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Scaled Vecchia Approximation for Fast Computer-Model Emulation∗
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Abstract. Many scientific phenomena are studied using computer experiments consisting of multiple runs of a
computer model while varying the input settings. Gaussian processes (GPs) are a popular tool for
the analysis of computer experiments, enabling interpolation between input settings, but direct GP
inference is computationally infeasible for large datasets. We adapt and extend a powerful class of
GP methods from spatial statistics to enable the scalable analysis and emulation of large computer
experiments. Specifically, we apply Vecchia’s ordered conditional approximation in a transformed
input space, with each input scaled according to how strongly it relates to the computer-model
response. The scaling is learned from the data by estimating parameters in the GP covariance
function using Fisher scoring. Our methods are highly scalable, enabling estimation, joint prediction,
and simulation in near-linear time in the number of model runs. In several numerical examples, our
approach substantially outperformed existing methods.
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sparse inverse Cholesky
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1. Introduction. At the cutting edge of science, computationally intensive simulations
are used to make predictions of complex phenomena, such as the distribution of matter in the
universe (Lawrence et al., 2017), the behavior of materials under high pressure (Walters et al.,
2018), or the composition of rocks on Mars (Bhat et al., 2020). These simulations are simply
too slow for use in data analysis (Higdon et al., 2004) or real-time applications (Mehta et al.,
2014), so the statistics discipline known as computer experiments has grown to address this
computational challenge. The key ingredient in much of this work is an emulator, a statistical
approximation to the computer simulation. Emulators can predict the output of a simulation
many orders of magnitude faster than the simulation itself, at the cost of additional error.
Emulation is achieved by building a regression model from the inputs to the outputs.
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538 M. KATZFUSS, J. GUINNESS, AND E. LAWRENCE

Gaussian processes (GPs) are popular emulators and have emerged as indispensable tools
for design, analysis, and calibration of computer experiments (e.g., Sacks et al., 1989; Kennedy
and O’Hagan, 2001). GPs are accurate, flexible, interpretable, and probabilistic, thus pro-
viding natural quantification of uncertainty. For the analysis of n computer-model runs, GP
inference typically requires working with a dense n × n covariance matrix. Thus, direct GP
inference is infeasible for many present and future computer experiments, as new supercom-
puters enable increasingly large numbers of increasingly detailed simulations to be carried out.
Scalability improvements for computer-experiment methods are vital to handle the expected
increase in simulation output.

Many approaches have been proposed to enable scalable GP inference. Heaton et al.
(2019) review and compare approaches from spatial statistics, and Liu et al. (2020) review
approaches in machine learning. In the context of large computer experiments, scalable GP
approaches include: compactly supported covariances (Kaufman et al., 2011); sparse grid-
based GPs (Plumlee, 2014); and the local approximate GP (laGP) of Gramacy and Apley
(2015), which makes independent predictions at different input values using nearby obser-
vations in the input space. In spatial statistics, the Vecchia approximation (Vecchia, 1988)
and its extensions (e.g., Stein et al., 2004; Datta et al., 2016a; Guinness, 2018; Katzfuss
and Guinness, 2021; Katzfuss et al., 2020a) are very popular GP approximations. Similar
to the laGP, the Vecchia approximation considers nearest neighbors, but it does so from an
ordered conditional perspective; as a result, Vecchia approximations imply a valid joint distri-
bution for the data, resulting in straightforward global likelihood-based parameter inference
and joint predictions at a set of input values, which allows proper uncertainty quantification
in downstream applications.

Here, we adapt and extend the powerful class of Vecchia GP approximations from spatial
statistics to enable the scalable analysis and emulation of large computer experiments. Specif-
ically, we apply Vecchia’s ordered conditional approximation in a transformed input space,
for which each input is scaled according to how strongly it is related to the computer-model
response. The scaling of the input space is learned from the data by estimating parameters in
the GP covariance function using Fisher scoring (Guinness, 2021). Our scaled Vecchia meth-
ods are highly scalable, enabling ordering, neighbor-search, estimation, joint prediction, and
simulation in near-linear time in the number of model runs. Thus, our methods can handle
large numbers of model runs, joint sampling of paths through the input space, and relatively
high input dimensions, assuming that only some of the inputs have a strong effect on the out-
put, while others are less important. Recently, Shi et al. (2017) also applied a Vecchia-type
approximation in a GP-emulation setting, but their focus was on infinitely smooth covariances
(i.e., squared exponential) and change-of-support problems. Datta et al. (2016b) proposed a
Bayesian Vecchia-type approximation for spatio-temporal processes, in which the neighbors
(but not the ordering) were selected based on the spatio-temporal correlations; for a specific
choice of covariance function, their correlation-based neighbor-selection procedure is similar
to our neighbor-selection based on distances between scaled inputs.

Relative to recent work on Vecchia approximations of spatial processes by the authors
(Guinness, 2018; Katzfuss and Guinness, 2021; Katzfuss et al., 2020a; Guinness, 2021),
the present paper makes several contributions that are crucial to addressing challenges with
computer-model emulation. We extend the Vecchia approximation to nonspatial inputs and
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SCALED VECCHIA FOR FAST COMPUTER-MODEL EMULATION 539

to anisotropic covariance functions. The Vecchia ordering and neighbor sets are determined
based on scaled inputs; this greatly improves the accuracy in the high-dimensional input
spaces common in computer experiments (as opposed to the usual two-dimensional space in
spatial statistics). When estimating the (unknown) scaling parameters in an iterative fashion,
the scaling of the inputs changes along with the parameter estimates over the course of the
Fisher-scoring iterations; hence, as we refine the estimates of the parameters, we refine our
Vecchia approximation of the implied anisotropic covariance. As a stationary GP may be less
appropriate for modeling some computer-model surfaces than many geospatial fields, model
misspecification and resulting underestimation of prediction uncertainty may be an issue; to
address this, we developed a simple, computationally cheap, and effective variance-correction
approach, resulting in well-calibrated and sharp predictive distributions.

The remainder of this document is organized as follows. In section 2, we describe GP
emulation of computer models, and we review existing Vecchia approximations from spatial
statistics. In section 3, we introduce our new scaled Vecchia methods for fast emulation
of large computer experiments. In section 4, we provide numerical comparisons to existing
approaches. Section 5 concludes and discusses future work. R code to run our method and
reproduce all results is available at https://github.com/katzfuss-group/scaledVecchia.

2. Review.

2.1. Computer-model emulation using Gaussian processes. Let y(x) be the response
of a computer model at a d-dimensional input vector x on the input domain X . In GP
emulation, y(·) ∼ GP(µ,K) is assumed to be a GP with mean function µ : X → R and
a positive-definite covariance or kernel function K : X × X → R. Then, the vector y =
(y(x1), . . . , y(xn))> of responses at n input values {x1, . . . ,xn} follows an n-variate Gaussian
distribution with covariance matrix K = (K(xi,xj))i,j=1,...,n, whose (i, j)th entry describes
the covariance between the responses of simulations i and j as a function of the corresponding
input values xi and xj .

For simplicity, we henceforth make some additional assumptions, although most of our
methodology is also applicable in more general situations. Specifically, we assume that the
mean function µ(x) = ψ(x)>β is linear in a number of covariate parameters, β; a typical
assumption is ψ(x) = 1 or ψ(x) = (1,x>)>.

We also assume an anisotropic covariance function K with a separate range parameter λl
for each input dimension l, also referred to as automatic relevance determination: K(xi,xj) =
K̃(q(xi,xj)), where

q(xi,xj) =

( d∑
l=1

(
xi,l − xj,l

λl

)2)1/2

,(1)

and K̃ can be any covariance function that is valid (i.e., strictly positive definite) in Rd, such
as the squared exponential or Matérn covariance function.

While GPs are indispensable tools for computer-model emulation due to their flexibility
and natural uncertainty quantification, direct GP inference requires an O(n3) factorization of
the covariance matrix, which is not feasible for large computer experiments. Thus, we propose
an approximation that reduces computational complexity and hence improves scalability.
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540 M. KATZFUSS, J. GUINNESS, AND E. LAWRENCE

2.2. Vecchia approximations in spatial statistics. Vecchia’s approximation (Vecchia,
1988) is a powerful GP approximation that is popular in spatial statistics. Motivated by
the exact decomposition of the joint density p(y) =

∏n
i=1 p(yi|y1, . . . , yi−1) as a product of

univariate conditional densities, Vecchia (1988) proposed the approximation

p̂(y) =

n∏
i=1

p(yi|yc(i)),(2)

where c(i) ⊂ {1, . . . , i − 1} is a conditioning index set of size |c(i)| = min(m, i − 1) for all
i = 2, . . . , n (and c(1) = ∅). Even with relatively small conditioning-set size m � n, the
approximation (2) with appropriate choice of the c(i) can often be very accurate due to the
screening effect (e.g., Stein, 2011). The p(yi|yc(i)) in (2) are all Gaussian distributions that
can be computed in parallel using standard formulas, each using O(m3) operations based on
O(m) data.

The Vecchia approximation has many useful properties. For example, the implied joint
distribution p̂(y) = Nn(µ, K̂) is also multivariate Gaussian, and the Cholesky factor of K̂−1

is highly sparse with fewer than nm off-diagonal nonzero entries (e.g., Datta et al., 2016a;
Katzfuss and Guinness, 2021). Further, under the sparsity constraint implied by the choice of
the c(i), the Vecchia approximation results in the optimal inverse Cholesky factor K̂−1/2, as
measured by the Kullback–Leibler (KL) divergence, KL(p(y)‖p̂(y)) (Schäfer et al., 2021a).
Enlarging the conditioning sets c(i) never increases the KL divergence (Guinness, 2018); for
m = n − 1, the approximation is exact, p̂(y) = p(y). In contrast to local GP approxima-
tions, the Vecchia approximation to the underlying model is global; thus, for example, model
parameters can be estimated (see section 3.2) from a subsample of the data, and then the
estimated parameters can be used to make predictions (section 3.3) using all of the data.

The approximation accuracy of the Vecchia approach depends on the choice of ordering
of the variables y1, . . . , yn and on the choice of the conditioning sets c(i). A general Vecchia
framework (Katzfuss and Guinness, 2021) obtained by varying these choices unifies many
popular GP approximations (e.g., Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007; Banerjee et al., 2008; Katzfuss, 2017; Katzfuss and Gong, 2020). In prac-
tice, high accuracy can be achieved using a maximum-minimum distance (maximin) ordering
and nearest-neighbor (NN) conditioning, which are illustrated in Figure 1a. Maximin ordering
picks the first variable arbitrarily and then chooses each subsequent variable in the ordering as
the one that maximizes the minimum distance to previous variables in the ordering. For NN
conditioning, each c(i) then consists of the indices corresponding to the m nearest previously
ordered variables. (For 1 < i < m + 2, we simply have c(i) = {1, . . . , i − 1}.) Due to the
maximin ordering, all previously ordered inputs are far from the ith input for small i, and
so many possible distances are represented in the conditioning sets for different i. For both
ordering and conditioning, distance between two variables yi and yj is typically defined as the
Euclidean distance ‖xi − xj‖ between their corresponding inputs. In addition, we employ a
grouping strategy (Guinness, 2018) that combines conditioning sets c(i) and c(j) when doing
so is computationally advantageous. When using maximin ordering and NN conditioning, re-
cent results (Schäfer et al., 2021a) imply that, for increasing n, a specific accuracy for certain
isotropic Matérn kernels can be guaranteed using conditioning sets of size m = O(logd(n)),
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SCALED VECCHIA FOR FAST COMPUTER-MODEL EMULATION 541

Figure 1. Maximin ordering and nearest-neighbor conditioning (MN ) for n = 500 inputs (small grey
points) generated using Latin hypercube sampling on X = [0, 1]2 in d = 2 dimensions, assuming an anisotropic
covariance (1) with range parameters λ = (1/2, 2). MN is carried out on the original inputs x1, . . . ,xn (top
row, red) or the scaled inputs x̃1, . . . , x̃n (bottom row, black). The first i = 28 ordered inputs are numbered,
with emphasis on the ith input (�) and its nearest m = 4 previously ordered neighbors with indices c(i) (©).
(a) MN of original inputs viewed on original space X = [0, 1] × [0, 1]: The first i inputs are spread out over
input space; c(i) = (9, 11, 23, 24) are nearby . (b) Same MN on scaled space X̃ = [0, 2] × [0, 1/2]: The first i
inputs are irregularly spaced; c(i) missed near 26 and 27. (c) MN of scaled inputs on scaled space: The first i
inputs are spread out over input space; c(i) = (2, 11, 19, 26) are nearby, as desired.

under regularity conditions and ignoring edge effects. The resulting near-linear time complex-
ity is the best known complexity for problems of this type.

3. Methodology. Several issues arise when applying Vecchia approximations for spatial
GPs to emulation of computer experiments (section 2.1). While physical distance between spa-
tial locations is usually meaningful, Euclidean distance between inputs to a computer experi-
ment depends heavily on the arbitrary scaling of each input dimension. In addition, while spa-
tial fields are typically two- or three-dimensional, computer experiments often consider d ≈ 10
inputs; as the asymptotics discussed at the end of section 2.2 imply that m = O(logd(n)) is
required to achieve a certain accuracy, a very large m might be required for large d, resulting
in a prohibitive computational cost (which scales cubically in m).

3.1. Scaled Vecchia approximation for computer experiments. We propose a scaled
Vecchia approximation that exploits that the input variables can vary widely in the magnitude
of their effect on the response; this is sometimes referred to as factor sparsity. Specifically, for
known range parameters λ = (λ1, . . . , λd)>, the anisotropic distance in (1) can be viewed as
a Euclidean distance between scaled inputs,
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542 M. KATZFUSS, J. GUINNESS, AND E. LAWRENCE

q(xi,xj) = ‖x̃i − x̃j‖,(3)

where x̃ = (x1/λ1, . . . , xd/λd) are the scaled inputs, and we call 1/λl the relevance of the
lth input dimension or variable xl (assuming standardized input space X = [0, 1]d). Similar
scaling ideas have been considered for other GP approximations of computer experiments
(e.g., Gramacy, 2016).

Our scaled Vecchia approximation is defined as in (2), except based on a maximin ordering
and NN conditioning of the scaled inputs x̃1, . . . , x̃n, assuming known λ for now; more pre-
cisely, we define the distance between variables yi and yj as the Euclidean distance ‖x̃i − x̃j‖
between the corresponding scaled inputs (see Figure 1c), instead of ‖xi − xj‖ in the stan-
dard Vecchia approximation. Note that this scaled Vecchia approximation can be viewed as
a special case of correlation-based Vecchia (Kang and Katzfuss, 2021). The ordering and
conditioning can be computed in quasilinear time in n (Schäfer et al., 2021b,a).

The resulting scaled Vecchia approximation of the GP y(·) with anisotropic kernel K, can
be viewed as a standard Vecchia approximation of a GP with isotropic kernel K̃ with scaled
inputs x̃ in the scaled input space X̃ . Importantly, Euclidean distance is only meaningful in
X̃ , not in X . Figure 1b shows that maximin ordering of x1, . . . ,xn can be highly irregular in
X̃ , and nearest-neighbor conditioning of x1, . . . ,xn may miss important and nearby inputs in
X̃ . In contrast, scaled Vecchia (Figure 1c) is directly carried out in X̃ ; the resulting ordering is
more regular, and the conditioning set c(i) contains the nearest previously ordered neighbors,
as desired to achieve good screening properties in the conditional distributions in (2).

Many computer codes contain input variables xl that only weakly affect the response y; this
can be captured in our model by a large λl, so that changes in xl only result in small changes
in x̃l = xl/λl, and thus only minor changes in position in X̃ . In the extreme case of λl →∞,
the input variable xl is effectively eliminated from the model, and the dimension d̃ of X̃ is

smaller than the dimension d of the original input space, and thus a smaller m = O(logd̃(n))
is required to achieve a certain approximation accuracy. But even for large but finite range
parameters, Figure 2a shows that scaled Vecchia can achieve a certain accuracy with much
smaller m than standard Vecchia (see section 4.2 for more details).

3.2. Estimation of parameters. In practice, the parameters β in the mean function µ
and parameters θ in the covariance function K are unknown, including the range or scaling
parameters λ. We estimate these parameters by maximizing the logarithm of the Vecchia
likelihood in (2). This is challenging due to the potentially large number of parameters.
Hence, we use a Fisher scoring algorithm (Guinness, 2021), which exploits first- and second-
derivative information for fast convergence but preserves the O(nm3) scaling of the Vecchia
approximation. We briefly review this algorithm here, but refer to Guinness (2021) for details.

Let `(β,θ) = log p̂β,θ(y), where p̂β,θ(y) is the Vecchia approximation from (2) with m =
mest, except that we have now made explicit the dependence of the density on the parameters.
Taking derivatives of the conditional densities in (2) is challenging; replacing them by joint
distributions,

`(β,θ) =

n∑
i=1

( log pβ,θ(yi,yc(i))− log pβ,θ(yc(i))),(4)

enables the use of well-known formulas for the gradient and Fisher information of the Gauss-
ian distributions pβ,θ(yi,yc(i)) and pβ,θ(yc(i)). Because β appears linearly in the mean of the
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SCALED VECCHIA FOR FAST COMPUTER-MODEL EMULATION 543

Figure 2. For data simulated from a Matérn GP in d = 10 input dimensions, comparison of our proposed
scaled Vecchia (SVecchia) approach to two existing GP approximations, in terms of average difference in log
score (dLS), which approximates KL divergence, and in terms of prediction root mean square error (RMSE)—
see section 4.2 for details.

Gaussian distributions, we can profile out β using the closed-form expression for the general-
ized least squares estimator β̂(θ). Then, starting with an initial value θ(0), Fisher scoring for
θ proceeds for k = 0, 1, 2, . . . as

θ(k+1) = θ(k) + (M(k))−1g(k),(5)

where g(k) = ∂`(β̂(θ),θ)
∂θ |θ=θ(k) and M(k) = −E∂2`(β̂(θ),θ)

∂θ∂θ′
|θ=θ(k) can be computed based on (4)

as the sum of n log-densities that are at most of dimensions m+1. The algorithm is terminated
when the dot product between the step and the gradient g(k) is less than 10−4, obtaining the
estimates θ̂ = θ(k+1) and β̂ = β̂(θ̂). In practice, a mild penalization term (e.g., to discourage
variance parameters that are much larger than the sample variance of the training data) is
added to (4) to improve convergence. Also, when the Fisher-scoring step fails to increase the
loglikelihood, the step is replaced by a line search along the gradient. This concludes the
review of Guinness (2021).

In our scaled Vecchia approach, over the course of the Fisher-scoring iterations, the esti-
mate of θ will change, and along with it, the scaled inputs x̃ = (x1/λ1, . . . , xd/λd), the re-
sulting maximin ordering and NN conditioning, and the implied approximate density p̂β,θ(y).
For the purpose of computing the derivatives and the resulting parameter update in (5), we
ignore the dependence of the ordering and conditioning on θ; instead, we update the ordering
and conditioning separately given the current estimate θ(k), but only at certain iterations,
say k = 2, 4, 8, 16, . . . to avoid slowing the algorithm unnecessarily. Hence, as we refine the
estimates of the parameters, we refine our Vecchia approximation of the implied covariance.
If it is of interest, we can carry out crude variable selection and eliminate inactive input

dimensions by setting λl =∞ if λ
(k)
l is over a certain threshold (e.g., 103).

Figure 2b shows that our scaled Fisher-scoring approach can be much more accurate than
using standard Vecchia (see section 4.2 for details). The estimation algorithm converged
quickly, requiring only around ten Fisher-scoring iterations to estimate eleven parameters.
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544 M. KATZFUSS, J. GUINNESS, AND E. LAWRENCE

3.3. Prediction. Given the estimated parameters θ̂ and β̂, we would like to predict the
response y(·) at unobserved inputs, x∗1, . . . ,x

∗
n∗

. This is equivalent to obtaining the posterior
distribution of y∗ = (y∗1, . . . , y

∗
n∗

)>, where y∗i = y(x∗i ). To be able to compute this distribution
even for large n or n∗, we apply a Vecchia approximation to the joint density p(yall), where
yall = (y,y∗). To do so, we employ a maximin ordering of the scaled inputs corresponding
to yall, under the restriction that the entries of y are ordered before those in y∗ (Guinness,
2018; Katzfuss et al., 2020a). As a result, we can write p̂(y,y∗) = p̂(y)p̂(y∗|y), where p̂(y) is
as before in (2), and the desired posterior predictive distribution is

p̂(y∗|y) =

n∗∏
i=1

p(y∗i |yall
g∗(i)),(6)

and g∗(i) contains the indices of the m∗ variables that are closest to y∗i (in terms of scaled
distance) among those that are previously ordered in yall. It is possible for few or even none
of the indices in a particular set g∗(i) to correspond to observations, so that y∗i only conditions
on other unobserved prediction variables; however, because these prediction variables may, in
turn, condition on observations, the resulting predictions can be as good or better marginally
(and much more accurate jointly) than predictions using only observations (e.g., compare the
methods LF-full and LF-ind in the first two rows of Fig. 5 in Katzfuss et al., 2020a).

As in (2), all the univariate conditionals, p(y∗i |yall
g∗(i)), are Gaussian and can be computed

in O(m3
∗) time. It is straightforward to, for example, compute the mean of or draw joint

samples from p̂(y∗|y) using the expression (6). In addition, p̂(y,y∗) is jointly Gaussian with
a sparse inverse Cholesky factor, from which any distributional summary of interest can be
computed (Katzfuss et al., 2020a). These properties enable joint simulation and uncertainty
quantification for a set of unobserved input values, such as a path through the input space.

3.4. Variance correction. Our SVecchia approach uses the GP model in section 2.1, which
(like virtually all statistical models) is misspecified, in that computer models are not truly
realizations of such a GP. As the predictions in section 3.3 do not account for this model
misspecification, the predictive distributions may sometimes be poorly calibrated with vari-
ances that are too small. To address this, we developed a variance-correction approach that
is simple, computationally cheap, and highly effective in the examples we have studied.

Specifically, we first estimate the parameters θ̂ and β̂ as described in section 3.2. We
then randomly split the original training set into an “inner” training and test set. Comput-
ing SVecchia predictions (section 3.3) at the inner test set given the inner training set, the
predictive distribution for the ith inner test observation y◦i is Gaussian, say N (µi, σ

2
i ). We

modify this distribution to N (µi, bσ
2
i ), where the variance correction factor b is chosen to

optimize a scoring rule (e.g., Gneiting and Katzfuss, 2014) involving y◦i and N (µi, bσ
2
i ). In

our implementation, we use the log score, which means that b is chosen to minimize the sum
of the negative log predictive densities at the inner test points, −

∑
i logN (y◦i |µi, bσ2i ). This

minimization problem consists of a simple line search, whose computational cost is negligible
relative to that of estimating θ̂ and β̂. Given b, we then make predictions at unobserved test
inputs as described in section 3.3, multiplying each prediction variance by b.

In our numerical experiments in section 4 below, the estimates of b ranged from around
1 (for the piston function) to the hundreds (for the very simplistic borehole function). The
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resulting corrected predictive distributions were sharp and well calibrated, with the empirical
coverage of 95% prediction intervals close to 95%.

3.5. Implementation. We implemented our methods in R, building on top of the R pack-
age GpGp (Guinness and Katzfuss, 2018). We provide the anisotropic covariance function
matern_scaleDim as in (1), where K̃ is the isotropic Matérn covariance (e.g., Stein, 1999).
We also provide its special cases for half-integer smoothness values 0.5, 1.5, 2.5, 3.5, 4.5; when
the smoothness is fixed by the user at one of these values, expensive Bessel function evalu-
ations are avoided. Parameter estimation is based on the Fisher-scoring procedure in GpGp;
at iterations k = 2, 4, 8, 16, . . . we update the ordering and conditioning of the current scaled
inputs x̃1, . . . , x̃n, using the exact maximin ordering algorithm implemented in GPvecchia

(Katzfuss et al., 2020b). Each ordering and conditioning can be computed in quasilinear time
in n (Schäfer et al., 2021a), and in practice the added time is negligible relative to a stan-
dard Vecchia approximation that keeps the ordering and conditioning fixed. We also provide
an efficient implementation for our variance-correction procedure and for Vecchia predictions
based on scaled inputs.

Due to the global nature of the Vecchia approximation (see section 2.2), it is possible to
separate training of our emulator (i.e., parameter estimation) from prediction. As parameter
estimation requires multiple Fisher-scoring iterations, we recommend using relatively small
conditioning sets of size m = mest for the Vecchia density (2) used for the parameter estimation
described in section 3.2, and of larger size m = m∗ for the Vecchia approximation of the
predictive distribution in (6). In addition, our numerical experiments below showed that a
random subsample of the training data of size nest in the low thousands was enough to estimate
the small number of unknown mean and covariance parameters for the d ≤ 10 considered here.
For this SVecchia procedure, the computational cost is independent of the full training size
n, aside from negligible preprocessing costs. For parameter estimation, each Fisher-scoring
iteration scales roughly as O(nestm

3
est); given the estimated parameters, prediction at n∗

input values based on the full training set of size n scales as O(n∗m
3
∗). The computations

can be carried out in parallel across the nest terms for estimation. Keeping in mind these
computational costs, we recommend setting the tuning parameters nest,mest,m∗ as large as
possible (to maximize accuracy) within given computational constraints. The default values
in our implementation are nest = 5,000, mest = 30, and m∗ = 140.

The code is available at https://github.com/katzfuss-group/scaledVecchia. Using default
settings, scaled-Vecchia estimation and prediction is as simple as

fit <- fit_scaled( y.train, inputs.train )

preds <- predictions_scaled( fit, inputs.test ).

3.6. Design. Our methods can also be extended straightforwardly for the design of com-
puter experiments. For example, consider the following two-stage design of total size n. In
the first stage, we obtain a small number of runs, say n1 = n/10, with input values chosen by
a space-filling design, such as a Latin hypercube (LH). Then, we apply our estimation method
from section 3.2 to the n1 responses to obtain an estimate of θ, including the estimated ranges
λ̂1. In the second stage, we “oversample,” say, N = 20n inputs values using a LH design,
and then we choose the first n2 = n − n1 inputs in a maximin ordering of the scaled space
determined by the range estimates λ̂1 from the first stage. Finally, based on the resulting
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full dataset of size n = n1 + n2, we can re-estimate the parameters and make predictions at
unobserved input values as described in section 3.3. Note that such a “sensitivity-weighted
distance” has previously been considered for small sequential designs in Williams et al. (2011).

In addition, our methods can be used for designs based on optimization criteria (e.g.,
Mockus, 1989; Jones et al., 1998), sometimes referred to as Bayesian or model-based opti-
mization. These sequential designs at each stage require re-estimation of parameters and
predictions at large numbers of inputs (e.g., to compute the expected improvement), which
can be carried out rapidly using our methods.

4. Numerical comparisons.

4.1. General information. We carried out numerical studies comparing the following
methods:

SVecchia: Our proposed scaled Vecchia approximation, as described in section 3
Vecchia: Existing standard Vecchia approximation, with maximin ordering and nearest-

neighbor conditioning based on Euclidean distance ‖xi − xj‖ between inputs.
LowRank: Modified predictive process (Finley et al., 2009), equivalent to Vecchia, except

that all variables simply condition on the first m variables in the (Euclidean)
maximin ordering: c(i) = (1, . . . ,m) for i > m.

laGP: Local approximate GP (Gramacy and Apley, 2015; Gramacy, 2016).
H-laGP: Hybrid global-local extension of laGP (Sun et al., 2019, Sect. 3) with prescaling

based on a random subsample of size 1,000.
For SVecchia, Vecchia, and LowRank, we assumed zero mean µ(x) = 0, and K̃ above

(1) was a Matérn covariance with smoothness 3.5 and zero nugget. For each comparison, n
training input values were generated using LH sampling using the R package lhs (Carnell,
2019), and n∗ test inputs were sampled uniformly at random on X .

4.2. Matérn simulations. We considered n = 5,000 responses simulated from a GP with
mean zero and Matérn covariance function with smoothness 3.5 in d = 10 dimensions. We
assumed two “relevant” input dimensions with range parameters λ1 = λ2 = .05, and eight
less relevant inputs with range parameters λ3 = · · · = λ10 = 5. Only squared-exponential
covariances are implemented in laGP, and so laGP was not included in this comparison. For
the other three methods, we considered the average difference in log scores (dLS; Gneiting and
Katzfuss, 2014) or loglikelihoods, log p(y)−log p̂(y), over ten datasets y ∼ p(y) simulated from
the true model; this score approximates the KL divergence between the true and approximated
model. For each of the ten datasets and each of the approximation methods with different
values of m, we estimated the parameters using mest = m, made predictions at n∗ = 2,000
unobserved test inputs using m∗ = 2m, and computed the root mean square error (RMSE)
between the true test responses y∗ and the corresponding predictive means (averaged over the
ten datasets).

Figure 2a shows the dLS when assuming that the covariance function (including its pa-
rameters) was known. Vecchia was more accurate than LowRank, but SVecchia resulted in
additional, substantial improvement. For example, SVecchia with m = 5 was more accurate
than Vecchia (or LowRank) with m = 50; due to the cubic scaling in m, this implies a 1,000-
fold decrease in computational cost for a given accuracy. For Figure 2b, the parameters θ
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SCALED VECCHIA FOR FAST COMPUTER-MODEL EMULATION 547

were assumed unknown and estimated from the data, but the resulting dLS were very similar
to the known-parameter case. Figure 2c shows that SVecchia predictions were much more
accurate than those using Vecchia or LowRank.

4.3. Borehole function. We carried out a simulation study comparing prediction accuracy
for the Vecchia-based methods (i.e., SVecchia, Vecchia, and LowRank) using the popular
borehole-function example (Morris et al., 1993), which models the water-flow rate through a
borehole as a function of d = 8 input variables. For various training-data sizes n and different
values of m, we estimated parameters based on the training data using mest = m and made
predictions at n∗ = 2,000 unobserved test inputs using mest = m; for SVecchia, a training
subsample of size nest = 3,000 was used for estimation if n > nest. We computed the resulting
RMSE values, averaged over ten datasets.

The results are shown in Figure 3. For scale, the trivial predictor given by the average of
the training data had an RMSE around 45, while the exact GP had an RMSE around 0.24 for
n = 100 and 0.06 for n = 400, which was similar to the RMSE for SVecchia with m = 50 (0.24
and 0.07). SVecchia outperformed the other approximation methods for every combination of
n and m shown in the plots. Note that RMSE is plotted on a log-scale. Thus, for example,
for n = 10,000 and m = 50, the seemingly small improvement of SVecchia over Vecchia
actually corresponds roughly to a 50% reduction in RMSE. Figure 3a shows that LowRank’s
accuracy did not improve much with n, and so this method was not considered for the large-n
comparisons below. There is a trade-off with the tuning parameter m, which determines the
size of the conditioning or neighbor sets: For all methods, increasing m resulted in higher
accuracy (Figure 3b), but the computational cost also increases roughly cubically with m (see
section 3.5 for a discussion of SVecchia’s cost).

Figure 3. Root mean square error (RMSE, on a log scale) for prediction at unobserved inputs using different
GP approximations for the borehole example (see section 4.3 for more details).
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548 M. KATZFUSS, J. GUINNESS, AND E. LAWRENCE

Figure 4. Comparison of root mean square error (RMSE) versus computing time (both on a log scale) for
test functions in section 4.4, with two different tuning-parameter settings for each function and method. We
provide training and total (i.e., training plus prediction) times, on a single core for (S)Vecchia and on four
cores for (H-)laGP.

4.4. Test functions. We then considered larger datasets generated using three physical
models from the Virtual Library of Simulation Experiments (Surjanovic and Bingham, 2013),
including the borehole function from section 4.3. We generated n = 100,000 training inputs
and n∗ = 20,000 test inputs, and averaged the results over five datasets for each test func-
tion. For (S)Vecchia, we used mest ∈ {30, 50} and a subsample of the training data of size
nest = 3,000 for parameter estimation, and m∗ = 140 and all training data for prediction. For
(H-)laGP, we used 30 or 50 neighbors for both training and prediction, and we manually spec-
ified a much smaller nugget (10−7) than the default value to obtain more accurate predictions.
Timing results were obtained on a basic desktop computer (3.4 GHz Intel Quad Core i5-3570),
using one core (single-threaded) for (S)Vecchia and using all four cores for (H-)laGP.

The results are summarized in Figure 4, and the detailed numerical results are given in
Table 3. For all three test functions, SVecchia was the most accurate, despite having the
lowest computational cost. The cost of recomputing the ordering and conditioning sets for
SVecchia at certain Fisher-scoring iterations was negligible, as it only took a fraction of a
second.

Table 1
Scores evaluating the accuracy of the uncertainty quantification of the predictive distributions for the piston

test function. Lower is better for all scores except ICov. All scores except ICov and LogScore were multiplied by
105. ICov = empirical coverage of 95% prediction intervals; IWidth = average interval width; IScore = interval
score; CRPS = continuous ranked probability score; Energy = energy score.

ICov (%) IWidth IScore LogScore CRPS Energy

SVecchia 95.4 2.9 9.8 −97.8 0.7 182.0
Vecchia 95.4 14.7 51.5 −81.8 3.7 977.0
laGP 81.3 81.3 742.8 −57.7 47.5
H-laGP 98.5 31.0 70.0 −76.7 6.6
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To assess the accuracy of the uncertainty quantification, we also computed several scores
for the predictive distributions and the implied 95% prediction intervals for the piston test
function, using themest = 30 and 30-neighbor setting from above. The interval score, log score,
and continuous ranked probability score (CRPS) each simultaneously quantify calibration and
sharpness of the marginal predictive distributions (see, e.g., Gneiting and Katzfuss, 2014, for
details). The energy score (Gneiting et al., 2008) assesses the quality of the joint predictive
distribution at all n∗ = 20,000 test inputs, which were only available for (S)Vecchia. The
(S)Vecchia intervals were well calibrated due to variance correction. SVecchia performed by
far the best in terms of all other scores.

In general, it is difficult to set a comparison in which all methods are placed on perfectly
equal footing. The Vecchia approaches used a subsample for parameter estimation, and the
full training set with a larger conditioning-set size m∗ for prediction. H-laGP also uses data
for global pre-estimation, but in a different manner. Both laGP methods do some estimation
on the fly. For all methods, increasing the size of the conditioning or neighbor sets improves
the accuracy but also increases the computational cost. Timing results will also depend
heavily on a number of other factors, including nest, n∗, implementation, parallelization,
and the computing environment. Due to the good parallelization properties of the laGP
implementation, laGP prediction times could potentially be pushed below those of single-core
SVecchia by using enough cores for laGP.

While the test functions are smooth, deterministic functions without noise, we also tested
estimating a noise variance using SVecchia. For the piston function, we artificially added
observation noise with variance τ2, with τ = .02. When including the noise variance as an
unknown parameter to estimate in the Fisher scoring algorithm, we obtained a highly accurate
estimate of τ̂ = .0198, even with a small mest = 30.

4.5. Computer model for satellite drag. Finally, we carried out comparisons using a
computer simulator for atmospheric drag coefficients of satellites in low Earth orbit under
varying input conditions. A detailed description of the computer model and a previous analy-
sis using state-of-the-art GP emulators can be found in Sun et al. (2019), with data and
results available at https://bitbucket.org/gramacylab/tpm/src/master/. In short, we con-
sidered simulations of drag coefficients for the Hubble space telescope with d = 8 inputs.
The simulation runs consist of n = 2 × 106 responses for each of six pure chemical species,
which can be combined into actual drag coefficients by computing a weighted average of the
species.

As in Sun et al. (2019, Sect. 6.1), we carried out 10-fold cross-validation (CV), separately
for each of the six species. For the Vecchia-based methods, we used m∗ = 140 for prediction,
and we used mest = 30 and a randomly selected subset of size nest = 10,000 for parameter
estimation. We also tried estimation using the full dataset (i.e., nest = n) and larger mest, but
the increase in predictive accuracy was small relative to the increase in computational cost.
The parameter estimates were quite stable between different CV folds. One example of the
estimated relevance 1/λ̂l is shown in Figure 5b for each input variable xl and each species;
the highest and lowest relevance differed by two to three orders of magnitude, indicating that
SVecchia’s corresponding scaling of the input dimensions should be useful for emulating this
simulator.
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Figure 5. Results for the six chemical species in the satellite-drag simulator. H-laGP: hybrid global-local
extensions of laGP. Relevance: 1/λ̂l (see details below (3)).

Figure 5a shows a comparison of CV prediction accuracy in terms of root mean square
percentage error (RMSPE). We compared the Vecchia-based methods to the 19 laGP variants
considered and described in Sun et al. (2019), seven of which are versions of the basic, local-
only laGP, and twelve of which are hybrid global-local laGP (H-laGP) extensions. Vecchia
was more accurate than the basic laGP methods, but none of these approaches was able
to achieve the standard benchmark of a 1% relative error, indicated by the horizontal line.
In contrast, SVecchia met the benchmark and was the most accurate method for all six
chemical species. While the accuracy improvement might look small on the log scale of
Figure 5a, note that the RMSPE of the best-performing H-laGP method (“alcsep2.sb”) in
Figure 5a was considerably higher than the SVecchia RMSPE for several species, ranging from
roughly 2% higher for H, to around 14% for O and N, up to 40% for He. This is especially
remarkable when considering that the total time for estimation and prediction for SVecchia
was only around 13 to 14 minutes (4–5 min for estimation and roughly 9 min for prediction)
per species and fold, on a single core on a basic desktop computer; the best-performing laGP
method took up to 45 core hours according to Sun et al. (2019), which is around 200 times
as long.

We also examined predictions along likely trajectories in low Earth orbit, which corre-
sponds to paths in input space. Sun et al. (2019, Sect. 6.2) consider two trajectories, for a
quiet and an active regime, each for n∗ = 8,600 ten-second intervals (i.e., about one day). Pre-
dictions are made for each of the six pure chemical species, which are then averaged according
to weights corresponding to the actual chemical compositions for each of the two regimes.
Given estimated parameters, joint prediction using SVecchia scales linearly in n∗, the number
of test inputs. Thus, SVecchia can produce joint predictions (e.g., samples from the joint
predictive distribution) for the day-long trajectory with n∗ = 8,641 in less than one minute
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Table 2
For the O species in the satellite-drag application, scores (same as in Table 1) for joint predictions at 100

pseudo-trajectories of size 100 each. LogScore was multiplied by 10, and all other scores were multiplied by 100.
The scores for the other five chemical species were very similar.

RMSPE ICov IWidth IScore LogScore CRPS Energy

SVecchia 38.3 95.8 1.9 5.2 −32.9 0.5 6.7
Vecchia 137.7 96.8 9.5 25.9 −18.5 2.0 28.7

Table 3
Comparison for test functions in section 4.4. E: root mean square error. Computing times for training +

prediction = total, on one core for (S)Vecchia and on four cores for (H-)laGP. Numbers after method names
are (mest/m∗) for (S)Vecchia, and (neighborhood size) for (H-)laGP. Smallest errors and computing times are
highlighted in red for each test function and for the first and last four rows, respectively.

Borehole (d = 8) Robot arm (d = 8) Piston (d = 7)
Method E×102 Time (min) E×102 Time (min) E×105 Time (min)

SVecchia (30/140) 3.2 1.6 + 0.7 = 2.3 2.6 0.8 + 0.8 = 1.6 1.9 1.1 + 0.7 = 1.8
Vecchia (30/140) 3.4 1.6 + 1.1 = 2.7 3.5 0.7 + 1.0 = 1.7 9.5 1.1 + 0.9 = 2.0
laGP (30) 19.0 0 + 4.4 = 4.4 11.3 0 + 4.0 = 4.0 135.4 0 + 4.3 = 4.3
H-laGP (30) 4.0 3.2 + 4.3 = 7.5 3.3 3.9 + 4.0 = 7.9 14.1 3.1 + 4 = 7.1
SVecchia (50/140) 1.6 4.3 + 0.8 = 5.1 2.5 1.7 + 0.7 = 2.4 1.7 2 + 0.7 = 2.7
Vecchia (50/140) 3.3 6.2 + 1 = 7.2 3.5 1.9 + 1.0 = 2.9 9.1 2.5 + 0.9 = 3.4
laGP (50) 10.9 0 + 13.4 = 13.4 10.8 0 + 11.5 = 11.5 103.2 0 + 12.0 = 12.0
H-laGP (50) 2.4 3.1+11.7 = 14.8 3.1 3.7 + 11.3 = 15.0 9.3 2.3 + 11.5 = 13.8

on a single core; this is less time than it takes the most accurate laGP method (“ALC-ex”) to
compute predictions for small subsets of size n∗ = 100. The RMSPE for ALC-ex was about
39% and 8% higher than for SVecchia for the quiet and active regimes, respectively. However,
the trajectories traverse only a small fraction of the input space, so that comparing prediction
scores for only two such trajectories is not statistically meaningful. Vecchia even happened
to have a smaller RMSPE than SVecchia for the active regime.

For a more statistically meaningful comparison, we created 100 pseudo-trajectories, each
of which was of size 100 and obtained by randomly selecting one of the n inputs and then
sequentially selecting the nearest not-yet-selected input. We computed joint predictions from
(S)Vecchia with variance correction at each pseudo-trajectory, using the remaining n − 1002

observations as training data. The resulting scores, averaged over the 100 pseudo-trajectories,
are shown in Table 2; SVecchia strongly outperformed Vecchia. We did not have predictions for
the (H-)laGP methods from Figure 5a for this experiment; we instead considered a comparison
to the (H-)laGP methods from section 4.4, but these methods were not tuned to this satellite-
drag application and their scores were not competitive.

5. Conclusions and future work. We have introduced a fast and accurate scaled-Vecchia
approximation for Gaussian-process emulation of large computer experiments. The Vecchia
approach relies on an ordered conditional approximation, which results in a joint global like-
lihood and natural joint prediction and uncertainty quantification. Maximin ordering ensures
that high accuracy can be achieved by simply conditioning on (previously ordered) nearest
neighbors. For the high input dimensions prevalent in computer experiments, our approach
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applies the Vecchia approximation in a scaled input space, for which the scaling parameters
are automatically determined from the data using a fast parameter-estimation procedure.
For fixed conditioning-set sizes, this estimation procedure requires linear time in the num-
ber of estimation data, while joint prediction scales linearly in the number of prediction
points.

In several numerical comparisons, our proposed method substantially outperformed exist-
ing approximations, in that it was able to produce more accurate results in less computational
time. For example, for the satellite-drag computer simulator, even a basic version of scaled
Vecchia was more accurate and several orders of magnitude faster than the state-of-the-art
laGP approaches. As it can produce highly accurate joint predictions with a few lines of code
in minutes on modest computers even for big datasets, we consider scaled Vecchia to be a
good candidate for a default approach for emulating large computer experiments.

Additional improvements in prediction accuracy may be possible for our method by con-
sidering nonstationary covariance functions, such as a Matérn covariance whose parameters
vary over input space (Paciorek and Schervish, 2006); ordering and conditioning should then
be correlation-based (Kang & Katzfuss, 2021). Such a correlation-based approach would also
be possible for joint emulation for multivariate or functional computer-model output.

More sophisticated frequentist variable (i.e., input-dimension) selection could be achieved
by adding a lasso-type L1 penalty for the inverse range parameters to (4). MCMC-based
Bayesian inference can also be accurately approximated using Vecchia approaches (Finley
et al., 2019; Katzfuss and Guinness, 2021, App. E); straightforward extensions include scaling
the input space at certain MCMC iterations, and variable selection (Linkletter et al., 2006).

Non-Gaussian computer-model responses could be analyzed by combining scaled Vecchia
with the Vecchia-Laplace approximation of generalized GPs (Zilber and Katzfuss, 2021). Fi-
nally, it would be interesting to investigate the use and extension of our methods in the context
of computer-model calibration (Kennedy and O’Hagan, 2001).

Appendix A. Detailed test-function comparison results. Table 3 provides the specific
accuracy and timing results underlying Figure 4, as discussed in section 4.4.
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