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Abstract

We consider a two-regime switching model with the goal of minimizing the expected discounted cu-
mulative combination of the utility of the number of infections together with the utility of an economical
indicator. We assume the two regimes choices are between opening and and locking down the economy,
and the choice affects the infection rate. We also assume that the economy level also has a small influ-
ence on both the infection rate and on the cumulative function being minimized. We then asymptotically
find the value function and the boundaries of the switching regions, and perform a numerical calibration
to draw conclusions about optimal lockdown in a pandemic.
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1 Introduction

Optimal switching is the problem of finding an optimal sequence of stopping times for switching between
different regimes in the underlying stochastic processes. Generally it can be characterized as optimal timing
under uncertainty. The problem have many classical applications including finance and economics, such
as pricing real options. For example the works of Brennan and Schwartz [1985] on optimal extraction,
Dixit [1989] on optimal production and Trigeorgis [1993] on real options, along with many other types of
applications, see e.g. Benaroch et al. [2012], Parpas and Webster [2014], Sødal et al. [2008] for applications
respectively in manufacturing; network and energy systems; shipping.

The general switching problem, however, is often intractable. Even the case with only three regimes
and one-dimensional underlying diffusion, as in Pham et al. [2009] may not admit a fully explicit solution.
Therefore it is not surprising that most explicit solutions have been provided in a two-regime switching
models, see e.g. Tang and Yong [1993], Brekke and Oksendal [1994], Duckworth and Zervos [2001], Zervos
[2003]. A typical approach to the problem is using viscosity solutions technique as in Ly Vath and Pham
[2007]. This approach identifies the solution to the appropriate Hamilton-Jacobi-Bellman (HJB) equation
and the value function. This in turn allows to prove that the value function is smooth inside each of the
regions and calculate it through the smooth fit principle across the regions. Other popular approaches include
Bayraktar and Egami [2010] who used optimal stopping times technique, and Hamadène and Jeanblanc
[2007] who used techniques from the theory of Backward Stochastic Differential Equations.
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A common alternative, for when an explicit solution is not available is to use asymptotic expansion.
The literature is vast, and we refer to classical works of Fouque et al. [2001] and Fouque et al. [2017] and
books of Fouque et al. [2000] and Fouque et al. [2011] and examples therein. The key idea is to find a case
which can be easily solved and then asymptotically expand around it, to find an asymptotic correction, and
thereby obtain an asymptotic expansion in the desired problem. This is then often combined with viscosity
solution theory as in the works of Janecek and Shreve [2004], Bichuch and Sircar [2019]. This also allows
to construct sub- and supermartingales and sandwich the value function in between then to identify the first
couple of terms in the asymptotic expansion as in Bichuch [2012] and Bichuch and Fouque [2019].

In this paper we apply this asymptotic expansion method to switching problems. While this method
has been used before, e..g in Tsekrekos and Yannacopoulos [2016], the expansion proofs so far seem to
be heuristic. In this paper we provide a rigorous proof for such an asymptotic expansion in a special case.
The asymptotic expansion method proposed below is broad, and can be applied to a wide range of optimal
switching problems in both the number of states and the type of diffusions, however in general the proof
is difficult, and requires special conditions. Therefore, we simplify it, by solving a two-regime optimal
switching problem with two-dimensional coupled but simple diffusions, asymptotically in the sensitivity
to the second diffusion. The asymptotic expansion is performed around the explicitly solvable case of
two-regime switching problem with a one-dimensional diffusion. The main contribution of this paper is
in adapting the sub- and super-martingale proof method of Bichuch [2012, 2014] to optimal switching
problems, and thereby obtaining a rigorously constructed viscosity sub- and super-solutions, and ”nearly-
optimal” switching policies.

Another motivation for the underlying problem is to understand when is it optimal for the economies
of countries to lock down and open up. That is to provide an optimization problem whose solution is to
close when the infection rate is high, and open back up when it is lower, as is known to be historically
optimal in past pandemic (e.g. Correia et al. [2020]). The goal is not simply to minimize the number
of infections/fatalities, such as in Gonzalez-Eiras and Niepelt [2020], Acemoglu et al. [2020], or to also
take into account constraints that keep the economy from completely crashing as in Alvarez et al. [2020],
or to simply concentrate purely on the economical effect of the lockdown as in Moser and Yared [2020].
But to minimize the cumulative combination of the infections and the economical state. In this paper we
consider a two-regime switching mode, where the goal is to minimize a cumulative discounted number of
infections together with an inverse of an economic indicator. We perform an asymptotic analysis when the
sensitivity to the economical factor is small, and find the asymptotic expansions of the value function and
of the boundaries of the stopping regions. We then calibrate the model parameters to data and discuss the
obtained results.

The structure of the paper is as follows: in Section 2 we formulate the general type of switching problem
we want to solve. The problem is then specialized to a two-regime case and some preliminary results are
presented in Section 3. The main proofs are in Section 4. The numerical study is done in Section 5. We
conclude in Section 6.

2 Model Formulation

In this section we formulate a general N-regime switching model, and set up the optimization problem. We
start with a filtered probability space (Ω,F , {Ft}t≥0,P), on which two correlated Brownian Motions B,W are
given with d 〈B,W〉t = ρdt with |ρ| < 1.

Denote Xt to the be the number of sick people at time t, and an economy statistic, (e.g. the GDP or the
total stock market) by Ỹt. Assume that there are N different society states, where for example i = 1 means
stay-at-home order, i = 2 partial opening, low risk activities allowed, with some social distance required, ...,
i = N business as usual. Assume that the rate of transmission depends on the state i, and that it is possible
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to switch between the states. Assuming that this happens at stopping times 0 = τ0 < τ1 < τ2..., satysfying
lim
n→∞

τn = ∞ a.s., by switching to regime ιn ∈ Fτn , n ≥ 0, this defines a control α = (τn, ιn)n≥0, and the states
process

Ii
t =

∑
n≥0

ιnI[τn,τn+1)(t), I0− = i.

We denote the set of all such switching controls α byA. We assume that there is some economical cost gi j

for switching states from i to j, caused by the necessity to adapt the economy to the new state. So we will
assume that gi j > 0, if j < i, i.e there is a cost for closing the economy, and gi j < 0 if j > i , i.e. there is a
benefit to the economy opening up. It is customary to assume that gii = 0, and we also require the triangular
inequality type condition to hold, namely:

gik < gi j + g jk, j , i, k,

stating that it is better to switch from i to k directly, rather than switching from i to j and then immediately
from j to k.

The evolution of the number of infections Xt is then given by:

dXt = µ̃(Xt, Ỹt, Ii
t)Xtdt + σ(Ii

t)XtdWt, X0 = x.

Similarly, we also define the evolution of the economy:

dỸt = θ̃(Ii
t)Ỹtdt + ν̃(Ii

t)ỸtdBt, Ỹ0 = ỹ. (2.1)

Our goal is to investigate the optimal cumulative discounted utility of the number of infections and the
economy, when optimally switching between the different states is allowed. That is our goal is to find the
value functions

ṽi(x, ỹ) = inf
α∈A

Ji(x, ỹ, i, α), i = 1, ...,N,

where

J(x, ỹ, i, α) = E

∫ ∞

0
e−βt

(
Up(Xt) +

ε

Uq(Ỹt)

)
dt +

∑
n≥1

e−βτn gιn−1,ιn

 .
Here we assumed thatUp,Uq are utility functions. In what follows, we will concentrate on a power utility
Up(x) = xp, Uq(y) = yq, 0 < p, q < ∞. Additionally, we assume that there is a strong emphasis on public
health over the economy, and this is expressed in the small coefficient ε > 0. Note that typically, when the
utility of the economy is being maximized, it is assumed to be increasing and concave. A classical example
is − 1

Uq(·) , 0 < q < ∞, see e.g. Karatzas and Shreve [1998][Ch. 3]. In our case a change in sign is needed,
since the goal is to find a minimum, rather than a maximum. The utility for the number of infections is also
chosen to be power, for tractability reasons.

Next, to make things more tractable we will assume the following model parameters:

θ̃(i) = θ̃i, ν̃(i) = ν̃i, σ(i) = σi,

all to be constant, only depending on state i. This is as opposed to the drift in X, which we assume to be

µ̃(x, ỹ, i) = µi + εỹ−q1 − ε2ỹ−2q1 , (2.2)

where 0 < q1 < ∞.
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We motivate the evolution of X, the number of sick people as follows. We assume that Xt is significantly
smaller than the susceptible population, and thus (on average) additional µ̄(x, ỹ, i) people will get sick over
time dt from every (currently) sick person, whereas proportion r of the currently sick will recover, for a total
rate of µ̃(x, ỹ, i) = µ̄(x, ỹ, i) − r of additional infections. Alternatively, in the SIS model, which assumes that
a recovery does not confer a (long lasting) immunity, the (deterministic term) in the change in the number of

sick people is dXt =

(
µ̃(x, ỹ, i) − µ̄(x, ỹ, i) Xt

(Total Population)

)
Xtdt. If the model is simplified one step further,

by assuming that the Total Population far exceeds Xt and neglecting that term, we recover the drift in our
model.

The goal of this work is to perform an asymptotic analysis in ε > 0 small. It is also interesting to incor-
porate the entire SIS model, i.e. to allow the drift of Xt to be

(
µ̃(x, ỹ, i) − εµ̄(x, ỹ, i)Xt + εỸ−q1

t − ε2Ỹ−2q1
t

)
Xt

and perform an asymptotic expansion. We leave this work for future research.
To motivate the geometrical Brownian Motion model assumption for the evolution of the economy Ỹ ,

we think of the market (e.g. the S&P index) as a proxy to the economy and refer to the classical assumptions
in Mathematical Finance, e.g. Karatzas and Shreve [1998][Ch. 3].

The rational for the O(ε) term in (2.2) being that a good economical state, with high ỹ lowers the average
rate of new infections, (e.g stimulus payments, have both benefited the economy and allowed people to stay
home and decreased the number of new infections). The O(ε2) term was added for technical reasons, to
keep the drift of X bounded in Ỹ .

It is more convenient to work with Yt = 1
Ỹt

. For convenience, we may refer to Y as the inverse of the
economy. Therefore, we have that

dYt = θ(Ii
t)Ytdt + ν(Ii

t)YtdBt, Y0 = y, (2.3)

where θ(i) = −θ̃i + ν̃2
i , ν(i) = −ν̃i, y = 1

ỹ . Let also

vi(x, y) = ṽi(x, ỹ)

Then the drift of Xt becomes µ(x, ỹ, i) = µi + εyq1 − ε2y2q1 and the SDE changes to

dXt = µ(Xt,Yt, Ii
t)Xtdt + σ(Ii

t)XtdWt, X0 = x. (2.4)

We will also assume for convenience that ρ = 0, though the calculations can easily be extended to other
values ρ ∈ (−1, 1).

It is well known (e.g. Pham [2009][Chapter 5.3]) that the value functions vi are the viscosity solutions
of the HJB equation:

max{βvi − L
ε
i vi −Up(x) − εUq(y), vi −min

j,i
(v j + gi j)} = 0 , i = 1, ...,N, (2.5)

where

Lεi = (µi + εyq1)x∂x +
σ2

i x2

2
∂2

xx + θiy∂y +
ν2

i y2

2
∂2

yy.

Observe that

Lεi = L0
i + εL1 − ε2L2,

where

L0
i = µix∂x +

(σix)2

2
∂2

xx + θiy∂y +
ν2

i y2

2
∂2

yy,

L j = y jq1 x∂x, j = 1, 2.
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Since the solution to the original problem (2.5) is not known to exists in closed form, we perform an asymp-
totic expansion in ε > 0. Our goal is to find the asymptotic expansion of the value functions:

vi(x, y) = v0
i (x, y) + v1

i (x, y)ε + ..., (2.6)

asymptotically in ε > 0 small and the asymptotic expansions of the optimal stopping regions.

3 Main Example

In this section we heuristically find the asymptotic expansion of the value functions (2.6) and of the optimal
switching regions. The rigorous proof of which are then presented in the next section. For tractability we
will also assume that N = 2. While these asymptotic expansion calculations can be performed without
having explicit solutions, their availability significantly simplifies the exposition. Therefore, we limit the
presentation to two-regime switching problem and constant coefficients dynamics (2.4), (2.1), (2.3), but
stress that it can be expanded to more general dynamics and other N, such as the case N = 3 in Pham et al.
[2009].

We proceed to solve the HJB equation by powers of ε. We continue to assume that g21 > 0, and g12 < 0,
with the asymptotic expansion

gi j = g0
i j + εg1

i j(y
q + yq1).

Therefore, we will assume that

g0
12 + g0

21 > 0, g1
12 + g1

21 ≥ 0, gk
21 > 0, gk

12 < 0, k = 0, 1, (3.1)

We will start with heuristic asymptotic of the HJB equation:
Order O(1):
At the order O(1), the HJB equation is particularly simple, and is (heuristically) obtained from (2.5) by
expanding in powers of ε and then considering the O(1) term. We have that

max{βv0
1 − L

0
1v0

1 −Up(x), v0
1 − v0

2 − g0
12} = 0,

max{βv0
2 − L

0
2v0

2 −Up(x), v0
2 − v0

1 − g0
21} = 0. (3.2)

Note that the entire probabilistic formulation of the problem at O(1) is independent of y, and so we will
look for solutions v0

i to be functions of x and independent of y. By uniqueness of the solution to the HJB
equation (3.2) this guess will ultimately turn to out be correct. We will utilize this ansatz in this section,
and in the next section we will give a probabilistic proof, that will not rely on this uniqueness fact. Our first
assumption, is about the infection minimization problem with no switching:

Assumption 3.1. We will assume that β > 0 is big enough so that

K0
i =

1

β − µi p +
σ2

i
2 p(1 − p)

> 0, i = 1, 2,

and that K0
1 < K0

2 .

The later makes sense as V̂0
1 (x) < V̂0

2 (x), where

V̂0
i (x) = K0

i xp, i = 1, 2,
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are the solutions to the infection minimization problem with no switching allowed (i.e. the second order
PDE parts of (3.2)) and therefore with constant state i.

Recall that the switching regions, i.e. the sets where it is optimal to immediately switch, are S̃ i ={
(x, y) ∈ R+2

|v0
i = v0

j + g0
i j, j , i

}
, i = 1, 2. In this case, it follows from Ly Vath and Pham [2007][Theorem

4.1] that the switching regions are S̃2 = [x0
∗
,∞) × R+, S̃1 = [0, x0

∗] × R
+ and

v0
1(x) =

Axm−1 + K0
1 xp x > x0

∗,

Bxm+
2 + K0

2 xp + g0
12 x ≤ x0

∗,

v0
2(x) =

Bxm+
2 + K0

2 xp x < x0
∗
,

Axm−1 + K0
1 xp + g0

21 x ≥ x0
∗
.

Here, we set

m±i =

−µi +
σ2

i
2 ±

√(
µi −

σ2
i

2

)2
+ 2βσ2

i

σ2
i

,

to be the roots of

β − µim −
σ2

i

2
m(m − 1) = 0,

and therefore are used to construct wi(x) = Axm+
i + Bxm−i the general solution to the homogeneous PDEs

βwi −

(
µix∂x +

σ2
i x2

2 ∂2
xx

)
wi = 0. Additionally, we define

x0
∗ =

g0
12m−1 (m+

2 − p)zm+
2 − g0

12m+
2 (m−1 − p)zm−1 + g0

21 p(m+
2 − m−1 )

(K0
1 − K0

2 )(m−1 − p)(p − m+
2 )

(
zm−1 − zm+

2
) 

1
p

, (3.3)

x0
∗

= zx0
∗, (3.4)

A =
(x0
∗)
−m−1

(
(K0

1 − K0
2 )(m+

2 − p)(x0
∗)

p − g0
12m+

2

)
m−1 − m+

2
, (3.5)

B =
(x0
∗)
−m+

2
(
(K0

1 − K0
2 )(m−1 − p)(x0

∗)
p − g0

12m−1
)

m−1 − m+
2

, (3.6)

and where z is (the unique) solution on
((
−

g0
21

g0
12

)1/m+
2
,∞

)
to

m−1 (p − m+
2 )(1 − zm−1−p)(g0

12zm+
2 + g0

21) + m+
2 (m−1 − p)(1 − zm+

2−p)(g0
12zm−1 + g0

21) = 0. (3.7)

We will rigorously prove this in the next section. For this we need an assumption, so that the order O(1)
switching problem will be well defined.

Assumption 3.2. In addition to Assumption 3.1, assume that (3.1) holds, and that β > 0 is big enough, so
that m+

i > max{p, 1}, and m−i < 0, i = 1, 2.

From here together with the definition x0
∗ in (3.3) it follows that x0

∗ > 0. From (3.1) it follows that(
−

g0
21

g0
12

)1/m+
2
> 1. Therefore, x0

∗
> x0

∗. Finally from (3.5) and (3.6), using (3.3), (3.4), (3.7) it follows that
A, B > 0 respectively.
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Recall Ly Vath and Pham [2007][Theorem 4.1] that these were found by solving the following system
of equations:

A(x0
∗)

m−1 + K0
1 (x0
∗)

p = B(x0
∗)

m+
2 + K0

2 (x0
∗)

p + g0
12, (3.8)

m−1 A(x0
∗)

m−1−1 + pK0
1 (x0
∗)

p−1 = m+
2 B(x0

∗)
m+

2−1 + pK0
2 (x0
∗)

p−1,

A(x0
∗
)m−1 + K0

1 (x0
∗
)p + g0

21 = B(x0
∗
)m+

2 + K0
2 (x0
∗
)p, (3.9)

m−1 A(x0
∗
)m−1−1 + pK0

1 (x0
∗
)p−1 = m+

2 B(x0
∗
)m+

2−1 + pK0
2 (x0
∗
)p−1.

Order O(ε): The next step becomes more difficult. We want to find functions v1
1, v

1
2 satisfying:(

βv1
1 − L

0
1v1

1 − L
1v0

1

)
(x, y) −Uq(y) = 0, x > x0

∗, y ∈ R, (3.10)

v1
1(x, y) − v1

2(x, y) − g1
12(yq + yq1) = 0, x ≤ x0

∗, y ∈ R,(
βv1

2 − L
0
1v1

2 − L
1v0

2

)
(x, y) −Uq(y) = 0, x < x0

∗
, y ∈ R, (3.11)

v1
1(x, y) − v1

2(x, y) + g1
21(yq + yq1) = 0, x ≥ x0

∗
, y ∈ R.

Similarly, to the O(1) case, we can find particular solutions V̂1
1 , V̂

1
2 of (3.10) and (3.11) respectively, and they

are given as:

V̂1
1 = K1

1yq + K̄1
1yq1 xm−1 + K̂1

1yq1 xp,

V̂1
2 = K1

2yq + K̄1
2yq1 xm+

2 + K̂1
2yq1 xp,

where we set the constants to be:

K1
i =

1

β − θiq +
ν2

i
2 q(1 − q)

, i = 1, 2,

K̄1
1 =

m−1 A

−θ1q1 + q1(1 − q1)
ν2

1
2

, K̄1
2 =

m+
2 B

−θ2q1 + q1(1 − q1)
ν2

2
2

,

K̂1
i =

pK0
i

β − pµi + (1 − p)p
σ2

i
2 − q1θi + q1(1 − q1)

ν2
i

2

, i = 1, 2.

For future reference, we also define

K̃1
i =

1

β − θiq1 +
ν2

i
2 q1(1 − q1)

, i = 1, 2.

We now want to find a more general solutions of the homogeneous portion of the PDEs (3.10) and (3.11).
For this, we define:

d±i (r) =

−µi +
σ2

i
2 ±

√(
µi −

σ2
i

2

)2
+

(
2β − 2rθi + (1 − r)rν2

i

)
σ2

i

σ2
i

, r > 0, (3.12)

and β > 0 is assumed to be big enough so that d±i (q1), d±i (q) are well defined. Then let

v1
1(x, y) =

V̂1
1 (x, y) + A1yqxd−1 (q) + A2yq1 xd−1 (q1) x > x0

∗, y ∈ R,
V̂1

2 (x, y) + B1yqxd+
2 (q) + B2yq1 xd+

2 (q1) + g1
12(yq + yq1) x ≤ x0

∗, y ∈ R,

v1
2(x, y) =

V̂1
2 (x, y) + B1yqxd+

2 (q) + B2yq1 xd+
2 (q1) x < x0

∗
, y ∈ R,

V̂1
1 (x, y) + A1yqxd−1 (q) + A2yq1 xd−1 (q1) + g1

21(yq + yq1) x ≥ x0
∗
, y ∈ R.
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In the above we need to determine Ai, Bi, i = 1, 2. This can be easily done, once we recognize that because
these equalities must hold for all y ∈ R then they must hold for each power of y separately. Therefore from
the continuity across the boundary condition, it follows that we must have:

K1
1 + A1(x0

∗)
d−1 (q) = K1

2 + B1(x0
∗)

d+
2 (q) + g1

12, (3.13)

K1
1 + A1(x0

∗
)d−1 (q) + g1

21 = K1
2 + B1(x0

∗
)d+

2 (q), (3.14)

K̂1
1 (x0
∗)

p + K̄1
1 (x0
∗)

m−1 + A2(x0
∗)

d−1 (q1) = K̂1
2 (x0
∗)

p + K̄1
2 (x0
∗)

m+
2 + B2(x0

∗)
d+

2 (q1) + g1
12, (3.15)

K̂1
1 (x0
∗
)p + K̄1

1 (x0
∗
)m−1 + A2(x0

∗
)d−1 (q1) + g1

21 = K̂1
2 (x0
∗
)p + K̄1

2 (x0
∗
)m+

2 + B2(x0
∗
)d+

2 (q1), (3.16)

where the first two equations are the coefficients of yq and the last two are the coefficients of yq1 .

The solution to this system yields:

A1 =
(x0
∗)

d+
2 (q)(K1

2 − K1
1 − g1

21) − (x0
∗
)d+

2 (q)(K1
2 − K1

1 + g1
12)

(x0
∗)

d+
2 (q)(x0

∗
)d−1 (q) − (x0

∗)
d−1 (q)(x0

∗
)d+

2 (q)
,

B1 =
(x0
∗)

d−1 (q)(K1
2 − K1

1 − g1
21) − (x0

∗
)d−1 (q)(K1

2 − K1
1 + g1

12)

(x0
∗)

d+
2 (q)(x0

∗
)d−1 (q) − (x0

∗)
d−1 (q)(x0

∗
)d+

2 (q)
,

A2 =

(
(K̂1

2 − K̂1
1 )(x0

∗
)p + K̄1

2 (x0
∗
)m+

2 − K̄1
1 (x0
∗
)m−1 − g1

21

)
(x0
∗)

d+
2 (q1)

(x0
∗)

d+
2 (q1)(x0

∗
)d−1 (q1) − (x0

∗)
d−1 (q1)(x0

∗
)d+

2 (q1)

−

(
(K̂1

2 − K̂1
1 )(x0

∗)
p + K̄1

2 (x0
∗)

m+
2 − K̄1

1 (x0
∗)

m−1 + g1
12

)
(x0
∗
)d+

2 (q1)

(x0
∗)

d+
2 (q1)(x0

∗
)d−1 (q1) − (x0

∗)
d−1 (q1)(x0

∗
)d+

2 (q1)
,

B2 =

(
(K̂1

2 − K̂1
1 )(x0

∗
)p + K̄1

2 (x0
∗
)m+

2 − K̄1
1 (x0
∗
)m−1 − g1

21

)
(x0
∗)

d−1 (q1)

(x0
∗)

d+
2 (q1)(x0

∗
)d−1 (q1) − (x0

∗)
d−1 (q1)(x0

∗
)d+

2 (q1)

−

(
(K̂1

2 − K̂1
1 )(x0

∗)
p + K̄1

2 (x0
∗)

m+
2 − K̄1

1 (x0
∗)

m−1 + g1
12

)
(x0
∗
)d−1 (q1)

(x0
∗)

d+
2 (q1)(x0

∗
)d−1 (q1) − (x0

∗)
d−1 (q1)(x0

∗
)d+

2 (q1)
.

We can now state the rest of our assumptions. These last set of assumptions are needed in addition to the
previous assumptions to rigorously prove the O(ε) expansion in the switching problem.

Assumption 3.3. In addition to Assumption 3.2, we will also assume that β > 0 is big enough so that
d−1 (q1) < 0, d−1 (q) < 0, d+

2 (q1) > max{1, p}, d+
2 (q) > max{1, p}, where d± were defined in (3.12). Also,

assume that if σi > σ j, i, j = 1, 2, i , j, then β > 0 is big enough such that all the other terms(
σ2

i (m−1 + m+
2 − 1) + 2µi

)
,

(
σ2

i (d−1 (q) + d+
2 (q) − 1) + 2µi

)
,

(
σ2

i (d−1 (q1) + d+
2 (q1) − 1) + 2µi

)
< 0 are all neg-

ative, and vice versa, if σi < σ j, then all the above quantities are positive.
Moreover, we will also assume that

K1
2 > K1

1 , K̃1
2 > K̃1

1 , K̄1
2 > K̄1

1 , K̂1
2 > K̂1

1 , (3.17)

and that β > 0 is big enough, to make all of the quantities in (3.17) positive.

Notably, we will assume that the long-term growth of the economy (after) lockdown is at least as large
as when it is open. The true price of the lockdown is expressed in the cost g21, while K1

i are the long-term
growth of the (inverse) of the economy given a constant state. Therefore, intuitively after a big contraction
we expect a big expansion. The numerical calibration of Section 5 in fact finds that they most likely identical,
and the difference is well within the statistical error: K1

2 − K1
1 ≈ 3 × 10−6.
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It now follows from (3.4), (3.17) that

A1, A2, B1, B2 > 0.

Finally, the switching regions will be updated to

S2 = [x0
∗

+ εx1
∗
(·),∞) × R+, S1 = (0, x0

∗ + εx1
∗(·)] × R

+, (3.18)

where x1
∗
, x1
∗ are defined to satisfy the smooth pasting condition, i.e. they solve:

(∂+
xxv0

1)(x0
∗)x1
∗ + (∂+

x v1
1)(x0

∗, y) = (∂−xxv0
1)(x0

∗)x1
∗ + (∂−x v1

1)(x0
∗, y),

(∂+
xxv0

2)(x0
∗
)x1
∗

+ (∂+
x v1

2)(x0
∗
, y) = (∂−xxv0

2)(x0
∗
)x1
∗

+ (∂−x v1
2)(x0

∗
, y).

As opposed to the O(1) these are linear equations in x1
∗, x

1
∗
. It turns out they must be in fact functions of y,

and are given by:

x1
∗(y) =

(∂−x v1
1)(x0

∗, y) − (∂+
x v1

1)(x0
∗, y)

(∂+
xxv0

1)(x0
∗) − (∂−xxv0

1)(x0
∗)

= yq1
B2d+

1 (q)(x0
∗)

d+
1 (q)−1 + K̄1

2m+
2 (x0
∗)

m+
2−1 + K̂1

2 p(x0
∗)

p−1 − A2d−1 (q)(x0
∗)

d−1 (q)−1 − K̄1
1m−1 (x0

∗)
m−1−1 − K̂1

1 p(x0
∗)

p−1

Am−1 (m−1 − 1)(x0
∗)

m−1−2 − Bm+
2 (m+

2 − 1)(x0
∗)

m+
2−2 + p(p − 1)(K0

1 − K0
2 (x0
∗)p−2

+ yq B1d+
1 (q)(x0

∗)
d+

1 (q)−1 − A1d−1 (q)(x0
∗)

d−1 (q)−1

Am−1 (m−1 − 1)(x0
∗)

m−1−2 − Bm+
2 (m+

2 − 1)(x0
∗)

m+
2−2 + p(p − 1)(K0

1 − K0
2 (x0
∗)p−2

,

x1
∗
(y) =

(∂−x v1
2)(x0

∗
, y) − (∂+

x v1
2)(x0

∗
, y)

(∂+
xxv0

2)(x0
∗
) − (∂−xxv0

2)(x0
∗
)

= yq1
B2d+

1 (q)(x0
∗
)d+

1 (q)−1 + K̄1
2m+

2 (x0
∗
)m+

2−1 + K̂1
2 p(x0

∗
)p−1 − A2d−1 (q)(x0

∗
)d−1 (q)−1 − K̄1

1m−1 (x0
∗
)m−1−1 − K̂1

1 p(x0
∗
)p−1

Am−1 (m−1 − 1)(x0
∗
)m−1−2 − Bm+

2 (m+
2 − 1)(x0

∗
)m+

2−2 + p(p − 1)(K0
1 − K0

2 (x0
∗
)p−2

+ yq B1d+
1 (q)(x0

∗
)d+

1 (q)−1 − A1d−1 (q)(x0
∗
)d−1 (q)−1

Am−1 (m−1 − 1)(x0
∗
)m−1−2 − Bm+

2 (m+
2 − 1)(x0

∗
)m+

2−2 + p(p − 1)(K0
1 − K0

2 (x0
∗
)p−2

.

Order O(ε2): We would like to stop now, but since we want to build solutions of the HJB equation (2.5),
if we attempt to plugin the expansion that we have found v0

i (x) + εv1
i (x, y), we will have terms of O(ε2).

Therefore to build sub- and super-solutions, we have to perturb them at the order of O(ε2) as follows:

v2(x, y) = (1 + xp)
(
yq1 + y2q1

)
M

(
1 + yq + yq1

)
(3.19)

where the constant M > 0 big enough, to be determined later.

4 Main Results

We are now ready to state the main result. Not surprisingly first we will prove that our expansion can be
used to build sub- and super-solutions. This is done in Theorem 4.1. We then could appeal to comparison
(uniqueness) argument, as in Ly Vath and Pham [2007], but this requires (at most) linear growth for the
comparison argument to hold. Instead, we will appeal to a standard stochastic calculus technique and us-
ing the sub- and super-slutions build sub- and supermartigales. We will then sandwich the value function
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between the sub- and supermartingales, and since their expansion matches at the order O(ε) we will get
the expansion of the value function. More importantly, in the process we will get that the stopping regions
defined in (3.18) are ”nearly-optimal”. This is done in Theorem 4.2.

Theorem 4.1. Let N = 2 and ρ = 0. Assume that σ1 , σ2, and also that g1
21, g

1
12, satisfying (3.1), and∣∣∣g1

21

∣∣∣ >, ∣∣∣g1
12

∣∣∣ > 0 small enough. Then, under Assumption 3.3 there exists M > 0, such that for ε > 0 small
enough

v±i (x, y) = v0
i (x) + εv1

i (x, y) ± ε2v2(x, y), i = 1, 2,

are super- and -solutions of the HJB equation (2.5).

Proof. We will show that v±i , i = 1, 2 are viscosity super- and sub-solutions to the HJB equation (2.5). By
symmetry it is sufficient to verify this for i = 2. To verify that v+

2 is a viscosity super-solution of (2.5) we
will show that v+

2 = v+
1 + g21 on [x0

∗
,∞) × R+ and that βv+

2 − L
ε
2v+

2 − Up(x) − εUq(y) ≥ 0 on (0, x0
∗
) × R+,

and conclude that (2.5) holds for v+
2 . The viscosity sub-solution property is not symmetrical, as we need to

show that v−2 − v−1 − g21 ≤ 0 everywhere, and that βv−2 −L
ε
2v−2 −Up(x)− εUq(y) ≤ 0 where v−2 is smooth, and

comment what happens at the point when it’s not. There the proof is divided into a few steps, as follows.
Step 1: We need to show that

v±2 ≤ v±1 + g21. (4.1)

Step 1.a: We first work on the O(1) term, and show that

v0
2 ≤ v0

1 + g0
21. (4.2)

This is trivial on [x0
∗
,∞)×R+, since v0

2 = v0
1 + g0

21 by definition. Moreover, on (0, x0
∗)×R

+, we have that
v0

1 = v0
2 + g0

12 by construction. Using the fact that g0
12 > −g0

21, (4.2) now follows.
Step 1.b: Still considering the O(1) term, we now show that (4.2) is true on the set (x0

∗, x
0
∗
)×R+. Consider

G1(x) = v0
2 − v0

1 − g0
21 = Bxm+

2 − Axm−1 + (K0
2 − K0

1 )xp − g0
21.

The proof is similar to Ly Vath and Pham [2007][Theorem 4.1]. From (3.8), (3.9) we have that G1(x0
∗) =

−g0
12 − g0

21 < 0, and G1(x0
∗
) = 0. We claim that G1 ≤ 0. Indeed, G′1 can only have at most two zeroes on

(0∞), because G′′1 changes signs once on (0,∞). Therefore, if there would have been another root x0 of
G1, then there would have been another point x1 ∈ (x0, x0

∗
) such that G′1(x1) = G′1(x0

∗
) = G′1(x0

∗) = 0. This
contradicts the fact that G′1 has (at most) two roots .

Step 1.c : We now consider the O(ε) term of (4.1). It is sufficient that we show that

v1
2 ≤ v1

1 + g1
21(yq + yq1). (4.3)

Similar to Step 1.a we get that (4.3) holds on [x0
∗

+ εx1
∗
(·),∞) × R+ ∪ (0, x0

∗ + εx1
∗(·)) × R

+.
Step 1.d : Lastly on (x0

∗ + εx1
∗(·), x

0
∗

+ εx1
∗
(·)) × R+, consider again

v1
2 − v1

1 − g1
21(yq + yq1) = yqG2(x) + yq1G3(x)

= yq
(
K1

2 − K1
1 + B1xd+

2 (q) − A1xd−1 (q) − g1
21

)
+ yq1

(
K̄1

2 xm+
2 − K̄1

1 xm−1 + (K̂1
2 − K̂1

1 )xp + B2xd+
2 (q1) − A2xd−1 (q1) − g1

21

)
.

Similar to Step 1.b, from (3.13), (3.15) we have that G2(x0
∗ + εx1

∗(y)) = −g1
12 − g1

21 + O(ε2) < 0, and
G2(x0

∗
+ εx1

∗
(y)) = O(ε2). Similar to Step 1.b, we again obtain that G2 ≤ O(ε2) on the set. G3 is treated

similar.
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Step 1.e : From the definition (3.19), by continuity, and by accounting for the O(ε2) term, from Step
1.a,c it now follows that v+ ≤ v+

1 +g21 on [x0
∗
+εx1

∗
(·),∞)×R+. Additionally, we have shown in Step 1.a,b that

v0
2 − v0

1 − g0
21 ≤ 0 everywhere on the union of

(
(x0
∗
,∞) ∪ (0, x0

∗) ∪ (x0
∗, x

0
∗
)
)
×R+. By continuity of v0

i , i = 1, 2
we have it on the entire R+2. Therefore, for ε > 0 small enough, it follows that v1

2 − v1
1 − g1

21(yq + yq1) ≤
(yq +yq1)O(ε2) on

(
(x0
∗

+ εx1
∗
(·),∞) ∪ (0, x0

∗ + εx1
∗(·)) ∪ (x0

∗ + εx1
∗(·), x

0
∗

+ εx1
∗
(·))

)
×R+. By continuity, again

it follows that v1
2 − v1

1 − g1
21(yq + yq1) ≤ (yq + yq1)O(ε2) on the entire R+2, and thus v−2 − v−1 − g21 ≤ 0.

Step 2: We now deal with the second order PDE :

±
(
βv±2 − L

ε
2v±2 −Up(x) − εUq(y)

)
≥ 0.

Step 2.a: A technical, but simple calculation shows that on the set (0, x0
∗

+ εx1
∗
(·)) × R+

βv±2 − L
ε
2v±2 −Up(x) − εUq(y) (4.4)

= ε2
yq

±M(β − µ2q +
σ2

2

2
q2(1 − q)) + O(1)

 + yq1

±M(β − µ2q1 +
σ2

2

2
q1

2(1 − q1)) + O(1)
 y2q1 ,

where O(1) is uniform in x. Therefore, for ε > 0 small enough, the sign of (4.4) is the same as that of ±M,
for M > 0 big enough. Note that M > 0 is chosen independently of x and y.

Step 2.b: We now want to show that consider the points in the set (x0
∗
+εx1

∗
(·),∞)×R+. We first evaluate

the O(1) term, for which it is the same as considering the set (x0
∗
,∞) × R+. Recall that v0 is continuously

differential at x0
∗
, whereas the differences in the second derivatives evaluates to:

lim
x→(x0

∗
)+
∂xxv0

2(x) − lim
x→(x0

∗
)−
∂xxv0

2(x) =
g0

12m−1 m+
2 + (K0

1 − K0
2 )(m−1 − p)(m+

2 − p)(x0
∗
)p

(x0
∗
)2 > 0.

Therefore at the order O(1), using the results of the previous step, we have that

lim
x→(x0

∗
)+
βv0

2 − L
0
2v0

2 −Up(x) (4.5)

= lim
x→(x0

∗
)−
βv0

2 − L
0
2v0

2 −Up(x) −
(
g0

12m−1 m+
2 + (K0

1 − K0
2 )(m−1 − p)(m+

2 − p)(x0
∗
)p

) σ2
2

2
≤ 0.

Furthermore, on the set (x0
∗
,∞) × R+, with L = (2µ1 − 2µ2 + (1 − m−1 )(σ2

2 − σ
2
1)), we find that

βv0
2 − L

0
2v0

2 −Up(x) =
(K0

1 − K0
2 )

K0
2

xp + m−1 LAxm−1 + βg0
21.

To conclude that,

βv0
2 − L

0
2v0

2 −Up(x) ≤ 0, x > x0
∗
, (4.6)

consider two cases:
If L < 0 the derivative ∂x

(
βv−2 − L

0
2v−2 −Up(x)

)
< 0 is negative, and together with (4.5), (4.6) now

follows.
If L ≥ 0, then it is sufficient to show that

(K0
1−K0

2 )
K0

2
(x0
∗
)p + βg0

21 ≤ 0. This is true because 0 < A and it

can be expressed as A =
(x0
∗
)−m−1 ((K0

1−K0
2 )(m+

2−p)(x0
∗
)p+g0

21m+
2 )

m−1−m+
2

. Thus (K0
1 − K0

2 )(x0
∗
)p + g0

21
m+

2
m+

2−p < 0. We have that
1
2σ2m+

2 (p − 1) < 1
2σ

2
2m+

2 (m+
2 − 1) = β − µ2 p. Therefore,

m+
2

m+
2−p ≥ βK0

2 =
β

β−µi p+
σ2

i
2 p(1−p)

. Thus the desired

result finally follows from the fact that (K0
1 − K0

2 )(x0
∗
)p + g0

21βK0
2 ≤ (K0

1 − K0
2 )(x0

∗
)p + g0

21
m+

2
m+

2−p < 0.
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Step 2.c: Finally, on set (x0
∗

+ εx1
∗
(·),∞) × R+ a technical calculation shows that the O(ε) term evaluates

to

(
βv1

2 − L
0
2v1

2 − L
1v0

2

)
(x, y) −Uq(y)

= yq
 1

K1
2

(
g1

21 + K1
1 − K1

2

)
+ A1xd−1 (q)(d+

1 (q) − d−1 (q))
σ2

2

2
(d−1 (q) + d+

1 (q) − 1) + µ2


+

yq1

2

(
g1

21
2

K̃1
2

+ xp

− 2
K̂1

1

 1
K0

1

−
1

K0
2

+
1

K̃1
1

−
1

K̃1
2


+ xd−1 (q1)A2(d+

2 (q1) − d−2 (q1))
(
σ2

2(d−2 (q1) + d+
2 (q1) − 1) + 2µ2

)
+ xm−1

q1

 1
K̃1

2

−
1

K̃1
1

 + (m+
2 − m−1 )

(
σ2

2(m−1 + m+
2 − 1) + 2µ2

) ). (4.7)

Recall that we have assumed that σ1 , σ2. Therefore, by Assumption 3.3 the coefficients of xd−1 (q), xd−1 (q1),
xm1− have the same signs as the sign of the expression σ2 −σ1. Moreover, by Assumption 3.3 K1

1 − K1
2 < 0,

and we may assume that g1
21 > 0 is small enough, so that g1

21 + K1
1 − K1

2 ≤ 0 too. Additionally, the sign

of the coefficient of xp is
(
− 2

K̂1
1

(
1

K0
1
− 1

K0
2

+ 1
K̃1

1
− 1

K̃1
2

))
< 0, and we assume that g1

21 > 0 is small enough

so that g1
21

2
K̃1

2
+ (x0

∗
)p

(
− 2

K̂1
1

(
1

K0
1
− 1

K0
2

+ 1
K̃1

1
− 1

K̃1
2

))
≤ 0. Therefore, if σ2 > σ1, then all the coefficients of

xd−1 (q), xd−1 (q1), xm1− are negative, and so is the entire (4.7). Otherwise, if σ1 > σ2, then the coefficients of
xd−1 (q), xd−1 (q1), xm1− are positive, and these terms are decreasing in x. The coefficient of xp is still negative,
and so the entire (4.7) decreases in x. Therefore, to show the negativity of (4.7), it is sufficient to verify that

lim
(x,y)→((x0

∗
+εx1

∗
(y))+,y)

(
βv1

2 − L
0
2v1

2 − L
1v0

2

)
(x, y) −Uq(y) < 0.

Using the , and the fact that across (x0
∗
+εx1

∗
(y), y) both v1

2 and v0
2 are continuously differentiable in x and

smooth in y, but not twice continuously differentiable in x, we have that

lim
(x,y)→((x0

∗
+εx1

∗
(y))+,y)

(
βv1

2 − L
0
2v1

2 − L
1v0

2

)
(x, y) −Uq(y)

= lim
(x,y)→((x0

∗
+εx1

∗
(y))−,y)

(
βv1

2 − L
0
2v1

2 − L
1v0

2

)
(x, y) −Uq(y)

−
σ2

2

2

(
K̄1

1yq1m−1 (m−1 − 1)(x0
∗
)m−1 + p(p − 1)K̂1

1yq1 xp + A1d−1 (q)(d−1 (q) − 1)yqxd−1 (q)

+ A2d−1 (q1)(d−1 (q1) − 1)xd−1 (q1)yq1

)
+
σ2

2

2

(
K̄1

2yq1m+
2 (m+

2 − 1)(x0
∗
)m+

2 + p(p − 1)K̂1
2yq1 xp + B1d+

2 (q)(d+
2 (q) − 1)yqxd+

2 (q)

+ B2d+
2 (q1)(d+

2 (q1) − 1)xd+
2 (q1)yq1

)
.

This right hand is indeed negative because the fact that fact that lim
(x,y)→((x0

∗
+εx1

∗
(y))−,y)

(
βv1

2 − L
0
2v1

2 − L
1v0

2

)
(x, y)−

Uq(y) = 0, together with using (3.14), (3.16), and the fact σ1 > σ2 and therefore m−1 (m−1 − 1) > m+
2 (m+

2 − 1),
d−1 (q)(d−1 (q) − 1) > d+

2 (q1)(d+
2 (q1) − 1), and d−1 (q1)(d−1 (q1) − 1) > d+

2 (q1)(d+
2 (q1) − 1).

Step 2.d: The O(ε2) terms on (x0
∗

+ εx1
∗
(·),∞) × R+ are the same as in (the right hand side of) (4.4).

Therefore, the sign of the O(ε2) will the same as the sign of ±M once M > 0 is big enough.
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Step 3: Summary. The proof is now complete. Indeed, we have shown in Step 1.a that v+
2 = v+

1 + g21
on [x0

∗
+ εx1

∗
(·),∞) × R+ and in Step 2.a that βv+

2 − L
ε
2v+

2 − Up(x) − εUq(y) ≥ 0 on (0, x0
∗

+ εx1
∗
(·)) × R+.

Therefore, v+
2 is a super-solution of (2.5).

Similarly, we have concluded in Step 1.e that v−2 − v−1 − g21 ≤ 0 on the entire R+2. Similarly, we have
shown in Step 2.a,b,c that βv−2 − L

ε
2v−2 −Up(x) − εUq(y) ≤ 0 on the union R+2, except on {x0

∗
} × R+ and on

the curve y 7→ (x0
∗

+ x1
∗
(y), y). However, v−2 is continuously differentiable even at those points, because of the

construction, and it may not be twice continuously differentiable in x only. However, the second derivative
in x jumps down, as shown in Step 2.b,c. Therefore, it must satisfy βv−2 −L

ε
2v−2 −Up(x)− εUq(y) ≤ 0 in the

viscosity sense there. This completes the proof.
�

We are now ready to bind the value functions in between the sub- and super-solutions. As mentioned
earlier, we will utilize Theorem 4.1 to show that the processes e−βt v±(Xt,Yt)+

∫ t
0 e−βs

(
Up(Xs) + εUq(Ys)

)
ds

are sub- and super-martingales. More specifically:

Theorem 4.2. Under the same assumptions as in Theorem 4.1, for ε > 0 small enough,

v−i (x, y) ≤ vi(x, y) ≤ v+
i (x, y), (4.8)

and therefore ∣∣∣vi(x, y) − v±i (x, y)
∣∣∣ ≤ (1 + xp)

(
yq1 + y2q1

) (
1 + yq + yq1

)
O(ε2). (4.9)

Moreover, let (Ĩ, X̃, Ỹ) be the process associated with the stopping regions S1, S2 in (3.18) and starting from
(i, x, y). Then the strategy Ĩt is ”nearly optimal”, in that if followed, the difference between it and the value
function is:∣∣∣∣∣∣∣E

∫ ∞

0
e−βt

(
Up(X̃t) + εUq(Ỹt)

)
dt +

∑
n≥1

e−βτn gιn−1,ιn

 − vi(x, y)

∣∣∣∣∣∣∣ ≤ (1 + xp)
(
yq1 + y2q1

) (
1 + yq + yq1

)
O(ε2).

(4.10)

Proof. First, we have that v± are continuously differentiable, and with one-sided limits for the second deriva-
tive. Let (I, X,Y) be any switching process starting from (i, x, y). Fix T > 0, then by Itô’s lemma:

E
[
e−βT v−i (XT ,YT ) − v−i (x, y)

]
= E

 ∞∑
j=0

∫ T∧τ j+1

T∧τ j

(
∂t +Lε2

) (
e−βt v−(Xt,Yt)

)
+ e−βt

(
Up(Xt) + εUq(Yt)

)
dt


− E

[∫ T

0
e−βt

(
Up(Xt) + εUq(Yt)

)
dt

]
≥ −E

[∫ T

0
e−βt

(
Up(Xt) + εUq(Yt)

)
dt

]
.

where in the first equality we have used the fact that the expectation of the stochastic term is zero, and Theo-
rem 4.1 to deduce the non-negativity of the first expectation. Notice, that we have shown that e−βt v−(Xt,Yt)+∫ t

0 e−βs
(
Up(Xs) + εUq(Ys)

)
ds is a submartingale. Finally, we have that lim

T→∞
E

[
e−βT v−(XT ,YT )

]
= 0, be-

cause so are lim
T→∞
E[e−βT Xp

T ] = lim
T→∞
E[e−βT Yq+2q1

T ] = lim
T→∞
E[e−βT Yq1

T ] = 0. Therefore, taking an infimum

over all possible strategies, starting from (i, x, y) we get:

v−i (x, y) ≤ vi(x, y). (4.11)
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Similarly, by considering (Ĩ, X̃, Ỹ) to be the switching process associated with the stopping regions S1, S2
in (3.18) and starting from (i, x, y), we get that

E
[
e−βT v+

i (X̃T , ỸT ) − v+
i (x, y)

]
= E

 ∞∑
j=0

∫ T∧τ j+1

T∧τ j

(
∂t +Lε2

) (
e−βt v+(X̃t, Ỹt)

)
+ e−βt

(
Up(X̃t) + εUq(Ỹt)

)
dt


− E

[∫ T

0
e−βt

(
Up(X̃t) + εUq(Ỹt)

)
dt

]
≤ −E

[∫ T

0
e−βt

(
Up(X̃t) + εUq(Ỹt)

)
dt

]
.

In other words e−βt v+(X̃t, Ỹt) +
∫ t

0 e−βs
(
Up(X̃s) + εUq(Ỹs)

)
ds is a superartingale. Again, taking the limit as

T → ∞, we get

v+
i (x, y) ≥ E

[∫ ∞

0
e−βt

(
Up(X̃t) + εUq(Ỹt)

)
dt

]
≥ vi(x, y), (4.12)

where the last inequality is be definition of the value function. Combining (4.11), (4.12) and remembering
the definition of v±i we get (4.8), (4.9), (4.10).

�

5 Numerical Case Study

We now calibrate the model parameters to the data and study the opening and closing boundaries and their
approximations. We perform the calibration using he data from NY state. 1 We calibrated the parameters
assuming the stay-at-home state 1 lasted between 03/14/2020 – 06/25/2020, and the subsequent open state
2 was between 06/26/2020–09/26/2020. We found µ1 = −0.00056, µ2 = 0.669, σ1 = 13.17, σ2 =

3.468, θ1 = −0.00037, θ2 = 0.00068, ν1 = ν2 = 0.3206. q1 = 0.0034. Additionally, we have set β =

20, ε = 0.3105, g0
12 = −1, g0

21 = 1.1, g1
21 = 10−3g0

21, g1
12 = 10−3g0

12, p = 0.5, q = 0.1.
We assume the population of NY state is 20m2. X is assumed to be the 7-day average number of

infections in the population. First, we find that x0
∗ = 211.93 and x0

∗
= 1245.9. In other words, if closed

the state should reopen with approximately 1 infections per 100k, whereas it should close up if more than
6 infections per 100k occur. We find this in the ballpark of the recommendations from Brown School of
Public Health3.

From Figure 1 we see that once the economy is added into the consideration the closing boundary
(slightly) increases. The inverse happens to the opening boundaries. It is not surprising that the closing
boundary increased when ε is no longer zero, as the cost of lockdown increased. The decrease of the
reopening boundary may follow from the fact with ε > 0 the infection rate has also increased, and therefore,
the lockdown needs to last longer when compared to the case ε = 0.

From Figure 2 we also see that the first order adjustment is a function of the economy. When the
economy is doing well (and its inverse y is small) the adjustment to the opening boundary is a little higher,
than it becomes when the economy underperforms. This is consistent with our assumption that in well
performing economy the infection rate is a little lower, as people can afford to stay at home more, and thus

1NY state infection data from https://www1.nyc.gov/site/doh/covid/covid-19-data.page. NY economical data
from https://fred.stlouisfed.org/series/NYNQGSP and https://fred.stlouisfed.org/series/NYINSUREDUR

2https://en.wikipedia.org/wiki/New_York_(state)
3https://globalepidemics.org/
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Figure 1: Opening (left) and closing (right) boundaries. O(1) approximation in thick blue, O(ε) approxi-
mation in dashed orange, numerical solution in dotted green.
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(a) O(ε) adjustment to the closing boundary
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(b) O(ε) adjustment to the opening boundary

Figure 2: Opening (left) and closing (right) boundaries with with ε = 0.1. O(1) approximation in blue,
O(ε) approximation in orange, numerical solution in green.

the opening can happen a little sooner, as a function of the economy. Similarly, we observe the correction
to the closing boundary is lower, when the economy is doing very well, because the minimization is being
dragged up by the infection rate, therefore it is optimal to close sooner, and the economy can tolerate the
closure better, and the infection rate will drop faster so that the economy can be re-opended sooner.

6 Conclusion

In conclusion we have asymptotically solved a two-regime switching problem with a two-dimensional un-
derlying coupled diffusion. We have formulated and solved an infection optimization problem, whose solu-
tion approximately yield the popular, but heuristic strategy of opening and closing based on the number of
infections per 100k population. Moreover, we have showed how the sub- and supersolutions can be used to
rigorously construct bounds on an asymptotic expansion of the value function.
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