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Abstract

Since the first revelation of proteins functioning as macromolecular machines through their three
dimensional structures, researchers have been intrigued by the marvelous ways the biochemical
processes are carried out by proteins. The aspiration to understand protein structures has fueled
extensive efforts across different scientific disciplines. In recent years, it has been demonstrated
that proteins with new functionality or shapes can be designed via structure-based modeling
methods, and the design strategies have combined all available information — but largely piece-
by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical
interactions. Despite the significant progress, incorporating data-derived approaches through the
use of deep learning methods can be a game changer. In this review, we summarize current
progress, compare the arc of developing the deep learning approaches with the conventional
methods, and describe the motivation and concepts behind current strategies that may lead to
potential future opportunities.

1. Introduction

Proteins with three-dimensional (3D) structures leverage the spatial organization of amino acids
to achieve function. An enzyme active site, for example, may involve a network of hydrogen-
bonded amino acid residues to induce the chemical environment for catalysis. A fundamental
understanding of the highly coordinated sequence-structure—function relationship allows for the
design of proteins. In this process, 3D structural models are usually built to satisfy the functional
constraints derived from design objectives, and accurate energy models are needed to guide the
movements of the atoms in the simulated system [1]. With the advent of deep learning (DL)
algorithms, new approaches are being developed to improve the methodology with data-driven
statistics.
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Figure 1. Comparison of conventional and DL design workflow. The goal of protein
design is to obtain final sequences that would satisfy the design constraints, such as
structural geometry, stability, binding interaction or other functionalities. Structure-based
methods use protein structural features to guide the tasks while sequence-based models
bypass structural modeling to create new sequences based on underlying patterns.

Many DL methods focus on sequence generation, using DL to approximate the mapping of
sequence to function. Their ability to synthesize new sequences is akin to the process of
consensus sequence design, but leverages DL algorithms for a more powerful extraction and
contextualization of the underlying features in sequences. There have been successful
experiments showing great promise to this approach in improving known proteins, since these



types of model are trained or fine tuned on related sequences; however, their generalizability to
designing novel functions, such as new folds, binding interfaces or enzymes, remains to be
studied. This article focuses on structure-based approaches, and we refer readers to the review
by Wu et al. on the discussion of sequence-based methods.

In this review, we direct our discussion to the concepts underlying the structure-based protein
design approaches (as outlined in Figure 1) and discuss the advantages offered by DL over
conventional methods. Several recent reviews have covered technical discussions of generative
modeling, and we will not repeat them here [2,3].

2. Structure generation
2.1 DL tools for structural design rely on their abilities to produce realistic protein
backbones via generative modeling

Protein Cartesian coordinates can be represented as a 1D list of geometric measurements
including distances, angles, and dihedrals along the polymer backbone, or 2D pairwise
matrices for every pair of residues. These descriptors are invariant to translation and rotation
of the molecule, making them ideal input features or output predictions of common DL
architectures. 1D representations allow for adaptation of recurrent neural networks and
transformers often used for sequential data [4,5]; 2D representations allow for adaptation of
computer vision and image classification algorithms, where each pairwise feature can be
thought of as a color channel [6]. For example, semantic segmentation of a 2D distance matrix
— like the process of finding objects in a photo — can readily identify patterns corresponding
to constituent domains even if the domain structure consists of distal regions of the chain
[6]. When each residue is assessed for its likelihood of belonging in the fold of the parent
structure, the coarse grain residue-level probability surprisingly correlates with structure
quality. 2D convolutions across distance matrices allow DL metrics to recognize fold-level
structural features otherwise difficult to describe with conventional heuristics. A wide variety
of featurizations incorporating contact boundaries, geometric transformations or graph
networks of connectivities have been widely used with DL methods to describe proteins as
well [7, 8,9, 10%, 11, 12, 13]. But they have thus far rarely been used for structure generation
because coordinate recovery from these have been difficult, due to potential errors and

degeneracy of the representations.

Generative models could be trained to output proteins through these 1D or 2D representations
but require a second step to recover the cartesian coordinates. A neural network is generative



when it is trained to capture the distribution of the data, and from such models, one could draw
new samples that should be valid according to the features that the network captures. However,
generative models that employee decoders often return globally incoherent representations,
leading to inaccurate reconstruction of 3D coordinates. This is especially true for the 1D
representation, where even small errors in backbone torsion are propagated and magnified,
leading to unrealistic structures.

For valid Euclidean distance matrices, there exists a closed-form solution to convert distance
matrices into 3D structures via eigendecomposition of their Gramian matrix [14]; the top three
components are the coordinates. Although the method is fairly robust to random noise, if the noise
is more systematic (such as one produced by a neural network (NN)), additional protein structure
modeling tools or DL models are then required to disambiguate the predicted distance matrices
[15]. Though there has been some work in generating 2D contact maps or adjacency matrices of
proteins, from which graphs are sampled [16,17], these graphs are typically of insufficient
resolution or degenerate to recover detailed bond geometries without protein priors [18].

Generating 2D distance matrices is analogous to creating deepfake images of faces, and this
parallel allows the development of generative models to perform similar tasks on proteins [19].
With “inpainting” performed on a 2D distance matrix — where portions of an image are masked
and filled by the DL model — the corresponding operation to the 3D protein structure is a loop
modeling problem [19,20]. Generative adversarial network (GAN)-based algorithms [21] are able
to create realistic atom placements with proper closure geometry in structural inpainting. GAN
was also shown to be capable of creating an entire protein chain from scratch, not just loops, with
accurate secondary structures. A VAE-based method further introduced conditional generation of
distance matrices with latent vector bits set to secondary structure elements [22].

To test the ability of NNs to translate 2D distance matrices into coordinates, an NN was
trained to convert the 2D output of a GAN into coordinates and provide a gradient signal to
the latent vector of the generator model [23]. This pipeline was found to provide a means to
incorporate energy-based optimization on generated structures. This was developed
specifically for generative modeling of structures, but NNs developed for protein folding and
dynamics are also related and can create coordinates in an end-to-end fashion [4,24, 25, 26,

27x, 28].

2.2 Methods that directly generate coordinates by NN

To circumvent the need for additional methods to recover atomic coordinates from 2D maps, a
fold-specific generative model, Ig-VAE, was developed to directly generate 3D coordinates with
explicit loss functions to preserve the chemical bond geometry and dihedral angle distributions
[29]. Using immunoglobulin structures as training examples, the model was able to create novel
interpolated samples — in terms of backbone dihedral combinations — unseen in the Protein



Data Bank (PDB). As a design tool, this model is also shown to use a loss function to direct
complementarity-determining region (CDR) conformations via latent space optimization to satisfy
design objectives. This is an example that leverages the use of DL to account for backbone
flexibility. Compared to conventional fragment sampling-based methods, the DL-based method
offers efficiency and continuous (but data-biased) coverage of the conformational space.

3. Sequence design given a 3D protein backbone

3.1 The inverse folding problem

The task to design a sequence for a given 3D structure is often called the inverse folding problem.
Classical protein design seeks to maximize P(sequence|structure) by minimizing the energy of
the target structure by Markov chain Monte Carlo (MCMC)-based search over side chain identities
and conformations. The energy function is based on a combination of physical and statistical
potentials. Examples of knowledge-based (statistical) potentials include approximations to
account for bulk solvent effects and rotameric probability [30], among others. They are important
because some of the statistical terms supplement the accuracy of molecular mechanics force
fields and other terms enhance calculation speed. Most importantly, they can potentially be
learned from data.

Some limitations of the conventional design methods include the lack of sequence diversity and
the limited capability to design multi-body interactions. The designed sequences tend to converge
on the input backbone; while convergence is desired from an optimization perspective, it
inherently limits the output, and does not account for the flexibility and dynamics of protein
structures. As for multibody interactions, which are important for protein function (e.g., a catalytic
triad), conventionally specialized search algorithms are required to design specific interacting
networks [31,32]. DL methods can potentially address these limitations.

3.2 Deep learning-based sequence design algorithms

The key to finding solutions to the sequence design problem is to maximize the joint probability
of amino acids under a fixed backbone, and the joint probability is usually optimized through
sampling, due to the discrete nature of amino acid combinations and the rugged energy
landscape. Without DL, dTERMen [33], uses sequence-structure compatibility to guide designs,
showing that a statistical framework can be used to redesign proteins. Most DL algorithms for
design have been developed to generate sequence probability profiles to facilitate the introduction
of mutations by the top ranking probability amino acids (top-k), but not explicitly tasked for full
combinatorial protein redesign [34, 35, 36, 37, 38, 39]. To address the combinatorial problem, the
fixed backbone sequence design problem can be posed as a constraint satisfaction problem
(CSP) and can be approached with a deep learning solver the same way one would solve a
sudoku puzzle [40]. Alternatively, MCMC can directly search for sequence solutions under a data-
derived metric [41]. Lastly, an autoregressive model can also produce full sequences by
successively predicting amino acid identities in order [42].

Few examples, however, have provided experimental evidence. For the few that did, only one
included structural studies [41], and the others showed wavelength scans of circular dichroism



[40], which measures the presence of secondary structure, or fluorescence resulted from a library
based on single mutations proposed by the DL model [36]. These are structure-oriented design
methods aiming at discovery of gain-of-function mutations given a starting backbone, and they
should not be confused with sequence-only methods, such as UniRep [43]. Nonetheless, even
for DL models linking sequence to function without explicitly predicting the structures in the
process, the incorporation of structural information during training appears to also improve model
performance in ranking sequences [44].

Different algorithms represent the chemical environment as graphs [40,42], 2D matrices [38,45],
strings of torsional angles [37,39] or voxelized volumes [34,35,41,46], and these representations
define the granularity of information during training and ultimately the qualities of the sequence
profiles produced by the models. The majority of the design methods suggest mutations or
produce sequences, but one also predicts side-chain conformations during design to render
complete 3D structural models [41], which allows this method to directly compare NN produced
structural models with the experimentally determined crystal structures to validate the results.
Nonetheless, it should be noted that the generalizability and reliability of these methods have not
been extensively validated, as only a few sequences produced under any of the models have
been experimentally tested.

Using DL approaches to introduce sequences to a protein structure can potentially introduce more
variable sequences than conventional molecular mechanics modeling methods, as the chemical
surrounding is treated as conditional priors and not as hard sphere geometries. The sequences
produced from data-derived amino acid probability profiles may also be in better agreement with
the diversity revealed through evolution. Defining sequence solutions through the various
representations may also allow the DL models to better capture multibody interactions, and this
was indeed observed in the designs that yielded crystal structures. The model that accurately
predicts side-chain conformations without using explicit energy terms also highlights the
remarkable capability of DL in integrating high-dimensional data and deducing probable solutions.

4. In silico design by optimization of the folding landscape

4.1 Classic approaches: De novo design validation by folding simulations

The objective of de novo protein design is to design a sequence that would fold into a desired
conformation. This is complicated by the fact that not only does the sequence need to satisfy the
thermodynamic requirement (the designed sequence has a distinct global optima at desired
conformation) but also a kinetic one (the global minimum energy conformation is accessible via
folding pathways) [47]. We refer to the energetics of the conformational spaces as the
“‘conformational landscape,” and the folding processes as the “folding kinetics” or the kinetic
accessibility. Thus, an ideal design procedure would involve designing a sequence for a particular
fixed conformation, while simultaneously performing a “folding simulation” to assess if (a) the
protein could fold into the desired conformation and (b) there are no alternative conformations
with similar or lower free energy.



All-atom folding simulation from an extended chain via molecular dynamics (MD) is
computationally prohibitive. This is partly remediated by the development of coarse-grained
and/or accelerated MD [26,48,49] or fast folding approximations via fragment
insertion/recombination [50,51]. However, the latter, referred to as “forward folding” does not
address the “folding kinetics” question, due to unrealistic random fragment moves, but it could
say something about the “conformational landscape”. The method begins by predicting local
conformations (fragments) for every stretch of three or nine amino acids; these fragments are
then recombined using an MCMC procedure to sample a global conformation according to an
energy function. The method is based on the observation that any given stretch of amino acids is
likely to adopt limited conformations [52]. But there are still a few problems with this approach: (a)
thousands of independent MCMC trajectories are required to assess the conformational
landscape, (b) full domain predictions from fragments are generally limited to less than 150
residues in length, and (c) it does not work well for proteins with long or nonideal loops/turns. DL
can help remove the need to do these expensive folding simulations in one of two ways. It can
implicitly address the problem by learning fold-determining sequence constraints, or explicitly by
modeling the conformational landscape distribution.

4.2 Implicit modeling of conformational landscape by learning fold-determining sequence
constraints

DL provides the means of increasing the receptive field, allowing the parameterization of higher-
order potentials or statistics. These can be used to capture nonpairwise decomposable physical
potentials, such as hydrogen bonding networks, but also to learn implicit fold-determining
sequence constraints. The latter can be general constraints such as the hydrophobic distribution
of amino acids (hydrophobic amino acids in the core, and hydrophilic on the surface) or more
specific constraints such as those that determine loop conformation and define turns [53]. These
we consider to be “implicit” as they bias the sequence away from alternative conformations,
without explicitly considering the alternative conformations during design. Most of the methods
described under the heading “Deep learning-based sequence design algorithms” above are of
this type. However, with an increased receptive field, the models fall into danger of fold
memorization (learning fold specific sequence constrained), preventing them from generalizing to
de novo design of novel folds.

4.3 Explicit modeling of conformational landscape by inverting prediction model

Models trained for structure prediction given input sequence could be inverted and used for
protein design [54]. Examples include TrRosetta, which was recently inverted to sample new
protein structures and sequences [55], new sequences given backbone [45], and finally,
combination of two for partial hallucination [56]. What makes this approach especially unique is
that it models the P(structure|sequence), providing for essentially an instantaneous forward-
folding check during design (Figure 2). However, care must be taken to avoid potential adversarial
sequences that only embed a few key fold-determining sequence-motifs while ignoring the rest of
the sequence, as seen in image generation [57,58].
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Figure 2. Explicit modeling of conformational landscape. (a) Conventional protein
design methods optimize the energy for a given conformation and thus might inadvertently
design a sequence for an alternative off-target minimum. (b) Structure prediction models
inverted for protein design see the entire conformational landscape; thus, when optimized
for a particular conformation will automatically perform “negative design” to all other
conformations.

5. Outlook

DL has revolutionized protein structure prediction [59,66,67], but one question remains: is it
simply a better exercise in bioinformatics, or are the models learning physics? Could this
breakthrough translate into better de novo protein design, or are we stuck sampling protein
sequences and structures within the distribution of what nature has done [1]? To illustrate why it
might be important to learn the physics (or rules/policies), we provide maze design as an
analogy to protein design (Figure 3).

An easy maze with no dead-ending paths could be solved by a series of fixed transformations
using an unrolled neural network, such as a ResNet or transformer with skip connections [60].
For a difficult maze, a tree search method coupled with reinforcement learning may be required
[61]. Alternatively, a difficult puzzle could be rendered easy by building a consensus of similar
mazes known to have identical solutions. This is analogous to structure prediction methods that
surprisingly work well when provided a single sequence of a de novo designed protein (easy
maze), yet often require a multiple-sequence alignment for a natural protein (difficult maze) [62].
As one extends to more difficult puzzles (as is required for functional or multistate design, where
ideality could be sacrificed for function), methods employing reinforcement learning are likely
needed to validate the designed sequences.



If the end goal is maze generation (sequences), does one even need to consider or understand
paths (structure)? One could imagine training a language model on a collection of mazes, to guide
sampling of new mazes. Though in theory these could work, in the context of protein sequence
generation, no examples of de novo design have been demonstrated. That being said, the
language models trained on all of UniProt have been shown to learn secondary and tertiary
structures in their attention maps [63, 64, 65], suggesting that the models may understand
structure implicity. However, it is not yet clear if these are merely learning a library of summary
statistics for large protein families or if they will be able to generalize into de novo space.

Conclusion

With the advent of DL methods, an implicit integration of protein sequence and structure
information via neural network models has become possible, and this has led to major
breakthroughs in structure prediction. The next frontier is likely structure-based protein design.
Leveraging DL to advance structural design methods — even in this early stage — has
demonstrated capabilities beyond conventional approaches. Regardless of whether using DL as
a black-box engineering tool or as algorithms to understand underlying patterns, these advanced
algorithms point to a very exciting future in protein engineering and the impactful applications that
designed proteins may bring.
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Figure 3. Protein design and structure prediction problems are analogous to
designing and solving a maze. Where protein-folding can be thought of as finding the
shortest path through a maze, and protein design, as constructing a maze, where the
desired path is the best solution. Structure design is path generation, as one can imagine
that the bending and turning of the paths represents the backbone torsional angles;
sequence design is to define a maze configuration to guide such paths. Folding
simulations are path enumerations through the maze. The kinetics define the difficulty of
the puzzle, and the thermodynamics the uniqueness or the number of states/solutions.
For example, a multistate protein is a maze with multiple solutions, and a disordered
protein is a maze with no structure and thus an infinite number of possible paths. Finally,
one can exploit the fact that similar mazes have similar solutions to render an easier maze,
and potentially use the conservation/covariation of maze walls to generate more mazes.
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