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Abstract— Automated segmentation of grey matter (GM)
and white matter (WM) in whole slide images (WSIs) is
advantageous to studying distributions of disease pathologies
in brain tissues, further aiding in neuropathologic deep phe-
notyping. Although supervised deep learning methods have
shown good performance, its requirement of a large amount
of labeled data is both laborious and expensive. In the case
for GM/WM segmentation, pathologists need to carefully trace
the delineation in gigapixel images. To minimize the manual
labeling cost, we consider semi-surprised learning (SSL) and
deploy one state-of-the-art SSL method (Fix-Match) on WSIs.
Then we propose a two-stage scheme to further improve the
performance of SSL: the first stage is a self-supervised module
to train an encoder to learn the visual representations of
unlabeled data, subsequently this well-trained encoder will be
an initialization of consistency loss-based SSL in the second
stage. We test our method on Amyloid-β stained histopathology
images and the results outperform Fix-Match with the mean
IoU score at around 2% by using 6,000 labeled tiles while over
10% by using only 600 labeled tiles from 2 WSIs.

Clinical relevance— this work minimizes the required la-
beling efforts by trained personnel. An improved GM/WM
segmentation method could further aid in the study of brain
diseases, such as Alzheimer’s disease.

I. INTRODUCTION
Alzheimer’s disease, the sixth leading cause of death,

resulted in nearly 122,019 deaths in 2018 and the number
of patients is expected to rise to 13.8 million in U.S. by
mid-century [1]. To comprehensively study this disease,
neuropathologists assess histopathology images from brain
tissues to identify extracellular Amyloid-β plaques [2], one
hallmark pathological feature that has different distributions
in grey matter (GM) and white matter (WM) [3]. To de-
termine the distribution of the plaques in the two regions,
it is imperative to segment GM and WM in histopathology
images. Many image processing-based methods have been
proposed for histopathology image segmentation, such as [4],
[5]. Although these methods are computationally efficient,
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the inter and intra-variations in staining and color contrast
could significantly impair the performances of these methods
on a hold-out test set [6].

Recently convolutional neural networks (CNN) have also
gained wide popularity in medical segmentation problems.
Among these methods, FCN [7] and U-Net [6] based archi-
tectures are the predominant choices [8], [9]. In [10], [11],
they developed an automated GM and WM segmentation
pipeline with promising results and compared different deep
learning methods: FCN [7], U-Net [6], ResNet-Patch and
ResNet-NCRF. However, these CNNs show their perfor-
mance through supervised learning, which heavily relies on
a large labeled dataset. For example, a recent study [12]
claimed that it requires more than 30,000 labeled tiles from
gigapixel WSIs to achieve the well-defined performance of
CNNs, which requires labor-intensive labeling [13]. Further-
more, the labeling cost could be much higher when annota-
tions must be done by experts (for example, doctors required
for medical problems) [14]. Therefore, these challenges in
procuring a sufficiently large dataset with annotations limit
the wide-adoption of deep learning-based methods in real-
world medical problems [15].

As such, it is vital to design an algorithm that not only
automates histopathology segmentation but minimizes the
manual labeling cost. Semi-supervised learning (SSL) is
one that train models without requiring heavy annotations
combining a small set of labeled samples with a large
amount of unlabeled samples [16]. Consistency loss-based
SSL methods involve both pseudo labels and data augmenta-
tion, showing their powerful performance on CIFAR-10 [14].
One drawback of these consistency loss-based SSL methods
is that the imperfect class conditional distribution is used to
generate pseudo labels and the over-reliance on pseudo labels
make it difficult to correctly update the class conditional
distribution [17]. For example, a recent study [18] applied
Fix-Match [14] and Mix-Match [16] to a histology dataset
and showed that the performance of these state-of-the-art
SSL methods are limited due to the above drawback.

To deal with the above issue, inspired by [15] who claims
that pre-training a classifier and then transferring it has the
potential to outperform SSL in some settings (using 4000
labeled labeled points from CIFAR-10), we design a novel
two-stage SSL, SIM-FixMatch, to further reduce the labeling
cost when labeled data is too rare for transfer learning. Our
first stage is to employ self-supervised learning [19] for
learning visual representations, which plays a similar role
to pre-training in transfer learning but requires no labels.



After the first stage, a pretrained encoder will be fed into
the standard consistency loss-based SSL models. We employ
our proposed scheme to segment GM and WM in Amyloid-β
stained histopathology images. To our best knowledge, our
work is the first to tackle this task with minimal labeling
cost and our proposed method outperforms Fix-Match [14]
when the amount of labeled data is much reduced (e.g., to
0.1% of total tiles from WSIs).

II. METHODS

A. SIM-FixMatch Pipeline

In this section, we will introduce SIM-FixMatch, a two-
stage SSL approach. In the first stage, we utilize the self-
supervised module to pretrain an encoder that learns the
visual representations from unlabeled set. Then, we use
this encoder as the input into a standard consistency loss-
based SSL to leverage the information from both labeled
and unlabeled set. Fig. 1 shows the overall architecture.

1) First Stage - Self-supervised Pre-training: Sim-
CLR [19] is a simple self-supervised framework for con-
trastive learning of visual representations on unlabeled im-
ages. As shown in Fig. 1, an unlabeled image undergoes two
random data augmentation operations t and t′ and produces
outputs hi and hj after going through the encoder network
f(·). g(·) is a projection head (multilayer perceptron with one
hidden layer) to get zi = g(hi). f(·) and g(·) are trained to
maximize the agreement using the contrastive loss function

li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 I[k 6=i] exp(sim(zi, zk)/τ)
,

where N is the size of a batch (two separate augmentation
operators result in 2N data points), I[k 6=i] is an indicator
function, which is 1 if k 6= i, sim(·, ·) is cosine similarity,
and τ is a temperature parameter.

The eventual goal for this stage is to train the encoder f(·)
for learning visual representations from unlabeled dataset. In
our experiment, we use ResNet [20] for the encoder.

2) Second Stage - Standard Fix-Match: In this study,
we mainly adopt Fix-Match [14], which generates artificial
labels using both pseudo-labeling and consistency regular-
ization. Specifically, the pseudo label is generated based on
a weakly-augmented unlabeled image (weak), which will
be the target to compare with the output of the model on
a strong-augmented version of the same unlabeled image
(strong) as shown in Fig. 1. As pseudo-labels generated here
could be hurt by the imperfect class conditional distribution,
we use the encoder f(·) pretrained on unlabeled data from
the first stage to provide an initialization for Fix-Match. For
the optimizer, instead of using standard SGD reported to
have the best performance in [14], our experiments show
Adam [21] performs better for our WSI dataset. The ”strong”
augmentation operations include RandAugment and CTAug-
ment [14] while the ”weak” includes standard flip-and-shift
augmentation.

Fig. 1. Two-stage Sim-FixMatch pipeline where encoder f in the 2nd
stage is self-trained using the 1st stage.

B. Datasets

1) Overview: In this study, we utilize 30 Whole Slide
Images (WSIs) of the temporal cortex stained with an
Amyloid-β antibody (4GB, recognizing residues 17–24, dilu-
tion 1:1600, BioLegend (formally Covance) catalog number
SIG-39200). These slides were scanned and digitized by
Aperio AT2 at up to 20× magnification, resulting in the
average resolution at nearly 60, 000 × 50, 000 pixels each.
Among these 30 WSIs, 18 slides (from 10 males and 8
females with an average age at death of 84± 7 years) from
deceased patients pathologically diagnosed as Alzheimer’s
disease, and will be referred to as AD cases; the remaining
12 slides lacked a pathological diagnosis of Alzheimer’s
disease, referred as NAD cases. Among these 12 NAD cases,
one had a diagnosis of metastatic carcinoma, and five with
cerebrovascular disease. The Ethnoracial make up of the
cohort was 22 non-Hispanic White (73%) descendants, 5
African Americans (17%), 3 Hispanics (10%). To further
protect data confidentiality, we refer to the AD cases as WSI-
1 to WSI-18 and NAD cases as WSI-19 to WSI-30.

2) Training Data Preparation: As downsampling [13]
may lose medical features, we follow a patch-based method
in [11] to divide WSIs into 256× 256 patches to cope with
the ultra-high resolution. In this paper, 20 WSIs (12 AD cases
and 8 NAD cases) were randomly selected for training and
validation while the remaining 10 WSIs (6 AD cases and 4
NAD cases) were used for hold-out testing and inference.
From the 20 WSIs, we selected one AD case and NAD
case that have highest inter-rater agreement as the source
of labeled patches while we kept the remaining 18 WSIs for
generating unlabeled patches (around 600,000 patches). In
our setting, we first generated 6,000 labeled patches (nearly
1% proportion of all patches) from 2 labeled WSIs, then
we generated 6,00 labeled patches (nearly 0.1%) to further
verify the effectiveness of our proposed method.

III. RESULTS

A. Ablation Study

To verify the effectiveness of our first stage, which is to
learn visual representations on the unlabeled set and provide
an encoder for the second stage, we visualized the training



(a) 600 Labeled Patches (b) 6000 Labeled Patches

Fig. 2. Trends of training and validation during the training process of
Fix-Match with or without the 1st stage.

process of the second stage by using our method or Fix-
Match without the first stage. As shown in Fig. 2, with the
first stage, the model will well-trained after only 3 epochs in
the second stage, while it takes almost 20 epochs without
the first stage. Besides, our proposed method starts from
nearly 50% higher accuracy after the first epoch compared
with original Fix-Match without Stage 1, which shows the
effectiveness of our proposed first stage on learning the
representations via contrastive learning.

B. Quantitative Results

Since our goal is the segmentation of GM and WM, we use
a standard segmentation metric — Intersection over Union
(IoU) to compare the masks from our proposed method and
original Fix-Match. IoU score is designed for measuring the
overlapping degree between two masks (as shown in (1)).

IoU =
Area of Overlap

Area of Union
. (1)

Besides, in order to measure the robustness of our proposed
method, we also select standard deviation (STD) as a second
metric to evalute how consistent and robust of our methods
on different hold-out test slides. We generate the masks of
GM, WM, and background for each WSI and compare them
with the pixel-wise ground truth masks, the results of both
IoU scores and STD are summarized in Table. I. We selected
the most updated version of FCN [7] and U-Net [6] as the
supervised learning baselines for our comparison. Both of
them are trained on only 2 labeled slides (1 AD case + 1
NAD case). Compared to the results reported in [10] that
are trained on 20 labeled slides, their performance drastically
deteriorates with reduced labeled WSIs from 20 to 2. The
mean IoU scores for these two methods are only around 40%.
Fix-Match and our proposed method are trained on labeled
patches (600 and 6000) from the same 2 labeled WSIs while
the unlabeled patches are from other 18 unlabeled WSIs.
For 6000 labeled patches setting, the labeled ratio is only
1%. Fix-Match could achieve 84.52% of mean IoU while
our proposed SIM-FixMatch is around 2% higher and has
better performance in almost all classes, especially in terms
of the WM region in NAD cases (9.08% of improvement).
Besides, our proposed method achieves 2.28% lower in terms
of STD compared to original Fix-Match. To further stress-test
of our proposed method, we consider an extreme situation
by using only 600 labeled patches (the labeled ratio is down
to 0.1%). The improvement of SIM-FixMatch is significant,
almost 40% of increase in terms of the WM region in NAD

TABLE I
PIXEL-WISE IOU SCORES FOR AD, NAD, AND OVERALL TEST SET

2 Labeled WSIs 0.1% Labeled 1% Labeled
FCN U-Net FixMatch Proposed FixMatch Proposed

AD Back 61.04 59.74 93.15 94.10 96.59 96.33
± STD ± 5.44 ± 13.9 ± 2.41 ± 2.21 ± 1.04 ± 1.05

AD GM 46.98 37.16 78.57 84.59 87.12 88.21
± STD ± 2.78 ± 9.93 ± 3.87 ± 3.27 ± 3.46 ± 3.84

AD WM 27.75 7.57 56.66 74.31 73.94 76.33
± STD ± 5.50 ± 6.02 ± 16.4 ± 3.36 ± 6.89 ± 4.77

AD Mean 45.26 35.40 76.13 84.34 85.88 86.95
± STD ± 3.55 ± 7.12 ± 5.89 ± 1.88 ± 3.09 ± 2.72

NAD Back 66.66 78.46 97.07 96.70 97.71 97.63
± STD ± 5.17 ± 18.5 ± 0.31 ± 0.73 ± 0.86 ± 0.88

NAD GM 50.15 59.59 83.97 86.58 90.01 90.93
± STD ± 0.49 ± 13.6 ± 7.76 ± 5.44 ± 4.02 ± 4.12

NAD WM 19.72 3.02 22.72 62.17 59.71 68.79
± STD ± 13.6 ± 3.09 ± 19.0 ± 7.04 ± 9.99 ± 7.22

NAD Mean 45.51 47.02 67.92 81.82 82.47 85.78
± STD ± 3.29 ± 10.9 ± 6.53 ± 2.15 ± 2.59 ± 2.00

Test Back 63.29 68.28 94.72 95.14 97.04 96.85
± STD ± 5.81 ± 17.2 ± 2.71 ± 2.17 ± 1.08 ± 1.15

Test GM 48.25 46.13 80.73 85.39 88.27 89.30
± STD ± 2.66 ± 15.8 ± 6.01 ± 4.10 ± 3.78 ± 3.98

Test WM 24.54 5.75 43.08 69.45 68.25 73.31
± STD ± 9.80 ± 5.37 ± 24.0 ± 7.88 ± 10.7 ± 6.72

Test Mean 45.36 40.05 72.84 83.33 84.52 86.48
± STD ± 3.26 ± 10.2 ± 7.18 ± 2.28 ± 3.26 ± 2.41

AD is the average results on the 6 Alzheimer’s disease cases in hold-out
test set. NAD is the average results on the 4 non-Alzheimer’s disease
cases in test set. Test is the average results on all 10 WSIs.

cases and nearly 10.49% of increase in the mean IoU while
the STD is still close to original Fix-Match. This shows the
advantages of our proposed method in the situation where
labeled data are very rare.

C. Segmentation Visualization

Fig. 3 shows the segmentation visualization of supervised
learning methods (FCN [7], U-Net [6]) trained on the same
2 labeled WSIs and semi-supervised learning methods (
original Fix-Match [14] and our proposed method) trained
using 600 labeled patches from the same two labeled slides
and unlabeled patches from the other 18 WSIs (the labeled
ratio is only 0.1%). WSI-16 is a AD case while WSI-30 is
a NAD case and both of them are from the hold-out test set.
The masks of U-Net (Fig. 3 the 2nd column) indicates that U-
Net is unable to distinguish the WM from the GM; the masks
of FCN (Fig. 3 the 3rd column) have better visualization than
U-Net but there are still many incorrectly labeled regions.
Fix-Match (Fig. 3 the 4th column) is able to find the rough
boundary between GM and WM but there are noisy pixels
within WM, indicating it wrongly predicts some WM pixels
as GM in the WM region. Our proposed method (Fig. 3 the
5th column) could provide more distinguishable boundary
for each region and the masks are the closest to the ground
truth masks.

IV. CONCLUSIONS
In this paper, we investigate the applicability of state-

of-the-art semi-supervised learning in histology images and
propose a two-stage approach to further improve the per-
formance of SSL methods on Amyloid-β stained WSIs at



Ground Truth U-Net FCN Fix-Match Proposed

Fig. 3. Segmentation masks visualization by only using 0.1% labeled patches from one AD case (top) and one NAD case (bottom). Both are from hold-out
test set. Here GM, WM, and background are indicated by cyan, yellow, and black, respectively.

gigapixel level with the minimal labeling efforts. In our two-
stage method, we verify the effectiveness of the first stage
(self-supervised pretraining) by providing an encoder that
has learned adequate visual representations among unlabeled
data. Our proposed method outperformed the original Fix-
Match, especially in the case where labeled tiles are ex-
tremely rare (0.1%). While we showed promising results
by running our experiments using randomly selected two
WSIs, we will evaluate the selection criteria of WSIs more
systematically in our future work.

These techniques have the potential to be applied to other
classification and segmentation problems in medical images
to minimize the expensive labeling cost. In addition, it
takes nearly 3 days for SimCLR in the first stage to train
a good representation. Consequently, our future direction
involves developing a task-based architecture to accelerate
this process.
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