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Abstract

In this work we present an equilibrium formulation for price impacts. This is motivated
by the Biihlmann equilibrium in which assets are sold into a system of market participants,
e.g. a fire sale in systemic risk, and can be viewed as a generalization of the Esscher premium.
Existence and uniqueness of clearing prices for the liquidation of a portfolio are studied. We
also investigate other desired portfolio properties including monotonicity and concavity. Price
per portfolio unit sold is also calculated. In special cases, we study price impacts generated by

market participants who follow the exponential utility and power utility.

1 Introduction

Buying or selling assets in a financial market impact the prices upward or downward. Quantify-
ing these price impacts is fundamental to many problems within finance, e.g., optimal liquidation
and systemic risk. In the price-mediated contagion literature (see, e.g., [15, 26, 3, 11]), these price
impacts from liquidating assets are modeled by an “inverse demand function” which maps the num-
ber of assets sold into market prices. The “demand” nomenclature in the inverse demand function
denotes the broader market demand for any liquidated assets as the broader market must take
the other side of these transactions. In the price-mediated contagion literature referenced above,
the inverse demand function is typically chosen to follow simple analytical forms for tractability

rather than for some financial meaning. Two classical inverse demand functions — the linear [26]
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and exponential [15] — do indeed have simple financial interpretation (constant absolute and rela-
tive price impacts respectively), however, these interpretations are provided without any economic
justification for why these types of price impacts hold.

In contrast to these exogenous forms, the goal of this work is to find the fair price of liquidated
assets (from, e.g., fire sales) when sold into a market of agents to endogenize the price impacts. We
construct this equilibrium market as a generalization of the risk sharing economies of [5, 12, 13].
Hereafter we refer to the equilibrium risk sharing frameworks of [5, 12, 13] as the Biihlmann
equilibrium setting, which is formally presented in Section 2. Briefly, we consider a market of
utility maximizing agents. Each agent starts with some (risky) endowment and can trade with
other agents so that a market clearing condition (i.e., conservation of total market risk) is satisfied.
An equilibrium, if it exists and is achieved, provides a set of (asset) transfers as well as a probability
measure which is used to price any claim. In contrast to prior works, we modify the market clearing
condition so that the market participants need to, on net, purchase any liquidated claim. In this way,
our modification of the Biihlmann equilibrium setting constructs an equilibrium pricing measure
allowing us to define a fair price for the liquidated claim.

In this modified Biithlmann equilibrium setting, we investigate the properties of the resulting
pricing function. First, we study the existence and uniqueness of the fair price of a liquidated
claim. Under suitable assumptions, further properties can be placed on this pricing function such as
continuity, monotonicity, and decreasing marginal returns. In addition, we investigate the resulting
inverse demand functions (i.e., the mappings of the number of shares of assets or a portfolio being
liquidated into a price per unit) and derive their properties. These inverse demand functions are
the result of an equilibrium, and are thus constructed endogenously in contrast to the exogenous
inverse demand functions prevalent in the systemic risk literature when studying price-mediated
contagion.

As will be provided in Section 4, the two aforementioned classical inverse demand functions
(linear and exponential) can in fact be obtained in our equilibrium setting. Importantly, the equi-
librium setting considered herein relates the form of the inverse demand function to the underlying
assumptions of the state of the market and returns of the traded asset(s). In fact, not every inverse
demand function can be obtained from a given market setting; this is briefly discussed with an

example in the introduction of Section 4. Therefore, special attention needs to be taken when



exogenous forms are assumed for the inverse demand function. Furthermore, when considering fire
sales of multiple illiquid assets, it is often assumed that the liquidation of one asset does not impact
prices of the other assets (see, e.g., [26, 16, 17]). Herein, we find that the equilibrium price impacts
may not generally satisfy such a condition. We construct an example within Section 4.2, where these
inverse demand functions generate price cross-impacts even for statistically independent assets.

Before continuing to the main body of this work, we wish to highlight two closely related fields
of the literature for pricing claims in an equilibrium setting. First, [25, 7] consider trading between
two types of agents in order to derive the equilibrium trading price; those works consider market
makers who value assets in a similar manner to the utility indifference price (see, e.g., [27, 14]).
Second, [24, 18, 29] consider a risk sharing problem between an insured agent and an insurer to
determine the equilibrium premium payment. These works find a Pareto optimal transfer of risk
and the price of that trade between two agents — the insured and insurer. We wish to remind the
reader that, in contrast to the two agent Pareto transfer problem of [24, 18, 29], the Biithlmann
equilibrium setting considered herein looks for a Nash equilibrium with an arbitrary number of
agents.

The organization of this paper is as follows. First, in Section 2, we will introduce the Bithlmann
equilibrium problem and how we modify that problem in order to present the general financial
setting which we will utilize throughout this work. The main results are presented in Section 3; these
results include necessary and sufficient conditions for the existence and uniqueness of clearing prices
for asset liquidations. We also find sufficient conditions for, e.g., the monotonicity and concavity
of the value obtained from liquidations. In Section 4, we demonstrate the form and properties of
our endogenous pricing functions under two special cases: when all market participants maximize
the exponential utility function and when they all maximize the power utility. The proofs for all

results are provided in an Online Appendix.

2 Biihlmann equilibrium setup

We are motivated in our study by the notion of the Bithlmann equilibrium [12, 13] over a probability
space (€2, F,P). Such an equilibrium endogenizes the price impacts of market behavior in a system

of n market participants. Each participant 1 <+ < n, is endowed with a twice differentiable, strictly



increasing and concave utility function w;, with u; > 0 and initial endowments X; of risky payoffs.
In this paper, we will consider two classical settings, when the utility functions are defined on the
half line and on the entire real line, i.e., domu; = R4 := (0,00) and domu; = R respectively.
Throughout this work we will denote this domain as D, i.e., D := domu;. Additionally, we will
continue to use the notation that Ry, := (0,00) to be the strictly positive real line while we will
denote Ry := [0, 00) to be the nonnegative real line. In case D = R we extend u;(0) = 9131{(% u;(z)
in the broad sense (i.e., allowing for the possibility of —co) and u;(z) = —oo for < 0. Recall that
the absolute risk aversion of agent i is p;(z) := —u/(z)/u}(z) > 0, z € D. Throughout this work,

we will denote the expectation under P as E := EF.

Assumption 2.1. Assume X; € L™ such that X; € D a.s. for every market participanti =1, ...,n.

Let X = 2?21 X; € L*®, X; €D a.s. and assume that essinf X € D.

For simplicity of exposition, we also assume a zero risk-free rate r = 0. We use the same static
setting as in Bithlmann [12, 13], where an equilibrium is solved at the initial time, and the only
other time considered is some future terminal time at which all randomness is resolved. Each
market participant is assumed to be a rational agent insofar as each market participant wishes to
maximize her expected utility. More specifically, given that each agent is endowed with (risky)
endowment X;, 1 <17 < n, she may choose to trade quantities Y; to reduce her risk and maximize
her utility. For an equilibrium, the market must clear and every agent must be “happy” with the
trade. As such, the goal is to find the clearing prices of these trades Y;, 1 <1 < n. In other words,
to find the pricing measure Q. This defines the solution to the Biihlmann equilibrium problem as
a pair (Y, Q) satisfying:

1. Utility maximizing: Y; € arg max {IE [ul (Xi +Y; — EQ[ AZ])] } with E [uZ (Xi +Y — EQ[E])] €

Y;eL>
R for every i € {1,2,...,n}; and

2. Equilibrium transfers: ) ;" ;Y; = 0.

The measure Q is the endogenously defined probability measure which provides the price of the
claims, i.e., the value of Y; at time 0 is EQ[Y;]. Notably, the pricing measure Q will (generally)
differ from P.



Remark 1. We wish to note that, in the static and finite probability space setting, the Buhlmann
equilibrium coincides with the Arrow-Debreu equilibrium [5] (see, e.g., [4]). We choose to utilize
the Bihlmann equilibrium setup as it readily allows for general probability spaces without the need
to consider an infinite number of commodities (and thus reducing mathematical technicalities).
This is related to a Nash equilibrium in a pure exchange economy (see, e.g., [19]). While that
equilibrium setup is very similar to the Buhlmann equilibrium problem, herein we explicitly consider
the representative agent (see (2.2) below); this allows us to investigate the properties of the resulting

inverse demand function through a modification of the market clearing condition presented below.
Theorem 2.2. There exists a unique Bihlmann equilibrium if:
1. D =R and the absolute risk aversions z — p;(z) > 0 are Lipschitz continuous, i =1, ...,n; or

2. D =Ry, the Inada conditions are satisfied (i.e., lim, o u)(z) = 0o and lim,_, u}(z) = 0),

and z — zul(z) i = 1,...,n are nondecreasing.
Proof. This is proven in [13] if D = R and in [1] if D = R4 4. O

We recall additional detail of the construction of Bithlmann equilibrium in Appendix A.
Consider the same market of n participants with utility functions u; and endowments X;, but
now with some external portfolio Z € L* being liquidated into the market. That is, we consider

the modified Bithlmann equilibrium problem of determining the pair (Y, Q) satisfying:

1. Utility maximizing: Y; € arg maxy, E [u (Xi +Y; - E@[Yi])} with E [u; (X; +Y; — EQY}])] €

R for every i € {1,2,...,n}; and
2. Equilibrium transfers: Y ", Y; = Z for externally sold position Z € L*°.

Note that if Z = 0 then this modified equilibrium coincides exactly with the typical Bithlmann
equilibrium.

Assume Z € L* so that the modified equilibrium (Y, Q) exists (see Section 3.1 below for some
discussion on this question). Implicitly, as an equilibrium solution, X + Z — EQ[Z] € clD. For

simplicity of exposition, we will assume that X + Z — EQ[Z] € D a.s.!

1 This condition can be relaxed to X + Z — IEQ[Z] € clD in case when D = Ry, but requires a lengthy technical
analysis with multiple clauses.



As presented in [13] and also detailed in Appendix A, the equilibrium probability measure Q

must satisfy the fixed point problem:

w w)—EQ
g e (=5 X ) ’
P = | (X+Z-EQ[Z] : (2.1)
E [exp (_ﬁ fessian p(’Y)dry>]

Within the construction of the pricing measure Q from (2.1) we, implicitly, consider p > 0 to be
the harmonic average of risk aversions p; > 0, 1 <i < n, i.e.,

-1 —1
T A N
P = (Z u;’mw))) (Zmym))) ’ (22

i=1 =1

where V;, 1 < i < n solve a differential system with equilibrium initial conditions. Implicitly, as an

_EQ
equilibrium solution, we have that [E [exp (—% fe):;;i XE 2]

p(v)dv)] > 0 (noting that, in the case
of D =R, fegs ey P(Y)dy = il{‘% Jiing 2 P(V)dy € RU{—00} by p > 0). We refer to Appendix A

and [13, 1, 28] for details of these constructs as well as the individual risk transfers Y;. We will

refer to p as the risk aversion of the harmonic representative agent.

Proposition 2.3. Assume that the (utility) functions u; : D — R, 1 < i < n are twice differen-
tiable, strictly increasing and concave. If p;i(z) = —u}(z)/ui(z), z € D, is nonincreasing for every

1<i<m, then p: D — Ry given in (2.2) is nonincreasing.

As will be investigated in greater detail below, we are interested in pricing these liquidated
contingent claims Z € L through the Biihlmann market mechanism. By construction, the value
of this contingent claim is given by EQ[Z] where Q is the Biithlmann pricing measure. Utilizing (2.1),

this price can be seen to satisfy the fixed point condition

B [Zexn (<3 LT o0

S o (3 L5025 00

EQ[Z] =

It is this fixed point problem, and variations of it, that are the primary focus of this work.



3 Equilibrium market impacts

Motivated by the Biithlmann equilibrium setup, let R : D — R be the integral of the absolute risk

aversion of the harmonic representative agent (up to a multiplicative constant), i.e.,

R(z) = 1/Z p(v)dy.

N Jessinf X

Similar to the extensions taken above, if D = R, we extend R(0) = h{% R(%z) in the broader sense
z

of the limit. In this way, the value E?[Z] of the claim Z € L originally provided in the fixed point

condition (2.3) can be written as:

E [Zexp (~R(X + Z — EV[Z]))]
E[exp (—R(X + Z — EQ[Z]))]

EQ[Z] =

In fact, the function R is bijective with the set of strictly increasing and concave utility functions
u for the harmonic representative agent (with equivalence class defined up to multiplicative and

additive constants):

u(z) = /OZ exp(—nR(essinf X + y))dy.

We also note that, using the fact that harmonic mean is bounded from below by its minimum, R is
concave if the harmonic representative agent has a nonincreasing absolute risk aversion (in wealth).
In fact, Proposition 2.3 provides conditions on the set of n market participants that guarantees the
concavity of R. The basic properties of R are encoded within the following assumption we impose

for the remainder of this work.

Assumption 3.1. For the rest of this paper we will assume that R : 1D — R is strictly increasing,

differentiable, and concave.

For the remainder of this work we will focus on and utilize this generalized function R to encode
the financial market and the harmonic representative agent’s utility u.

The specific study of this work, rather than the modified Biihlmann equilibrium itself, is to
determine the price and value of a contingent claim Z € L*:

E[Zexp (—R(X + Z —v))]
Elexp (—R(X 4+ Z —v))]

V(Z)= F%X {HZ(U) = } ={vedomHz |v=Hzw)}. (3.1)
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Here we set the domain of Hz to be

R itD=R
dOmHZ:

{u cR ’ P(X+Z>v) =1, Efexp(—R(X + Z —v))] > 0} D =R,y

in order to be consistent with the above formulation.

This pricing function V' can be seen as satisfying the fixed point condition of (2.3). We will
also study two special cases (R(z) = a(x — essinf X) and R(z) = nlog(x/essinf X) corresponding
to the exponential and power utility settings respectively) in Section 4 below which correspond
directly with the modified Biihlmann setup under specific choices of utility functions.

In addition to the pricing function V', we also wish to consider the inverse demand functions
generated by this market. That is, given a portfolio ¢ being liquidated in the market, we wish to
find the marginal price f7(s) for the s unit sold and the average price for those same units f9(s).

Such inverse demand functions satisfy the relation:

V(sq) = /0 " FU)dy = sF(s). (3.2)

It is these inverse demand functions that are often introduced and presented in the literature with V'
derived through the relations of (3.2). For instance, we refer to [3] as an important work on fire sales
in systemic risk which provides sufficient results on the uniqueness of (external) system liquidations
through the application of monotonicity conditions on the volume weighted average price f¢ and
s — sf9(s). However, in this equilibrium setup of market impacts, we find the construction of
the pricing function V' from (3.1) to be more natural; in Section 3.3, we study the inverse demand

functions f¢ and f9 derived from V.

3.1 Pricing function

Consider a generalized structure from the Biithlmann setup in (3.1). We first investigate the exis-
tence of the unique solution to the fixed point problem (3.1). That is, we study the conditions so
that the market is capable of providing a well-defined price for a contingent claim. This is presented

in Theorem 3.3 and expanded in Corollary 3.5. The equilibrium pricing problem (3.1) endogenizes



the market impacts due to the limited liquidity and preferences of the market participants; this
is in contrast to the exogenous valuation taken in, e.g., [15, 26, 3, 11] (via assumed forms of the

inverse demand function).

In order to approach the problem of endogenous pricing, we first present a general result on the

existence of a fixed point of Hy.

Theorem 3.2. Assume R satisfies Assumption 3.1 and let Z € L. Then there exists a solution

to (3.1), i.e. V(Z) # 0 if one of the following conditions hold:
1. D=R;

2. D =R, and there exists vg € dom Hy such that Hz(vg) < vg. This latter property holds if

either
o cssinf[X + Z] € dom Hy and Hz(essinf[X + Z]) < essinf[X + Z],
or

e essinf[X' + Z] € dom Hz and liminf, regintiv47) Hz(v) < essinf[X + Z].
Moreover, the set V(Z) is compact.

As Theorem 3.2 provides simple conditions for the existence of a fixed point, we now wish to
consider the question of uniqueness. Notably, and not surprisingly, uniqueness of the fixed point
requires stronger conditions than existence. We refer the interested reader to Example C.1 presented
in the Online Appendix which provides a simple example in which there exists a multiplicity of
equilibria. Theorem 3.3, however, provides sufficient conditions for the uniqueness of an equilibrium

valuation.

Theorem 3.3. Assume R satisfies Assumption 3.1 and let Z € L*>°. Let eitherD =R orD =R .

There exists at most one solution to (3.1), i.e. |V(Z)| < 1 if any of the following conditions is

satisfied:
(a) Z and X + Z are comonotonic;
(b) R is linear;

(¢c) z€ Ryt — zexp(—R(X + z)) is almost surely non-decreasing;



(d) z € Ry — zexp(—R(X + 2)) is almost surely concave.

Remark 2. Theorem 3.3(a) implies that there exists at most one solution to (3.1) for any Z € L*°,

i.e. |V(Z)| <1 if the aggregate holding X € D is deterministic.

Remark 3. Recall that R is the integral of the absolute risk aversion of the harmonic representative
agent up to a multiplicative constant. Condition (c) of Theorem 3.3 can, thus, be viewed with respect
to the risk aversion of the agent if essinf X > 0. That is, z € Ri4 +— zexp(—R(X + 2)) is a.s.
nondecreasing if and only if zR'(X + 2z) < 1 a.s. In particular if essinf X > 0, by concavity of R,
this is true if zR'(z) < 1 for every z > 0. Therefore, uniqueness of V is guaranteed if the relative

risk aversion of the harmonic representative agent is bounded from above by n.

In fact, if any of the conditions (a)-(d) of the above theorem is satisfied, we can strengthen the
existence result condition of Theorem 3.2. Namely, in case D = R, the sufficient condition for

existence presented in Theorem 3.2 is also necessary for existence.

Corollary 3.4. Assume R satisfies Assumption 3.1 with D = Ry, and let Z € L*°. If any
of the conditions of Theorem 3.3 is satisfied then there exists a unique solution to (3.1) , i.e.
[V(Z)| = 1 if and only if Hz(essinf[X + Z]) < essinf[X + Z], when essinf[X + Z] € dom Hy,
or liminf Hyz(v) < essinf[X + Z] if otherwise essinf[X + Z] ¢ dom Hy. Furthermore, this

v Sess inf[X+Z]
solution is bounded from above by essinf[X + Z], i.e. V(Z) < essinf[X + Z].

Rather than checking the value of Hz(essinf[X 4 Z]) for existence of a fixed point for (3.1) (and
therefore the pricing measure Q) if D = R, , we wish to provide an alternative sufficient condition

for existence.

Corollary 3.5. Assume R satisfies Assumption 3.1 with D =Ry and let Z € L. If

E[exp (—R(X + Z —essinf[X + Z]))] = o0 (3.3)

then Z € domV (i.e., V(Z) #0).

This condition can be used to guarantee existence of a clearing price in many examples with
D =Ry Indeed, if P(X + Z = essinf[X 4 Z]) > 0 and lim,\ o R(2) = —oo then Z € dom V. As

will be considered in Corollary 3.7 below, the case in which X 4 Z attains its essential infimum with
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positive probability can be thought of as an extreme systemic shock scenario. Specifically, under
a systemic shock, all assets would attain their worst case scenario, i.e., their essential infimum.
Corollary 3.5 can be used to demonstrate that there exists a clearing price if a systemic shock is

possible.

3.2 Extension and Selection of V

We have now successfully defined V' on L* in case D = R, but have additional requirements if D =
R+ to ensure existence — specifically, we must at least have that either liminf,, ressinfirv+2) H. z(v) <
essinf[X + Z] or, provided essinf[X + Z] € dom Hz, Hz(essinf[X + Z]) < essinf[X + Z] in order
to define V. Additionally, except under the conditions of Theorem 3.3, we cannot guarantee that
the price of a claim Z € domV is uniquely defined. Therefore, in this section we look for a way
to extend the definition of V' to the entire space L> even in the case when D = R, and to select
the appropriate price of Z € dom V' when there exists a multiplicity of prices. Mathematically, this
extension is done for convenience so that the domain in all cases (whether D = R or D =R, ) can
be the entire space L.

Conceptually, this extension and selection problem are fundamentally distinct cases. The former
occurs for claims Z € L™ such that V(Z) = 0; the latter occurs for claims Z € L™ such that V(2)
has cardinality at least 2. The general notion for determining the unique offered price for Z in any

case follows from two notions:
e market participants compete for underpriced claims which can be used to improve utility and
e market participants prefer paying less to more.

Though the case of Z ¢ dom V' may not yield a “fair” price in the Biihlmann sense, we assume, as
in the fire sale literature [15, 3, 20], that the external seller of Z is forced to complete the liquidation
and thus must accept the value provided by the market. Similarly, if there exist multiple equilibrium
prices for the claim, the external seller must accept whichever fair price is provided by the market.

Mathematically, this extension and selection of the pricing function V is given by V : L*® — R

11



such that, for payoff Z € L,

~ min V(Z) := minyey(zyv if Z € domV,
V(Z):= (3.4)

essinf[X + Z] it Z¢domV.

We now argue that the way this extension and selection must be set as in (3.4) to be financially
meaningful. This is extended further within Lemma 3.6 below to demonstrate that V satisfies
some desired mathematical and financial properties. This definition encodes exactly the conceptual
notions provided above. If multiple clearing prices are available, the minimal such price is selected
as that is preferred by all market participants;? this is similar to an English auction, with the price
starting at essinf Z, and rising to min V(Z) which is the smallest equilibrium, and where it therefore
remains. Note that this is the lowest price that no market participant finds the claim underpriced.
On the other hand, if no “fair” price exists (which can only occur if D = Ry by Theorem 3.2)
then the maximum price the market participants are both willing and are able to pay is offered;
more specifically, if Z ¢ dom V' then the market finds that it does not have sufficient liquidity to
pay a fair (clearing) value for the claim Z as Hz(v) > v for every v € [essinf Z, essinf[X + Z]), as
follows from Theorem 3.2. Since the market is only limited by the risk-free capital available to it,
this means the market will, instead, offer essinf[X + Z] for the claim Z (which is a good deal for
the market participants and will be accepted due to the assumption that the external liquidation
of the claim is forced on the market). Finally, and trivially, if Z € domV such that V(Z) is a
singleton (e.g., under the conditions of Theorem 3.3), then V(Z) provides exactly this price.
With this definition of the extension and selection V of V, we now wish to consider some
intuitive properties of V. Namely, we prove that V is bounded, law invariant, cash translative, and
(lower semi)continuous. We also formulate additional properties for V under certain conditions on
R. Specifically, we provide conditions for the monotonicity and concavity of V; that is, respectively,
greater liquidations provide a larger value and the marginal increase in value is decreasing. We note
that, taken together, these properties of V' construct a monetary risk measure (with modification

up to negative signs) which may be of interest for future study.

Lemma 3.6. Assume R satisfies Assumption 3.1.

>The minimum min V(Z) is well defined since V' (Z) is compact for any Z € L* as follows from Theorem 3.2.

12



1. V(Z) € [essinf Z,esssup Z] for any Z € L>.

—~
=

2. V(Z1) = V(Za) if (Z1,X + Z1) = (Z9, X + Z3), i.e. equality in distribution.
3. V(Z+2)=V(Z)+ 2 forany Z € L™ and z € R.

4. V is lower semicontinuous in the strong topology.® If any of the conditions of Theorem 3.3

hold then V is continuous in the strong topology.

5 If € Ryy +— zexp(—R(X + 2)) is a.s. nondecreasing then V(Z1) > V(Z3) for Zy > Z3 a.s.

and V is Lipschitz continuous with Lipschitz constant 1 with respect to the mazimum norm.

6. If z € Ry v zexp(—R(X +2)) is a.s. concave then V is concave and upper semicontinuous

in the weak* topology.*

Remark 4. Note that the extra conditions of Lemma 3.6(5) and (6) guarantee that there exists at

most a single fair price V(Z) for any claim Z € L™ as proven in Theorem 3.3.

It turns out the same extension V can also be achieved using a wholly different notion provided
D=R;4 and il_r}r(l) R(z) = —oo under our conditions for uniqueness from Theorem 3.3. For the rest
of this subsection, we wish to highlight the dependency of V' on X', and therefore write V(Z; X).
Let B[p| ~ Bern(p) be a Bernoulli random variable representing the ruin (with probability 1—p) of
the banking system. It is natural to assume that in case of ruin the assets will pay their minimum,
and in particular the claim will pay essinf Z and the aggregate endowment will be worth essinf X.
It follows that the position Z € L becomes B[p|(Z — essinf Z) + essinf Z as it is only payable
if the system has not defaulted; similarly the assets of all market participants would be subject
to the same systemic stress, i.e., X becomes B[p](X — essinf X') 4+ essinf X. As p tends towards
1, i.e., the probability of systemic ruin tends towards 0, the claim Z and aggregate assets X
are again recovered. Indeed, recall our assumption that R(0) := ll_I}I(l) R(z) = —oo. Therefore the
condition (3.3) of Corollary 3.5 holds for any p € (0,1). That is, under these systemic shocks
B[p|(Z —essinf Z) + essinf Z € dom V (-; B[p](X — essinf X') + essinf X') for any p € (0,1). Armed

3The strong topology is the normed topology with norm ||-||ec, .., (Ym)men = Y € L%, if limy o0 ||Yin — Y |loo =
0.

“The weak* topology is the coarsest topology such that ¥ € L ~— E[Y*Y] is continuous for any integrable
random variable Y* € L, i.e., (Yj)jes — Y € L* (for index set J) if lim;e; E[Y*Y;] = E[Y*Y] for every Y* € L*.

13



with this observation, we formulate an alternative definition for V under the uniqueness conditions

of Theorem 3.3:

A

V(Z;X) = li/rri V(B[p)(Z — essinf Z) + essinf Z; B[p](X — essinf X') + essinf X'). (3.5)
P

That is, up to modification via the essential infimum, the (extended) price V(Z ; X) of Z is pro-
vided by the limiting behavior of the price of B[p]|Z under market assets B[p]X as the probability
of systemic ruin tends towards 0. The limit within (3.5) is guaranteed to exist by monotone conver-
gence; this result is formalized within the proof of Corollary 3.7. The following result shows that
V = V. Thus, this new extension V provides the interpretation that the market prices Z as if the
probability of systemic ruin is negligibly small rather than the explicitly setting the probability to
0.

Corollary 3.7. Assume R satisfies Assumption 3.1. Assume also thatD = Ry andlim,_,o R(z) =
—o00. Let Z € L™ and assume that B[p] in the construction (3.5) is independent of X, Z for every
p € (0,1). If any of the conditions of Theorem 3.3 is satisfied and essinf[X + Z] = essinf X' +
essinf Z, then V(Z; X) = V(Z; X).

Remark 5. Within Corollary 3.7, we introduced the additional condition that essinf[X + Z]| =
essinf X 4 essinf Z. This condition can be considered as the limiting condition for the systemic
ruin encoded in the Bernoulli random variables as the probability of ruin tends to 0. That is, the
worst case for the market (essinf X') and for the claim Z (essinf Z) coincide as both are stressed

by the same systemic shock.

3.3 Inverse demand functions

Now that we have a good definition of a unique price V' that is valid over the entire space L™, we
are finally able to rigorously define the inverse demand functions. There is no unique way to do
so, and we choose to demonstrate how this can be done following the example set in [6, 8]: using
the order book density and the volume weighted average price (VWAP) function. For the former,

we set f7: Ry — R, so that V(sq) = [J fi(t)dt, ie., fi(s) = a@f/(sq). For the latter, we define

S
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fi:Ry — R by

Elgexp(—R(X))] e . _
. Eeo( RW)] 1L5=0,

fi(s) = (3.6)

V(sq)/s if s > 0.

The order book density function f¢ provides the price of the next marginal unit of the portfolio ¢
given the total number of units already sold; in this way we can encode a dynamic notion of pricing
in a single period framework. In contrast, the VWAP function f¢ provides the average price per
unit of liquidated portfolio; this construction is implicitly utilized in much of the fire sale literature,
see, e.g., [15, 3, 20].

As discussed previously, these inverse demand functions (f? or f9) are often the objects intro-
duced exogenously. Such an approach, though valid, does not necessarily follow from a financial
equilibrium. By first studying the value of arbitrary portfolios, we are able to consequently talk
about the price per unit of any asset or portfolio. As presented in the multi-asset setting provided
at the end of Section 3.3, we can consider the cross-impacts that liquidating one asset can have
on the price of another; this is in contrast to the typical, simplifying, assumption that there are
no cross-impacts as taken in, e.g., [26]. This is presented explicitly in the special cases of markets

generated by the exponential or power utility functions (as detailed in Section 4 below).

Assumption 3.8. Throughout this section, we assume X, q satisfy the joint systemic ruin condition
essinf[X +¢| = essinf X +essinf q (so that X, sq satisfy this condition for every s > 0) as introduced

in Corollary 3.7 and discussed in Remark 5.

We first show that the order book density function f? is well defined. That is, we can mean-

ingfully discuss the price of the next marginal unit of the portfolio q.

Lemma 3.9. Assume R satisfies Assumption 3.1 and any of the conditions of Theorem 3.3 hold.

Consider the setting in which a single portfolio is being liquidated proportionally, i.e., f1: Ry — R

defined by
E[g(1—[sq=V (5q)|R'(X+5q—V (s9))) exp(—R(X+sq—V (s9)))] .
fi(s) = | FOTa VIR sV sa)) expl RG] 20 € domY
essinf g else.
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1. V(sq) = [5 fa(t)dt for any s € Ry

2. If z € Ry — zexp(—R(X + 2)) is nondecreasing then f4(s) > essinf g for every s € Ry and
if, additionally, z — zexp(—R(X + z)) is strictly increasing and P(q > essinfq) > 0 then

f4s) > essinf q for every s € Ry such that sq € dom V.
3. f11is continuous on int{s € Ry | s¢ € domV'} if R is continuously differentiable.
4. f%is nonincreasing if z € Ryy — zexp(—R(X + z)) is nondecreasing and concave.

Now we want to consider the volume weighted average price f¢. As shown below, this pricing
function satisfies the expected conditions automatically in contrast to the order book density func-
tion f9. This VWAP function provides exactly the average price obtained by the seller per unit of

the portfolio ¢, i.e., fi(s) = %V(sq) for s > 0.

Lemma 3.10. Assume R satisfies Assumption 3.1 and any of the conditions of Theorem 3.3.
Consider the setting in which a single portfolio q is being liquidated proportionally, i.e., f4: R,y — R

is given by (3.6).

1. fi(s) > essinfq for every s € Ry and if, additionally, P(q > essinfq) > 0 then fi(s) >

essinf q for every s € R;.
2. f9 is continuous.
3. f? is nonincreasing.

Remark 6. The order book density function f9 and VWAP function f9 are related through:

V(sq) = /0 " FU(t)dt = sF9(s).

Remark 7. As defined in, e.g., [21, 6], the liquidity of the inverse demand function near 0 is
defined as the velocity that prices are impacted by a small, additional, liquidation. In those works,
the liquidity was used to calibrate risk weights for studying fire sales subject to capital adequacy
requirements. Notably, by construction, the inverse demand functions coincide with the expectation

of ¢ under the measure with Radon-Nikodym derivative exp(—R(X))/Elexp(—R(X))] when no assets

16



are being sold, i.e., f1(0) = f4(0) = E[gexp(—R(X))]/Elexp(—R(X))]. The liquidity of the market

near 0, i.e., the impact of a small liquidation, can be provided explicitly by:

E[¢°R'(X)exp(—R(X))] |  Elgexp(—R(X))]E[qR'(X)exp(—R(X))]

IO == 2 grpry T Elexp(—R(X) P
Elaexp(-REA)PEIR () exp(~R())
Blexp(—R(X) |
(F1Y(0) =3 (/) 0). (&)

These notions of market liquidity can be simplified significantly if X € D deterministic. Under such
a setting the order book density and the VWAP functions provide respectively the initial liquidity

values of

(f1)'(0) = 2(f*)'(0) = —2R'(X) Var(q). (3-8)

That is, the market clearing price drops no matter how it is measured when the first (marginal)
unit is sold (unless q is deterministic) and is proportional to both the absolute risk aversion of the

harmonic representative agent at the market wealth X and to the variance of portfolio q.

Before continuing to the analytical results in Section 4, we wish to briefly discuss the multi-
asset inverse demand functions. Comparable to the definition of the order book density and VWAP
functions in the single portfolio setting, these inverse demand functions are defined for a setting
with m assets (with vector payoffs @ = (q1,...,qm) ") such that V(s'q) = fol fa(r(t))r " (t)dt =
s'fd(s) for order book density function f4 : R” — R™ and VWAP f9 : RT — R™ and such that
r: [0,1] — R™ denotes an arbitrary curve from r(0) = 0 to r(1) = s. This curve r describes the
order of sales over “time”. However, in our single-period setting, the timing of financial transactions
does not matter; it is for this reason that the curve r is arbitrary. Without loss of generality, we
take the curve r(t) := st, t € [0,1]. Our aim herein is to match these definitions of the order
book density function f4 and VWAP f9 to the original definitions used throughout this section.
Specifically, we define f4(s) := V,V (s q) to be the gradient of V' with respect to s. In this way,
V(s'q) =s' fol f9(st)dt; this representation provides a specific choice for the VWAP f9 that is

consistent with the order book density function, i.e., f4(s) := fo f9(st)dt. On the domain of V,
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these inverse demand functions can be provided more explicitly as:

Elq(1—[s'q+V(s'qJR(X +s'q—V(s'q))) exp(—R(X +s'q—V(s'q)))]
E[(1-[s"Tq+ V(sTq)]R(X +s"q—V(s'q)))exp(—R(X +sTq—V(s'q)))]
Elgexp(—R(X +s"q—V(s"q)))]

Elexp(—R(X +s'q—V(s"q)))]

£9(s) =

f9(s) =
for s € R’ such that s'qedomV.

4 Special cases

We now specialize the generic framework of the previous section to consider specific examples of
the pricing and inverse demand functions. We highlight that these functions are the result of the
modified Biihlmann equilibrium setting presented in Section 2 with specific choices for the util-
ity functions of the market participants. Specifically, we consider two settings in the modified
Bithlmann framework: exponential utility maximizers and power (or logarithmic) utility maximiz-
ers. With these utility maximizing settings, we illustrate how asset and portfolio prices can be
obtained as a result of the equilibrium problem. In this way, in Example 4.4 we are able to recover
two classical inverse demand functions — the linear and exponential inverse demand functions — that
are commonly used. This is significant as it makes explicit a number of assumptions that contribute
to these (and other) specific pricing functions. Furthermore, not every inverse demand function can
be achieved as an equilibrium from a specific set of market participants (as encoded in their utility
functions and aggregate holdings X'). For example, in case of deterministic X', a power inverse
demand function f(s) = 1 —s”, 0 < p < 1 cannot be achieved, as otherwise, l{% f(s) = —o0,
which contradicts (3.8) and (3.7) in the order book density and VWAP cases respectively.

As such, extra care needs to be taken when using a specific, exogenous, inverse demand function,
as it may not be achievable with the set of market participants or, potentially, from the specific

distribution of the returns.

Assumption 4.1. For mathematical simplicity, we will consider deterministic aggregate holdings
X € D only throughout this section. Note this setting satisfies the uniqueness condition of Theo-

rem 3.3(a) for any R satisfying Assumption 3.1 and any Z € L.
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4.1 Exponential utility

Consider the Bithlmann equilibrium construction from Section 2 in which every market participant

has exponential utility function u;(z) := 1 — exp(—a;x) with risk aversion o; > 0. Let o :=
-1

(Z?:l a%) . Then «, up to a multiplication by n, is the harmonic average of the risk aversions.

As the absolute risk aversion in this case is constant, it immediately follows that we can construct

a payment system with the function:

R(z) = a(x — X) with D = R, (4.1)
V(Za)= Ege le(_;azz)])]. (4.2)

As D = R, it immediately follows that V = V. We further wish to note that V is defined as the

Esscher premium [23].

Proposition 4.2. Let the pricing function V : L — R be defined as in (4.2). As more market
participants enter the system, the market becomes more liquid (liquidation value goes up), i.e.,

V(Z;0n) < V(Z;02) for ag > ag > 0.

For a vector of assets q = (q1, ...,qm)T, the order book density function and VWAP inverse

demand function are consequently defined as

_ E[qexp(—as'q)]

P = Elexp(—asTq)]
El(s"a) exp(—as ' q)]E[qexp(-as'q)] - Elexp(—as’ q)|E[(s" a)qexp(—as'q)]
Elexp(—as'q)]? ’

(4.3)

i‘:q(s) — E[q exp(—aqu)]

Elexp(—asTq)] (4.4)

As highlighted in the below proposition, these inverse demand functions exhibit no cross-impacts
on the prices as is often assumed (see, e.g., [26, 16, 17]) so long as the components of q are pairwise

independent.

Proposition 4.3. Let q be a m-dimensional random vector. Let the order book density function
f9: R — R™ and VWAP inverse demand function £4 : R — R™ be defined as in (4.3) and (4.4)

respectively. If the components of q are pairwise independent then the inverse demand functions
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ezhibit no price cross-impacts, i.e., fi(s) = f¥(sg) and fl(s) = f*(si) for every s € RT and

k=1,..,m.
Proof. This follows directly by independence and properties of the exponential function. O

Though (4.2) provides a clear, analytical, structure for the pricing function V' and the inverse
demand functions, it only satisfies those properties that hold generally for such functions (i.e.,
Lemma 3.6(1)-(4)). For instance, it is not true that V' is monotonic or concave in general (see,
e.g., the discussion for the inverse demand function under a Poisson distribution in Example 4.4).
Similarly, the order book density function f¢ does not provide any clear structure as it can be
negative (see, e.g., the discussion for the inverse demand function under either the normal or
Poisson distributions). However, those properties proven above within Lemmas 3.9 and 3.10 that
hold generally (e.g., continuity and monotonicity of the VWAP inverse demand function f9) will
hold herein.

The exponential utility setting provides an added benefit; so long as q has a distribution with a
moment generating function, we can easily define the inverse demand functions f4 and f9. Notably,
this allows us to consider a larger domain than (L°)™, including, e.g., the multivariate normal
distribution. In those cases, motivated by the previous sections, we will define V' using (3.1),
which in this setting (with exponential utility and linear R in (4.1)) simplifies to (4.2). We then
compute f4 and f9 by utilizing (4.2) to compute V and using known closed form moment generating
functions.

In Example 4.4 below, we will consider a few well known distributions to provide the structure of
the inverse demand functions. We also wish to highlight a final, discrete, distribution that provides

a counterexample for the convexity of these inverse demand functions in general.

Example 4.4. Let f4 and £9 be constructed from the exponential utility function. Under the fol-

lowing distributions of q we can determine the structure of the inverse demand functions explicitly.

e Multivariate normal: If q ~ N(u,C) then f9(s) = p — 2aCs and f9(s) = p — aCs.
That is, we recover the linear inverse demand function common in the literature (see, e.g.,
[26, 11, 17]). This makes this example one of the most important examples presented here.

Notably, both the order book density and the VWAP inverse demand functions in this setting
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can take negative prices. This is unsurprising given the positive probability of negative payoffs
for these assets. Financially, the possible negativity of the order book density function implies
there exists some market depth beyond which the appetite for risk is satiated and further

liquidations require compensating the purchasing counterparty for accepting this risk.

e Poisson: If ¢ ~ Pois(\) then fi(s) = (1 — as)\exp(—as) and fi(s) = Xexp(—as). That
is, we recover the exponential inverse demand function common in the literature (see, e.g.,
[31, 21]). This is the second most important example in the paper. We, not only, recovered
the exponential inverse demand function, but this example also shows that the order book
density can become negative even for nonnegative payoffs, and that it need not be convex for
all s > 0. As a consequence of the negativity of f? (i.e., the marginal price dropping below the
essential infimum of the claim’s payoff which introduces the possibility for risk-free profits),
we find that the order book has a finite depth a1 such that any greater liquidations (s > a™!)

no longer has a meaningful financial interpretation in terms of the order book.

e Bernoulli: If ¢ ~ Bern(p) then fi(s) = p*+(—os)p(l-p)explas) ., g fi(s)

_ D
(p+(1—p) exp(as))? ~ p+(1-p)exp(as)”

e Gamma: If ¢ ~ T'(k,0) then fi(s) = % and fi(s) = 1416205'

e Discrete distribution: We wish to conclude with a simple distribution that results in non-

convex inverse demand functions f9 and f9. Let ¢ € {0,1,16} with P(q¢ = 0) = 0.02,P(q =

1) = 0.49,P(¢ = 16) = 0.49. Then skew(q) = 5&2‘5’% = 0.0389 > 0 which implies
both f9 and f? are convex near 0. Consider now s = L, fi(s) ~ 0.90 but (f9)"(s) =

a®E(q — fi(s))?] = —0.071a? < 0. Similarly it can be shown that the order book density

function f? is nonconvex as well.

4.2 Power utility

Consider the Bithlmann equilibrium construction from Section 2 in which every market participant

has power utility function u;(z) := mll__nnfl if n # 1 and u;(z) = log(z) if n = 1 for constant relative
risk aversion 17 > 0. As the relative risk aversion in this case is constant, it immediately follows that

we can construct a payment function with the function R(x) = n(log(z) —log(X)) (withD = R4 ),
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ie.,

E[Z(X + Z — v)~"]
E[(X +Z —v)™]

V(Z) = FIX (4.5)

We wish to note that, generally, there is no closed form for this construction. As discussed pre-
viously, due to D = R4, the domain of V' is not the entire space L*°. In fact, as proven in
Proposition 4.5 below, dom V' = {Z € L*® | E[(Z —essinf Z)! "] < XE[(Z —essinf Z)7"]}. In addi-
tion to the properties listed below, the extension V also satisfies all properties that hold generally

(e.g., translativity).

Proposition 4.5. Let the pricing function V be defined as in (4.5) for some n € [0,1] and let V

be its extension as defined in (3.4).
1. domV = {Z € L™ | E[(Z — essinf Z)17"] < XE[(Z — essinf Z)7"]}.

2. V is nondecreasing and concave. It is, additionally, Lipschitz continuous in the strong topology

and weak™® upper semicontinuous.
3. If additionally n > 0 then V is strictly increasing and strictly concave on dom V.

With the construction for V, we can consider the inverse demand functions; for simplicity we will

first present the setting with a single portfolio liquidated proportionally. However, these functions

do not provide any analytical expression except one w.r.t. V, i.e.,

( sq—V (s W —
Elq(1—n 55050 ) (X+sq—V (s9)) ] . XE[(q—essinf )]
Bl Sl ) (X rsg—V(sq) 1] ENg—esmig) 7]
f(I(S) — nXJrsqu(sq) q q
essinf q else,

(

]E[Q(X-i-sq_f/(SQ))*ﬁ] lf s < XE[(q—eSS inf q)*’]]
flI(s) E[(X+sq—V (sq)) "] = E[(q—essinf q)!~ 7]

\ % + essinf g else.

Notably, due to the construction of R, the properties provided in Lemma 3.9 for the order book
density function f¢ (for a single portfolio being liquidated proportionally) hold for n € [0,1]. The

general properties of the VWAP inverse demand function hold for every n > 0 by Lemma 3.10.
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Corollary 4.6. Consider the order book density function f9 with a single portfolio being liquidated

proportionally. Assume P(q > essinf q) > 0. Ifn € [0, 1] then f? is nonincreasing and bounded from

XE[(g—essinf q) "] ) )

below by essinf q. If, additionally, n > 0 then f(s) > essinf q for every s € [0, E[(q—oss inf g)1 =]

Proof. This is a direct consequence of Lemma 3.9. O

We wish to highlight that, as opposed to the exponential utility case above, even if the assets
are independent it is not guaranteed that fi}(s) can be separated into a function f*(sy). This is

clear from the construction of the inverse demand functions for a m-dimensional random vector q,

E[(sT q—essinfs' q)' "] X

M m
i.e., for s € R’ such that E[(sTq essinfsTQ) =] =

TH_VVi(aT _
Ela(l — 32 ls) (X +sTa — V(sTa) ]

£9(s) = cactl g - :
E[(1 - 13 anls) (X +sTa— V(sTa) 7]
Fa(s) — LA+ s'q—V(s"q))™"]

E(X+sTq—V(s'q)™] "

The induced price cross-impacts implies that there may exist complicated dependencies between
prices of (statistically) independent assets. The cross-impacts for an i.i.d. bivariate lognormal
setting are displayed in Figure 1; due to the symmetry of the assets only the inverse demand
functions for the first asset are provided. Figure 1 displays the contour lines for different price
levels as a function of the joint liquidation amounts s = (s1, $2). If no cross-impacts existed, these
contour lines would be vertical as this would imply so does not impact the price of asset 1. Notably,
with this interpretation in mind, there are less cross-impacts when s; is small, but the cross impacts
can grow significantly as s; grows.

In addition to the properties satisfied by these inverse demand functions, we also wish to note
that, e.g., s — s f9(s) is nondecreasing and concave for 7 € [0, 1] due to Proposition 4.5. Further,

as with the exponential utility function, neither inverse demand function is convex in general; herein

XE[(g—essinf q) "]
E[(g—essinf ¢)1—"]

this can be seen with a single asset ¢ at s* = for ¢ > essinf ¢ a.s. In particular,
as displayed in Figure 2a, neither f¢ nor f? is convex at s* ~ 2.568 for q ~ LogN(—U—;,UQ) at
o = 0.5 with X = 2 and 5 = 1. Furthermore, motivated by Corollary 3.7, in Figure 2b we plot

the inverse demand functions for the same risk-sharing system (X = 2 and n = 1) for a liquidated

lognormally distributed claim (i.e., ¢ = 0.5), but with a 0.001% probability of systemic ruin (i.e.,
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(a) Order book density fi! for asset 1. (b) Volume weighted average price fl for asset
1.

Figure 1: Plot of the inverse demand functions f, flq for the first asset of i.i.d. bivariate lognormal
payoffs (Z; ~ LogN(—U;, 0?)at o = 1fori € {1,2}) over a financial system of log-utility maximizers
(n = 1) with aggregate assets X = 5.

p=1—107° for independent Bernoulli distributed random variable Bp]). Notably the order book
density function f? is continuous with this inclusion of the risk of systemic ruin, though still neither
f9 nor f4 are convex mappings.

We wish to conclude this section with a few quick comments on the difficulties inherent in
finding analytical forms for the pricing function V. Though numerical computation of V(Z) is
straightforward through Monte Carlo simulation, analytical construction is hampered by the need
for non-integer moments of a constant plus Z. The combination of these requirements on the

distribution generally make an explicit representation of the fixed point of V intractable.

5 Conclusion

In this work we have introduced an equilibrium model for pricing externally liquidated assets. This
model builds upon the seminal work by Bithlmann [12, 13] to endogenize the price impacts to find a
clearing price in a financial market. This approach is in contrast to the typical approach in the fire
sale literature in which inverse demand functions are exogenously given. In order to study these
endogenous inverse demand functions we prove the existence and uniqueness of the the price of
the liquidated assets. We additionally find that the resulting pricing functions satisfy the axioms

of monetary risk measures; further study of this class of risk measures is left for future research.

24
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(a) Inverse demand functions for lognormal dis- (b) Inverse demand functions for lognormal dis-
tribution. tribution with low probability of systemic ruin.

Figure 2: Plot of the inverse demand functions f9, f7 for an asset with lognormal payoffs (Z ~
LogN(—%Q, 0?) at o = 0.5) with (b) and without (a) probability of systemic ruin over a financial
system of log-utility maximizers (n = 1) with aggregate assets X = 2.

Utilizing these results, we analyze two special cases — all market participants are exponential or
power utility maximizers — to study analytical structures. The exponential utility setup provides
a direct connection with the Esscher transform and provides analytical structure to the inverse
demand functions whereas the power utility setup satisfies useful mathematical properties for any
claim being liquidated (e.g., the monotonicity and concavity of the value of liquidated claims).
Importantly, we find an example — the power utility setting — in which these inverse demand

functions generate price cross-impacts even for statistically independent assets.
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A Construction of the (modified) Biihlmann equilibrium

In Section 2, we introduced the basic details of the Bithlmann equilibrium. For completeness, in this section
we wish to present the general construction of the Bithlmann equilibrium (Y, Q). The arguments presented
here follow directly from [13].

First, recall the setting of the modified Bithlmann equilibrium problem. That is, consider a market of
n participants with utility functions u; and endowments X; into which some external portfolio Z € L*° is

sold. The modified Biithlmann equilibrium (Y, Q) satisfies:

1. Utility maximizing: Y; € argmaxy, E [u; (X; + Vi — E9¥i]) | with E [u; (X; +Y; — E%i])] € R

for every i € {1,2,...,n}; and
2. Equilibrium transfers: Z?:l Y, = Z for externally sold position Z € L.

If Z = 0 then this modified equilibrium coincides exactly with the typical Biihlmann equilibrium. Recall

that for simplicity of exposition, we have assumed that X + Z — E?[Z] € D, and as an ansatz let
X, +Y —EUY]eD, i€ {1,2,..,n}. (A1)

The first order condition for utility maximizing implies

Q

ui(Xi+Yi —E¥Y]) = E [ui(X; + Vi —E°Y))] =5

=:C;eR

a.s. (A.2)

By [9, 10], any equilibrium must, additionally, depend on w € € only through v := X + Z — EQ[Z] =
S (Xi + Y — EQY;]). We must also have that X; +Y; — EQ[Y;] depends on w only through ~. Letting
Yi(v) == X; +Y; — EQY;] for every i with i, Vi(y) = v and ¢(v) is the associated Radon-Nikodym
derivative of Q w.r.t. P. Therefore (A.2) can be rewritten as u}(Yi(y)) = Cié(y). Taking the derivative

(w.r.t. 7) of the logarithm of both sides leads to the relation

W)y 90D
w2 Y gy T (&3
=—pi(Vi(7))

where p; denotes the risk aversion of bank i. As Y. | V/(y) = 1 by construction, we recover the relation

ARSI
=50 2 a0 (A4

—inp(7)~!




for harmonic average p of risk aversions p;, 1 <i < n.
Directly from (A.4), the Bithlmann equilibrium (Y, Q) can be constructed. As we are primarily concerned

with the pricing measure Q within this work, we will first focus on that measure through the construction

of ¢(7). Specifically, ¢'(v) = —Lp(v)$(7) or, equivalently (noting that E[p(v)] = 1)

exp (=2 [7 p(&)dé)
E [exp (= [ p(€)d€)]

o(v) =

for arbitrary ¢ € D. The pricing measure Q is then constructed as in (2.1) as % = ¢(X+Z—E?[Z]). For this
construction, implicitly we require Y;(y) so as to define the risk aversion p of the harmonic representative

agent. Utilizing both (A.3) and (A.4), we recover the differential system
_ () (A.5)

with initial condition Y;(c) € R such that EQ[Y;(X + Z —EQ[Z])] = E?[X|] for every bank i. We wish to note
that [13] studies the existence and uniqueness of the equilibrium by considering the existence and uniqueness
of such an initial condition (with Z = 0); such results are replicated within Theorem 2.2.

If the individual investments Y; were desired, then this can be found directly from the construction of

Vi(X + Z — EQ[Z]) given the pricing measure Q. Specifically,
Y; = —X; + Vi(X + Z - E¥[Z]) + \EQ[Z]

for \; € R arbitrary such that >_)" | A; = 1. By construction of Y(X + Z — EQ[Z]), it immediately follows

that equilibrium transfers } .- | ¥; = Z, and if D = Ry, the ansatz (A.1) can be checked as in [1].

B Proof from Section 2

B.1 Proof of Proposition 2.3

Proof. Note that p; : D — R, is nonnegative for every ¢ by the assumed properties of u; : D — R. This
implies p : D — R, is nonnegative as well by construction in (2.2). Therefore }; : D — R is nondecreasing

as its derivative is nonnegative (see (A.5)). By construction, it immediately follows that

" 1 o " 1 o
P = (Z m(aﬁim))) =" <Z pi(%(vz))> o)

i=1 =1

for 1,72 € D such that v; < 5. O
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Figure 3: Plot of the price Hz(v) resulting from initial valuation v € [107°,2] for Example C.1.

C Example of nonunique pricing

The extra conditions of Theorem 3.3 are sufficient (but not necessary) for the uniqueness of the equilibrium
price. We present the following counterexample to demonstrate that existence of an equilibrium price does
not guarantee uniqueness and, thus, demonstrating some conditions are needed for such a property. Notably,
the following counterexample is under the setting D = R which, by Theorem 3.2, the existence of a fixed

point for Hyz is guaranteed.

Example C.1. Let R: R — R (i.e., D = R) be such that R(z) = 1 — e *%23 for any z € R. Consider
the discrete probability space (0 = {w1,wa} , 2%, P) such that P(w;) = 0.01 and P(wz) = 0.99. Further,
consider the setting in which the system-wide assets are provided by X (w1) = 107° and X (w2) = 100, i.e., the
financial system is shocked in scenario wyi. Trivially X satisfies Assumption 2.1 and R satisfies assumption
3.1, therefore this financial system has full domain (domV = L) by Theorem 3.2. Consider the specific
position to be liquidated: Z € L* such that Z(w1) = 2 and Z(wz) = 1075. Notably, this setting does not
satisfy any of the uniqueness conditions of Theorem 3.3. In fact, there exist three equilibrium prices for Z
all between essinf Z = 1075 and esssup Z = 2; up to rounding errors, the set of equilibrium prices of Z is

given by:
V(Z) ={0.08403 , 1.38977 , 1.98985}.

The multiplicity of equilibria is visually clear in Figure 3 in which Hz(v) is plotted as a function of the initial

valuation v € [107°,2].



D Proofs from Section 3.1

D.1 Proof of Theorem 3.2

Proof. We first note that R is continuous, and therefore so is v — Hz(v).

1. If D = R, the existence of the fixed point now follows from Brouwer’s fixed-point theorem, because
essinf Z < Hyz(v) < esssup Z for all v € dom H; = R. In particular, these bounds hold for for

v € [essinf Z, esssup Z].

2. If D =Ry, we still have that essinf Z < Hz(essinf Z). If essinf[X + Z] & dom Hz, and if, addition-
ally, liminf Hz(v)=: L < essinf[X + Z], then fix v* € (L,essinf[X + Z]). By assumption, there

v Mess inf[X+Z]
exists some 0* € [v*, essinf[X + Z]) such that Hz(7*) < v* < v*. Thus Hz(v) — v must have a root
on [essinf Z,v*), which is a fixed point for Hz(v). Alternatively, if essinf[X 4+ Z] € dom Hz and if
Hy(essinf[X + Z]) < essinf[X' + Z], then Hz(v)—v again must have a root on [essinf Z, essinf[X + Z]],

which is again a fixed point for Hz(v).

In any case, compactness of V(Z) follows from: boundedness as essinf Z < Hz(v) < esssup Z Vessinf[X + Z]
for any v € dom Hyz; and closedness as the limit of fixed points of a continuous mapping is also a fixed

point. O

D.2 Proof of Theorem 3.3

Proof. We first consider conditions (a) and (b). Consider the derivative of Hz for a fixed external liquidation

Z. Let v € dom Hyz. For simplicity of notation, define R := R(X + Z —v) and R’ := R'(X + Z — v).

Elexp(=R)E[ZE exp(=R)] — E[Z exp(=R)|E[R’ exp(~R)]
Elexp(—R)J? '

Hy(v) =

Recall, by construction, R’ > 0. Therefore, H/,(v) < 0 (the derivative is understood to be the right derivative,

if v is on the boundary of dom Hy) if

— Hy(v)Elexp(—R))> = E[Z exp(—R(2))|E[R'(Z) exp(—R(Z))] — Elexp(~R(Z2))|E[ZR(Z) exp(~R(Z))]

- / Z(w) exp(~R(Z(w)))B(dw) | R(
Q Q

E>
&
Y
M
=8
|
=
/—N\>
€l
=
QU
&€l

—/QeXp(—R(Z(W)))P(dW)/ Z(@)R'(2(@)) exp(—R(Z(@)))P(dw)

Q



- /gz/QeXp(‘R<Z (@) exp(—R(Z(@))) [2(w) — Z(@)] B (Z(@))P(di)P(dw)

= /Q/A( )eXp(—R(Z(w)))exp(—R(Z(a;))) [Z(w) — Z(@)] R (Z(@))P(d@)P(dw)

(a) Z and X + Z are comonotonic because R’ is non-increasing;
(b) R is linear as R’ is a constant.

In either case, we have that %(H z(v) —v) < =1 < 0, which guarantees at most one root exists.

For cases (c) and (d), we note that v = Hz(v) if and only if ©z(v) := E[(Z —v) exp(—R(X +Z —v))] = 0.
Additionally, by Proposition D.1, z — zexp(—R(X + z)) is almost surely non-decreasing or concave (under
(c) and (d) respectively) where it is well-defined. First assume P(Z = essinf Z) = 1, i.e., Z is a constant
a.s.; then trivially the only root is given by V(Z) = essinf Z. Otherwise P(Z > essinf Z) > 0. We will focus

on 20z(v) over feasible v € R, i.e.,

0

%G)Z(U) =-E[1-(Z—-v)R(X+Z—v))exp(—R(X + Z —v))].

(¢) If z — zexp(—R(X+2)) is almost surely non-decreasing, then zR'(X+z) < 1, z € D a.s. This guarantees
(Z —v)R(X +Z —v) <1 as., because (Z(w) — v)R (X (w) + Z(w) —v) <0on {we Q| Z(w) < v}
for any feasible v € R. As Oz(essinf Z) > 0, then P(Z < v*) > 0 for any (feasible) price v* € R such

that ©z(v*) = 0. As a direct consequence %@Z(v) < 0 for any v > v* feasible which contradicts the

existence of a multiplicity of equilibria.

(d) If z — zexp(—R(X +%)) is almost surely concave, then v — O z(v) is concave as well. As Oz (essinf Z) >
0, the minimal (feasible) price v* € R such that ©z(v*) = 0 (if it exists) must satisfy %@Z(v*) < 0.
By concavity, for any v > v* feasible must therefore also satisfy %@Z(v) < 0 which contradicts the

existence of a multiplicity of equilibria.



Proposition D.1. Assume R satisfies Assumption 3.1. If z € Ry — zexp(—R(X + 2)) is non-decreasing

(concave) for fized X € D then this mapping is non-decreasing (concave) over its entire domain D — X.

Proof. Consider the derivative of zexp(—R(X + z)) w.r.t. z, i.e.,

%z exp(—R(X + 2)) = [1 — 2R (X + 2)] exp(—R(X + 2)).

Therefore, %z exp(—R(X + z)) > 0 for any z < 0; and thus monotonicity holds over the entire domain if
it holds for z € Ry ;. Further, by Assumption 3.1, this derivative is strictly decreasing on z < 0; therefore

concavity holds over the entire domain if it holds for z € Ry . O

D.3 Proof of Corollary 3.4

Proof. We have already shown in Theorem 3.2 that under the condition Hy(essinf[X + Z]) < essinf[X + Z],
when essinf[X + Z] € dom Hyz, or iminf, sessinfjx+2) Hz(v) < essinf[X + Z] if otherwise essinf[X + Z] ¢
dom Hz, we have existence of the fixed point. Given any of the conditions (a)-(d) of Theorem 3.3 we
immediately recover uniqueness as well.

We will show that this condition it is also necessary for existence under any of the conditions of Theo-
rem 3.3. Assume first that essinf[X + Z] € dom Hy, and assume that Hz(essinf[X + Z]) > essinf[X + Z].
We will demonstrate that this implies Hz(v) — v (equivalently ©z(v) := E[(Z — v) exp(—R(X + Z — v))])
has no roots on [essinf Z, essinf[X + Z]], and therefore no fixed point for Hz(v) exists. Indeed, if either
(a) or (b) of Theorem 3.3 hold then we have shown in the proof of Theorem 3.3 that H,(v) < 0, and
therefore Hz(v) > essinf[X + Z] > v for v € [essinf Z,essinf[X + Z]]. Similarly, if (c¢) or (d) of Theo-
rem 3.3 hold then we have shown in the proof of Theorem 3.3 that ©z(v) < 0 for every v > V(Z). As
Hyz(essinf[X + Z]) — essinf[X + Z] > 0, ©z(v) > 0 for every v € [essinf Z, essinf[X + Z]].

The proof is similar if essinf[X + Z] ¢ dom Hz. By either (a) or (b) of Theorem 3.3, we have that
H7(v) < 0. Therefore, Hz(v) > liminf, sessinfix+2] Hz(v) > essinf[X + Z] > v for all v < essinf[X + Z],
v € dom Hyz. Similarly and as above, under either (c) or (d) of Theorem 3.3, we have that ©z(v) > 0 for all
v < essinf[X + Z]. In either setting we get that Hz(v) > v for all v < essinf[X + Z], v € dom Hyz, and thus

no fixed point exists.

D.4 Proof of Corollary 3.5

Proof. Recall essinf X € D from Assumption 2.1. To simplify notation throughout this proof, define
Z() == X+ Z—vand Z := Z(essinf[X + Z]) = X + Z — essinf[X + Z]. Fix 0 < € < essinf X/2.



By construction, Efexp(—R(Z(v)))] < oo for v < essinf[X + Z] and E[exp(—R(Z))]I{ZZE}] < 00; therefore
E[exp(—R(Z))]I{OSZQ}} = oo following from the assumption of the corollary. Note that Z —essinf[X + Z] <

£ — X < —cas. on {0 < Z < ¢e}. Therefore,

it Hoo) =ty EZeDCREZG))
v Mess inf[ X+ Z] v, ess inf[X+Z] E[GXP (Z(U»ﬂ
i inf E[(Z — essinf[X + Z])exp( R(Z v)))] + essinf[X + Z]
v Aess inf[ X+ 2] Elexp(—R(Z(v)))

)
E {(Z — essinf[X + Z]) exp

lim inf R(Z( ) (H{0§Z<g} + H{ZZE})}

]

v Mess inf[ X+ Z] [ p(( R(Z )] + essinf[X + 7]
(-r(z
Z

E [(Z — essinf[X + Z]) exp ) H{0<Z<E}]

= lim inf

v Mess inf[X+Z] E [exp( R(Z(v)) }
o E {(Z — essinf[X + Z]) exp —R(Z(v))) Lizs. }
+ liminf - + essinf[X + Z]
v s inf[X+ 7] E[exp (—R(Z()))]
 lminf o (7~ essintlX + Z) ey ( R(Z(U))) oczeo +essinf[X + Z] (D.1)
v Aess inf[ X +2] [exp ( R(Z(v)) }
< liminf - {eXp ( ) 0<7< ] + essinf[X + Z]

v essinf[X+Z] | [exp (—R(Z(U))> H{()§Z<5}:|

—g +essinf[X + Z] < essinf[X + Z].

We recover the equality in (D.1) as

=0

) E [(Z _ essinf[X + Z]) exp (—R(Z(v))) ]1{225}}
v Sess ilrllel[XJrZ] E [exp (*R(ZA(U))H

by assumption of this corollary. O

E Proofs from Section 3.2

Within the proof of Lemma 3.6 and later, we frequently make use of an optimization based representation

for V.

Proposition E.1. Assume R satisfies Assumption 3.1. If any of the conditions of Theorem 3.3 holds, then

the extension V, can equivalently be formulated as:

V(Z) =sup{v > essinf Z | Hz(v) > v, essinf[X + Z] — v € D}



=sup{v > essinf Z | E[(Z — v) exp(—R(X + Z — v))] > 0, essinf[X + Z] — v € D}

for any Z € L*> for any choice of D.

Proof. We wish to note that the two optimization problems are trivially equivalent by construction of Hz(v).
Further, the conditions of Theorem 3.3 imply: v — Hz(v) is monotonic under the first two conditions,
v = E[(Z —v) exp(—R(X + Z — v))] is monotonic under the third condition and monotonic for v > V(2)
(for Z € dom V) in the fourth condition.

Fix Z e L*>*. If Z € domV, i.e., #V(Z) = 1 which we will treat as a scalar value, then we will prove
the result by showing that V(Z) is feasible for this optimization problem and v > V(Z) is not feasible.
As V(Z) > essinf Z by Lemma 3.6(1), feasibility of V(Z) follows from the construction of the equilibrium
pricing problem as essinf[X+Z]—V(Z) € D and Hz(V(Z)) = V(Z). Further, the conditions of Theorem 3.3
imply either Hz(v) < v (for the first two conditions) or E[(Z —v) exp(—R(X +Z —v))] < 0 (for the latter two
conditions) for any v > V(Z). This proves the result. If Z & dom V then, noting that this implies D = R,
Hz(v) > v for every v € [essinf Z, essinf[X + Z]) by Hz(essinf Z) > essinf Z and the nonexistence of an
equilibrium price. Therefore it follows that sup{v > essinfZ | Hz(v) > v, essinf[X + Z] —v € D} =
essinf[X + Z] = V(Z) and the proof is complete. O

E.1 Proof of Lemma 3.6

Proof. 1. First, if Z € domV, then for any v € V(Z) it follows that v = E[Zexp(—R(X + Z —
v))]/Elexp(—R(X + Z —v))] € [essinf Z, esssup Z] by construction; as such this holds for the minimal
price V(Z) as well. Assume, now, Z ¢ domV and, as such, D = R, . Immediately the lower bound
V(Z) = essinf[X + Z] > essinf Z holds. If essinf[X + Z] < esssup Z then the upper bound holds;
assume essinf[X + Z] > esssup Z, then Z € dom V' because Hyz(esssup Z) < esssup Z by construction

and esssup Z being a feasible price for Z which forms a contradiction and the proof is complete.
2. This follows immediately by the law invariance of Hz(v; X) in (Z,X + Z).

3. Note that Z+z € dom V if and only if Z € dom V. Furthermore, note that by construction Hz,(v) =
Hy(v—2z)+z. First, let Z € domV and v € V(Z + z). Therefore v = Hz,(v) = Hz(v—2)+ 2. Take
the ansatz that v — z =: v* € V(Z), then v* = Hz(v*). As this satisfies the fixed point problem and
Z € domV then V(Z + z) C V(Z) + z. The converse relation follows comparably, which immediately
leads to the conclusion that V(Z+2) = V(Z)+z2. If Z ¢ domV then V(Z +2) = essinf[X + Z + 2] =

essinf[X + Z| + 2z =V (Z) + .

4. (a) Consider D = R where dom V' = L> by Theorem 3.2. Fix Z € L> and let N C {Z € L™ | || Z —



Z||oo < 6} for some § > 0 be a closed neighborhood of Z. Define H : N x [essinf Z — 4, esssup Z +
8] — [essinf Z — 4, esssup Z + 4] be defined as the restriction of H, i.e., H(Z,v) := Hz(v) for any
(Z,v) € N x [essinf Z — §,esssup Z + 6]. (Note that Hz(v) € [essinf Z,esssup Z] C [essinf Z —
§,esssup Z + 6] by construction of H and N.) Therefore, by construction, V(Z) = FIX, H(Z,v)
for every Z € N. By [22, Lemma C.1], Z € N — V(Z) is a set-valued upper continuous
mapping (i.e., continuous in the upper Vietoris topology). As a direct consequence of [2, Lemma
17.30], Z € N+ V(Z) = minV(Z) is lower semicontinuous. As this is true for any (closed)
neighborhood around any Z € L, V must be lower semicontinuous on the entire space L.
Furthermore, if any of the conditions of Theorem 3.3 hold, then uniqueness of the equilibrium

price guarantees (scalar) continuity of V' which completes the proof in this setting.

Consider D =R, ;. Fix Z € domV and let N' C {Z € L*™® | | Z — Z||oo < &} for some § > 0 be
a closed neighborhood of Z. Define H : N x [essinf Z — 6, esssup Z + 8] — 2lessinf Z—d.esssup Z+0]

be the set valued mapping with graph
graph H := cl{(Z,v,Hz(v)) | Z € N, v € [essinf Z — §,esssup Z + 6], essinf[X + Z] —v € D}.

(Note that H(Z,v) = {Hz(v)} and Hz(v) € [essinf Z,esssup Z] C [essinf Z —§, esssup Z + 6] for
any Z € N and v € [essinf Z — §, esssup Z + 6] such that essinf[X + Z] — v € D by construction
and continuity of H and using the fact that D is open.) Define Z € N — V(Z) := FIX, H(Z,v);
this is a set-valued upper continuous mapping by [22, Lemma C.1]. As a direct consequence of
[2, Lemma 17.30], Z € N'NdomV + minV(Z) is lower semicontinuous. With the convention
min () = co and noting that N N dom V is closed (by noting that the graph of V is closed due
to upper continuity), we can extend this result insofar as min ‘7() is lower semicontinuous on
N. Importantly, by construction, V(Z) = min{min V(Z), essinf[X + Z]} for any Z € N since
V(Z) =minV(Z) on Z € NNdomV and V(Z) < minV(Z) on Z € N N (dom V)° (with the
convention min () = 0o). Therefore, Z € N+ V(Z) is lower semicontinuous as the minimum of
a lower semicontinuous and a continuous mapping. As this is true for any (closed) neighborhood
around any Z € L™, V must be lower semicontinuous on the entire space L.

It remains to show that V is continuous if any of the conditions of Theorem 3.3 hold. By Propo-
sition E.1 (modified by translation by essinf Z), we can utilize an optimization representation of

V. By the Berge maximum theorem, if

7 D(Z)

= cl{v € [0, essinf[X + Z] — essinf Z) | E[(Z — essinf Z — v) e~ BlX¥FZ-essinf Z=v)) > (1



is a set-valued continuous mapping (in the Vietoris topology) then the result holds because
Z — essinf Z is continuous in the strong topology. By the closed graph theorem (see, e.g.,
[2, Theorem 17.11]) and (almost sure) continuity of z — zexp(—R(X + z)), D is an upper
continuous mapping. Now, let V C R, be open in the subspace topology and define D~[V] :=
{Z € L>® | D(Z)NV # 0}; if D[V] is open then D is lower continuous. Let Z € D~[V] and, in
particular, let v € V such that v € D(Z).
i. If Hz _essinf z(v) — v > 0 then there exists a neighborhood Nz around Z such that Nz C
D~ [V] by continuity of Z +— Hyz_cssint z(v) — v.
il. f Hy_cssinfz(v) — v =0 then:
A. If v > 0 then, by V open, take € > 0 so that v — e € V. If Theorem 3.3(a)-(b) holds
then 9 — Hy_essinfz(0) — 0 is strictly decreasing; if Theorem 3.3(c)-(d) holds then
0 E[(Z —essinf Z — ) exp(—R(X + Z — essinf Z — 0))] is strictly decreasing (in a
neighborhood of v). Therefore for € small, Hy_qssint z(v —€) — (v —¢€) > 0 and the result
follows by continuity as in the prior case.

B. If v = 0 then, by construction, D~[V] = L* and the result follows.

5. First, we wish to note that the condition imposed herein appears also in Theorem 3.3 and, therefore,

the optimization representation of Proposition E.1 holds.

(a) Let Zy > Zy. Note that this implies essinf Z; > essinf Zo and essinf[X + Z1] > essinf[X +
Zy). Tf V(Z3) < essinf Z; then, by the lower bound on V(Z;) proven above, monotonicity
trivially follows. Assume, now, that V(Z3) > essinf Z;. By a straightforward application of
Proposition E.1, V(Z;) > V(Zs) if, and only if,

{v >essinf Z; | E[(Z1 — v) exp(—R(X + Z; — v))] > 0, essinf[X + Z;] — v € D}

D {v>essinf Zy | E[(Z2 — v) exp(—R(X + Z3 — v))] > 0, essinf[X + Z3] — v € D}.

By Proposition E.1 and the assumption that V(Z3) > essinf Z;, these sets are non-empty. By
assumption and Proposition D.1, E[(Z; —v) exp(—R(X 4+ Z1 —v))] > E[(Z2 —v) exp(—R(X + Z2 —
v))] and essinf[X + Z;1] — v > essinf[X + Z5] — v. Therefore the constraints are more restrictive

w.r.t. Zo than Z; and the result follows.

(b) By translativity and monotonicity, for any Z1, Z € L™=, V(Z1) < V(Za+||Z1—Za||o0) = V(Z2)+
|Z1 — Zs||oo. Taking the same inequality but switching Z; and Z, proves |V (Z;) — V(Z3)| <
121 = Zs|oc-
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6. First, we wish to note that the condition imposed herein appears also in Theorem 3.3 and, therefore,

the optimization representation of Proposition E.1 holds.

(a)

V is concave if its hypograph

hypoV := {(Z,v) € L™ xR | E[(Z — v)exp(—=R(X + Z — v))] > 0, essinf[X + Z] — v € D}

is convex. Let (Z1,v1),(Z2,v2) € hypoV and A € [0,1]. Note that essinf[X + A\Z; + (1 —
A)Za) — [Avg + (1 = Nwg] > Alessinf[X + Z1] — v1] + (1 — A)[essinf[X + Z3] — va]. Consider now
(Z,v) = E[(Z—v) exp(—R(X + Z —wv))]. By the concavity assumption on z — zexp(—R(X + z))

(and Proposition D.1),

E[(A(Z1 —v1) + (1 = A\)(Z2 — v2)) exp(—=R(X + A(Z1 —v1) + (1 = A)(Z2 — v2)))]

Z AE[(Zl — ’Ul) exp(—R(X + Z1 — 1]1))] + (1 — /\)E[(Zg — ’UQ) exp(—R(X + Z2 — 1}2))] Z 0

From these properties it is trivial to conclude A(Z1,v1) + (1 — A)(Z2,v2) € hypo V and the proof

is concluded.

V is weak* upper semicontinuous if and only if {Z € L* | V(Z) > v} is weak* closed for
every v € R. By [30, Proposition 5.5.1] and the concavity of V, this is true if and only if
{Z € L>* | V(Z) > v, ||Z||eo < k} is closed in probability for every v € R and k € Ry, . Let
Z, — Z in probability so that Z, € {Z € L>* | V(Z) > v, |Z]loo < k}. First, || Z]|eo < k
trivially. Now we wish to show that V(Z) > v; we will accomplish this separately if D = R and
ifD=Riq.

Let D =R. If v < essinf Z then V(Z) > v trivially by Property (1). Let v > essinf Z and define
Dy :={Z € L™ | | Z||s < k}. By construction, V(Z) > v if and only if E[(Z — v) exp(—R(X +

Z —v))]>0. As Z € Dy, — E[(Z — v) exp(—R(X + Z — v))] is continuous w.r.t. convergence in

probability, the result follows.

Let D =R, ,. If v < essinf Z then V(Z) > v trivially by Property (1). Let v > essinf Z. By
construction, V(Z) > v if and only if E[(Z — v + €) exp(—=R(X + Z — v +¢€))] > 0 for every € > 0
and X + Z —v > 0 a.s. (The “if” statement holds immediately. To prove the “only if” claim:
if X +Z — v > 0 as. then, by continuity, E[(Z — v)exp(—R(X + Z — v))] > 0 as desired; if
P(X 4+ Z —v =0) >0 then v = essinf[X + Z] (with X + Z attaining its essential infimum with
positive probability) and — as a consequence — V(Z) > v only if Z € dom V, i.e., Hz(v—¢) > v—e

for every € > 0.) As such, the existence of an almost surely converging subsequence implies
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X+ Z—v >0 as. It remains to show that E[(Z — v + €)exp(—R(X + Z — v +¢€))] > 0 for
every € > 0. By continuity of R, E[(Z —v+¢€)exp(—R(X + Z —v +¢€))] > 0 for every e > 0. If
there exists some €¢* > 0 such that E[(Z — v + €*) exp(—R(X + Z — v + €*))] = 0 then, by the
concavity assumption, E[(Z — v + €) exp(—R(X + Z — v + €))] < 0 for every ¢ € (0,€*) which

forms a contradiction and the result follows.

E.2 Proof of Corollary 3.7

Proof. To simplify this proof, we will denote X, = B[p|(X — essinf X') + essinf X and Z, = B[p|(Z —
essinf Z) + essinf Z for p € [0,1] throughout. First, we may assume that P(Z # Z,) > 0, p € [0,1).
Otherwise, Z = ¢ for some constant ¢ € R, and V(¢) = V(c) = ¢. Second, note that if R satisfies conditions
(b)-(d) of Theorem 3.3, the uniqueness result holds for the pair &), Z, for any p € [0,1]. If Theorem 3.3(a)
holds for X, Z (i.e., Z and X + Z are comonotonic), then the same holds also for X),, Z,. Third, note that

by our assumption (and to keep R satisfying Assumption 3.1), R(0) = —oo. Finally, note that for 0 < p < 1:

essinf[X), + Z,] = essinf[B[p|(X + Z — essinf X’ — essinf Z) + essinf X' + essinf Z]

= essinf[B[p](X + Z — essinf[X + Z])] + essinf[X 4+ Z] = essinf[X + Z].
Therefore, by Corollary 3.5, Z,, € dom V(+; &X},) for any 0 < p < 1 since

E [exp (—R(X, + Z, — essinf[X, + Z,]))]
= E[exp (—R(B[p](X + Z — essinf[X + Z]) + essinf[X + Z] — essinf[X + Z]))]

= E [exp (—R(B[p](X + Z — essinf[X + Z])))] = oo. (E.1)

To complete this proof, first, for arbitrary Z € L>, we will prove lim, - V(Z,, X,) exists. Then we will
utilize the definitional representation (3.4) of V to prove that V(Z) = V(Z) for any Z € L>°.

We will prove lim, ~; V(Z,; X,) exists by showing that p € (0,1) — V(Z,; X,) is monotonic in p. Fix
p € (0,1) and B[p] independent from Z, X. To simplify notation, let V := V(Z,; X,,) and V' := 8%V(Zp; Xp).
Note that V' is the solution to the fixed point problem V = Hz (V; &,), i.e.,

E[(Z —essinf Z)exp(—R(X + Z — V))]p
Elexp(—R(X + Z — V))|p + exp(—R(essinf[X + Z] — V))(1 — p)

V= + essinf Z.
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Therefore, assuming the derivative V' exists, it must satisfy:

V' (Elexp(—R(X + Z — V))]p + exp(—R(essinf[X + Z] — V))(1 — p))

+(V —essinf Z) (V'E[R (X + Z — V) exp(—~R(X + Z — V))Ip)

+(V —essinf Z) (Elexp(—R(X + Z — V))] — exp(—R(ess inf[X + Z] — V)))

+ (V — essinf Z)V'R/(essinf[X + Z] — V) exp(—R(ess inf[X + Z] — V))(1 — p)

=V'E[(Z —essinf Z)R' (X +Z —V)exp(—R(X + Z —V))]p+ E[(Z — essinf Z) exp(—R(X + Z — V))]

=V (E[(1 —(Z-V)R(X+Z—V))exp(—R(X + Z —V))p

+ (1+ (V — essinf Z) R/ (essinf[X’ + Z] — V)) exp(—R(ess inf[X + Z] — V))(1 — p))

=E[(Z - V) exp(—R(X + Z — V)] + (V — essinf Z) exp(—R(ess inf[X + Z] — V))
= VE[(L - (Z, — V)R/(X, + Z, — V)) exp(~R(X, + Z, — V)]

= E[(Z — essinf Z) exp(—R(X + Z — V)]

+ (V —essinf Z)(exp(—R(essinf[X + Z] = V)) — E[exp(—R(X + Z = V))]).
Therefore V' exists if
E[(1 = (Z, = V)R (X, + Z, = V)) exp(—R(X, + Z, — V)] # 0. (E.2)

Under conditions (c¢)-(d) of Theorem 3.3, (E.2) is satisfied by construction as in the proof of Theorem 3.3 as
this expression is strictly positive. In cases (a)-(b) of Theorem 3.3, we wish to rewrite (E.2). Specifically, by

construction of V',

E[(1—(Z, - V)R/(Xp +Z, = V))exp(—=R(X, + Z, — V)]

= Elexp(—R(X, + Z, — V)]
n E[Z, exp(—R(X, + Z, — V)E[R (X, + Z, — V) exp(—R(X, + Z, — V))]
Elexp(— R(X +7Z,—-V))]
Elexp(—R(X, + Zp — V))|E[Z, R/ (X, V)exp(—R(Xp + Zp — V)]
E[exp(—R(X + Z V))] '

Therefore, as shown in the proof of Theorem 3.3, this expression is strictly positive.

Therefore, V' > 0 if, and only if, E[(Z—essinf Z) exp(—R(X+Z—V))]|+(V —essinf Z)(exp(—R(ess inf[X+
Z]-V))—Elexp(—R(X+Z—-V))]) > 0. Since Z—essinf Z > 0 a.s.: E[(Z—essinf Z) exp(—R(X+Z-V))] > 0
trivially, V' > 0 by Proposition 3.6(1), and exp(—R(essinf[X + Z] = V)) > exp(—R(X + Z — V')) by mono-

tonicity of R. Therefore V' > 0. In particular, this implies that p € (0,1) — V(Z,; &,) is nondecreasing.
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Additionally, V(Z,; &,) < essinf[X + Z] for every p € (0,1) by Corollary 3.4. Therefore, by application of
the monotone convergence theorem, we can guarantee the existence of V(Z ).
We will complete this proof by proving that this limit is equivalent to the form (3.4). Fix Z € L*°. First,

we will show V(Z) = V(Z) if Z € dom V. Second, we will consider Z & dom V.

1. First, fix Z € L* such that V(Z) exists. We will prove V(Z) = lim, ~ V(Z,; X,)) by showing that
p € [0,1] — V(Z,; X,) is continuous. By Corollary 3.5 and choice of Z, V(Z,;X,) exists for any
p € [0,1), as we have shown in (E.1), and V(Z; X) exists by our assumption. By construction of V,
we have that V(Z,; X,) = V(Z,; &,), p € [0,1]. By Lemma 3.6(1), Corollary 3.4 and properties of
the pricing function under D := Ry, V(Z,; &,) € [essinf Z, min{essinf[X + Z],esssup Z}] for any

p € [0,1]. For any probability p € [0,1]:

V(Zy; X,) = FIX {H(p,v)}

_ E[Z exp(—R

o X+ Z —v))|p+essinf Zexp(—R(essinf[X + Z] — v))
H(p7 ’U) T E[exp(—R

X +Z —v)]p+ exp(—R(essinf[X + Z] — v))(1 — p)

Aessinf[X + Z].

—~ |

As H : [0,1] x [essinf Z, min{ess inf[X + Z],esssup Z}] — [essinf Z, min{essinf[X + Z], esssup Z}] is
jointly continuous and V' (Z,; X,) is unique for every p € [0, 1], the fixed point mapping is continuous
(see, e.g. [22, Lemma C.1]), i.e., p € [0,1] — V(Z,;X,) is continuous. The result now follows as

V(Z,X)=1lm V(Z,;X,) =V(Z; X).
/1

2. Fix Z € L™ such that Z ¢ domV. Consider first the case when essinf[X + Z] ¢ dom Hz. Then
we must have that liminf, resinfla47) Hz(v) > essinf[X + Z]. Because R is increasing, it also
follows that E[(Z — essinf[X + Z]) exp(—R(X + Z — v))] > 0, for all essinf Z < v < essinf[X + Z].
Therefore, E[(Z — v)exp(—R(X + Z —v))] > 0, essinf Z < v < essinf[X + Z]. This also follows in
case essinf[X + Z] € dom Hyz (in which case we must have Hyz(essinf[X + Z]) > essinf[X + Z], and
thus E[(Z —v)exp(—=R(X + Z —v))] > 0, essinf Z < v < essinf[X + Z], as otherwise we would reach

a contradiction to Z € dom V). For any € € (O, W), define

De =
(essinf X — €) exp(—R(¢))
(essinf X — e) exp(—R(e)) + E[(Z — essinf[X 4+ Z] + €) exp(—R(X + Z — essinf[X + Z] + ¢€))]

€(0,1)

so that V(Z,_; X,.) = essinf[X + Z] — . Using the fact that V' > 0, V(Z,; X)) > essinf[X + Z] — ¢

for any p > p.. Therefore, p., > p., for €2 < €1, and lim.\ o pe exists and is bounded from above by 1.

14



F

If limes 0 pe = 1, then we conclude:

lim V(Z,; X,) =1lim V(Z,_; X,.) (essinf[X + Z] — €) = essinf[X + Z].
p/1 eNO0

= lim
eN0

Otherwise, if p, := limeope < 1. Then, by the above construction, V(Z,; &,) = essinf[X + Z] for

every p > p, and, as a direct consequence, lim, ~ V(Zp; &) = essinf[X + Z] as well.

Proofs for Section 3.3

F.1 Proof of Lemma 3.9

Proof.

1. First we will show that f%(s) € R for every s € R,. This is trivially true if sq ¢ domV.

Assume sq € domV; f9(s) exists if and only if the denominator (E[(1 — [sq — V (sq)|R'(X + sq —

V(sq))) exp(—R(X + sq — V(sq)))]) is nonzero. In fact, we will demonstrate that this denominator
is strictly positive. Note also that V(sq) = V(sq) by Theorem 3.3. As demonstrated in the proof of

Corollary 3.7, this denominator is strictly positive under any of the conditions of Theorem 3.3.

Second assume s € int{s € R} | s¢ € domV'}. We now wish to consider %V(sq). For simplicity of

notation, let V := V(sq), V' := %V(sq)7 R:=R(X+s¢—V),and R :== R (X +sq—V):

V'Elexp(—R)] — VE[(q — V)R exp(—R)] = E[gexp(—R)] — E[sq(q — V') R exp(—R)]

= V'E[(1 = [sq = V]R') exp(—R)] = E[g(1 — [sq — V]R') exp(—R)]

Elq(1 — [sq = VIR') exp(=R)]

= V= R (s —VIR) exp(—B)]

That is, V' = f4(s) in this case.

Third assume s € int{s € R, | s¢ € dom V}. By construction, V(sq) = essinf[X + sq]. Immediately

this implies %V(sq) = f9(s) in this case by Assumption 3.8.

Finally, by continuity of s+ V(sq) (see Lemma 3.6(4)) and the fact that V' (0) = 0 the result follows.

. The assumption implies, for sq € dom V', (1—[sq—V (sq)|R' (X +sq—V (5q))) exp(—R(X+sq—V (sq))) >

0 a.s. (resp. strictly positive if strict monotonicity). Therefore f%(s) > essinfq for every s € Ry

trivially and if sq € dom V' with P(¢ > essinf ¢) > 0 then f9(s) > essinf q.

3. The result follows trivially by continuity of R’ and V.
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4. By the relation in Property (1), if s — V(sq) is concave then f? is nonincreasing. Therefore the

relation holds by Lemma 3.6(6).

F.2 Proof of Lemma 3.10

Proof. 1. f1(0) = E[gexp(—R(X))]/Elexp(—R(X))] > essinf ¢ and, for s > 0, fi(s) = V(;‘I) > essinf g
by Lemma 3.6(1). Now consider P(q > essinf ¢) > 0:

(a) If sq € dom V then it follows that f7(s) = Eﬁ;’;?(:ﬁ(f_;?:‘y(gﬁ)))ﬁ] > essinfq.

(b) If s¢ & domV then, by Theorem 3.2, it must be that D = R 4 and, in particular, essinf X € R, ;.

Therefore, f4(s) = &2 infix"rsq] = esinfX 4 egsinf g > essinfq.

2. Recall, fi(s) = V(sq)/s for s > 0 and f9(0) = E[gexp(—R(X))]/E[exp(—R(X))]. By continuity of

V (see Lemma 3.6(4)), continuity of the inverse demand function holds so long as lim, o f%(s) =

Elgexp(—R(X))]/E[exp(—R(X)]. We will consider two cases: D =R and D =R .

(a) Let D = R. Then V = V by construction as dom V' = L. Note that, here, f4(s) = V(sq)/s =
E[gexp(—R(X + sq — V(sq)))]/Elexp(—R(X + sq — V(sq)))] for every s > 0. Noting V(0) =0
implies limg\ o f9(s) = E[gexp(—R(X))]/Elexp(—R(X))] and the result is proven.

(b) Let D = R;. First we want to consider a small remark on the domain of V; if Z € L* such
that ||Z — essinf Z||oo < essinf X/2 then Z € domV since Hz(v) < esssup Z < essinf X' /2 +
essinf Z < essinf[X + Z] for any v € [essinf Z, essinf[X + Z]).

If ¢ is deterministic, then by Lemma 3.6(1) V(sq) = sq, and therefore f(s) = q. Other-

wise, if esssupq — essinfq > 0, we have that fi(s) = V(;‘I) — V(S(q—essinfsq))+sessinfq for

s < essinf X' /[2(ess sup ¢ — essinf q)]. As with the prior case, for this small s,

- E[(g — essinf q) exp(—R(X + s[g — essinf g] — V (s[g — essinf g])))]

Jis) = Elexp(—R(X + s|qg — essinf ¢] — V(s[qg — essinf q])))] Fossinfg.

Again, noting V(0) = 0 then trivially limgs o f9(s) = E[gexp(—R(X))]/E[exp(—R(X))].

3. Note that f9(s) = sup{p € Ry | E[(q¢ —essinf ¢ — p) exp(—R(X + s(q —essinf ¢ — p)))] > 0, essinf X —
sp € D} + essinf ¢ by using the optimization representation of V provided in Proposition E.1. By
construction, fi(s) = fe7te(s) 4 essinfq. Therefore, monotonicity holds in general if it is true
for every random variable ¢ such that essinfq = 0. Assume essinfg = 0 and let s > s5. Fix

p € [0, f9(s1)]. Immediately essinf X — s;p < essinf X — syp; by essinf X — s1p € clD the same must
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be true for essinf X — sgp. Therefore monotonicity follows if E[(¢ — p) exp(—R(X + s2(q¢ — p)))] >

E[(¢ — p) exp(—R(X + s1(q¢ — p)))]. This holds because

%E[(q —p)exp(—R(X + s(q — p)))] = —E[(q — p)*R'(X + s(q — p)) exp(—R(X + s(q — p)))] < 0.

G Proofs for Section 4

G.1 Proof of Proposition 4.2

—1 —1 —1
Proof. Recall that a = (Z" 1) . Let o := (ZnH i) = (lJr ! ) < a. Consider now

i=1 a; =1 oy e Uyl

2V (Z;a). We will show that 2V (Z;a) < 0 and therefore, it follows that V(Z;a) < V(Z;a*) for every

Z € L.
K o) = E[exp(—aZ)]%E[Z exp(—aZ)] —E[Z eXp(—aZ)]%E[eXp(—aZ)]
da (@) = Efexp(—aZ)]?
_ Elexp(—aZ)|E[-Z? exp(—aZ)] — E[Z exp(—aZ)|E[—Z exp(—aZ)]
Elexp(-aZ)]? '

Let v = aZ. Then 2V (Z;a) < 0 if, and only if, E[exp(—z)]E[z? exp(—z)] — E[z exp(—z)]* > 0.

Elexp(—)|E[z* exp(—z)] — E[z exp(—z)]*

= Efexp(~a)|Ela” exp(~a)] — Elexp(~3 )z exp(~ )P

> Efexp(~)|E[e? exp(~a)] — Elexp(~3)*[El(x exp(~3))’]
= Elexp(—2)]E[+” exp(—z)] — Elexp(—x)]E[2* exp(~2)] = 0,

where the inequality above follows from the Cauchy-Schwartz inequality. O

G.2 Proof of Proposition 4.5

Proof. 1. By Theorem 3.3, Z € domV if and only if Hz(X + essinf Z) < X + essinf Z provided X +
essinf Z € dom Hz or liminf, »xtessinfz Hz(v) < X + essinf Z if X + essinf Z ¢ dom Hyz. First
assume X + essinf Z € dom Hyz, then Hz(X + essinf Z) < X + essinf Z if and only if E[Z(Z —
essinf Z)7" < (X + essinf Z)E[(Z — essinf Z)~"]. Rearranging terms completes the proof. Now
assume X +essinf Z ¢ dom Hz. This can only happen if E[(Z —essinf Z) "] = co. However, by n < 1,

E[(Z — essinf Z)'7"] < ||Z — essinf Z||15" < oo. Therefore liminf, »xtessinfz Hz(v) = essinf Z <
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X +essinf Z and, thus, Z € dom V. Notably, in this case E[(Z —essinf Z)!~"] < XE[(Z —essinf Z) 7]

as well.
. This follows immediately by Lemma 3.6 as zexp(—R(X + z)) = 2(X + z)~".

. This follows by the same logic as Lemma 3.6 because zexp(—R(X + z)) = z(X + z)™".
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