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In the simulation of biological pattern forming, it has been observed that the numerical solution is more sensitive 
to the spatial mesh resolution than the temporal one. Such a higher sensitivity to the spatial resolution is 
mainly originated from an inaccurate approximation of diffusion differential operators, which might violate 
the rotational symmetry to be seriously erroneous in low spatial resolutions. Also, it has been known that the 
second-order Crank-Nicolson time-stepping procedure may introduce spurious oscillations when the initial data 
or the source term is nonsmooth and the temporal step size is set relatively large. This article studies 9-point 
finite difference schemes for the diffusion operator to enhance the rotational symmetry, employs the variable-𝜃

method to achieve a nonoscillatory second-order time-stepping procedure, and adopts an effective relaxation 
linear solver to solve the algebraic systems efficiently. The variable-𝜃 method is proved to satisfy the maximum 
principle, which guarantees that the time-stepping procedure is unconditionally stable. When the successive 
over-relaxation method with an optimal relaxation parameter is adopted for the algebraic solver, the iteration 
converges in 2-4 iterations in most time steps. The overall algorithm is second-order in accuracy and scalable 
in efficiency. Various examples are given to show the accuracy and efficiency of the proposed algorithm for the 
numerical solution of the system of nonlinear reaction-diffusion equations.
1. Introduction

Let Ω be a connected, bounded open domain in ℝ𝑑 with a piecewise 
smooth boundary Γ = 𝜕Ω. Let 𝐽 = (0, 𝑇 ] for 𝑇 > 0. Consider the following 
system of reaction-diffusion (RD) equations for 𝐮 = [𝑢1, 𝑢2, … , 𝑢𝑚]𝑇 , 𝑚 ≥ 2:

𝜕𝐮
𝜕𝑡

−Δ𝐮= 𝐟(𝐮), Ω× 𝐽 ,
𝜕𝐮
𝜕𝜈

= 0, Γ × 𝐽 ,
𝐮(𝐱,0) = 𝐮0, Ω× {𝑡 = 0},

(1.1)

where 𝑢𝑙 are real-valued functions,  = diag[𝐷1, 𝐷2, … , 𝐷𝑚] is the dif-

fusion tensor whose elements 𝐷𝑙 ’s are strictly positive constants, Δ
denotes the Laplace operator, 𝜕∕𝜕𝜈 is the outward normal derivative 
on the boundary Γ, and 𝐟(𝐮) is the reaction kinetics of the system given 
as

𝐟(𝐮) = [𝑓1(𝐮), 𝑓2(𝐮),… , 𝑓𝑚(𝐮)]𝑇 , (1.2)
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which is often nonlinear with respect to 𝐮. In this article, we consider 
the RD systems with 𝑑 = 2 to investigate accuracy issues, concerning 
approximations of spatial derivatives in high dimensions.

Since Turing [19] proposed an RD problem to explain biological 
pattern formation in 1952, there have been many efforts to solve RD 
problems numerically. In [21], Zegeling and Kok proposed an adaptive 
moving mesh method and its application to RD models, and Madz-

vamuse [14] integrated it with a special form of linearization of the 
reaction terms and a second-order semi-implicit backward differenti-

ation formula. McCourt et el. [15] provided numerical results for an 
RD problem (the Geirer-Meinhardt model) by employing a high-order 
spectral collocation method. Then the spectral method was collaborated 
with finite volume technique by Shakeri and Dehghan [17]. Recently, 
Fernandes and Fairweather applied the orthogonal spline collocation 
method to solve RD problems and also introduced a time-stepping pro-

cedure integrated with alternating direction implicit (ADI) methods; see 
[3–5].
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In 2020, the authors [10] introduced a nonoscillatory second-order 
time-stepping procedure called the variable-𝜃 method, as a perturba-

tion of the Crank-Nicolson (CN) method, for the numerical solution of 
parabolic problems of nonsmooth data. Then, in [11], we performed a 
sensitivity analysis for the numerical solution of one-dimensional (1D) 
biological pattern formation problems and concluded that the accuracy 
of the numerical solution might be much more sensitive to the spa-

tial mesh resolution than the temporal one. Also, it was experimentally 
verified that the sensitivity to the spatial resolution might introduce un-

desirable numerical solutions in low spatial resolutions and deteriorate 
biological patterns.

For 1D cases, this sensitivity issue can be well-explained via grid 
effect. That is, the accuracy of the numerical solution degenerates when 
the spatial spacing becomes large (low resolution) compared with a 
desired characteristic length of reaction and diffusion. However, in two 
and higher dimensions, biological patterns can be affected not only by 
the grid effect but also by whether or not the approximation scheme 
enforces the rotational invariance. The property of rotational invariance 
is often translated into rotational symmetry in the finite difference (FD) 
discrete domain [13]. It has been numerically verified that the standard 
FD approximation of the Laplace diffusion operator may fail to hold 
rotational symmetry in biological pattern formation.

In this article, to study the effect of rotational symmetry, we per-

form a sensitivity analysis of two-dimensional (2D) RD problems with 
various FD approximations for the Laplace operator. In order to investi-

gate the spatial sensitivity issue, we study the averaging scheme 𝛼 for 
the approximation of the negative Laplacian (−Δ), which is defined as 
an average of the standard 5-point scheme + and the skewed 5-point 
scheme ×:

𝛼 = 𝛼+ + (1 − 𝛼)×. (1.3)

It has been numerically verified that such an averaging scheme can 
effectively suppress certain deterioration in biological patterns; the av-

eraging scheme lets the numerical solution evolve in desired biological 
patterns. An effective strategy is considered to optimize the averaging 
parameter 𝛼, which minimizes the leading truncation error of the Lapla-

cian approximation.

In addition to incorporating the averaging scheme, the resulting 
algorithm for solving the nonlinear RD problem is equipped with an ef-

fective extrapolation for the linearization of nonlinear source terms and 
the variable-𝜃 method for time-stepping, which is effective particularly 
when a larger time step or a lower spatial mesh resolution is desir-

able. The variable-𝜃 method is a variant of the CN method (𝜃 = 1∕2), in 
which 𝜃 = 1 at grid points where the numerical solution shows a certain 
portent of oscillations. This article proves that the variable-𝜃 method 
satisfies the maximum principle unconditionally, i.e. for all choices of 
spatial and temporal grid sizes.

The article is organized as follows. The next section presents a 
brief review on state-of-the-art FD methods for nonlinear RD systems, 
and their accuracy issue concerning rotational symmetry is discussed 
by exemplifying a biological pattern problem in 2D. In Section 3, an 
averaging scheme for the Laplace operator is suggested to enhance 
the rotational symmetry of the numerical solution. Then, an effective 
time-stepping procedure is formulated the averaging scheme and the 
variable-𝜃 method. Section 4 states and proves the maximum principle 
for the variable-𝜃 method incorporated with the averaging scheme. Sec-

tion 5 discusses an optimization procedure for the averaging scheme, 
which minimizes the leading truncation error of the Laplacian approx-

imation. In Section 6, numerical examples are included to verify the 
effectiveness of the suggested methods. Section 7 concludes the article 
summarizing our experiments and findings.

For error analysis, the accumulated 𝐿2-error 𝐸2[0, 𝑇 ] is measured 
over the whole time period (𝑡 ∈ [0, 𝑇 ]) and the eventual 𝐿∞-error 𝐸∞[𝑇 ]
is measured at the last moment (𝑡 = 𝑇 ):

𝐸2[0, 𝑇 ] ∶= 𝜏

𝑛𝑡∑‖𝐮𝑛 − 𝐮̂𝑛‖2 and 𝐸∞[𝑇 ] ∶= ‖𝐮𝑛𝑡 − 𝐮̂𝑛𝑡‖∞, (1.4)

𝑛=1
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where ̂𝐮 is the exact solution (or a desirable solution),

‖𝐮‖2 ∶= (
ℎ𝑥ℎ𝑦

∑
𝑖𝑗

|𝑢𝑖𝑗 |2)1∕2
, and ‖𝐮‖∞ ∶=max

𝑖𝑗
|𝑢𝑖𝑗 |.

Here ℎ𝑥 and ℎ𝑦 are respectively the 𝑥- and 𝑦-directional spatial step 
sizes and 𝜏 is the temporal step size.

2. Preliminaries

This section presents a brief review on state-of-the-art FD methods 
for nonlinear RD systems and certain accuracy issues related to spatial 
approximation.

2.1. FD schemes for the second-order spatial derivatives

We begin with FD schemes for the negative Laplace operator −Δ. Let 
Ω be a rectangular domain in ℝ2: Ω = (𝑎𝑥, 𝑏𝑥) × (𝑎𝑦, 𝑏𝑦). By partitioning 
Ω × 𝐽 , we obtain the space-time grid points

(𝐱𝑖𝑗 , 𝑡𝑛) ∶= (𝑥𝑖, 𝑦𝑗 , 𝑡𝑛);

𝑖 = 0,1,⋯ , 𝑛𝑥, 𝑗 = 0,1,⋯ , 𝑛𝑦, 𝑛 = 0,1,⋯ , 𝑛𝑡,
(2.1)

where 𝑛𝑥, 𝑛𝑦, and 𝑛𝑡 are prescribed positive integers and

𝑥𝑖 = 𝑎𝑥 + 𝑖 ⋅ ℎ𝑥, 𝑦𝑗 = 𝑎𝑦 + 𝑗 ⋅ ℎ𝑦, 𝑡𝑛 = 𝑛 ⋅ 𝜏;

ℎ𝑥 =
𝑏𝑥 − 𝑎𝑥
𝑛𝑥

, ℎ𝑦 =
𝑏𝑦 − 𝑎𝑦

𝑛𝑦
, 𝜏 = 𝑇

𝑛𝑡
.

(2.2)

Define the discrete domain, the set of the spatial grid points, by

Ω𝑑 = {(𝑥𝑖, 𝑦𝑗 ) ∶ 0 ≤ 𝑖 ≤ 𝑛𝑥, 0 ≤ 𝑗 ≤ 𝑛𝑦}, (2.3)

and denote the set of boundary grid points by Γ𝑑 =Ω𝑑 ∩Γ and the set of 
interior grid points by Ω0

𝑑
=Ω𝑑 ⧵Γ𝑑 . Moreover, we define 𝑔𝑛

𝑖𝑗
∶= 𝑔(𝐱𝑖𝑗 , 𝑡𝑛)

for all functions 𝑔 defined in (𝐱, 𝑡).
For convenience, we assume the uniform grid ℎ𝑥 = ℎ𝑦 = ℎ. Then, the 

Taylor series gives us the following FD approximations for each grid 
point 𝐱𝑖𝑗 = (𝑥𝑖, 𝑦𝑗 ). The standard 5-point FD approximation + of −Δ
(= −𝜕2𝑥 − 𝜕2𝑦 ) reads

+ 𝑢𝑖𝑗 =
−𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗+1 + 4𝑢𝑖𝑗 − 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1

ℎ2
, (2.4)

where the truncation error +,𝑖𝑗 at the grid point 𝐱𝑖𝑗 = (𝑥𝑖, 𝑦𝑗 ) becomes

+,𝑖𝑗 =
ℎ2

12
(𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑦𝑦𝑦𝑦) +(ℎ4).

On the other hand, applying a 45◦-rotated FD approximation to the 
negative Laplacian operator, we can obtain the following skewed 5-

point scheme:

× 𝑢𝑖𝑗 =
−𝑢𝑖−1,𝑗−1 − 𝑢𝑖−1,𝑗+1 + 4𝑢𝑖𝑗 − 𝑢𝑖+1,𝑗+1 − 𝑢𝑖+1,𝑗−1

2ℎ2
, (2.5)

where the truncation error ×,𝑖𝑗 is

×,𝑖𝑗 =
ℎ2

12
(𝑢𝑥𝑥𝑥𝑥 + 6𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦) +(ℎ4).

When averaging + and × with the weight 𝛼 = 2∕3, we obtain the 
9-point FD approximation of the Laplacian known as the Mehrstellen

discretization [1]:

−Δ𝑢𝑖𝑗 = 2
3
+ 𝑢𝑖𝑗 +

1
3
× 𝑢𝑖𝑗 + 𝑀,𝑖𝑗

= 1
6ℎ2

−1 −4 −1
−4 20 −4
−1 −4 −1

𝑢𝑖𝑗 + 𝑀,𝑖𝑗 ,

(2.6)

where the truncation error 𝑀,𝑖𝑗 reads
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Fig. 1. Numerical solutions for Gierer-Meinhardt model (2.8)–(2.9) of the steady-state (𝑇 = 500) approximated by the standard 5-point scheme at the fixed time 
step 𝜏 = 0.01 and various spatial resolutions. Each image column 𝐼𝓁 represents the numerical solution and its aerial view obtained with the spatial resolution 
𝑛𝑥 = 𝑛𝑦 = 50 ⋅ 2𝓁−1 .
𝑀,𝑖𝑗 =
ℎ2

12
(𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦) +(ℎ4).

Note that the leading truncation error of the Mehrstellen discretization 
coincides with a scaled biharmonic operator:

ℎ2

12
(𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦) =

ℎ2

12
Δ2𝑢 = ℎ2

12
Δ(Δ𝑢). (2.7)

Thus, for harmonic (Δ𝑢 = 0) and biharmonic (Δ2𝑢 = 0) solutions, the 
Mehrstellen discretization can achieve the fourth-order truncation er-

ror. Moreover, it is known that Mehrstellen discretization can give the 
best approximation of rotational invariant when it applies to the heat 
equation; see [13] for details.

2.2. Accuracy issues on the spatial resolution

As pointed out in one of the authors’ earlier publications [11], the 
accuracy of the numerical solution is much more sensitive to the spatial 
mesh resolution than to the temporal one. This sensitivity phenomenon 
might be significant in low spatial resolution (of large ℎ), in which the 
RD process does not have enough time to grow to reach the margins of 
the spatial mesh. In this case, the RD pattern deteriorates and neither 
evolves in an appropriate speed nor reaches a condition to replicate it-
self on time; see [7, §4.2] for similar observations. To investigate this 
issue, we carried out a sensitivity analysis with the Gierer-Meinhardt 
model in 2D, applying two different numerical methods: the standard 5-

point scheme and the ADI extrapolated Crank-Nicolson orthogonal spline 
collocation (CNOSC) method [4]. The CNOSC method is a state-of-the-

art algorithm for the numerical solution of various scalar transient 
problems [2–5,12].

The Gierer-Meinhardt model [6] is a two-component RD system de-

fined in Ω = (−1, 1)2 with the following reaction kinetics:

 = [𝜖2, 𝜅∕𝜇]𝑇 , 𝐟(𝐮) =
[ 𝑢21
𝑢2

− 𝑢1,
1
𝜇

( 𝑢21
𝜖

− 𝑢2

)]𝑇
. (2.8)

We employ the following parameters and initial conditions used in [16]:
193
𝜖 = 0.04, 𝜇 = 0.1, 𝜅 = 0.0128,

𝑢1(𝑥, 𝑦,0) =
1
2

[
1 + 0.001

20∑
𝑘=1

cos
(𝑘𝜋𝑦

2

)]
sech2

(√𝑥2 + 𝑦2

2𝜖

)
,

𝑢2(𝑥, 𝑦,0) =
cosh

(
1 −

√
𝑥2 + 𝑦2

)
3cosh(1)

.

(2.9)

Fig. 1 and Fig. 2 present the numerical solutions associated with the 
Gierer-Meinhardt model (2.8)–(2.9) at the steady-state at 𝑇 = 500, vary-

ing spatial resolutions, respectively for the standard 5-point scheme and 
the CNOSC method with 𝑟 = 3. Here, for simplicity, we restrict our atten-

tion to the dynamics of 𝑢1 of the model. We set the time step size 𝜏 = 0.01
and choose the comparable numbers of spatial grid points for the two 
methods: 𝑛𝑥 = 𝑛𝑦 = 50 ⋅ 2𝓁−1, 𝓁 = 1, 2, 3. In both figures, one can ob-

serve that the numerical solutions in the lowest resolution (Figs. 1(𝐼1), 
2(𝐽1)) show quite different steady-state patterns from the patterns of 
the higher resolutions (Figs. 1(𝐼2, 𝐼3), 2(𝐽2, 𝐽3)). It should be noticed 
that the CNOSC method has produced an unreliable steady-state pattern 
in the low spatial resolution, although it is of fourth-order accuracy in 
spatial direction. We can see from the example that higher-order spa-

tial schemes may not be advantageous over the second-order scheme, 
when the spatial resolution is low.

For RD problems in 1D, the sensitivity to the spatial resolution can 
be explained by the grid effect. For an accurate solution, it requires the 
spatial spacing to be small (high resolution) compared with a desired 
characteristic length of physical evolution. Thus, as aforementioned, the 
RD patterns can be deteriorated mostly by the grid effect, in low spatial 
resolutions. However, in two and higher dimensions, the RD patterns 
can be deteriorated by not only the grid effect but also the asymmetry 
of the approximation schemes. The Laplacian is rotationally invariant 
in two and higher dimensions; however, its numerical approximation 
may not guarantee the rotational invariance, depending on the point 
stencil utilized in the scheme. Effective schemes for the Laplace opera-

tor should be designed to enhance the rotational symmetry as much as 
possible. To enhance the symmetry, we consider the averaging scheme 
(1.3), with the parameter 𝛼 being selected adaptively; see Section 5 for 
details.
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Fig. 2. Numerical solutions for Gierer-Meinhardt model (2.8)–(2.9) of the steady-state (𝑇 = 500) approximated by the CNOSC method computed with 𝑟 = 3 at the 
fixed time step 𝜏 = 0.01 and various spatial resolutions. Each image column 𝐽𝓁 represents the numerical solution and its aerial view obtained with the mesh resolution 
𝑛𝑥 = 𝑛𝑦 = 50 ⋅ 2𝓁−1 .
3. The time-stepping procedure

In this section, we introduce an effective time-stepping procedure 
for the nonlinear RD system (1.1). The resulting algorithm involves an 
averaging scheme for the Laplace operator to enhance the rotational 
symmetry, takes the linearization through extrapolation as introduced 
in [4], employs the variable-𝜃 method in [10] to achieve a nonoscilla-

tory time-stepping procedure, and adopts an effective relaxation linear 
solver to solve the algebraic systems efficiently.

3.1. The averaging scheme for the Laplace operator

First, we would recall an approximation 𝛼 for the negative Laplace 
operator, which is derived from averaging + and × as follows: for 
0 < 𝛼 < 1,

𝛼 𝑢𝑖𝑗 = 𝛼+ 𝑢𝑖𝑗 + (1 − 𝛼)× 𝑢𝑖𝑗

= 𝛼

ℎ2

−1
−1 4 −1

−1
𝑢𝑖𝑗 +

1 − 𝛼

2ℎ2

−1 −1
4

−1 −1
𝑢𝑖𝑗 .

(3.1)

Then the negative Laplacian at the grid point 𝐱𝑖𝑗 can be written as

−Δ𝑢𝑖𝑗 =
1

2ℎ2

−1 + 𝛼 −2𝛼 −1 + 𝛼

−2𝛼 4(1 + 𝛼) −2𝛼
−1 + 𝛼 −2𝛼 −1 + 𝛼

𝑢𝑖𝑗

+ ℎ2

12
[
𝑢𝑥𝑥𝑥𝑥 + 6(1 − 𝛼)𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦

]
+(ℎ4).

(3.2)

Here, it is noticeable that the averaging scheme becomes Mehrstellen 
discretization when 𝛼 = 2∕3.

In [8], Jo, Shin, and Suh proposed the above averaging scheme for 
the numerical solution of the Helmholtz wave equation. They gave an 
optimized parameter by minimizing the numerical dispersion error of 
the phase velocity. Their optimal averaging scheme with 5 points per 
wavelength could achieve the same accuracy as the standard 5-point 
194
scheme with 10 points per wavelength. Also one of the authors intro-

duced a fourth-order 9-point compact scheme for the Helmholtz wave 
equation by employing the method of modified equations [9]. However, 
for nonlinear RD systems, it is difficult to derive mathematical formu-

las for such optimal averaging (or fourth-order compact) schemes. We 
will discuss an effective numerical strategy in Section 5 for an optimal 
averaging parameter for the nonlinear RD system (1.1).

3.2. The extrapolated relaxation algorithm

Let 𝐮𝑛 be the numerical solution at the 𝑛-th time level, 𝑛 ≥ 0. For the 
numerical solution in the (𝑛 +1)-th level, we first extrapolate numerical 
solutions in the two previous levels to approximate the solution at an 
intermediate point 𝑡𝑛+𝜃 = (1 + 𝜃)𝑡𝑛 − 𝜃𝑡𝑛+1:

𝐮̃𝑛+𝜃 ∶= (1 + 𝜃)𝐮𝑛 − 𝜃𝐮𝑛−1, (3.3)

where 𝑢−1 = 𝑢0. For example, for 𝜃 = 1∕2,

𝐮̃𝑛+1∕2 ∶= 3𝐮𝑛 − 𝐮𝑛−1
2

. (3.4)

See [4] for details of second-order extrapolation schemes.

Recall the averaging scheme:

𝛼𝑢𝑖𝑗 =
1

2ℎ2

−1 + 𝛼 −2𝛼 −1 + 𝛼

−2𝛼 4(1 + 𝛼) −2𝛼
−1 + 𝛼 −2𝛼 −1 + 𝛼

𝑢𝑖𝑗 ≈ −Δ𝑢𝑖𝑗 . (3.5)

Then the time-stepping procedure for the system of RD equations (1.1), 
incorporating the linearization through extrapolation (3.3) and the pro-

posed averaging scheme 𝛼 , simply reads:

𝐮𝑛+1 − 𝐮𝑛
𝜏

+𝛼[𝜽𝐮𝑛+1 + (𝐼 − 𝜽)𝐮𝑛] = 𝐟(𝐮̃𝑛+𝜽), (3.6)

where 𝐮𝑛 = [𝑢𝑛1, 𝑢
𝑛
2, … , 𝑢𝑛𝑚]𝑇 ,  = diag[𝐷1, 𝐷2, … , 𝐷𝑚], and 𝜽 = diag[𝜃1,

𝜃2, … , 𝜃𝑚].
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The linearized problem (3.6) can be resolved by solving for 𝑚 sepa-

rate components: 𝑢𝑛+11 , 𝑢𝑛+12 , … , 𝑢𝑛+1𝑚 . Each component in (3.6) is formu-

lated as follows:

𝑢𝑛+1
𝑖𝑗

− 𝑢𝑛
𝑖𝑗

𝜏
+𝐷𝛼[𝜃𝑢𝑛+1𝑖𝑗 + (1 − 𝜃)𝑢𝑛𝑖𝑗 ] = 𝑓 (𝐮̃𝑛+𝜃)𝑖𝑗 , (3.7)

where 𝑢, 𝐷, 𝜃, and 𝑓 denote respectively 𝑢𝑙 , 𝐷𝑙 , 𝜃𝑙 , and 𝑓𝑙 for 𝑙 =
1, 2, … , 𝑚. We rewrite (3.7) in a vector form as

(𝐼 + 𝜃𝜏𝐷𝛼)𝑢𝑛+1 = [𝐼 − (1 − 𝜃)𝜏𝐷𝛼]𝑢𝑛 + 𝜏𝑓 (𝐮̃𝑛+𝜃). (3.8)

Define

𝛼 = 𝐼 + 𝜃𝜏𝐷𝛼,

𝛼 = 𝐼 − (1 − 𝜃)𝜏𝐷𝛼,

𝐫𝑛 =𝛼𝑢
𝑛 + 𝜏𝑓 (𝐮̃𝑛+𝜃).

(3.9)

Then (3.8) reads

𝛼𝑢
𝑛+1 = 𝐫𝑛 (3.10)

It is often the case that relaxation methods solving an algebraic sys-

tem begin with a regular splitting of the coefficient matrix 𝛼 . Given an 
initialization

𝑢𝑛+1,0 = 2𝑢𝑛 − 𝑢𝑛−1, (3.11)

and a regular splitting

𝛼 =𝛼 −𝛼, (3.12)

a relaxation algorithm for (3.10) can be formulated as

for 𝑘 = 1,2,⋯
for 𝐱𝑖𝑗 ∈Ω0

𝑑

𝑢𝑛+1,𝑘
𝑖𝑗

=
[
𝑢𝑛+1,𝑘−1 +−1

𝛼 (𝐫𝑛 −𝛼𝑢
𝑛+1,𝑘−1)

]
𝑖𝑗
;

end

end

()

(3.13)

Remark 3.1. It has been well known [20] that if  = − is a regular 
splitting and −1 ≥ 0, then the spectral radius of the iteration matrix 
(−1 = 𝐼 −−1) is strictly less than 1. That is,

𝜌(−1 ) = 𝜌(−1 )
1 + 𝜌(−1 )

< 1. (3.14)

Thus relaxation methods of regular splittings (such as the Jacobi, the 
Gauss-Seidel (GS), and the successive over-relaxation (SOR) iterations) 
are all convergent. In this article, we will utilize the SOR with an op-

timal relaxation parameter, because of the following three reasons. It 
is simple to implement, not difficult to find an optimal parameter, and 
convergent faster than most of modern sophisticated algebraic solvers, 
particularly for such an evolutionary problem (1.1).

4. Maximum principle for the variable-𝜽 method

In this section, we analyze the maximum principle for the variable-𝜃

method. In the absence of sources and sinks, it is known mathematically 
and physically that the extreme values of the solution appear either in 
the initial data or on the boundary. This property is called the maximum 
principle. Once a numerical algorithm satisfies the maximum principle, 
its numerical solution will never introduce interior local extrema. Thus 
the maximum principle guarantees the stability of the algorithm.
195
4.1. The variable-𝜃 method

Prior to proving the maximum principle for the variable-𝜃 method, 
we briefly describe the variable-𝜃 method presented by the authors in 
[10]. The method takes the advantage of the CN method (𝜃 = 1∕2; a 
second-order accuracy in time) and the implicit method (𝜃 = 1; the im-

munity to spurious oscillations). It is well-known that the CN method of 
a second-order accuracy may introduce spurious oscillations near non-

smooth data points. In order to suppress the undesirable oscillations, 
the authors simply allow the parameter 𝜃 to become a variable; 𝜃 = 1 in 
the vicinity of nonsmoothness, while 𝜃 remains 1∕2 at other grid points. 
It is claimed that spurious non-physical oscillations of the CN method 
arise from its explicit half step.

The wobble set is defined as the collection of grid points showing 
non-physical oscillations so that the grid points would be treated by the 
implicit method (𝜃 = 1) to resolve the oscillations. In order to determine 
it, an effective strategy is introduced as follows.

For simplicity, we begin with a linear heat equation in 1D and its 
𝜃-method with an appropriate FD approximation  of −𝜕𝑥𝑥:

𝜕𝑡𝑢− 𝜕𝑥𝑥𝑢 = 𝑓, (4.1)

(𝐼 + 𝜃𝜏)𝑢𝑛+1 = [𝐼 − (1 − 𝜃)𝜏]𝑢𝑛 + 𝑓𝑛+𝜃 (4.2)

Recall the explicit half step of the CN method and denote it as

𝑢𝑛+1,∗ ≡
(
𝐼 − 𝜏

2

)
𝑢𝑛. (4.3)

Define an index function for local extrema (idxt) as

idxt(𝑎, 𝑏, 𝑐) =

⎧⎪⎪⎨⎪⎪⎩

0, if min(𝑎, 𝑐) < 𝑏 <max(𝑎, 𝑐),
1, if 𝑏 =max(𝑎, 𝑐),

−1, if 𝑏 =min(𝑎, 𝑐),
2, if max(𝑎, 𝑐) < 𝑏,

−2, if 𝑏 <min(𝑎, 𝑐).

(4.4)

Then, the wobble set of 𝑢𝑛 is defined, to be used for the computation of 
𝑢𝑛+1, as

𝑛
1𝐷 =

{
𝑥𝑖 ∈ (−1,1) ∣ idxt(𝑢𝑛+1,∗

𝑖−1 , 𝑢𝑛+1,∗
𝑖

, 𝑢𝑛+1,∗
𝑖+1 ) ≠ 0 and|||idxt(𝑢𝑛+1,∗𝑖−1 , 𝑢𝑛+1,∗

𝑖
, 𝑢𝑛+1,∗
𝑖+1 ) + idxt(𝑢𝑛

𝑖−1, 𝑢
𝑛
𝑖 , 𝑢

𝑛
𝑖+1)

||| < 4
}
,

(4.5)

where 𝑢𝑛+1,∗ is the result of the explicit half step of the CN method given 
in (4.3). Thus the wobble set in 1D is a collection of interior points 𝑥𝑖
where 𝑢𝑛+1,∗

𝑖
becomes a local extremum while 𝑢𝑛

𝑖
is either a non-extreme 

value or an extremum in the opposite sense. The wobble set in (4.5)

excludes cases where a strict extremum in 𝑢𝑛 becomes a strict extremum 
in the same sense as in 𝑢𝑛+1,∗; that is,|||idxt(𝑢𝑛+1,∗𝑖−1 , 𝑢𝑛+1,∗

𝑖
, 𝑢𝑛+1,∗
𝑖+1 ) + idxt(𝑢𝑛

𝑖−1, 𝑢
𝑛
𝑖 , 𝑢

𝑛
𝑖+1)

||| = 4. (4.6)

The above 1D wobble set can be easily expanded to the 2D case 
by considering the four partial directions as in Fig. 3. Applying the 1D 
wobble scheme (4.5) to the four partial directions; if at least one of 
the directional lines wobbles, then we regard the point 𝐱𝑖𝑗 as a wobble 
point. Let 𝑃 , 𝑄, and 𝑅 be point indices and define

iswb(𝑃 ,𝑄,𝑅, 𝑛)

=
⎧⎪⎨⎪⎩
1, if idxt(𝑢𝑛+1,∗

𝑃
, 𝑢𝑛+1,∗
𝑄

, 𝑢𝑛+1,∗
𝑅

) ≠ 0 and|||idxt(𝑢𝑛+1,∗𝑃
, 𝑢𝑛+1,∗
𝑄

, 𝑢𝑛+1,∗
𝑅

) + idxt(𝑢𝑛
𝑃
, 𝑢𝑛
𝑄
, 𝑢𝑛
𝑅
)||| < 4,

0, otherwise.

(4.7)

Then, the wobble set (for the computation of 𝑢𝑛+1) is defined as

𝑛
2𝐷 =

{
𝐱𝑖𝑗 ∈Ω0

𝑑
∣ iswb[(𝑖, 𝑗 − 1), (𝑖, 𝑗), (𝑖, 𝑗 + 1), 𝑛] = 1

or iswb[(𝑖− 1, 𝑗 − 1), (𝑖, 𝑗), (𝑖+ 1, 𝑗 + 1), 𝑛] = 1
or iswb[(𝑖− 1, 𝑗), (𝑖, 𝑗), (𝑖+ 1, 𝑗), 𝑛] = 1
or iswb[(𝑖− 1, 𝑗 + 1), (𝑖, 𝑗), (𝑖+ 1, 𝑗 − 1), 𝑛] = 1

}
.

(4.8)
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Fig. 3. The eight vicinal points of 𝐱𝑖𝑗 and four partial directions.

Once the wobble set is determined, the parameter 𝜃𝑛+1
𝑖𝑗

for the com-

putation of 𝑢𝑛+1 can be assigned pointwisely

𝜃𝑛+1𝑖𝑗 ∶= 𝜃(𝐱𝑖𝑗 , 𝑡𝑛+1) =
{

1, if 𝐱𝑖𝑗 ∈𝑛,

1∕2, otherwise.
(4.9)

Then the variable-𝜃 method is formulated as

𝑢𝑛+1
𝑖𝑗

− 𝑢𝑛
𝑖𝑗

𝜏
+[𝜃𝑛+1𝑖𝑗 𝑢𝑛+1𝑖𝑗 + (1 − 𝜃𝑛+1𝑖𝑗 )𝑢𝑛𝑖𝑗 ] = 𝑓

𝑛+𝜃𝑛
𝑖𝑗

𝑖𝑗
. (4.10)

4.2. The maximum principle

Now, we analyze the maximum principle for the variable-𝜃 method.

Theorem 4.1. The numerical solution of the variable-𝜃 method (4.10) with 
the standard 5-point scheme + to the heat equation satisfies the maximum 
principle unconditionally (i.e., for all choices of spatial and temporal grid 
sizes).

Proof. For simplicity, we first consider the 1D heat equation, without 
the source term:

𝜕𝑡𝑢− 𝜕𝑥𝑥𝑢 = 0. (4.11)

Define grid points as in (2.2) and let 𝜇 = 𝜏∕ℎ2 > 0. Then, for fixed 0 ≤
𝑖 ≤ 𝑛𝑥, 0 ≤ 𝑛 ≤ 𝑛𝑡, the variable-𝜃 method with the central spatial scheme 
for (4.11) can be expressed as

(1 + 2𝜃𝑛+1𝑖 𝜇)𝑢𝑛+1𝑖 = 𝜃𝑛+1𝑖 𝜇(𝑢𝑛+1
𝑖−1 + 𝑢𝑛+1

𝑖+1 ) + (1 − 𝜃𝑛+1𝑖 )𝜇(𝑢𝑛
𝑖−1 + 𝑢𝑛

𝑖+1)

+ [1 − 2(1 − 𝜃𝑛+1𝑖 )𝜇]𝑢𝑛𝑖 , (4.12)

where 𝜃𝑛+1
𝑖

is either 1 or 1∕2.

Case A: 𝜽𝒏+𝟏
𝒊

= 𝟏. In this case, (4.12) becomes

(1 + 2𝜇)𝑢𝑛+1𝑖 = 𝜇(𝑢𝑛+1
𝑖−1 + 𝑢𝑛+1

𝑖+1 ) + 𝑢𝑛𝑖 . (4.13)

Since 𝑢𝑛+1
𝑖

is an average of its neighboring values {𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛
𝑖
} with 

positive weights, 𝑢𝑛+1
𝑖

can be a local maximum or minimum only if all 
three neighboring points have the same maximum or minimum value. 
That is, the implicit time-stepping method (𝜃 = 1) does not introduce 
strict local extrema to the numerical solution for all 𝜇 > 0.

Case B: 𝜽𝒏+𝟏
𝒊

= 𝟏∕𝟐. In this case, (4.12) reads

(1 + 𝜇)𝑢𝑛+1𝑖 = 𝜇

2
(𝑢𝑛+1
𝑖−1 + 𝑢𝑛+1

𝑖+1 ) + 𝑢𝑛+1,∗
𝑖

, (4.14)

where
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𝑢𝑛+1,∗
𝑖

= 𝜇

2
(𝑢𝑛
𝑖−1 + 𝑢𝑛

𝑖+1) + (1 − 𝜇)𝑢𝑛𝑖 . (4.15)

If 𝜃𝑛+1
𝑖

= 1∕2, then 𝑥𝑖 ∉ 𝑛
1𝐷 , where 𝑛

1𝐷 is the wobble set defined in 
(4.5). Thus we have the following two possible cases: either (4.6) is 
satisfied or

min{𝑢𝑛+1,∗
𝑖−1 , 𝑢𝑛+1,∗

𝑖+1 } < 𝑢𝑛+1,∗
𝑖

< max{𝑢𝑛+1,∗
𝑖−1 , 𝑢𝑛+1,∗

𝑖+1 }. (4.16)

B-1. Assume that (4.6) is satisfied. Suppose that 𝑢𝑛
𝑖

is a strict local maxi-

mum. Then 𝑢𝑛
𝑖±1 < 𝑢𝑛

𝑖
and therefore

𝑢𝑛+1,∗
𝑖

= 𝜇

2
(𝑢𝑛
𝑖−1 + 𝑢𝑛

𝑖+1) + (1 − 𝜇)𝑢𝑛𝑖 < 𝜇𝑢𝑛𝑖 + (1 − 𝜇)𝑢𝑛𝑖 = 𝑢𝑛𝑖 . (4.17)

Thus, utilizing (4.14), we have

𝑢𝑛+1𝑖 ≤ max{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛+1,∗
𝑖

} < max{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛
𝑖 }. (4.18)

Suppose that 𝑢𝑛
𝑖

is a strict local minimum. Then, using the same 
arguments, we have

𝑢𝑛+1𝑖 ≥ min{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛+1,∗
𝑖

} > min{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛
𝑖 }. (4.19)

Now, one should notice that 𝑢𝑛+1
𝑖

is obtained by the implicit half 
step of the CN method (4.14), which does not introduce strict local 
extrema as shown in Case A. Thus, for both (4.18) and (4.19), 𝑢𝑛+1

𝑖

cannot have a value outside the interval

[min{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛+1,∗
𝑖

}, max{𝑢𝑛+1
𝑖−1 , 𝑢

𝑛+1
𝑖+1 , 𝑢

𝑛+1,∗
𝑖

}].

Thus, it follows from the second inequalities of (4.18) and (4.19)

that 𝑢𝑛+1
𝑖

cannot be outside the range of its neighboring values 
{𝑢𝑛+1

𝑖−1 , 𝑢
𝑛+1
𝑖+1 , 𝑢

𝑛
𝑖
}, when 𝑢𝑛

𝑖
and 𝑢𝑛+1,∗

𝑖
are strict local extrema in the 

same sense.

B-2. Assume that (4.16) holds. This case represents the largest set of grid 
points for locally-smooth nonconstant solutions, where the solution 
is most likely monotone locally. Here the main task is to prove that

𝑢𝑛+1𝑖 is not a strict local extremum, when (4.16) holds. (4.20)

When 𝑥𝑖 is an interior point of the set, it is clear to see it, because 
the implicit half step of the CN method (4.14) does not introduce 
local extrema to the numerical solution.

Let 𝑥𝑖 be an edge point of the set; that is, at least one of 𝑥𝑖−1 and 
𝑥𝑖+1 is in the wobble set. In this case, a mathematical analysis for 
the task (4.20) is hard to be carried out explicitly due to the nature 
of implicit equations. For example, let 𝑥𝑖−1 be in the wobble set 
(𝜃𝑛+1

𝑖−1 = 1). Then it follows from (4.13), (4.14), and (4.15) that

(1 + 2𝜇)𝑢𝑛+1
𝑖−1 = 𝜇(𝑢𝑛+1

𝑖−2 + 𝑢𝑛+1𝑖 ) + 𝑢𝑛
𝑖−1,

(1 + 𝜇)𝑢𝑛+1𝑖 = 𝜇

2
(𝑢𝑛+1
𝑖−1 + 𝑢𝑛+1

𝑖+1 ) +
𝜇

2
(𝑢𝑛
𝑖−1 + 𝑢𝑛

𝑖+1) + (1 − 𝜇)𝑢𝑛𝑖 .
(4.21)

Thus, with one more implicit equation defined at 𝑥𝑖+1, 𝑢𝑛+1𝑖
is re-

lated to 9 neighboring values: {𝑢𝑛+1𝑖+𝑗 ∣ 𝑗 = −2, −1, 1, 2}, {𝑢𝑛
𝑖+𝑘 ∣ 𝑘 =

−2, ⋯ , 2}, each of which again related to its neighboring values. 
Thus we decided to prove (4.20) numerically.

As a numerical test, we consider the following 1D parabolic equation 
of a discontinuous initial condition on [−1, 1]:

𝜕𝑡𝑢− 𝜕𝑥𝑥𝑢 = 0, (𝑥, 𝑡) ∈ (−1,1) × [0, 𝑇 ],

𝑢(𝑥,0) = 𝑢0(𝑥) =
⎧⎪⎨⎪⎩

1 if |𝑥| < 0.5,
0.5 if |𝑥| = 0.5,
0 if |𝑥| > 0.5.

(4.22)

The Dirichlet boundary condition is set to satisfy the analytic solution 
given in [18]:
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Fig. 4. The solutions: 𝑢𝑛 (black dotted) and 𝑢𝑛+1 (black solid), intermediate solution 𝑢𝑛+1,∗ (blue dashed), and variable 𝜃𝑛+1 (red asterisk marker) to the problem 
(4.22) at the time step: (a) 𝑛 = 2 and (b) 𝑛 = 3.
𝑢(𝑥, 𝑡) = 1
2
+ 2

∞∑
𝑘=0

(−1)𝑘 cos𝜋(2𝑘+ 1)𝑥
𝜋(2𝑘+ 1)

𝑒−𝜋
2(2𝑘+1)2𝑡, (𝑥, 𝑡) ∈ [−1,1] × [0, 𝑇 ].

(4.23)

Fig. 4 exhibits numerical solutions, 𝑢𝑛 and 𝑢𝑛+1, the intermediate 
solution 𝑢𝑛+1,∗, and 𝜃𝑛+1 at the time steps 𝑛 = 2 and 𝑛 = 3, for ℎ = 0.04
and 𝜏 = 0.1. One can check from the figures that 𝑢𝑛+1

𝑖
never involves a 

strict local extremum at points where (4.16) holds, which proves (4.20)

experimentally. It has been verified from various numerical tests that 
the claim (4.20) is true.

The above proves (partially experimentally, though) that the 
variable-𝜃 method does not introduce an interior local extremum to 
the numerical solution of 1D heat equation (4.11) for all choices of 
𝜇 > 0. Thus the variable-𝜃 method satisfies the maximum principle un-

conditionally. One can apply the above arguments for the 2D case. □

It is hoped that readers having advanced mathematical insights can 
prove it mathematically.

Remark 4.2. The wobble set 𝑛
1𝐷 in (4.5) can be defined as

̂𝑛
1𝐷 =

{
𝑥𝑖 ∈ (−1,1) ∣ [idxt(𝑢𝑛+1,∗

𝑖−1 , 𝑢𝑛+1,∗
𝑖

, 𝑢𝑛+1,∗
𝑖+1 ) ≠ 0

or idxt(𝑢𝑛
𝑖−1, 𝑢

𝑛
𝑖
, 𝑢𝑛
𝑖+1) ≠ 0]

and
|||idxt(𝑢𝑛+1,∗𝑖−1 , 𝑢𝑛+1,∗

𝑖
, 𝑢𝑛+1,∗
𝑖+1 ) + idxt(𝑢𝑛

𝑖−1, 𝑢
𝑛
𝑖 , 𝑢

𝑛
𝑖+1)

||| < 4
}
.

(4.24)

When 𝑥𝑖 ∉ ̂𝑛
1𝐷 , we have

[min{𝑢𝑛+1,∗
𝑖−1 , 𝑢𝑛+1,∗

𝑖+1 } < 𝑢𝑛+1,∗
𝑖

< max{𝑢𝑛+1,∗
𝑖−1 , 𝑢𝑛+1,∗

𝑖+1 }

and min{𝑢𝑛
𝑖−1, 𝑢

𝑛
𝑖+1} < 𝑢𝑛

𝑖
< max{𝑢𝑛+1,∗

𝑖−1 , 𝑢𝑛+1,∗
𝑖+1 }], or|||idxt(𝑢𝑛+1,∗𝑖−1 , 𝑢𝑛+1,∗

𝑖
, 𝑢𝑛+1,∗
𝑖+1 ) + idxt(𝑢𝑛

𝑖−1, 𝑢
𝑛
𝑖
, 𝑢𝑛
𝑖+1)

||| = 4.

(4.25)

It is clear to see that 𝑛
1𝐷 ⊂ ̂𝑛

1𝐷 . However, their performances are not 
observably different in practice, because it is occasional for ̂𝑛

1𝐷 to 
include more points than 𝑛

1𝐷 ; the extra points are quite few.

Like the standard 5-point scheme, the averaging scheme 𝛼 is an 
approximation of the negative Laplacian by using a weighted sum of 
the standard 5-point scheme and the skewed 5-point scheme. Hence, 
the same arguments in the proof of Theorem 4.1 can be extended for 
the variable-𝜃 method with the averaging scheme 𝛼 for 0 ≤ 𝛼 ≤ 1.
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Corollary 4.3. The numerical solution of the variable-𝜃 method (4.10) with 
the averaging scheme 𝛼 for 0 ≤ 𝛼 ≤ 1 to the heat equation satisfies the 
maximum principle unconditionally.

5. The optimal averaging parameter 𝜶̃

In this section, we will try to derive an optimal averaging parame-

ter which minimizes the leading truncation error. Since the variable-𝜃

method is a variant of the CN method, to focus on the effect of the opti-

mal parameter, we restrict our interest to the truncation error of the CN 
method (𝜃 ≡ 1∕2) with the averaging scheme. Then the leading trunca-

tion error simply reads

ℎ2

12
[
𝑢𝑥𝑥𝑥𝑥 + 6(1 − 𝛼)𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦

]
− 𝜏2

24
𝑢𝑡𝑡𝑡

= ℎ2

12
[
Δ2𝑢+ (4 − 6𝛼)𝑢𝑥𝑥𝑦𝑦

]
− 𝜏2

24
𝑢𝑡𝑡𝑡,

(5.1)

where we have utilized the identity Δ2𝑢 = 𝑢𝑥𝑥𝑥𝑥 + 2 𝑢𝑥𝑥𝑦𝑦 + 𝑢𝑦𝑦𝑦𝑦. To 
choose 𝛼 which make vanish the leading error, we consider the fol-

lowing equation: for 𝛾 = 𝜏∕ℎ,

Δ2𝑢+ (4 − 6𝛼)𝑢𝑥𝑥𝑦𝑦 −
𝛾2

2
𝑢𝑡𝑡𝑡 = 0. (5.2)

Solving (5.2) for 𝛼, we obtain

𝛼 =
2Δ2𝑢− 𝛾2 𝑢𝑡𝑡𝑡

12𝑢𝑥𝑥𝑦𝑦
+ 2

3
. (5.3)

Let

𝜕𝑡𝑢
𝑛 ∶= 𝑢𝑛 − 𝑢𝑛−1

𝜏
.

Then, since 𝜕𝑡𝑢𝑛 ≈ 𝑢𝑡 +
𝜏2

24
𝑢𝑡𝑡𝑡, we have

𝑢𝑡𝑡𝑡 ≈
24
𝜏2

(𝜕𝑡𝑢𝑛 − 𝑢𝑛𝑡 ). (5.4)

Thus it follows from (5.3) and (5.4) that the parameter 𝛼 in the 𝑛-th 
level becomes

𝛼𝑛 ≈
ℎ2Δ2𝑢− 12(𝜕𝑡𝑢𝑛 − 𝑢𝑛𝑡 )

6ℎ2 𝑢𝑥𝑥𝑦𝑦
+ 2

3

=
ℎ2Δ2𝑢− 12(𝜕𝑡𝑢𝑛 −𝐷Δ𝑢𝑛 − 𝑓 (𝐮𝑛))

6ℎ2 𝑢𝑥𝑥𝑦𝑦
+ 2

3
.

(5.5)

Define discrete operators of a second-order accuracy

𝑥𝑢 ≈ −𝑢𝑥𝑥 and 𝑦𝑢 ≈ −𝑢𝑦𝑦.
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Fig. 5. (a) 𝜶̃𝑛 − 2∕3 ⋅ 𝐼 at 𝑡 = 0.1 (𝑛 = 10) and (b) average(𝜶̃𝑛) − 2∕3 on the 50 time steps.
Table 1

Accumulated 𝐿2-errors 𝐸[0, 𝑇 ] and CPU-time for 
the problem associated with (5.8) and (5.9)

at 𝑇 = 0.5 and the mesh resolution (𝜏, ℎ) =
(0.01, 0.05) for 𝛼 = 1, 2∕3, and 𝜶̃𝑛.

𝜀 = 10−8 𝛼 = 1 𝛼 = 2∕3 𝜶̃
𝑛

𝐿2-error 8.65 ⋅ 10−7 6.36 ⋅ 10−7 6.07 ⋅ 10−7

CPU 1.09 1.52 1.60

Then, by approximating (5.5), we obtain the optimal parameter matrix 
𝜶𝑛 at the 𝑛-th time step as follows.

𝜶
𝑛 ≈

ℎ22
+𝑢

𝑛 − 12(𝜕𝑡𝑢𝑛 −𝐷+𝑢
𝑛 − 𝑓 (𝐮𝑛))

6ℎ2𝑥𝑦𝑢
𝑛

+ 2
3
. (5.6)

In practice, we must restrict entries of 𝜶𝑛 between 0 and 1,

[𝜶𝑛]𝑖𝑗 =min(max([𝜶𝑛]𝑖𝑗 ,0),1),

and apply an appropriate smoothing operator  (e.g., Gaussian 5 × 5
filter with 𝜎 = 1.0) to attain a reliable smooth parameter matrix:

𝜶̃
𝑛 ≈ 

(
ℎ22

+𝑢
𝑛 − 12(𝜕𝑡𝑢𝑛 −𝐷+𝑢

𝑛 − 𝑓 (𝐮𝑛))
6ℎ2𝑥𝑦𝑢

𝑛

)
+ 2

3
. (5.7)

Now, we will verify the effectiveness of the optimal parameter (5.7)

with the numerical solution of the heat equation:

𝜕𝑡𝑢−Δ𝑢 = 𝑓 (𝑥, 𝑦, 𝑡), (5.8)

where the source term 𝑓 , and the initial and boundary condition are set 
corresponding to the analytic solution given by

𝑢(𝑥, 𝑦, 𝑡) = 𝑒−2𝜋
2𝑡 sin𝜋𝑥 sin𝜋𝑦, (𝑥, 𝑦, 𝑡) ∈ [−0.25,0.75]2 × [0, 𝑇 ]. (5.9)

Here we have set an asymmetric domain [−0.25, 0.75]2 to add an asym-

metry to the numerical solution; we have selected the heat equation 
(a linear problem) to focus on the discretization error of the averaging 
scheme, without being mixed by the error from nonlinear terms.

For three choices of 𝛼 = 1, 2∕3, and 𝜶̃𝑛, Table 1 summarizes the 
𝐿2-error 𝐸2[0, 𝑇 ] and the CPU-time for the problem associated with 
(5.8)-(5.9) at 𝑇 = 0.5, when grid sizes (𝜏, ℎ) = (0.01, 0.05). One can see 
from Table 1 that the error of Mehrstellen discretization (𝛼 = 2∕3) is 
smaller than that of the standard 5-point scheme (𝛼 = 1); the optimal pa-

rameter 𝜶̃𝑛 shows a slightly smaller error than the error of Mehrstellen 
discretization. The optimal procedure consumes more CPU-time com-

pared with the other two fixed parameters, due to the extra computation 
of the optimal parameter matrix.
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Fig. 5 shows 𝜶̃𝑛 − 2∕3 ⋅ 𝐼 , the difference between optimal parameter 
matrix 𝜶̃𝑛 and 2∕3 (Mehrstellen) at 𝑡 = 0.1, and the difference between 
the averages of 𝜶̃𝑛 and 2∕3 on the 50 time steps. One can see from the 
figure that all the differences are pretty close to zero.

We have found from various experiments that the fixed averaging 
parameter employed in the Mehrstellen scheme (𝛼 = 2∕3) is effective 
enough to represent the variable optimal parameter 𝜶̃𝑛. In the rest of 
the article, the fixed parameter 𝛼 = 2∕3 will be utilized as the optimal 
averaging parameter, unless otherwise indicated.

6. Numerical experiments

In this section, we present numerical experiments to show the ef-

fectiveness of the proposed method, the averaging scheme incorporated 
with the variable-𝜃 time-stepping procedure, in both accuracy and ef-

ficiency. The algorithm is implemented in Matlab and carried out on a 
Desktop computer of AMD Ryzen 7 PRO 4750U 1.7GHz (4.1GHZ) pro-

cessor with 16.0GB RAM. For a comparison purpose, we also implement 
the CNOSC method [4]. For the algebraic solver, we employ the SOR 
with the near-optimal parameter studied in [11, §4]. The SOR itera-

tion is stopped when the maximum difference of consecutive iterates 
becomes smaller than a prescribed tolerance,

‖𝑢𝑛,𝑘 − 𝑢𝑛,𝑘−1‖∞ < 𝜀, (6.1)

where we set 𝜀 = 10−8. We set 𝛼 = 2∕3 for the averaging scheme. The 
elapsed time is measured in second and denoted by CPU.

6.1. Convergence analysis

We begin with a convergence analysis for the proposed method. 
Consider a heat equation in 2D.

𝜕𝑡𝑢−Δ𝑢 = 𝑓 (𝑥, 𝑡), (𝑥, 𝑦, 𝑡) ∈ (−1,1)2 × (0, 𝑇 ],
𝑢(𝑥, 𝑦,0) = sin𝜋𝑥 sin𝜋𝑦, (𝑥, 𝑦) ∈ [−1,1]2, (6.2)

where the boundary condition is set corresponding to the exact solu-

tion given by 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−2𝜋
2𝑡 sin𝜋𝑥 sin𝜋𝑦, with which the source term 

vanishes, i.e., 𝑓 ≡ 0.

Table 2 summarizes the accumulated 𝐿2-error 𝐸[0, 𝑇 ] with 𝑇 = 0.5, 
the CPU-time, and the convergence order, for the numerical solution of 
the heat equation (6.2) in various resolutions. The convergence order 
is measured along the diagonal entries of the table, which is slightly 
higher than the second-order. The proposed method, the averaging 
scheme incorporated with the variable-𝜃 time-stepping procedure, re-

sults in a desirable accuracy. It can achieve a near second-order accu-

racy in the temporal direction by the variable-𝜃 method and a slightly 
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Table 2

Accumulated 𝐿2-error 𝐸[0, 𝑇 ] with 𝑇 = 0.5, the CPU-time, and the convergence order, for the 
proposed method solving the heat equation (6.2). The convergence order is measured along the 
diagonal entries of the table.

𝜏

ℎ 0.1 (CPU) 0.05 (CPU) 0.025 (CPU) 0.0125 (CPU) order

0.1 (CPU) 8.21 ⋅ 10−4 (0.04) 5.34 ⋅ 10−4 (0.08) 3.03 ⋅ 10−4 (0.20) 1.71 ⋅ 10−4 (1.19)

0.05 (CPU) 5.80 ⋅ 10−4 (0.08) 1.75 ⋅ 10−4 (0.13) 5.94 ⋅ 10−5 (0.35) 3.00 ⋅ 10−5 (1.80) 2.23
0.025 (CPU) 1.90 ⋅ 10−4 (0.15) 8.87 ⋅ 10−5 (0.23) 4.14 ⋅ 10−5 (0.62) 1.15 ⋅ 10−5 (2.71) 2.08
0.0125 (CPU) 1.24 ⋅ 10−4 (0.23) 1.26 ⋅ 10−5 (0.43) 1.05 ⋅ 10−5 (1.19) 8.29 ⋅ 10−6 (4.40) 2.32

Fig. 6. Numerical solutions 𝑢1 for Gray-Scott model (6.3)-(6.7) at 𝑇 = 1, approximated by (a) the CNOSC method and (b) the proposed method. Set (𝜏, ℎ) = (0.001, 0.1).

Table 3

The accumulated 𝐿2-error 𝐸[0, 𝑇 ] and the CPU-time for the numerical solution of the Gray-Scott 
model associated with (6.3)-(6.6) in various resolutions, when 𝑇 = 1.0.

(𝜏 = ℎ3 , ℎ) CNOSC (CPU) + (CPU) 2∕3 (CPU) 𝜶̃
𝑛 (CPU)

(0.23 ,0.2) 1.66 ⋅ 10−2 (0.35s) 1.41 ⋅ 10−3 (0.14s) 1.18 ⋅ 10−3 (0.24s) 1.13 ⋅ 10−3 (0.89s)

(0.13 ,0.1) 4.00 ⋅ 10−3 (8.01s) 9.21 ⋅ 10−4 (3.09s) 8.67 ⋅ 10−4 (5.18s) 8.44 ⋅ 10−4 (24.23s)

(0.053 ,0.05) 1.75 ⋅ 10−4 (221.32s) 6.88 ⋅ 10−5 (88.33s) 6.79 ⋅ 10−5 (126.45s) 6.77 ⋅ 10−5 (707.56s)
higher accuracy than second-order in the spatial direction due to the 
averaging scheme.

It should be noticed that the proposed method is scalable when the 
mesh sizes are set as in practice. For example, for diagonal entries in the 
table (𝜏 = ℎ), the problem size in the current level becomes eight times 
the previous one. However the CPU-time increases only by factors of 
3.25, 4.77, and 7.10, respectively for 𝜏 = ℎ = 0.05, 0.025, and 0.0125. 
The algebraic solver, the SOR, converges faster for smaller 𝜏 , while it 
converges slower for finer spatial resolutions. With the near-optimal 
parameter [11], the SOR can maintain the same efficiency when the 
workload grows.

From the above example, we can conclude that the proposed method 
is second-order in accuracy and scalable in efficiency, for the numer-

ical solution of the heat equation. The claim can be applied for the 
numerical solution of the nonlinear RD system (1.1), provided that the 
nonlinear reaction term is approximated and treated accurately enough.

6.2. The Gray-Scott model

First, we will verify the accuracy and efficiency of the averaging 
schemes quantitatively. Consider the following two-component Gray-

Scott model formulated as in (1.1) with the reaction kinetics 𝐟(𝐮) given 
as

𝐟(𝐮) = [𝐹 (1 − 𝑢1) − 𝑢1𝑢
2
2, 𝑢1𝑢

2
2 − (𝐹 + 𝑘)𝑢2]𝑇 . (6.3)

We choose model coefficients as follows:
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Ω= (−1,1)2,  = [0.001,0.001]𝑇 , 𝐹 = 1, 𝑘 = 0. (6.4)

For a purpose of error analysis, we select a smooth solution 𝐮̂ = [𝑢̂1, ̂𝑢2]
defined as

𝑢̂1(𝑥, 𝑦, 𝑡) = cos(2𝑡) cos(2𝜋𝑥) cos(𝜋𝑦),
𝑢̂2(𝑥, 𝑦, 𝑡) = cos(2𝑡) cos(𝜋𝑥) cos(2𝜋𝑦), (6.5)

and replace the reaction kinetics 𝐟(𝐮) with 𝐟𝐮̂(𝐮):

𝐟𝐮̂(𝐮) ∶= 𝐟(𝐮) + 𝜕𝐮̂
𝜕𝑡

−Δ𝐮̂− 𝐟(𝐮̂). (6.6)

Then ̂𝐮 = [𝑢̂1, ̂𝑢2] in (6.5) would be the exact solution of

𝜕𝐮
𝜕𝑡

−Δ𝐮− 𝐟(𝐮) = 𝐟𝐮̂(𝐮), (6.7)

with the initial condition 𝐮0 = 𝐮̂(𝑥, 𝑦, 0).
Fig. 6 presents 𝑢1 of the numerical solutions approximated by the 

CNOSC method and the proposed method. For the CNOSC method, we 
select the same parameters as for Example 3 in [4]: 𝑛𝑥 = 𝑛𝑦 = 20 (ℎ =
0.1), 𝜏 = ℎ3, and 𝑟 = 3. We could check that Figs. 6 (a) and (b) show the 
same numerical solutions displayed as in Figure 2 of [4].

In Table 3, we present the accumulated 𝐿2-error and the CPU-time 
for the numerical solution of the Gray-Scott model associated with 
(6.3)-(6.6) in various resolutions, when 𝑇 = 1.0. We compare perfor-

mances of four different algorithms: the CNOSC method, the standard 
5-point scheme (+ =1), the averaging scheme with 𝛼 = 2∕3 (2∕3), 
and the averaging scheme with 𝜶̃𝑛 (𝜶̃

𝑛 ). The CNOSC method is im-

plemented with the splines of degree 𝑟 = 3, while the FD schemes are 
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Fig. 7. Numerical solutions for the Gierer-Meinhardt model (2.8)-(2.9) in the steady-state (𝑇 = 500), approximated by the averaging scheme 2∕3-VT. at the fixed 
time step 𝜏 = 0.01 and various spatial resolutions. Each image column 𝐼𝓁 presents the numerical solution and its aerial view obtained with the mesh resolution 
(𝜏, 𝑛𝑥 = 𝑛𝑦) = (0.01, 50 ⋅ 2𝓁−1).
not incorporated with the variable-𝜃 method. In order to give an asym-

metry to the numerical solution, we shift the domain of (6.4) by 0.5, 
i.e. from (−1, 1)2 to (−0.5, 1.5)2. Moreover, finer temporal resolutions 
(𝜏 = ℎ(𝑟+1)∕2) are chosen for the CNOSC method to achieve (𝜏2 + ℎ𝑟+1)
accuracy in the 𝐿2-norm [4].

We can point out from the table that the 𝐿2-errors of the averaging 
schemes are smaller than those of other methods. For example, in the 
low spatial resolution (𝜏, ℎ) = (0.23, 0.2), the error of the CNOSC method 
mounts up about 15 times those of the averaging schemes. The CNOSC 
method may introduce imperceptible oscillations spreading out to all 
over the domain, which might be originated from its rough orthogo-

nal basis taking fewer collocation points of the low spatial resolution. 
Furthermore, even though the CNOSC method employs the ADI method 
to accelerate its computation, the CPU-time is longer than the two FD 
methods, + and 2∕3. It is partially due to the efficiency of the SOR 
method; also it is because of an intrinsic complexity of the CNOSC 
method, in which the calculation has to deal with large coefficient ma-

trices. For example, when the spatial mesh is set with 40 ×40 grid points, 
the CNOSC method with the splines of degree 𝑟 = 3 produces coefficient 
matrices in 82 × 82 dimensions (82 = 2 ⋅ 40 + 2).

The errors of the three FD schemes (+, 2∕3, and 𝜶̃
𝑛 ) are differ-

ent, but not significantly. However, the differences in their CPU-time 
are quite varied. As we examined before, the averaging scheme with 𝜶̃𝑛
showed much more CPU-time than the other two FD methods; 2∕3 has 
achieved a good accuracy and efficiency with comparatively smaller 
CPU-time.

Table 4 shows the accumulated 𝐿2-errors 𝐸[0, 𝑇 ], 𝑇 = 1.0, and 
the CPU-time of the averaging scheme 2∕3 incorporated with the 
variable-𝜃 method (𝛼 -VT), for the numerical solution of the Gray-Scott 
model with parameters set the same as in Table 3. We consider various 
temporal resolutions with the spatial grid size being fixed, ℎ = 0.1. Since 
the overall error is dominated by the spatial error, we cannot witness a 
dramatic error change as the time step size varies. However, one can see 
from the table that even with (𝜏, ℎ) = (0.1, 0.1), the accuracy of the 2∕3-

VT has surpassed that of the CNOSC method with (𝜏, ℎ) = (0.13, 0.1); see 
the second row in the first column in Table 3. The CNOSC method re-
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Table 4

The accumulated 𝐿2-error 𝐸[0, 𝑇 ], 𝑇 = 1.0, and the CPU-time for 
the numerical solution of the Gray-Scott model associated with 
(6.3)-(6.6) by the 2∕3-VT, in various temporal resolutions. The 
spatial grid size is fixed, ℎ = 0.1.

(𝜏, ℎ) (0.05,0.1) (CPU) (0.1,0.1) (CPU) (0.2,0.1) (CPU)

2∕3-VT 8.88 ⋅ 10−4 (0.16s) 1.15 ⋅ 10−3 (0.09s) 3.20 ⋅ 10−3 (0.05s)

quires at least 100 times more time steps to achieve the same level of 
accuracy as the 2∕3-VT. We further stress out the efficiency of the pro-

posed method, by comparing the error and the CPU-time of 2∕3-VT 
(1.15 ⋅ 10−3, 0.09s) and the CNOSC method (4.00 ⋅ 10−3, 8.01s). The 2∕3-

VT is 100 times more efficient than the CNOSC method.

6.3. The Gierer-Meinhardt model

In Fig. 7, we depict the numerical solutions of the Gierer-Meinhardt 
model at the steady-state (𝑇 = 500) by the 2∕3-VT, in order to investi-

gate the rotational symmetry and the accuracy of the proposed method. 
Its mesh resolutions are the same as in Figs. 1 and 2. Unlike the low res-

olution cases of the standard 5-point scheme and the CNOSC method: 
Figs. 1 (𝐼1) and 2 (𝐽1), the proposed averaging scheme shows the same 
steady-state pattern as the high resolution cases, as illustrated in Fig. 7

(𝐼1). It is noticeable that the 2∕3-VT can achieve a stable evolution 
even in low spatial resolutions.

To examine early pattern formations in low spatial resolutions, we 
depict the numerical solution of Gierer-Meinhardt model by three differ-

ent schemes: the standard 5-point scheme, the CNOSC method (𝑟 = 3), 
and the averaging scheme 2∕3-VT. Set (𝜏, 𝑛𝑥 = 𝑛𝑦) = (0.01, 50). Figures 
(a), (b), and (c) in Fig. 8 correspond respectively to an early state at 
𝑡 = 80 of Figs. 1 (𝐼1), 2 (𝐼1), and 7 (𝐼1).

In Fig. 8 (a), one can see that the standard 5-point scheme shows 
the artifacts depending on variable directions (𝑥 and 𝑦), which is orig-

inated from the spatial approximation concerning only two directions. 
In Fig. 8 (b), the CNOSC method shows a rotationally invariant pat-
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Fig. 8. Numerical solutions and their aerial views for Gierer-Meinhardt model (2.8)–(2.9) at 𝑡 = 80, obtained by (a) the standard 5-point scheme, (b) the CNOSC 
method (𝑟 = 3), and (c) the 2∕3-VT. Set (𝜏, 𝑛𝑥 = 𝑛𝑦) = (0.01, 50).
tern formation. However it introduces a peak at the center of the figure, 
which results in a bigger circular pattern than in Fig. 8 (c). The peak is 
arisen from the rough spline polynomial generated by fewer collocation 
points and we can suppress the artifact by either adding more Gaussian 
quadrature points or employing higher-order polynomials; however the 
artifact may not be suppressed completely, although the CNOSC method 
becomes much more expensive computationally. These artifacts of the 
standard 5-point scheme and the CNOSC method would produce abnor-

mal steady-state patterns in low spatial resolutions, which are different 
from their steady-state patterns in high spatial resolutions.

On the other hand, the 2∕3-VT gives us a rotationally invariant 
pattern formation without any visible artifacts as shown in Fig. 8 (c); the 
averaging scheme 2∕3-VT can achieve the same steady-state patterns 
in low spatial resolutions as in high spatial resolutions, since the scheme 
approximates the diffusion operator appropriately by considering all the 
possible directions.

To precisely examine the evolution of each method depending on 
spatial resolutions, Figs. 9, 10, and 11 present evolution patterns for 
the numerical solution of the Gierer-Meinhardt model (2.8)-(2.9) at 
𝑇 = 80, 170, 270, 340, approximated respectively by the standard 5-point 
scheme, the CNOSC method (𝑟 = 3), and the averaging scheme 2∕3-

VT. The algorithm parameters are set the same as for Fig. 8, with 
various spatial resolutions (𝑛𝑥 = 𝑛𝑦 = 50, 100, 200). As you can see from 
the figures, the averaging scheme results in evolution patterns consis-

tent over the spatial resolutions (Fig. 11), while other methods show 
evolution patterns quite different depending on the spatial resolutions 
(Figs. 9 and 10). Only the averaging scheme, 2∕3-VT, can produce the 
correct evolution pattern in the low spatial resolution (𝑛𝑥 = 𝑛𝑦 = 50). For 
the steady-state patterns (𝑇 = 500), one can refer to Figs. 1, 2, and 7.

We close the section with the following remark: we have numerically

verified the rotational symmetry of the averaging scheme 2∕3-VT.

7. Conclusions

The authors’ previous publication [11] revealed that the spatial sen-

sitivity of nonlinear reaction-diffusion problems might introduce un-
201
desirable artifacts into their numerical solutions, particularly in low 
spatial resolutions. The sensitivity issue in the one-dimensional space 
can be well-explained via grid effect; however in two and higher di-

mensions, the issue can be affected not only by the grid effect but 
also by the rotational symmetry of the approximation of the Laplacian 
diffusion operator. Moreover, most of the conventional Laplacian ap-

proximations fail to hold rotational symmetry. To investigate the effect 
of rotational symmetry, we have conducted a sensitivity analysis for 
two-dimensional reaction-diffusion problems approximated by various 
finite-difference methods. The averaging scheme 𝛼 for the approxi-

mation of the negative Laplacian (−Δ) is suggested as an average of 
the standard 5-point scheme and the skewed 5-point scheme. It has 
been found that the averaging scheme can effectively suppress artifacts 
arisen from an asymmetry of numerical approximation and eventually 
give us correct steady-state patterns, even in low spatial resolutions. An 
effective strategy is suggested to optimize the averaging parameter ma-

trix 𝜶̃𝑛, which can be replaced by the fixed parameter 2∕3 in practice. 
In addition to the averaging scheme, we have analyzed the maximum 
principle for the variable-𝜃 method that is the time-stepping method 
employed to solve the reaction-diffusion systems. Various numerical ex-

amples have been considered to show the effectiveness of the proposed 
method.
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Fig. 9. Evolution of patterns for the Gierer-Meinhardt model (2.8)-(2.9) at 𝑇 = 80, 179, 270, 340, approximated by the standard 5-point scheme. Each image row 𝐼𝓁
represents the numerical solution and its aerial view obtained with the mesh resolution (𝜏, 𝑛𝑥 = 𝑛𝑦) = (0.01, 50 ⋅ 2𝓁−1).

Fig. 10. Evolution of patterns for the Gierer-Meinhardt model (2.8)-(2.9) at 𝑇 = 80, 170, 270, 340, approximated by the CNOSC method (𝑟 = 3). Each image row 𝐼𝓁
represents the numerical solution and its aerial view obtained with the mesh resolution (𝜏, 𝑛𝑥 = 𝑛𝑦) = (0.01, 50 ⋅ 2𝓁−1).
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