least one of
the directional lines wobbles, then we regard the point x;; as a wobble
point. Let P, Q, and R be point indices and define

iswb(P,Q, R,n)

1, if idxt(u'}',+l’*,u'g’l’*,u;’:l’*);éO and

= |idxt(u'p'l’*,u"QH’*,u"RH’*) + idxt(u'l’,,u”Q,u"R) <4, 4.7)
0, otherwise.
Then, the wobble set (for the computation of «"*!) is defined as
wi = {x; €Q) | iswb[(i,j— 1), (i, ), (i, j+ 1), nl =1
or iswb[(i—1,j—1),(,j),(i+1,j+1),n]=1 (4.8)

or iswb[(i—1,)), (i,)), (+1,/), n] =1
or iswb[(i—1,j+ 1), (i, j). (i+1,j—1),n]=1}.




P. Lee, G.V. Popescu and S. Kim

i-1, j+1 i, j+1 i H

i-1,j S B il
J \, J ’ J

Fig. 3. The eight vicinal points of x;; and four partial directions.

Once the wobble set is determined, the parameter 0{.’;’1 for the com-
putation of 4"*! can be assigned pointwisely

1 if x;; e W
n+1 = n+1 — ) ij ’
Oij 0,y 1) { 1/2, otherwise. (4.9)
Then the variable-0 method is formulated as
utr +07)
=< 2 - L+ AL (1= 0 "]—f (4.10)

4.2. The maximum principle

Now, we analyze the maximum principle for the variable-0 method.

Theorem 4.1. The numerical solution of the variable-0 method (4.10) with
the standard 5-point scheme A, to the heat equation satisfies the maximum
principle unconditionally (i.e., for all choices of spatial and temporal grid
sizes).

Proof. For simplicity, we first consider the 1D heat equation, without
the source term:

Oju— 0,,,u=0. (4.11)

Define grid points as in (2.2) and let u = z/h* > 0. Then, for fixed 0 <
i <n,, 0<n<n,, the variable-9 method with the central spatial scheme
for (4.11) can be expressed as

A +207 = 07 @ 4w + (= 0 D!+, )

+1=2(1 = 0™ plul, (4.12)
where 9;’“ is either 1 or 1/2.
Case A: 9:""1 =1. In this case, (4.12) becomes
U+ 2™ = p@™ !+t +ul. (4.13)
Since u*! is an average of its neighboring values {u™!, u"*!, 4"} with

i—-1 i+l

positive weights, /"' can be a local maximum or minimum only if all
three neighboring points have the same maximum or minimum value.
That is, the implicit time-stepping method (0 = 1) does not introduce
strict local extrema to the numerical solution for all x > 0.

Case B: 9:’“ =1/2. In this case, (4.12) reads

n+l1
i

(g™t = B! a4, (4.14)

i+1

where

Computers and Mathematics with Applications 109 (2022) 191-203

un+1,* _ ﬁ(

,_ : (4.15)

n n n
u;_, +ui+1)+ (1= pwu.

If 9"“ =1/2, then x; ¢ Wl D where Wl"D is the wobble set defined in

(4. 5) Thus we have the following two possible cases: either (4.6) is
satisfied or

n+1,x n+l,*}<u:1+l

n+lx  ntlx }
> i+l

mm{u <max{ui_1 Uiy (4.16)

B-1. Assume that (4.6) is satisfied. Suppose that u! is a strict local maxi-
mum. Then /| <u and therefore

u?“’* = g(u"_ +ul, )+ (= puf < pu! + (1= pu =l 4.17)
Thus, utilizing (4.14), we have
u™ < max{u™!, ut u;'“‘*} < max{u™], ut ut). (4.18)

i—-17 i+l i-17 i+l

Suppose that u] is a strict local minimum. Then, using the same
arguments, we have

n+1 n+1 n+l»

e (4.19)

"+' > min{u™) } > min{u™!, u't] ul}.

i—17 T+l
Now, one should notice that u:’“ is obtained by the implicit half
step of the CN method (4.14), which does not introduce strict local
extrema as shown in Case A. Thus, for both (4.18) and (4.19), u,'.‘“
cannot have a value outside the interval

n+l o on+l n+1*
i-1’ 1+1’ i

n+l o n+l

n+1,%
),

[min{u/ }, max{u!"
Thus, it follows from the second inequalities of (4.18) and (4.19)

that u:’“ cannot be outside the range of its neighboring values

n+l  n+l n+1,%
2y iy u

same sense.

u!'}, when u! and u; are strict local extrema in the

B-2. Assume that (4.16) holds. This case represents the largest set of grid
points for locally-smooth nonconstant solutions, where the solution
is most likely monotone locally. Here the main task is to prove that

1
ul*

is not a strict local extremum, when (4.16) holds. (4.20)

When x; is an interior point of the set, it is clear to see it, because
the implicit half step of the CN method (4.14) does not introduce
local extrema to the numerical solution.

Let x; be an edge point of the set; that is, at least one of x,_; and
X;41 is in the wobble set. In this case, a mathematical analysis for
the task (4.20) is hard to be carried out explicitly due to the nature
of implicit equations. For example, let x;,_; be in the wobble set
(elf’jll =1). Then it follows from (4.13), (4.14), and (4.15) that

(1+2”)un+1 - /'4( n+1+un+])+un "

" (4.21)
U™ = 2 D+ S +ul, )+ (L= .
Thus, with one more implicit equation defined at x;,, u"*! is re-
lated to 9 neighboring values: {u,'.’:jl lj=-2,-1,12}, {ul, | k=

-2,---,2}, each of which again related to its neighboring values.
Thus we decided to prove (4.20) numerically.

As a numerical test, we consider the following 1D parabolic equation
of a discontinuous initial condition on [—1,1]:

du—0,u=0, (x.0)e(-1,1)x[0,T],
1 if x| <05,

u(x,0)=uy(x)=4 0.5 if |x|=0.5
0 if |x|>0.5.

(4.22)

The Dirichlet boundary condition is set to satisfy the analytic solution
given in [18]:
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Fig. 4. The solutions: u" (black dotted) and u"*' (black solid), intermediate solution «"*'* (blue dashed), and variable 0"+ (red asterisk marker) to the problem

(4.22) at the time step: (a) n=2 and (b) n=3.

(x,0) €[-1,11x[0,T].

o
u(x, 1) = 1 42 Z(_l)k cos w(2k + 1)x 67”2<2k+1)2t,
2 & 2k +1)

(4.23)

Fig. 4 exhibits numerical solutions, ¥” and »"*!, the intermediate
solution u™**, and #"*! at the time steps n =2 and n =3, for h =0.04
and 7z =0.1. One can check from the figures that ”?H never involves a
strict local extremum at points where (4.16) holds, which proves (4.20)
experimentally. It has been verified from various numerical tests that
the claim (4.20) is true.

The above proves (partially experimentally, though) that the
variable-0 method does not introduce an interior local extremum to
the numerical solution of 1D heat equation (4.11) for all choices of
u > 0. Thus the variable-0 method satisfies the maximum principle un-
conditionally. One can apply the above arguments for the 2D case. []

It is hoped that readers having advanced mathematical insights can
prove it mathematically.

Remark 4.2. The wobble set W{’D in (4.5) can be defined as

NS +1 % +1, +1,
W= {x € (=1, )| [axt@™ 1 W™ 1) 0
or 1dxt(u ,u H_1)91E0]
+1, +1, +1,
and ‘1dxt(u” T ,"+] M)+ idxt@! | .u ;’+1)|<4}.
(4.24)
When x; ¢ V/\\?;“D, we have
: n+1,s% n+1>x n+1,% ntlx  ndl
[mln{ui_1 TN }<u <max{u U }
and min{u! .} <u < max{u"“* u:’rll’*}], or (4.25)
1dxt(u”+1*,u7+l* :':11*)+1dxt(ul ol D=

i n An
It is clear to see that wip, cwi,

observably different in practice, because it is occasional for W\I'D to
include more points than W/ ; the extra points are quite few.

. However, their performances are not

Like the standard 5-point scheme, the averaging scheme A, is an
approximation of the negative Laplacian by using a weighted sum of
the standard 5-point scheme and the skewed 5-point scheme. Hence,
the same arguments in the proof of Theorem 4.1 can be extended for
the variable-9 method with the averaging scheme A, for 0<a <1.

Corollary 4.3. The numerical solution of the variable-6 method (4.10) with
the averaging scheme A, for 0 <a <1 to the heat equation satisfies the
maximum principle unconditionally.

5. The optimal averaging parameter o

In this section, we will try to derive an optimal averaging parame-
ter which minimizes the leading truncation error. Since the variable-6
method is a variant of the CN method, to focus on the effect of the opti-
mal parameter, we restrict our interest to the truncation error of the CN
method (0 = 1/2) with the averaging scheme. Then the leading trunca-
tion error simply reads

h? 72
E [uxxxx + 6(1 - a)uxxyy yyyy] - ﬂum
G.1D
h o, 72
=10 [A u+@4- 6a)uxxyy] = gt
where we have utilized the identity A%u=u, . +2u.,, +u,,,. To

choose a which make vanish the leading error, we consider the fol-
lowing equation: for y =7 /h,

r
2
Solving (5.2) for a, we obtain

APu+(4— 60ty yyy — Sty = 0. (5.2)

20%u -y uy,

12uyy,

a= (5.3)

+2
3

Let

. 5 no.,
Then, since o,u" ~ u, + u,,,, we have

24

24 —
Uy & E(O,u" —uy).

5.4

Thus it follows from (5.3) and (5.4) that the parameter «a in the n-th
level becomes

h2A2u —12(0,u" —u")

o +2
6h2 uxiyy *3 ©.5)
h?A%u - 12(0,u" — DAU" — f(u") 2
= +=.
6h2u 3

xxyy

Define discrete operators of a second-order accuracy

A~ —u,, and Au~ —u

yy:
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Fig. 5. (@) @" —2/3-1 att=0.1 (n=10) and (b) average(@") — 2/3 on the 50 time steps.
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Table 1

Accumulated L2-errors E[0,T] and CPU-time for
the problem associated with (5.8) and (5.9)
at T = 0.5 and the mesh resolution (r,h) =
(0.01,0.05) for a =1, 2/3, and &".

e=10"% a=1 a=2/3 a’
L*-error  865-107  6.36-107  6.07-1077
CPU 1.09 1.52 1.60

Then, by approximating (5.5), we obtain the optimal parameter matrix
" at the n-th time step as follows.
. WAL - 12(,u" — DA " — f(u™)

a
6h% A Au"

2
+ 3 (5.6)

In practice, we must restrict entries of a” between 0 and 1,

[a"];; = min(max([a"];;,0), 1),

and apply an appropriate smoothing operator S (e.g., Gaussian 5 x 5
filter with ¢ = 1.0) to attain a reliable smooth parameter matrix:

&"zS( >+

Now, we will verify the effectiveness of the optimal parameter (5.7)
with the numerical solution of the heat equation:

R2A2u" = 12(0,u" — DA u" — f(u™)
6h2 A A un

(5.7)

[SSERS)

ou—Au= f(x,y,1), (5.8)

where the source term f, and the initial and boundary condition are set
corresponding to the analytic solution given by

—2721

u(x,y,t)=e sinzxsinzy, (x,y,f) €[-0.25,0.75]*> X [0, T]. (5.9)

Here we have set an asymmetric domain [-0.25,0.75]> to add an asym-
metry to the numerical solution; we have selected the heat equation
(a linear problem) to focus on the discretization error of the averaging
scheme, without being mixed by the error from nonlinear terms.

For three choices of « = 1,2/3, and a", Table 1 summarizes the
L?-error E,[0,T] and the CPU-time for the problem associated with
(5.8)-(5.9) at T = 0.5, when grid sizes (r, ) = (0.01,0.05). One can see
from Table 1 that the error of Mehrstellen discretization (a =2/3) is
smaller than that of the standard 5-point scheme (a = 1); the optimal pa-
rameter @" shows a slightly smaller error than the error of Mehrstellen
discretization. The optimal procedure consumes more CPU-time com-
pared with the other two fixed parameters, due to the extra computation
of the optimal parameter matrix.

Fig. 5 shows a" —2/3 - I, the difference between optimal parameter
matrix a”" and 2/3 (Mehrstellen) at = 0.1, and the difference between
the averages of & and 2/3 on the 50 time steps. One can see from the
figure that all the differences are pretty close to zero.

We have found from various experiments that the fixed averaging
parameter employed in the Mehrstellen scheme (a =2/3) is effective
enough to represent the variable optimal parameter @". In the rest of
the article, the fixed parameter a =2/3 will be utilized as the optimal
averaging parameter, unless otherwise indicated.

6. Numerical experiments

In this section, we present numerical experiments to show the ef-
fectiveness of the proposed method, the averaging scheme incorporated
with the variable-6 time-stepping procedure, in both accuracy and ef-
ficiency. The algorithm is implemented in Matlab and carried out on a
Desktop computer of AMD Ryzen 7 PRO 4750U 1.7GHz (4.1GHZ) pro-
cessor with 16.0GB RAM. For a comparison purpose, we also implement
the CNOSC method [4]. For the algebraic solver, we employ the SOR
with the near-optimal parameter studied in [11, §4]. The SOR itera-
tion is stopped when the maximum difference of consecutive iterates
becomes smaller than a prescribed tolerance,

”un,k _ un,k—l ”oo <e, (61)

where we set £ = 1078, We set « =2/3 for the averaging scheme. The
elapsed time is measured in second and denoted by CPU.

6.1. Convergence analysis

We begin with a convergence analysis for the proposed method.
Consider a heat equation in 2D.

ou—Au= f(x,1),
u(x,y,0) =sinzxsinzy,

x, 3.0 €(=1,1)?%x(0,T],

@y el-1L17, 6.2)

where the boundary condition is set corresponding to the exact solu-
tion given by u(x, y,1) = =271 sin 7rx sin ry, with which the source term
vanishes, i.e., f =0.

Table 2 summarizes the accumulated L2-error E[0,T] with T =0.5,
the CPU-time, and the convergence order, for the numerical solution of
the heat equation (6.2) in various resolutions. The convergence order
is measured along the diagonal entries of the table, which is slightly
higher than the second-order. The proposed method, the averaging
scheme incorporated with the variable-0 time-stepping procedure, re-
sults in a desirable accuracy. It can achieve a near second-order accu-
racy in the temporal direction by the variable-0 method and a slightly
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Accumulated L?-error E[0,T] with T = 0.5, the CPU-time, and the convergence order, for the
proposed method solving the heat equation (6.2). The convergence order is measured along the

diagonal entries of the table.

. h 0.1 (CPU) 0.05 (CPU) 0.025 (CPU) 0.0125 (CPU) order
0.1 (CPU) 8.21-107* (0.04) 5.34-107* (0.08) 3.03-107* (0.20) 1.71-107* (1.19)

0.05 (CPU) 5.80-107* (0.08) 1.75-107* (0.13) 5.94-107° (0.35) 3.00- 107 (1.80) 2.23
0.025 (CPU) 1.90- 107* (0.15) 8.87-107° (0.23) 4.14- 107 (0.62) 1.15-107° (2.71) 2.08
0.0125 (CPU) 1.24-107* (0.23) 1.26- 107 (0.43) 1.05- 107 (1.19) 8.29-107° (4.40) 2.32

(a)

e
e

y -1

(b)

Fig. 6. Numerical solutions u, for Gray-Scott model (6.3)-(6.7) at T = 1, approximated by (a) the CNOSC method and (b) the proposed method. Set (z, h) = (0.001,0.1).

Table 3

The accumulated L?-error E[0,T] and the CPU-time for the numerical solution of the Gray-Scott
model associated with (6.3)-(6.6) in various resolutions, when T = 1.0.

(z=hh) CNOSC (CPU) A, (CPU) A, 3 (CPU) Az (CPU)
0.2%,0.2) 1.66 - 1072 (0.35s) 1.41-1073 (0.14s) 1.18 - 1073 (0.24s) 1.13- 1073 (0.89s)
0.13,0.1) 4.00- 107 (8.01s) 9.21-107* (3.09s) 8.67-107* (5.18s) 8.44 104 (24.23s)
(0.05%,0.05) 1.75-107* (221.32s) 6.88 - 107 (88.33s) 6.79 - 107 (126.45s) 6.77- 107 (707.56s)

higher accuracy than second-order in the spatial direction due to the
averaging scheme.

It should be noticed that the proposed method is scalable when the
mesh sizes are set as in practice. For example, for diagonal entries in the
table (z = h), the problem size in the current level becomes eight times
the previous one. However the CPU-time increases only by factors of
3.25, 4.77, and 7.10, respectively for = = h = 0.05, 0.025, and 0.0125.
The algebraic solver, the SOR, converges faster for smaller r, while it
converges slower for finer spatial resolutions. With the near-optimal
parameter [11], the SOR can maintain the same efficiency when the
workload grows.

From the above example, we can conclude that the proposed method
is second-order in accuracy and scalable in efficiency, for the numer-
ical solution of the heat equation. The claim can be applied for the
numerical solution of the nonlinear RD system (1.1), provided that the
nonlinear reaction term is approximated and treated accurately enough.

6.2. The Gray-Scott model

First, we will verify the accuracy and efficiency of the averaging
schemes quantitatively. Consider the following two-component Gray-
Scott model formulated as in (1.1) with the reaction kinetics f(u) given
as

f(u) = [F(1 —uy) —ugud,ujil — (F + kuy " (6.3)

We choose model coefficients as follows:

Q=(-1,12, D=[0.001,0.0011", F=1, k=0. (6.4)

For a purpose of error analysis, we select a smooth solution 1 = [#;, ;]
defined as

) (x, y,1) = cos(21) cos(2rx) cos(my),

iy (x, y,1) = cos(21) cos(zx) cos(2xy), (65
and replace the reaction kinetics f(u) with f5(u):

. ou PN
fo(u) :=f(w) + i DAu —f(u). (6.6)
Then @ = [@},@,] in (6.5) would be the exact solution of
3—‘; — DAu—f(u) = f3 (), 6.7)

with the initial condition u® =1i(x, y,0).

Fig. 6 presents u; of the numerical solutions approximated by the
CNOSC method and the proposed method. For the CNOSC method, we
select the same parameters as for Example 3 in [4]: n, = n, =20 (h=
0.1), 7= h%, and r = 3. We could check that Figs. 6 (a) and (b) show the
same numerical solutions displayed as in Figure 2 of [4].

In Table 3, we present the accumulated L>-error and the CPU-time
for the numerical solution of the Gray-Scott model associated with
(6.3)-(6.6) in various resolutions, when 7 = 1.0. We compare perfor-
mances of four different algorithms: the CNOSC method, the standard
5-point scheme (A, = A,), the averaging scheme with a =2/3 (A,/3),
and the averaging scheme with a@" (Ag»). The CNOSC method is im-
plemented with the splines of degree r = 3, while the FD schemes are
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Fig. 7. Numerical solutions for the Gierer-Meinhardt model (2.8)-(2.9) in the steady-state (7' = 500), approximated by the averaging scheme A, ;-VT. at the fixed
time step 7 =0.01 and various spatial resolutions. Each image column I, presents the numerical solution and its aerial view obtained with the mesh resolution

(z,n,=n,)=(0.01,50- 2071,

not incorporated with the variable-6 method. In order to give an asym-
metry to the numerical solution, we shift the domain of (6.4) by 0.5,
i.e. from (—1,1)2 to (—0.5,1.5)%. Moreover, finer temporal resolutions
(r = h+D/2) are chosen for the CNOSC method to achieve O(z2 + h™+!)
accuracy in the L%-norm [4].

We can point out from the table that the L?-errors of the averaging
schemes are smaller than those of other methods. For example, in the
low spatial resolution (z, 2) = (0.23,0.2), the error of the CNOSC method
mounts up about 15 times those of the averaging schemes. The CNOSC
method may introduce imperceptible oscillations spreading out to all
over the domain, which might be originated from its rough orthogo-
nal basis taking fewer collocation points of the low spatial resolution.
Furthermore, even though the CNOSC method employs the ADI method
to accelerate its computation, the CPU-time is longer than the two FD
methods, A, and A,/;. It is partially due to the efficiency of the SOR
method; also it is because of an intrinsic complexity of the CNOSC
method, in which the calculation has to deal with large coefficient ma-
trices. For example, when the spatial mesh is set with 40x40 grid points,
the CNOSC method with the splines of degree r = 3 produces coefficient
matrices in 82 x 82 dimensions (82 =2-40+2).

The errors of the three FD schemes (A, A3, and Ag) are differ-
ent, but not significantly. However, the differences in their CPU-time
are quite varied. As we examined before, the averaging scheme with &"
showed much more CPU-time than the other two FD methods; A, /5 has
achieved a good accuracy and efficiency with comparatively smaller
CPU-time.

Table 4 shows the accumulated L2-errors E[0,T], T = 1.0, and
the CPU-time of the averaging scheme A,,; incorporated with the
variable-6 method (A,-VT), for the numerical solution of the Gray-Scott
model with parameters set the same as in Table 3. We consider various
temporal resolutions with the spatial grid size being fixed, » = 0.1. Since
the overall error is dominated by the spatial error, we cannot witness a
dramatic error change as the time step size varies. However, one can see
from the table that even with (z, h) = (0.1,0.1), the accuracy of the A, /3
VT has surpassed that of the CNOSC method with (z, 1) = (0.13,0.1); see
the second row in the first column in Table 3. The CNOSC method re-

Table 4

The accumulated LZ-error E[0,T], T = 1.0, and the CPU-time for
the numerical solution of the Gray-Scott model associated with
(6.3)-(6.6) by the Ay/3-VT, in various temporal resolutions. The
spatial grid size is fixed, A =0.1.

(z,h)
Ay VT

(0.05,0.1) (CPU)
8.88- 1074 (0.16s)

(0.1,0.1) (CPU)
1.15- 1073 (0.09s)

(0.2,0.1) (CPU)
3.20- 1073 (0.05s)

quires at least 100 times more time steps to achieve the same level of
accuracy as the A, 3-VT. We further stress out the efficiency of the pro-
posed method, by comparing the error and the CPU-time of A, /3-VT
(1.15-1073, 0.09s) and the CNOSC method (4.00- 1073, 8.01s). The A, 5-
VT is 100 times more efficient than the CNOSC method.

6.3. The Gierer-Meinhardt model

In Fig. 7, we depict the numerical solutions of the Gierer-Meinhardt
model at the steady-state (7" = 500) by the A, /3-VT, in order to investi-
gate the rotational symmetry and the accuracy of the proposed method.
Its mesh resolutions are the same as in Figs. 1 and 2. Unlike the low res-
olution cases of the standard 5-point scheme and the CNOSC method:
Figs. 1 (;) and 2 (J,), the proposed averaging scheme shows the same
steady-state pattern as the high resolution cases, as illustrated in Fig. 7
(1;). It is noticeable that the A,/3-VT can achieve a stable evolution
even in low spatial resolutions.

To examine early pattern formations in low spatial resolutions, we
depict the numerical solution of Gierer-Meinhardt model by three differ-
ent schemes: the standard 5-point scheme, the CNOSC method (r = 3),
and the averaging scheme A, /3-VT. Set (z,n, = ny) =(0.01,50). Figures
(a), (b), and (c) in Fig. 8 correspond respectively to an early state at
t =80 of Figs. 1 (1)), 2 (I}), and 7 (I}).

In Fig. 8 (a), one can see that the standard 5-point scheme shows
the artifacts depending on variable directions (x and y), which is orig-
inated from the spatial approximation concerning only two directions.
In Fig. 8 (b), the CNOSC method shows a rotationally invariant pat-



P. Lee, G.V. Popescu and S. Kim

(a)

0
X

(b)

Computers and Mathematics with Applications 109 (2022) 191-203

(c)

0
X

Fig. 8. Numerical solutions and their aerial views for Gierer-Meinhardt model (2.8)-(2.9) at 7 = 80, obtained by (a) the standard 5-point scheme, (b) the CNOSC

method (r = 3), and (c) the A, 3-VT. Set (z,n, = n,) = (0.01,50).

tern formation. However it introduces a peak at the center of the figure,
which results in a bigger circular pattern than in Fig. 8 (c). The peak is
arisen from the rough spline polynomial generated by fewer collocation
points and we can suppress the artifact by either adding more Gaussian
quadrature points or employing higher-order polynomials; however the
artifact may not be suppressed completely, although the CNOSC method
becomes much more expensive computationally. These artifacts of the
standard 5-point scheme and the CNOSC method would produce abnor-
mal steady-state patterns in low spatial resolutions, which are different
from their steady-state patterns in high spatial resolutions.

On the other hand, the A,/,;-VT gives us a rotationally invariant
pattern formation without any visible artifacts as shown in Fig. 8 (c); the
averaging scheme A,,;-VT can achieve the same steady-state patterns
in low spatial resolutions as in high spatial resolutions, since the scheme
approximates the diffusion operator appropriately by considering all the
possible directions.

To precisely examine the evolution of each method depending on
spatial resolutions, Figs. 9, 10, and 11 present evolution patterns for
the numerical solution of the Gierer-Meinhardt model (2.8)-(2.9) at
T =80, 170,270,340, approximated respectively by the standard 5-point
scheme, the CNOSC method (r = 3), and the averaging scheme A2/3-
VT. The algorithm parameters are set the same as for Fig. 8, with
various spatial resolutions (n, = n, =50, 100,200). As you can see from
the figures, the averaging scheme results in evolution patterns consis-
tent over the spatial resolutions (Fig. 11), while other methods show
evolution patterns quite different depending on the spatial resolutions
(Figs. 9 and 10). Only the averaging scheme, A, 3-VT, can produce the
correct evolution pattern in the low spatial resolution (n, = n, = 50). For
the steady-state patterns (7" = 500), one can refer to Figs. 1, 2, and 7.

We close the section with the following remark: we have numerically
verified the rotational symmetry of the averaging scheme A, 3-VT.

7. Conclusions

The authors’ previous publication [11] revealed that the spatial sen-
sitivity of nonlinear reaction-diffusion problems might introduce un-

201

desirable artifacts into their numerical solutions, particularly in low
spatial resolutions. The sensitivity issue in the one-dimensional space
can be well-explained via grid effect; however in two and higher di-
mensions, the issue can be affected not only by the grid effect but
also by the rotational symmetry of the approximation of the Laplacian
diffusion operator. Moreover, most of the conventional Laplacian ap-
proximations fail to hold rotational symmetry. To investigate the effect
of rotational symmetry, we have conducted a sensitivity analysis for
two-dimensional reaction-diffusion problems approximated by various
finite-difference methods. The averaging scheme A, for the approxi-
mation of the negative Laplacian (—A) is suggested as an average of
the standard 5-point scheme and the skewed 5-point scheme. It has
been found that the averaging scheme can effectively suppress artifacts
arisen from an asymmetry of numerical approximation and eventually
give us correct steady-state patterns, even in low spatial resolutions. An
effective strategy is suggested to optimize the averaging parameter ma-
trix &@", which can be replaced by the fixed parameter 2/3 in practice.
In addition to the averaging scheme, we have analyzed the maximum
principle for the variable-0 method that is the time-stepping method
employed to solve the reaction-diffusion systems. Various numerical ex-
amples have been considered to show the effectiveness of the proposed
method.
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Fig. 9. Evolution of patterns for the Gierer-Meinhardt model (2.8)-(2.9) at T = 80, 179,270, 340, approximated by the standard 5-point scheme. Each image row I,
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