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Abstract 
The binding and catalytic functions of proteins are generally mediated by a small number of 

functional residues held in place by the overall protein structure.  We describe deep learning 

approaches for scaffolding such functional sites without needing to pre-specify the fold or 

secondary structure of the scaffold.  The first approach,  “constrained hallucination”,  optimizes 

sequences such that their predicted structures contain the desired functional site. The second 

approach, “inpainting”,  starts from the functional site and fills in additional sequence and 

structure to create a viable protein scaffold in a single forward pass through a specifically 

trained RosettaFold network. We use the methods to design candidate immunogens, receptor 

traps, metalloproteins, enzymes, and protein-binding proteins, and validate the designs using a 

combination of in silico and experimental tests. 

Main text 
The biochemical functions of proteins are often carried out by a subset of residues which 

constitute a functional site--for example, an enzyme active site or a protein or small molecule 

binding site--and hence the design of proteins with new functions can be divided into two steps. 
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The first step is to identify functional site geometries and amino acid identities which produce 

the desired activity--for enzymes this can be done using quantum chemistry calculations (1–3) 

and for protein binders by fragment docking calculations (4, 5); alternatively, functional sites can 

be extracted from a native protein having the desired activity (6, 7). In this paper, we focus on 

the second step: given a functional site description from any source, design an amino acid 

sequence which folds up to a three dimensional structure containing the site. Previous methods 

can scaffold functional sites made up of one or two contiguous chain segments (6–10), but with 

the exception of helical bundles (8) these do not extend readily to more complex sites 

composed of three or more chain segments, and the generated backbones are not guaranteed 

to be designable (encodable by some amino acid sequence). 

An ideal method for functional de novo protein design would 1) embed the functional site with 

minimal distortion in a designable scaffold protein; 2) be applicable to arbitrary site geometries, 

searching over all possible scaffold topologies and secondary structure compositions for those 

optimal for harboring the specified site, and 3) jointly generate backbone structure and amino 

acid sequence. We previously demonstrated that the trRosetta structure-prediction neural 

network (11) can be used to generate new proteins by maximizing the trRosetta output 

probability that a sequence folds to some (unspecified) three dimensional structure during 

Monte Carlo sampling in sequence space (12). We refer to this process as “hallucination” as it 

produces solutions that the network considers ideal proteins but do not correspond to any 

known natural protein; crystal and NMR structures confirm that the hallucinated sequences fold 

to the hallucinated structures (12). trRosetta can also be used to design sequences that fold into 

a target backbone structure by carrying out sequence optimization using a structure 

recapitulation loss function that rewards similarity of the predicted structure to the target 

structure (13). Given this ability to design both sequence and structure, we reasoned that 

trRosetta could be adapted to tackle the functional site scaffolding problem.  
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Partially constrained hallucination using a multi-objective loss function 

To extend existing trRosetta-based design methods to scaffold functional sites (Fig. 1A), we 

optimized amino acid sequences for folding to a structure containing the desired functional site 

using a composite loss function that combines the previously used hallucination loss with a motif 

reconstruction loss over the functional motif (rather than the entire structure as in (13) (Fig. 1B; 

Methods). While we succeeded in generating structures with segments closely recapitulating 

functional sites, Rosetta structure predictions suggested that the sequences poorly encoded the 

structures (Fig. S1A), and hence we used Rosetta design calculations to generate more-optimal 

sequences (14). Several designs targeting PD-L1 generated by constrained hallucination with 

binding motifs derived from PD-1 (Table S1) (15), followed by Rosetta design, were found to 

have binding affinities in the mid-nanomolar range (Fig. S1B-E). While this experimental 

validation is encouraging, the requirement for sequence design using Rosetta is inconsistent 

with the aim of jointly designing sequence and structure. 

Following the development of RosettaFold (RF) (16) we found that it performed better than 

trRosetta in guiding protein design by functional-site-constrained hallucination (Fig. S1G), likely 

reflecting the better overall modeling of protein sequence-structure relationships (16). 

Constrained hallucination with RosettaFold has the further advantages that because 3D 

coordinates are explicitly modeled (trRosetta only generates residue-residue distances and 

orientations), site recapitulation can be assessed at the coordinate level, and additional 

problem-specific loss terms can be implemented in coordinate space that assess interactions 

with a target (Fig. S2; Materials and Methods).   

Generalized functional motif scaffolding by missing information recovery 

While powerful and general, the constrained hallucination approach is compute-intensive, as a 

forward and backward pass through the network is required for each gradient descent step 

during sequence optimization. In the training of recent versions of RosettaFold, a subset of 
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positions in the input multiple sequence alignment (MSA) are masked and the network is trained 

to recover this missing sequence information in addition to predicting structure. This ability to 

recover both sequence and structural information provides a second solution to the functional 

site scaffolding problem: given a functional site description, a forward pass through the network 

can be used to complete, or “inpaint”, both protein sequence and structure in a missing/masked 

region of protein (Fig. 1C; Methods). Here, the design challenge is formulated as an information 

recovery problem, analogous to the completion of a sentence given its first few words using 

language models (17) or completion of corrupted images using inpainting (18). A wide variety of 

protein structure prediction and design challenges can be similarly formulated as missing 

information recovery problems (Fig. 1D). Although protein inpainting has been explored before 

(19, 20), here we approach it using the power of a pre-trained structure-prediction network. 

We began from a RosettaFold model trained for structure prediction (16) and carried out further 

training on fixed-backbone sequence design in addition to the standard fixed-sequence 

structure prediction task (Fig. S3; Materials and Methods). This model, denoted RFimplicit, was 

able to recover small, contiguous regions missing both sequence and structure (Fig. S3). 

Encouraged by this result, we trained a model explicitly on inpainting segments with missing 

sequence and structure given the surrounding protein context, in addition to sequence design 

and structure prediction tasks (Fig. S4A; Materials and Methods; Algorithm S1). The resulting 

model was able to inpaint missing regions with high fidelity (Fig. 1E, S4) and performed well at 

sequence design (32% native sequence recovery during training, Fig. S4C) and structure 

prediction (Fig. S4C). We call this network RFjoint and use it to generate all inpainted designs 

below except otherwise noted. 

To evaluate in silico the quality of designs generated by our methods, we use the AlphaFold 

(AF) protein structure prediction network (21) which has high accuracy on de novo designed 

proteins (22) (Fig. S7A). RF and AF have different architectures and were trained 
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independently, and hence AF predictions can be regarded as a partially orthogonal in silico test 

of whether RF-designed sequences fold into the intended structures, analogous to traditional ab 

initio folding (13, 24). We used AF to compare the ability of hallucination and inpainting to 

rebuild missing protein regions (Fig. 1F-G, S5). Inpainting yielded solutions with more accurately 

predicted fixed regions  (“AF-RMSD”; Fig. 1G, S5B) and structures overall more confidently 

predicted from their amino acid sequences (“AF pLDDT”, Fig. 1F, S5A), and required only 1-10 

seconds per design on an NVIDIA RTX2080 GPU (hallucination requires 5-20 minutes per 

design). However, hallucination gave better results when the missing region was large (Fig. S5) 

and generated greater structural diversity (Fig. S8, see below). 

In the following sections, we highlight the power of the constrained hallucination and inpainting 

methods by designing proteins containing a wide range of functional motifs (Fig. 2-5, Table S1). 

For almost all problems, we obtained designs that are closely recapitulated by AF with overall 

and motif (functional site) RMSD typically <2 Å and <1 Å respectively, with high model 

confidence (pLDDT > 80; Table S2);  such recapitulation suggests the designed sequences 

encode the designed structures (although it should be noted that AF has limited ability to predict 

protein stability (25) or mutational effects (26, 27)).  More critically, we assessed the activities of 

the designs experimentally (with the exception of those labeled “in silico” in Fig. 2-5). 

Designing immunogen candidates and receptor traps 

The goal of immunogen design is to scaffold a native epitope recognized by a neutralizing 

antibody as accurately as possible, in order to elicit antibodies binding the native protein upon 

immunization. Additional interactions with the antibody are undesirable because the goal is to 

elicit antibodies recognizing only the original antigen, and hence for hallucination we add a 

repulsive loss term to penalize interactions with the antibody beyond those present in the 

scaffolded epitope (Fig. S2; Supplementary Text).  As a test case, we focused on respiratory 

syncytial virus F protein (RSV-F), which has several antigenic epitopes for which structures with 
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neutralizing antibodies have been determined (7, 9, 10). We scaffolded RSV-F site II, a 24-

residue helix-loop-helix motif that had previously been grafted successfully onto a 3-helix bundle 

(7), as well as RSV-F site V, a 19-residue helix-loop-strand motif that has not yet been 

scaffolded successfully (28). We were able to hallucinate designs recapitulating both epitopes to 

sub-angstrom backbone RMSD in a variety of folds  (Fig. 2A, Fig. S9; structures and sequences 

for all designs below are in Data S1-2 and differ considerably from native proteins (Table S2); 

RF and AF models are in Fig. S9, S11, S17; only the AF model is shown in the main figures). 

Inpainting also generated scaffolds for RSV-F site V, with comparable quality but less diversity 

than the hallucinations (Fig. S8).  

We expressed 37 hallucinated RSV-F site V scaffolds with high AF pLDDT and low motif AF-

RMSD in E. coli and found that three bound the neutralizing antibody hRSV90 (28) with Kd’s of 

0.9-1.3 uM (Fig. 2C, S11; Methods; Supplementary Text). The Kd for the RSVF trimer is lower 

(23nM), but the interface is larger encompassing both sites II and V (28). Mutation of either of 

two key epitope residues reduced or abolished binding of the designs, suggesting that they bind 

the target through the scaffolded motif (Fig. 2C, S11A), and circular dichroism spectra were 

consistent with the designed scaffold structures for designs (Fig. 2D) and their point mutants 

(Fig. S11C). Four of the inpainted designs bound hRSV90 by yeast display, but were poorly 

expressed in E. coli (Fig. S11C-E). Overall, the designs provide a diverse set of promising 

starting points for further RSV-F epitope-based vaccine development. 

We next applied hallucination to the in silico design of receptor traps which neutralize viruses by 

mimicking their natural binding targets and thus are inherently robust against mutational escape. 

We again augmented the loss function with a penalty on interactions beyond those in the native 

receptor to avoid opportunities for viral escape. As a test case, we scaffolded the helix of human 

angiotensin-converting enzyme 2 (hACE2) interacting with the receptor-binding domain (RBD) 

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (29). The 
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hallucinated hACE2 mimetics have a diverse set of helical topologies, and AF2 structure 

predictions recapitulate the binding interface with sub-Å accuracy (Fig. 2B, S9C). 

Designing metal-coordinating proteins 

Di-iron sites are important in biological systems for iron storage (30) and can mediate catalysis 

(31, 32). We were able to recapitulate the di-iron site from E. coli bacterioferritin, composed of 

four parallel helical segments, to sub-angstrom AF-RMSD using both inpainting (Fig. 3A-E, S13) 

and hallucination (Fig. S12; the latter were not tested due to buried polar residues; 

Supplementary Text). The designs had diverse helix connectivities and low structural similarity 

to the parent (Fig. S13B, S12; TM-score 0.55-0.71 to 1BCF_A). We chose 96 inpainted designs 

to test experimentally, and found that 76 had soluble expression, at least 8 (Supplementary 

Text) had a spectroscopic shift indicative of Co2+-binding (a proxy for iron binding) (33, 34), and 

3 (dife_inp_1-3, Fig. 3B, S13E) had CD spectra consistent with the designed fold (Fig. 3D, 

S13F) and were stabilized by metal binding (Fig. 3E, S13G). Mutation of the metal binding 

residues abolished binding (Fig. 3B, S13E), and titration analysis of dife_inp_1 suggested that 

both metal binding sites were successfully scaffolded (Fig. 3C). 

We next scaffolded the calcium-binding EF-hand motif (35), a 12-residue loop flanked by 

helices. Both constrained hallucination and inpainting readily generated scaffolds recapitulating 

either 1 or 2 EF-hand motifs to within 1.0 Å AF-RMSD of the native motif (Fig. 3F, Fig S14A,B, 

table S2). We chose 20 hallucinations and 55 inpaints to display on yeast and screen for 

calcium binding using tryptophan-enhanced terbium fluorescence (36). 6 hallucinations and 4 

inpaintings had fluorescence consistent with ion binding (Fig. S14A, Materials and Methods; one 

of these proteins (EFhand_inp_2) was designed using RFimplicit (Supplementary Text)). The top 

hit from yeast, the inpainted EFhand_inp_1, was purified from E. coli as a monomer (Fig. 

S14C), had the expected CD spectrum (Fig. 3G) and a clear terbium binding signal (Fig. 3H) 

which was eliminated by CaCl2 competition (Fig. 3H). 
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In silico design of enzyme active sites 

We next sought to scaffold the active site of carbonic anhydrase II, which catalyzes the 

interconversion of carbon dioxide and bicarbonate and has recently been of interest for carbon 

sequestration (32-34). The active site consists of 3 Zn2+-coordinating histidines on two strands 

and a threonine on a loop which orients the CO2 (Table S1). Despite the complexity of the 

irregular, discontinuous, 3-segment site, hallucination was able to generate designs with sub-

angstrom motif AF-RMSDs with correct His placement for Zn2+ coordination (Fig. 4A, S9D); 

these are less than 100 residues, significantly smaller than the 261 residue native protein. 

We next scaffolded the catalytic sidechains of  Δ5-3-ketosteroid isomerase (Table S1) involved 

in steroid hormone biosynthesis (37).  We attempted to use gradient descent by 

backpropagation through AF (Materials and Methods; a sidechain-predicting version of RF was 

not available at the time) but found it difficult to obtain accurate side-chain placement; the 

landscape may be too rugged with the high resolution sidechain-based loss (Supplementary 

Text). Better results were obtained with a two-stage approach using first both AF and trRosetta 

(to smoothen the loss landscape) and a description of the active site at the backbone level, 

followed by a second all-atom AF-only stage once the overall backbone was roughly in place. 

This yielded multiple plausible solutions with nearly exact matches to the catalytic sidechain 

geometry (Fig. 4C-D, S9E). In silico validation with a held-out AF model (Materials and 

Methods) recapitulated the designed active sites. The use of stage-specific loss functions 

illustrates the ready customizability of the hallucination approach to specific design challenges 

without network retraining. 

Designing protein-binding proteins 

To design binders to the cancer checkpoint protein PD-L1, we scaffolded 2 discontiguous 

segments of the interfacial beta-sheet from a high-affinity mutant of PD-1 (Fig 5A; Methods) 

(15). Inpainting yielded designs with not only good AF predictions of the binder monomer (AF 
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pLDDT > 80, motif AF-RMSD < 1.4 Å) but also of the complex between the binder and PD-L1, 

with an inter-chain predicted alignment error (inter-PAE) of <10 Å (Materials and Methods). 

Unlike our initial efforts with trRosetta hallucination (Fig. S1, Supplementary Text), it was not 

necessary to redesign the inpainted sequences using Rosetta. Of 31 designs selected for 

experimental testing, one design, pdl1_inp_1, bound PD-L1 with a KD of 326 nM (Fig. 5B-C), 

worse than HAC PD-1 (KD = 110 pM) (38) but better than WT PD-1 (KD = 3.9 μM) (38). 

pdl1_inp_1 expressed as a monomer (Fig. S15E), was thermostable, and had a CD spectrum 

consistent with that of a mixed alpha-beta fold (Fig. S15F). Unlike native PD-1, which has a 

immunoglobulin family beta-sandwich fold, pdl1_inp_1 has 2 helices buttressing the interfacial 

beta sheet, as well as an additional 5th inpainted strand extending the interface (Fig. S15 A,B). 

The closest PDB hit had a TM-score of 0.61 and the closest BLAST NR hit had a sequence 

identity of 25.4%. 

We next used inpainting to design ligands engaging multiple receptor binding sites.  The nerve 

growth factor receptor TrkA dimerizes upon ligand binding (39), and starting from the TrkA-NGF 

crystal structure we positioned helical segments derived from two copies of a previously 

designed TrkA binding protein (4) and used hallucination followed by inpainting (Materials and 

Methods) to scaffold them on a single chain (Fig. 5D-E). A design predicted to be well-

structured (AF pLDDT > 80) and interact with TrkA (inter-PAE < 10 Å) was expressed, purified 

and bound TrkA as assessed by biolayer interferometry (BLI) (Fig. 5F). A double mutant that 

knocked out both designed binding sites abolished TrkA binding, while single mutants knocking 

out either one of the binding sites maintained partial binding (Fig. 5F; Fig. S16), suggesting that 

the protein binds two molecules of TrkA as designed. 

RosettaFold is able to predict the structures of protein complexes (40), and we hypothesized 

that it could generate additional binding interactions between hallucinated or inpainted binder 

and a target beyond the scaffolded motif.  We used a “two-chain” hallucination protocol (Fig. 
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S17, Methods) to design binders to the Mdm2 oncogene by scaffolding the native N-terminal 

helix of the tumor suppressor protein p53 and obtained diverse designs with AF inter-PAE < 7 

Å, target-aligned binder RMSD < 5 Å, binder pLDDT > 85, and SAP score < 35 (Fig. S17D-E); 3 

examples are shown in Fig. 5G. 

The above approaches to protein-binder design require starting from a previously known binding 

motif, but hallucination should in principle be able to generate de novo interfaces as well. To test 

this, we used two-chain hallucination to optimize 12-residue peptides for binding to 12 targets 

starting from random sequences, minimizing an inter-chain entropy loss (Fig. S17H). Most of the 

hallucinated peptides bound at native protein interaction sites (Fig S18A); the remainder bound 

in hydrophobic grooves resembling protein binding sites (Fig. S18B). We used the same 

procedure to generate 55-80-residue binders against TrkA and PDL-1 without starting motif 

information, and obtained designs predicted by AF to complex with the target, at the native 

ligand binding site, with a target-aligned binder RMSD < 5 Å and an inter-PAE < 10 Å (Fig. 

S17F,G). 

Unlike classical protein design pipelines, which treat backbone generation and sequence design 

as two separate problems,  our methods simultaneously generate both sequence and structure, 

taking advantage of the ability of RosettaFold to reason over and jointly optimize both data 

types.  This results in excellent performance in both generating protein backbones with a 

geometry capable of hosting a desired site and sequences which strongly encode these 

backbones. Our hallucinated and inpainted backbones accommodate all of the tested functional 

sites much more accurately than any naturally occurring protein in the PDB or AF predictions 

database (Fig. S20; Table S3; Supplementary Text) (41), and our designed structures are 

predicted more confidently from their (single) sequences than most native proteins with known 

crystal structures, and on par with structurally validated de novo designed proteins (Fig. S7A-B).   

The hallucination and inpainting approaches  are complementary:  hallucination can generate 

https://www.zotero.org/google-docs/?aX4fys
https://www.zotero.org/google-docs/?aX4fys
https://www.zotero.org/google-docs/?aX4fys
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diverse scaffolds for minimalist functional sites but is computationally expensive because it 

requires a forward and backward pass through the neural network to calculate gradients for 

each optimization step (Methods), while inpainting usually requires larger input motifs but is 

much less compute intensive, and outperforms the hallucination method when more starting 

information is provided. This difference in performance can be understood by considering the 

manifold in sequence-structure space corresponding to folded proteins. The inpainting approach 

can be viewed as projecting an incomplete input sequence-structure pair onto the subset of the 

manifold of folded proteins (as represented by RosettaFold) containing the functional site--if 

insufficient starting information is provided, this projection is not well determined, but with 

sufficient information, it produces protein-like solutions, updating sequence and structure 

information simultaneously. The loss function used in the hallucination approach is constructed 

with the goal that minima lie in the protein manifold, but there will likely not be a perfect 

correspondence, and hence stochastic optimization of the loss function in sequence space may 

not produce solutions that are as protein-like as those from the inpainting approach. 

Conclusion 

The approaches for scaffolding functional sites presented here require no inputs other than the 

structure and sequence of the desired functional site, and unlike previous methods, do not 

require specifying the secondary structure or topology of the scaffold and can simultaneously 

generate both sequence and structure. Despite a recent surge of interest in using machine 

learning to design protein sequences (42–49), the design of protein structure is relatively 

underexplored, likely due to the difficulty of efficiently representing and learning structure (50). 

Generative adversarial networks (GANs) and variational autoencoders (VAEs) have been used 

to generate protein backbones for specific fold families (51–53), whereas our approach 

leverages the training of RosettaFold on the entire PDB to generate an almost unlimited 

diversity of new structures and enable the scaffolding of any desired constellation of functional 

https://www.zotero.org/google-docs/?uiI89S
https://www.zotero.org/google-docs/?uiI89S
https://www.zotero.org/google-docs/?uiI89S
https://www.zotero.org/google-docs/?uiI89S
https://www.zotero.org/google-docs/?uiI89S
https://www.zotero.org/google-docs/?a0yzZL
https://www.zotero.org/google-docs/?a0yzZL
https://www.zotero.org/google-docs/?a0yzZL
https://www.zotero.org/google-docs/?XOUrvz
https://www.zotero.org/google-docs/?XOUrvz
https://www.zotero.org/google-docs/?XOUrvz
https://www.zotero.org/google-docs/?XOUrvz
https://www.zotero.org/google-docs/?XOUrvz
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residues.  Our “activation maximization” hallucination approach extends related work in this area 

(54–56) by leveraging its key strength, the ability to use arbitrary loss functions tailored to 

specific problems and design any length sequence without retraining. The ability of our 

inpainting approach to expand from a given functional site to generate a coherent sequence-

structure pair should find wide application in protein design because of its speed and generality. 

The two approaches individually, and the combination of the two, should increase in power as 

more-accurate protein structure, interface, and small molecule binding prediction networks are 

developed. 

Funding 
We thank Microsoft for support and for providing Azure computing resources. This work was 

supported with funds provided by the Audacious Project at the Institute for Protein Design (DB, 

AS); a Microsoft gift (MB, JD); Eric and Wendy Schmidt by recommendation of the Schmidt 

Futures (DJ); the DARPA Synergistic Discovery and Design project HR001117S0003  contract 

FA8750-17-C-0219 (DB, WY); the DARPA Harnessing Enzymatic Activity for Lifesaving 

Remedies project HR001120S0052 contract HR0011-21-2-0012  (NB);  the Washington 

Research Foundation (JW); the Open Philanthropy Project Improving Protein Design Fund (DB, 

DT); Amgen (SL); the Human Frontier Science Program Cross Disciplinary Fellowship 

(LT000395/2020-C) and EMBO Non-Stipendiary Fellowship (ALTF 1047-2019) (LFM); the 

EMBO Fellowship (ALTF 191-2021) (TS); European Molecular Biology Organization Grant 

(ALTF 139-2018) (BIMW); the “la Caixa” Foundation (ME); the National Institute of Allergy and 

Infectious Diseases (NIAID) Federal Contract HHSN272201700059C (IA), NIH grant 

DP5OD026389 (SO); the National Science Foundation MCB 2032259 (SO); the Howard 

Hughes Medical Institute (DB, RR, KMC), the National Institute on Aging grant 5U19AG065156 

(DB, JLW, DRH, ME); the National Cancer Institute grant R01CA240339 (DB, JHC); Swiss 

National Science Foundation (KMC, BC); Swiss National Center of Competence for Molecular 

https://www.zotero.org/google-docs/?YCXf3K
https://www.zotero.org/google-docs/?YCXf3K
https://www.zotero.org/google-docs/?YCXf3K
https://www.zotero.org/google-docs/?YCXf3K
https://www.zotero.org/google-docs/?YCXf3K


13 

Systems Engineering (KMC, BC); Swiss National Center of Competence in Chemical Biology 

(KMC, BC); European Research Council grant 716058 (KMC, BC). 

Author contributions 

Designed the research: JW, SL, DJ, DT, JLW, SO, DB 

Developed the motif-constrained hallucination method: JW, DT, SL, IA, SO 

Contributed code and ideas for hallucination: MB, JD 

Generated designs using hallucination: JW, SL, DT, SO 

Developed the inpainting method: DJ, JLW 

Contributed code and ideas for inpainting: MB, JW, SL, DT 

Generated designs using inpainting: DJ, JLW, AS 

Analyzed data: JW, SL, DJ, DT, JLW, ME 

Trained neural networks: DJ, JLW, MB 

Performed RSV-F experiments: KMC, RR, LFM, JW 

Performed Di-iron experiments: JLW, DJ 

Performed EF-hand experiments: AS, JLW 

Performed PD-L1 experiments: WY, DRH, JW, SL, DJ 

Contributed reagents and technical expertise: TS, JHC, LFM, NB, BIMW, BC, AM, FD 

Wrote the manuscript: JW, DJ, JLW, SL, DT, SO, DB 

Competing interests 
Authors declare that they have no competing interests. 

Supplementary materials 
- Materials and Methods 
- Supplementary Text 
- Figures S1 - S21 
- Tables S1 - S3 
- Algorithm S1 
- Data S1 - S2 
- References 59-87 



14 

  



15 

Figures 



16 

 



17 

Figure 1. Methods for protein function design 

(A) Applications of functional-site scaffolding. (B-C) Design methods. (B) Constrained 
hallucination. At each iteration, a sequence is passed to the trRosetta or RosettaFold neural 
network, which predicts 3D coordinates and residue-residue distances and orientations (Fig. S2) 
which are scored by a loss function that rewards certainty of the predicted structure along with 
motif recapitulation and other task-specific functions. (C) Missing information recovery 
(“Inpainting”). Partial sequence and/or structural information is input into a modified RosettaFold 
network (termed RFjoint), and complete sequence and structure are output. (D) Protein design 
challenges formulated as missing information recovery problems. (E) Joint RosettaFold (RFjoint) 
can simultaneously recover structure and sequence of a masked region of protein. 2KL8 was 
fed into RFjoint with a continuous (length 30) window of sequence and structure masked out, with 
the network tasked with predicting the missing region of protein. Outputs (inpainted region in 
gray) closely resemble the original protein (2KL8, left) and are confidently predicted by 
AlphaFold (pLDDT/Motif RMSD of models shown: 91.6/0.91, 92.0/0.69, 90.4/0.82 respectively). 
(F-G) Motif scaffolding benchmarking data comparing RFjoint with constrained hallucination. A set 
of 28 de novo designed proteins, published since RosettaFold was trained, were used. For each 
protein, 20 random masks of length 30 were generated, and RFjoint and hallucination were 
tasked with filling in the missing sequence and structure to “scaffold” the unmasked “Motif”. For 
this mask length, RFjoint typically modestly outperforms hallucination, both in terms of the RMSD 
of the unmasked protein (the “motif”) to the original structure (F), and in AlphaFold confidence 
(pLDDT in the replaced region) (G). Circles: Average of 20 outputs for each of the 
benchmarking proteins. Triangle: 2KL8. Colors in all panels: native functional motif (orange); 
hallucinated/inpainted scaffold (gray); constrained motif (purple); binding partner (blue); non-
masked region (green); masked region (light gray, dotted lines). 
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Figure 2. Design of epitope scaffolds and receptor traps.  

(A) Design of proteins scaffolding immunogenic epitopes on RSV protein F (site II: PDB 3IXT 
chain P residues 254-277; site V: 5TPN chain A residues 163-181). Comparisons of the RF 
hallucinated models to AF2 structure predictions from the design sequence are in Fig. S9; here 
because of space constraints we show only the AF2 model; the two are very close in all cases. 
Here and in the following figures, we assess the extent of success in designing sequences 
which fold to structures harboring the desired motif through two metrics computed on the AF2 
predictions: prediction confidence (AF pLDDT), and the accuracy of recapitulation of the original 
scaffolded motif (motif RMSD AF versus native). For RSV-F designs, these metrics are 
rsvf_ii_141 (85.0, 0.53 Å), rsvf_ii_158 (82.9, 0.51 Å), rsvf_ii_171 (88.4, 0.69 Å); rsvfv_hal_1 (82, 
0.7 Å); rsvfv_hal_2 (88, 0.64 Å); rsvfv_hal_3 (86, 0.65 Å). (B) Design of COVID-19 receptor trap 
based on ACE2 interface helix (6VW1 chain A residues 24-42). Design metrics: ace2_76 (89.1, 
0.55 Å); ace2_1157 (80.4, 0.47 Å); ace2_1007 (83.3, 0.57 Å). Colors: native protein scaffold 
(light yellow); native functional motif (orange); hallucinated scaffold (gray); hallucinated motif 
(purple); binding partner (blue). See Table S2 for additional metrics on each design. (C) 
Normalized maximum SPR signal (response units) of purified RSV-F epitope scaffolds and point 
mutants at various concentrations of hRSV90 antibody, with sigmoid fits. RSV-F refers to 
purified trimeric native F protein. KD values for each design are shown in legend. (D) Mean 
residue ellipticity (MRE) versus wavelength, from CD spectroscopy, for the 3 RSV-F site V 
hallucinations with binding activity. 
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Figure 3. Design of metal binding  

(A) Di-iron binding site from E. coli cytochrome b1 (1BCF chain A residues 18-25, 27-54, 94-97, 
123-130). Colors: native protein scaffold (light yellow); native functional motif (orange); 
hallucinated scaffold (gray); hallucinated motif (purple); bound metal (blue). Active site residues 
shown in boxes for di-iron and EF-hand respectively. (B) Absorbance spectra showing of 
dife_inp_1 (or mutant) in the presence (or not) of an 8-fold molar excess of Co2+. Note the peaks 
at 520 nm, 555 nm and 600 nm, consistent with Co2+ binding to the desired scaffolded motif 
(33). The mutant design was the same sequence but with the 6 coordinating residues 
(sidechains shown in (A)) mutated to alanine [E16A, E55A, H58A, E89A, H92A, E115A]). 
Protein concentration was 200 μM. (C) Titration analysis of Co2+ against the design (protein 
concentration = 200 μM). Quantification of the absorbance at 550 nm, using a predicted 
extinction coefficient of 155 for Co2+ binding the motif (33), is consistent with both binding sites 
being recapitulated in the dife_inp_1 design. (D) CD spectra of design in the presence and 
absence of Co2+. Both spectra are consistent with the predicted helical structure. (E) CD melt 
curve in the presence and absence of Co2+. Note that the coordination of Co2+ in the protein 
core significantly stabilizes dife_inp_1 (protein concentration in CD experiments = 6.7 μM, Co2+ 
concentration =  53.3 μM). (F) AF2 prediction of inpainted design EFhand_inp_1 scaffolding the 
double EF-hand motif with input motif residues in purple, input non-motif residues in green, and 
overlaid with the native motif from 1PRW (orange). (G) Tryptophan-enhanced terbium 
fluorescence spectra of EFhand_inp_1 matches known spectra (57) and suggests the design 
can bind terbium. (H) CD spectra of EFhand_inp_1 incubated with (4X protein concentration) 
and without CaCl2 suggest stabilization of the protein upon binding calcium. Design metrics (AF 
pLDDT, motif RMSD AF versus native): dife_inp_1 (92 /0.65 Å), EFhand_inp1 (84, 0.7 Å).  

  

https://www.zotero.org/google-docs/?WS3UL5
https://www.zotero.org/google-docs/?WS3UL5
https://www.zotero.org/google-docs/?WS3UL5
https://www.zotero.org/google-docs/?2bmjUS
https://www.zotero.org/google-docs/?2bmjUS
https://www.zotero.org/google-docs/?2bmjUS
https://www.zotero.org/google-docs/?FWGnm2
https://www.zotero.org/google-docs/?FWGnm2
https://www.zotero.org/google-docs/?FWGnm2
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Figure 4. In silico design of enzyme active sites. 

(A-B) Hallucinations using backbone description of site using RF. (C-D) Hallucination using 
sidechain description of site using AF2 augmented with trRosetta (Materials and Methods). (A) 
Carbonic anhydrase II active site (5YUI chain A residues 62-65, 93-97, 118-120). (B) Δ5-3-
ketosteroid Isomerase active site (1QJG chain A residues 14, 38, 99). Colors: native protein 
scaffold (light yellow); native functional motif (orange); hallucinated scaffold (gray); hallucinated 
motif (purple); bound metal (blue). Active site residues shown for boxed designs in panel B and 
for carbonic anhydrase II, and Δ5-3-Ketosteroid Isomerase respectively. Design metrics (AF 
pLDDT, motif RMSD AF versus native): hcA_1 (73, 1.04 Å), hcA_2 (71, 0.62 Å), KSI_1 (84, 0.30 
Å Cb), KSI_2 (72, 0.53 Å Cb) 



22 

 
Figure 5. Design of protein-binding proteins.  
Designs containing target-binding interfaces built around native-complex-derived binding motifs. 
Targets are in blue, native scaffolds in yellow or pink, native motifs in orange, designed 
scaffolds in gray and designed motifs in purple. (A) Crystal structure of high-affinity consensus 
(HAC) PD-1 in complex with PD-L1. (B) Inpainted PD-L1 binder superimposed on PD-1 
interface motif. (C) Max BLI binding signal versus PD-L1 concentration. (D) Crystal structure of 
previously designed TrkA minibinder in complex with TrkA, superimposed on TrkA receptor 
dimer. (E) Hallucinated bivalent TrkA binder. Protein topologies of (D-E) are shown to the right. 
(F) Max BLI binding signal versus TrkA concentration, showing that both binding sites bind 
TrkA. (G) Hallucinated Mdm2 binder designs superimposed on native p53 helix in complex with 
Mdm2 (see also Fig. S17D-E). New binding interactions (hallucinated residues within 5 Å of the 
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target) are in green. Inset: Overlay of mdm2_hal_1 and native p53 helix showing key sidechains 
for  binding. 
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Materials and Methods 

Sequence representation 

For structure prediction, the input to trRosetta and RosettaFold is a tensor 𝑋𝑋 ∈

ℝ𝑁𝑁×𝐿𝐿×𝐴𝐴representing a one-hot-encoded multiple sequence alignment (MSA), where L is the 

sequence length, N is the number of aligned sequences, and 𝐴𝐴 = 21 is the alphabet size (20 

amino acids plus gap character, although gaps are never used during design). For design with 

RosettaFold, which was used for most of the designs in this paper, we optimized a single 

sequence (𝑁𝑁 = 1) and applied a 20% dropout, which is implemented at a variety of layers within 

the network. The first set of PD-1 mimetics (Fig. S1) were hallucinated with trRosetta and 

optimized a 1000-sequence MSA (𝑁𝑁 = 1000) with 0-20% dropout on input 2D features (14). 

Designing an MSA improves motif accuracy with trRosetta (13) but is not necessary when using 

RosettaFold. When residues on the functional motif are known to form desirable interactions 

with the binding partner or a ligand, we constrained these positions to stay the same (native) 

amino acid during optimization. Conversely, we also included the ability to avoid certain amino 

acids at all positions (e.g. cysteine). Both capabilities are implemented as adding or subtracting 

a large number (108) to the sequence logits at the beginning of optimization. 

Loss function 

We optimize a loss function 

ℒ = 𝑤𝑤𝑀𝑀ℒ𝑀𝑀 + 𝑤𝑤𝐻𝐻ℒ𝐻𝐻 + ℒ𝑎𝑎𝑎𝑎𝑎𝑎   

consisting of the motif loss ℒ𝑀𝑀, which scores the accuracy of the functional site in the design, 

and a hallucination loss ℒ𝐻𝐻, which scores how strongly the sequence encodes a backbone 

geometry (Fig. 1B), as well as optional auxiliary losses ℒ𝑎𝑎𝑎𝑎𝑎𝑎 for specific tasks (Fig. S2; 

Supplementary Text). For all the designs in this paper we used 𝑤𝑤𝑀𝑀 = 𝑤𝑤𝐻𝐻 = 1. 

https://www.zotero.org/google-docs/?dQrWbb
https://www.zotero.org/google-docs/?dQrWbb
https://www.zotero.org/google-docs/?dQrWbb
https://www.zotero.org/google-docs/?2Qilt3
https://www.zotero.org/google-docs/?2Qilt3
https://www.zotero.org/google-docs/?2Qilt3
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For a protein of length L, the motif loss is defined as a negative cross-entropy between 

reference (one-hot-encoded) and predicted residue-residue geometric feature distributions 𝑝𝑝(𝑦𝑦): 

ℒ𝑀𝑀 =  − � ����𝑚𝑚𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑔𝑔 𝑝𝑝(𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖0 )
𝐿𝐿
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𝐿𝐿

𝑖𝑖=1

��
 

𝑦𝑦∈{𝑑𝑑,⍵,𝜃𝜃,𝜑𝜑,𝜃𝜃𝑇𝑇,𝜑𝜑𝑇𝑇}

 

where  
 

𝑚𝑚𝑖𝑖𝑖𝑖 =  �1,
0,  otherwise

�𝐶𝐶𝛽𝛽𝑖𝑖−𝐶𝐶𝛽𝛽𝑗𝑗� ≤ 20 and 𝑖𝑖,𝑗𝑗∈motif� 

𝑦𝑦 ∈ {𝑑𝑑,⍵,𝜃𝜃,𝜑𝜑,𝜃𝜃𝑇𝑇 ,𝜑𝜑𝑇𝑇} represents residue-residue distances and orientation angles and 𝑦𝑦0 is the 

value of the distance or angle in the reference motif. The features 𝑑𝑑 and ⍵ are symmetric while 

the angles 𝜃𝜃,𝜑𝜑 are asymmetric, so 𝜃𝜃𝑇𝑇 and 𝜑𝜑𝑇𝑇 are included to match the double-counting of 𝑑𝑑 

and ⍵ across the diagonal. This cross-entropy is averaged over all residue pairs in the motif, 

represented as a binary mask m. We restrict this loss to residue pairs within 20 Å because 

RosettaFold and trRosetta do not make quantitative predictions beyond this distance. In some 

cases we supplemented this cross-entropy motif loss with a backbone coordinate RMSD loss 

(Supplementary Text). 

The hallucination loss is defined as the entropy of renormalized network predictions: 

ℒ𝐻𝐻 =  � ����(1 −𝑚𝑚𝑖𝑖𝑖𝑖)𝐻𝐻�𝑝̂𝑝(𝑦𝑦𝑖𝑖𝑖𝑖)�
𝐿𝐿

𝑗𝑗≠𝑖𝑖

𝐿𝐿

𝑖𝑖=1

� /���(1 −𝑚𝑚𝑖𝑖𝑖𝑖)
𝐿𝐿

𝑗𝑗≠𝑖𝑖

𝐿𝐿

𝑖𝑖=1

��
 

𝑦𝑦∈{𝑑𝑑,⍵,𝜃𝜃,𝜑𝜑,𝜃𝜃𝑇𝑇,𝜑𝜑𝑇𝑇}

 

where the entropy is defined as 

𝐻𝐻(𝑝𝑝) = �𝑝𝑝𝑘𝑘 log𝑝𝑝𝑘𝑘

 

𝑘𝑘

 

and 𝑝̂𝑝(𝑦𝑦) = exp(𝛽𝛽 log 𝑝𝑝(𝑦𝑦)) /∑ exp(𝛽𝛽 log𝑝𝑝(𝑦𝑦)). The last of the K distance or orientation bins (>20 

Å pairwise distance or “no contact”) is excluded to avoid the trivial minimum-entropy solution of 
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an extended chain where most residues are not in contact. Empirically, we found that 

performing this renormalization with 𝛽𝛽 = 10, and only using bins up to 5 Å for the pairwise 

distance distributions 𝑝𝑝(𝑑𝑑), gave more realistic structures. In an earlier version of our method 

we defined the hallucination loss using a KL divergence rather than entropy, which gave similar 

results (Fig. S2D; Supplementary Text) (14). 

Optimization methods 

In early tests, we used an MCMC method based on our previous work on unconstrained 

hallucination (58). Starting from a random sequence, single mutations were proposed and the 

loss function evaluated. The mutation was either accepted or rejected according to the standard 

Metropolis criterion. Acceptance temperature was 0.002 and annealed by exponential decay 

with a 500-step half-life; design quality was not sensitive to these parameters. For proteins 

around 120 residues long, we found this approach converged in about 30,000 steps and took 

about 90 minutes on Nvidia GeForce RTX2080 GPUs, which we used for all hallucination runs. 

Although slow, this approach has the advantage that mutations can include insertions and 

deletions, which is useful when redesigning loops. 

For most design problems, we used a gradient-descent method based on our previous fixed 

backbone sequence design study (13). Starting with randomly initialized input logits 

𝑋𝑋~𝑁𝑁𝑁𝑁×𝐿𝐿×𝐴𝐴(0, 0.01), we apply a softmax followed by an argmax operation to obtain a one-hot-

encoding 𝑋𝑋𝑜𝑜ℎ. To backpropagate the gradient of the loss 𝜵𝜵ℒ through the discrete one-hot 

sequence to the continuous logits, we employed a reparameterization trick(13, 59) where 

gradients were passed through the one-hot sequence as if it had the softmax values of the logits 

(60, 61). For a protein of length L, on optimization step t, we update the input logits with 

normalized gradients and a constant learning rate 𝛼𝛼: 
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𝑋𝑋(𝑡𝑡+1) ← 𝑋𝑋(𝑡𝑡)  − 𝛼𝛼 √𝐿𝐿  
𝛁𝛁ℒ
‖𝛁𝛁ℒ‖

 

Typically we used 𝛼𝛼 = 0.05, although results are reasonable for any 0.01 < 𝛼𝛼 < 0.2 (Fig. S19A). 

We also tested decaying the learning rate over time, but this did not outperform constant 

learning rate, as seen previously for fixed backbone hallucination (13). With trRosetta, we found 

that sampling from the softmax distribution over sequence logits (59) yielded higher DAN-lDDT 

and lower motif RMSD than simply taking the most probable sequence (argmax), but argmax 

was better when using RosettaFold. 

Gradient-based optimization with trRosetta converged in 200 steps for a 120-residue protein, 

taking approximately 5 minutes on our GPUs, while RosettaFold took 400 steps or 10 minutes 

per design. A hybrid procedure of gradient descent followed by MCMC yielded improved 

designs but required much more GPU time, while MCMC-only or MCMC followed by gradient 

descent yielded inferior results (Fig. S19B-C). In practice, we found that the most efficient use of 

GPU time was to first generate designs using gradient descent to sample a diverse structural 

space (and explore hyperparameters such as motif placements and sequence length), then use 

the best resulting designs to “seed” many short MCMC trajectories (300-1000 steps) to obtain 

further-refined and diversified final designs. 

Motif placement 

At the beginning of optimization, each discontinuous segment of the motif is mapped to a 

random block of residue positions on the designed sequence. The motif loss is applied to these 

“constrained” regions, while the hallucination loss is applied to the remaining residue positions. 

The positions corresponding to the motif stay fixed during optimization. For each new problem, 

we start by specifying a range for the total protein length L and generate many designs with 

randomly sampled L from the range and randomly placed motif segments. We then identify the 

values of L and inter-segment gap lengths that yielded the best designs and run followup design 
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trajectories with these parameters in order to deeply sample productive regions of the search 

space. In early testing, we developed algorithms which adaptively place motifs during 

optimization either by minimizing motif loss over all possible placements or performing a greedy 

search (Supplementary Text). While potentially useful for certain problems, these were not 

consistently better than the simpler fixed-placement strategy (Fig. S19D-E). 

Scaffolding enzyme active sites using AlphaFold 

To design de novo scaffolds for the active site of ∆5-3-ketosteroid isomerase (KSI) (37), we 

used AF in a two-stage method, the first stage focusing on backbone generation and the second 

on sidechain geometry optimization. In stage 1, we perform 200 steps of gradient descent to 

optimize a real-valued tensor 𝑋𝑋 ∈ ℝ1×𝐿𝐿×𝐴𝐴 representing sequence logits. The argmax of the 

softmax of the logits is used as input to AF and trRosetta. To allow backpropagation through the 

argmax function, we use the gradient straight-through trick as described previously (13). 

Gradients are obtained from both AF and trRosetta, weighted equally, and used to update the 

logits X. Losses used for AF are the predicted LDDT and aligned error (for hallucination) and Cb 

distogram CCE (for motif recapitulation, defined similarly as the CCE used with RosettaFold 

above), sidechain FAPE (21) and RMSD (root-mean-squared-deviation); losses for trRosetta 

are KL divergence (Supplementary Text) and CCE, but excluding the theta dihedral. Stage 1 is 

run using the ADAM optimizer (62) with a learning rate of 5e-3. The gradients are normalized by 

the norm at each iteration. We found that if we do not use trRosetta as part of the loss, it is very 

unstable and the motif RMSD rarely goes below 2 Å (see further discussion in Supplementary 

Text). In stage 2, the sequence from stage 1 is subjected to 400 steps of semi-greedy 

optimization using AF: at each step a random position is mutated, if the loss decreases, the 

mutation is accepted, if not, up to 20 independent random mutations are attempted. If none of 

the 20 mutations decreased loss, the mutation with best loss is accepted. For the first stage, 

400 independent designs were generated. Each design had 3 random indices between 0 and 99 
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selected to define the positions of the active site. The top 4 designs were selected for stage 2. 

The loss for stage 2 is the weighted sum of predicted LDDT and aligned error, and sidechain 

FAPE and RMSD. The confidence loss was scaled by 0.01 and sidechain loss by 1.0. To 

attempt to avoid false local optima in a particular set of AF weights, during stage 2 we evaluated 

the loss using a randomly chosen one of 4 AF models (model_1_ptm, model_2_ptm, 

model_3_ptm, and model_5_ptm) (sets of weights) on each step. This is similar to averaging 

the 4 models (54, 55) but is more compute efficient. We withhold model_4_ptm for validation -- 

the designs shown in the figures come from this model. 

Protein binder “two-chain” hallucination 

Expanding interfaces around native binding motif 

To design Mdm2 binders, we first used standard hallucination to scaffold the p53 helix, with the 

repulsive loss on. These designs are roughly shape-complementary to Mdm2 but do not make 

biochemical interactions. We then refined a small number of high-scoring designs by 100-1000 

steps of MCMC with RosettaFold predicting the entire binder/target complex but only optimizing 

the binder sequence. We predicted complexes by concatenating the binder and target 

sequences with a 200 amino-acid gap between them in the residue index input to RosettaFold 

(16). RosettaFold has limited accuracy predicting native protein structures and complexes from 

single sequences. To ensure that the target is accurately predicted (as this is a prerequisite for 

accurately hallucinating interactions to it) we input the structure of the target plus the stub as 

homology templates to RosettaFold (Fig. S17A). As expected, this usually yielded predictions of 

the target (and target-stub relative position) extremely close to the crystal structure. During 2-

chain refinement, we applied the motif loss to preserve the structure of the binder and its 

relative position to the target and the hallucination loss to the rest of the binder to encourage 

formation of interactions with the target; no repulsive or attractive losses were used. For this 
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task, gradient descent did not give good results, and MCMC refinement of a previously 

hallucinated monomer was the most efficient and robust approach. 

Free hallucination 

To generate the 12-residue stubs against various targets, as well as binder designs against 

TrkA and PD-L1 without using a pre-specified motif, we initialized a completely random 

sequence of a pre-defined length (12 AAs or 55-80 AAs) and concatenated it to the sequence of 

the target (Fig. S17A). On each iteration we predicted the structure of the complex using 

template input for the target, as described above. To promote binder-target contacts, we used 

an “inter-chain” entropy loss which was computed only on the inter-chain residue pairs and 

given a weight of 1 to 5 (Supplementary Text); the usual (intra-chain) entropy loss (with weight 

1) was also used, to promote hallucination of a well-packed binder monomer. The entropy 

calculation was modified in some cases to improve handling of the “no-contact” bin (see “Leaky 

entropy” in Supplementary Text). For the stub design problem (Fig. S18), we ran 600 steps of 

MCMC (gradient descent was not possible for these targets due to GPU memory limitations); for 

TrkA and PD-L1 (Fig. S17F-G), we ran 200-400 gradient descent steps followed by 200-300 

MCMC steps. Multiple rounds of filtering and design refinement/diversification were performed 

(Supplementary Text). 

Training RosettaFold to jointly model sequence and structure (RFjoint) 

Standard RosettaFold (16) (RF) has been trained on structure prediction (sequence inputs, 

structure outputs) using homolog templates (structure input). In the newer versions, we mask a 

portion of the input MSA and apply a loss to predictions of the masked amino acids (sequence 

output) to encourage the network to extract more meaning from the MSA (21, 63). RFjoint was 

fine tuned from a pre-trained RosettaFold model (RF-Nov05-2021, see Supplementary Text, 

“RosettaFold variants” section for details on the architectural details of this model). The training 

regime for this model, which was initially trained solely on structure prediction, is below: 
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Training set: 25% of examples came from the PDB (published before February 17th, 2020), 

which is the same training set used in the original RosettaFold model (16). The other 75% of 

examples included a distillation set of AlphaFold predicted structures (64). This distillation set 

was clustered at 30% sequence identity cutoff, and sequences sharing greater than 30% 

similarity to any protein in the PDB were excluded. Only proteins greater than 200 residues in 

length, with mean AlphaFold pLDDT > 85 were included in training, and only residues with per-

residue pLDDT > 70 were included from these models. The AdamW Optimizer was used 

throughout training, with default pytorch parameters. The epoch size was 25600 training 

examples, with a batch size of 64. The learning rate for the initial round of training (200 epochs) 

was 0.001, with a linear warm-up for the first 1000 optimization steps. The learning rate was 

then decayed by a factor of 0.95 after every 10000 optimization steps. A crop size of 256 

residues was used, with cropping following the same strategy as described previously (16). The 

number of MSA seed sequences was 128, and the number of extra MSA sequences was 1024. 

For the second stage of training (100 epochs), the learning rate was set of 0.0005 (no warm-

up), with learning rate decay by a factor of 0.95 every 10000 optimization steps. A larger crop 

size (350 residues), and more MSA sequences (256 seed sequences, 2048 extra sequences) 

were used in this second phase of training. 

Starting with this pre-trained RosettaFold, we fine-tuned this model for inpainting, for an 

additional 27 epochs on three tasks (Fig. S4), training only on the PDB training set. For tasks 1 

and 2 (fixed backbone sequence design, and inpainting respectively, chosen 33% of the time 

each) were masked in essentially the same manner. Contiguous regions of 10-35 amino acids 

comprising at least one full secondary structure element (helix, loop or strand) were masked out 

(Task 1: only sequence masked; Task 2: sequence and structure masked). The sequence and 

structure of a further 3-6 ‘flanking’ residues were masked out either side of this contiguous 

region (Fig. S4A, red). The distograms (but not angle maps or amino acid identity) were 
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provided for the residue immediately N- and C-terminal to the central contiguous masked region 

(Fig. S4A, asterisks). Noise was also applied to these two positions, by randomly translating 

them following a normal distribution (μ = 0 Å, σ = 1 Å), such that at inference time, coordinates 

would be provided to the network as a “guide” rather than as absolute positions. Losses were 

not applied to the flanking regions either side of these two coordinates. The masking of flanking 

sequence and structure modestly improved the performance of the network in the benchmarking 

test, compared to just masking a 10-35 residue window (Fig. S4D). The final task (structure 

prediction from MSA information) was the original task the pre-trained RosettaFold was trained 

on, which differs slightly from the original RosettaFold network (15). Specifically, in this task, 

15% of the MSA (excluding the input sequence) was randomly masked or corrupted (following 

the strategy used by AlphaFold (21), of this 15% of residues, 70% of residues were replaced 

with a ‘mask’ token, 10% were mutated to a random amino acid, 10% were mutated to another 

amino acid in the MSA column, and 10% were not replaced). Homologous template structural 

inputs were unchanged from the original network (15). The applied loss function was the same 

for all three tasks:  

The loss function formulation for RFjoint is as follows.  
 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.0ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  3.0ℒ𝑎𝑎𝑎𝑎 + 1.0ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 5.0ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 0.1ℒ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    
 
Where ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a cross entropy loss over the distogram and anglegram as described in (15), 

predictions ℒ𝑎𝑎𝑎𝑎 is a cross entropy loss over any masked positions in the input MSA, ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a 

cross entropy loss on binned backbone dihedral angle predictions, ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is a backbone level 

frame aligned point error, as described in (21), with a relu cutoff of 20. ℒ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the lDDT loss as 

calculated in (15). Note that structure related losses are applied over the entire predicted 

protein, and the sequence cross entropy loss is only applied at masked (Tasks 1 and 2) and/or 

corrupted (Task 3) regions. For the fixed-backbone sequence design task (Fig. S4A, Task 1) 
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and for the inpainting task (Fig. S4A, Task 2), no loss was applied on the ‘flanking’ region of 

protein N- and C-terminal to the central masked region. The learning rate was set to 0.0003 

throughout the training of these three tasks, with a batch size of 512. We refer to this fine-tuned 

RosettaFold inpainting model as RFjoint, and selected training curves from this model are shown 

in Fig. S4B,C. Details of a different training strategy used to train an earlier version of the 

inpainting network, which implicitly learned to inpaint, are provided in the supplementary 

methods. 

Joint sequence-structure inpainting with a jointly trained RosettaFold  

To apply RFjoint to protein design, we input a sequence and structure, masking certain residues 

in the sequence by replacing them with mask tokens and masking corresponding residues in the 

structure by setting their template embeddings to zero (16). We then predict the structure and 

sequence logits for the entire protein. The output structure, including regions that were originally 

both masked and unmasked, is used as the design model, and the most probable predicted 

amino acid at each masked position (argmax) is taken to complete the sequence. Note that in 

the RF-Nov05-2021 version of RosettaFold used to train RFjoint, as in AlphaFold, latent 

representations of the output structure are ‘recycled’ back through the network to refine the final 

structure. During inpainting, we utilize this ‘recycling’ to refine our inpainted sequence and 

structure, typically recycling information 5-15 times (similar to the number of times used for 

structure prediction with RosettaFold, which is typically 10). A single design of 100 amino acids 

in length, using 10 iterations of inpainting, takes 5.3 seconds on a GeForce RTX 2080 GPU. We 

refer to this prediction, with recycling, as a ‘forward pass’ through the network.  

The iterative inpainting method described above is approximately deterministic. To sample 

ensembles of outputs with small variations in sequence and structure using RFjoint, we either 

vary the exact boundaries of masked regions, the length of regions to replace a masked region 

or by varying specific input coordinates (for example, in Fig. S6C, the coordinates of two Cɑ-
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coordinates were randomly translated up to a specified distance from their original positions, 

and the network was tasked with inpainting the masked region given the unmasked positions of 

the two translated residues). For each of the design cases presented in the paper, the precise 

strategy used to generate and filter the designs is described in the supplementary methods. 

Motif selection 

Because RosettaFold predicts helices and sheets more accurately than loops, we selected 

functional motifs composed of as much secondary structure as possible. In initial exploratory 

design runs, our methods performed poorly if the motif to scaffold contained too many loops or 

depended on networks of tertiary polar contacts (e.g. antibody H3 CDR regions). For antigenic 

epitopes, viral receptor traps, and enzyme active sites, we chose the functional motifs based on 

previous structural literature. For binding interfaces, we identified interface residues as those 

with any atom within 5 Å of the binding partner and scaffolded motifs consisting of 2-4 

contiguous blocks manually chosen to contain as many of the interface residues as possible. 

Table S1 lists the design targets, their PDB accessions, the residue numbers of constrained 

regions, and references. 

Design filtering & selection 

For each experimentally tested design case shown in this paper, we generated between 4000 

and 30,000 designs, and filtered these based on the AF pLDDT, motif RMSD of AF predictions 

to native, (see supplementary text for exact cutoffs). Broadly, these included ‘confident/accurate’ 

AF pLDDT (> 80), sub-angstrom (< 1 Å) AF-RMSD. Orthogonal filters were determined on a 

per-problem basis (fully outlined in the supplementary text), but broadly comprised features 

such as radius of gyration, Rosetta per-residue spatial aggregation propensity (SAP) score (65), 

net charge (# Arg + # Lys - # Asp - # Glu) and structural diversity. The cutoffs were typically 

chosen to give an experimentally tractable final number of designs. In some cases, in 
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preparation of the final set of proteins to be ordered, and after design filtering, we performed a 

final visual inspection to look qualitatively at aspects such as poor core packing, presence of 

cavities, buried polar groups, or surface hydrophobics, which typically reduced the set of 

proteins by around 0-50%. 

For designs that were only validated in silico, that are represented in the figures, we filtered 

designs predominantly on AlphaFold pLDDT and AF-RMSD, as well as radius of gyration. The 

AlphaFold metrics are presented in Table S2. 

The “model 4” weights were used for all AF predictions for filtering. The pLDDT was taken as 

the average of the residue-wise confidence values output by the network. Using AF to filter our 

designs has the risk of designing “adversarial examples”, or sequence-structure pairs that score 

well by AF that do not fold or function in reality, due to the presence of artifactual minima in the 

loss landscape of the structure-prediction model (66, 67). However, because we design using 

RosettaFold, which is trained independently of AF (although both use the PDB as training data), 

any final designs must be well-predicted by two partially orthogonal networks, which is expected 

to provide some (although not total (68)) robustness to adversarial examples. This is supported 

by our finding that a high fraction of our designs are solubly expressed. Additionally, if we 

redesign the sequence of our highest-pLDDT designs by Rosetta, pLDDT continues to be high, 

indicating that the original hallucination had a designable backbone (and isn’t purely an artifact 

of RF or AF’s loss landscape) (Fig. S7C). Finally, we find that AF pLDDT of our RF-generated 

designs correlate well with physics-based metrics such as Rosetta energy and ab initio folding 

(Fig. S7D, F; Supplementary Text).  

To score protein binder designs, we used a modified AlphaFold prediction script that took as 

input the design model of the target-binder complex (from RF hallucination or inpainting) and the 

concatenated binder-target sequence (with a residue number gap to denote different chains). 
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AF was asked to predict the complex structure from single-sequence, given the target protein 

structure as template information and its structural representation (atom coordinates) of the 

binder-target complex initialized to the target-binder complex design model. The confidence in 

AF2’s prediction of the interface was assessed by the inter-chain predicted aligned error (inter-

PAE), or the average value of interchain positions in the predicted aligned error matrix. We 

found that inter-PAE < 10 Å corresponded to predicted complexes that were docked roughly 

correctly, while predictions with inter-PAE above this threshold usually had binder and target far 

apart in space. In addition to inter-PAE, we also filtered on: binder pLDDT (average residue-

wise confidence over the binder from complex prediction); AF-Rosetta ddG (Rosetta ddG 

calculated on the AF model after minimizing interface side chains); target-aligned binder RMSD 

(RMSD of the binder, after aligning AF and RF models on the target). 

Protein purification 

All designs tested in E. Coli were cloned, expressed and purified using standard methods. 

Briefly, Golden Gate assembly with BsaI-HF (New England Biolabs) was used to insert designs 

into a modified pET29b+ vector containing C-terminal SNAC (69) and 6xHis tags (or, in the case 

of EFhand_inp_1, into a modified pET29b+ vector with a C-terminal TEV cleavage site and a 

6xHis tag). Plasmids were transformed into BL21 bacteria. For small-scale expression tests, 

bacteria were cultured overnight at 37oC in 2 ml cultures of lysogeny broth (LB) supplemented 

with 50 μg/mL of kanamycin. Cells were then grown in 2 ml cultures of Terrific Broth (TB) for 

one hour, before induction with 1 mM of IPTG for 4 hours. Cells were then lysed with B-PER 

supplemented with 1 mM PMSF, 0.1 mg/mL Lysozyme, 25 U/ml Benzonase, before lysate 

clarification by centrifugation. Lysate was incubated with 75 μl Ni-NTA resin, before washing 

thrice with wash buffer (25 mM Tris, 300 mM NaCl, 20 mM Imidazole, pH 7.8) and elution in 25 

mM Tris, 300 mM NaCl, 250 mM Imidazole. Expression was assessed by SDS-PAGE. For 

larger scale cultures, cultures were grown overnight at 37oC in autoinduction medium (70), 
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before sonication-based lysis in wash buffer supplemented with 1mM PMSF, 0.1 mg/mL 

Lysozyme, 0.01 mg/ml DNase I. After centrifugal lysate clarification, lysates were incubated with 

an appropriate volume of Ni-NTA resin and subsequently washed thrice with wash buffer. For 

purification of di-iron binding proteins, the His-tag was cleaved off by cleavage of the SNAC-tag. 

Briefly, after binding to the Ni-NTA resin, the protein was washed in SNAC cleavage buffer (100 

mM CHES, 100 mM Acetone oxime, 100 mM NaCl, 500mM GuHCl, pH 8.6) before addition of 2 

mM NiCl2. After overnight cleavage, proteins were further purified by size exclusion 

chromatography on a Superose 75 column in 20 mM Hepes, 100 mM KCl, pH 7.8, and 

monomeric fractions pooled. 

Spectroscopic analysis of cobalt binding to di-iron binding proteins 

Analysis of cobalt binding to inpainted di-iron binders was performed essentially as described 

previously (33). Proteins (200 μM in 20 mM Hepes, 100 mM KCl, pH 7.8) were incubated 

overnight with (or not) an 8x molar excess (1600 μM) CoCl2. Absorbance spectra were collected 

in a Jason V-750 spectrophotometer. Mean background absorbance (measured between 700 

and 800 nm) were subtracted from all spectra. Successful designs showed absorbance peaks 

characteristic of cobalt coordinated in a tetra/penta-coordinate state. 

Fluorescence analysis of terbium binding to EF-hand designs 

Yeast-displayed designs 
Transformed yeast were cultured in TRP(-), URA(-) media for two days followed by expression 

culture. Samples containing ~8.5e7 cells were incubated in TBS (pH 8.0) containing 1mM Ca2+ 

and washed twice with TBS only. Yeast cells were resuspended in TBS containing 50 μM Tb3+ 

For 3 hours and then washed twice in TBS + 1mM Ca2+. Washed samples were moved to a 

black bottom, plate-reader 96 plates for fluorescence spectra measurement. Fluorescence 

signals were collected using a flash plate reader in time-resolved fluorescence mode (TRF, 

delay time: 100us , integration time: 1000us, gain: 130). 

https://www.zotero.org/google-docs/?RDcwzY
https://www.zotero.org/google-docs/?RDcwzY
https://www.zotero.org/google-docs/?RDcwzY
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Purified designs 
Designs harboring the EF-hand motif , were purified by His-purification as described above. 

After size exclusion chromatography in 20 mM Hepes, 150 mM KCl, pH 7.8, the His tag was 

cleaved by TEV-cleavage, with the addition of 40 μM Super-TEV protease, 1 mM DTT and 0.5 

mM EDTA (overnight at room temperature). To ensure the EF-hands were not bound to any 

residual calcium in buffers, after passing through a NiNTA-column after TEV-cleavage, protein 

were run on a size exclusion column equilibrated in 20 mM Hepes, 150 mM KCl, pH 7.8 buffer, 

which had been Chelex treated overnight to remove any residual calcium. Proteins were 

incubated (or not) with terbium (40 μM terbium in 5 μM protein) for 3 hours, before analysis of 

terbium fluorescence on a NEO2 plate reader. Samples were excited at 250 nm (to excite the 

tryptophan residue near the EF-hand motif), and fluorescence was measured between 450 and 

650 nm, 100-1000 μs after excitation.  

Circular dichroism spectroscopy 

All circular dichroism (CD) analyses except those for RSV-F site V immunogens were performed 

on a JASCO J-1500 CD Spectrophotometer. Di-iron binding proteins were analyzed at 6.7 μM in 

20 mM Hepes, 10 mM KCl, pH 7.8, with or without an 8x molar excess of CoCl2. Analysis of the 

EF-hand inpaint was performed at 20 μM in chelex100-treated 20 mM Hepes, 150 mM KF, pH 

7.6, in the presence or absence of 200 μM CaCl2. Analysis of the PDL-1 binder was performed 

at 5 μM in 20 mM Hepes, 10 mM KCl, pH 7.8. Thermal melt analyses were performed between 

25 oC and 95 oC, measuring CD at 222 nm. All reported measurements were measured within 

the linear range of the instrument. 

For RSV-F designs, CD spectra were measured using a ChirascanTm V100 spectrometer in a 

1-mm path-length cuvette. The protein samples were diluted to 30 µM in PBS. Wavelengths 

between 195 nm and 250 nm were recorded. Thermal melt analyses were performed between 
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20 °C and 95 °C with an increment of 2 °C/min, measuring CD at 222 nm. All spectra were 

corrected for buffer absorption. 

Measuring protein binding 

Yeast surface display 
As an initial screen for protein binding, linear DNA were synthesized as “e-blocks” (Integrated 

DNA Technologies), pooled, and transformed into the yeast strain EBY100 (by electroporation if 

>100 designs, by the lithium acetate method otherwise) along with a pETCON3 backbone 

linearized at NdeI and XhoI (for Aga2p and c-Myc fusion) (4, 5). The transformed pool was 

inoculated into CTUG medium (yeast nitrogen base 6.7g/L (difco) + complete amino acids -trp -

ura + 2% glucose) and incubated 12-16 hours at 30°C with shaking, then diluted 200uL + 2mL 

into SGCAA (yeast nitrogen base 6.7g/L + complete amino acids 5g/L (Bacto) + 90mM 

Na2HPO4 + 2% galactose + 0.1% glucose) and incubated 12-16 hours to induce binder 

expression and display. For flow sorting, around 107 cells were harvested, washed 3x in TBSF 

(50mM Tris-HCl pH8.0, 150mM NaCl, 1% bovine serum albumin), incubated in TBSF with 

biotinylated binding target for 30 minutes at room temperature, washed 1x in TBSF, incubated 

for 30 minutes at room temperature in 0.1mg/mL FITC anti-c-Myc (ICL Lab) and 70mg/mL 

streptavidin R-phycoerythrin (PE) conjugate (Invitrogen), and washed 3x in TBSF. The binding 

target and FITC/PE were added in the same incubation when labeling with avidity. Cells were 

sorted on a Sony SH800 flow sorter and 103 - 106 FITC+/PE+ cells were collected. The cells 

were either cultured in liquid CTUG for another round of sorting, or plated onto CTUG agar and 

individual colonies Sanger-sequenced to identify the designs. For trRosetta-hallucinated PD-L1 

binders and Mdm2 binders, clonal yeast cultures expressing a single design were analyzed in 

binding assays to confirm the results of sorting as well as to assess the binding affinity of 

designs. In this case, yeast culture and binding were performed identically as above except that 

https://www.zotero.org/google-docs/?k0a3Ty
https://www.zotero.org/google-docs/?k0a3Ty
https://www.zotero.org/google-docs/?k0a3Ty
https://www.zotero.org/google-docs/?k0a3Ty
https://www.zotero.org/google-docs/?k0a3Ty
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an Attune NxT (Invitrogen) flow cytometer was used to analyze the cells. For all other problems, 

hits identified by yeast display were followed up by E. coli expression and purification. 

Surface plasmon resonance (SPR) to assess RSV-F site V binding 
SPR measurements were performed on a Biacore 8K (GE Healthcare) in 10 mM HEPES pH 

7.4, 150 mM NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20 (GE Healthcare). Ligands were 

immobilized on a CM5 chip (GE Healthcare) via amine coupling. The preRSVF and RSVF-site V 

immunogens were immobilized at approximately 300-500 response units (RU). The site V 

specific RSV90 Fab was injected as analyte in two-fold serial dilutions. The flow rate was 30 

µl/min for a contact time of 120 s followed by 400 s dissociation time. After each injection, the 

surface was regenerated using 0.1 M glycine at pH 3.0. KD values were obtained by fitting the 

maximum response versus log10 Fab concentration to a sigmoid function using GraphPad 

PRISM. 

Biolayer interferometry (BLI) to assess bivalent TrkA binding 
BLI binding experiments were performed on an Octet Red96 (ForteBio), with streptavidin coated 

tips (Sartorius Item no. 18-5019) and BLI buffer (10 fold dilution of 10x HBS-EP+ buffer [Cytiva 

Item no. BR100669] supplemented with 0.1% w/v bovine serum albumin). Tips were pre-

incubated in BLI buffer for at least 30 minutes before use. To collect binding data, the tips were 

incubated in BLI buffer for 100 s, loaded with biotinylated TrkA (30 nM in BLI buffer; a kind gift 

from Chris Garcia’s lab) for 300 s, equilibrated in BLI buffer to obtain a baseline for 150 s , 

dipped into BLI buffer with the designed proteins for 900 s (association phase) and finally 

returned to BLI buffer for 900 s (dissociation phase). Reported responses are the change in 

wavelength between the beginning and end of the association phase. 
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Similarity search against the PDB and NR databases 

We used TM-align (71) to calculate the TM-score of a design against all chains in a local copy of 

the March 3, 2021 version of PDB100. TM-scores reported are normalized to the length of the 

query (designed) protein.  

We used Protein-Protein BLAST 2.9.0+ to query our design sequences against a version of the 

BLAST NCBI non redundant database downloaded in April 2020. For each design, we ran the 

blastp executable with flags -outfmt 15 -max_hsps 1 -max_target_seqs 1, thus 

only taking the best high scoring pair (HSP) and reporting its statistics for each design. The 

sequence identities quoted throughout the manuscript were calculated by taking the number of 

identities contained in the HSP and dividing by the length of the query (designed) sequence. In 

some cases, BLAST did not return any HSP’s, in which case the entries from BLAST for these 

designs in Table S5 were marked “None”/ “NA”. 

Supplementary Text 

RosettaFold variants 
The hallucination pipeline uses the following neural networks. 

- The published version of trRosetta (11), used for the PD-L1 binder designs in Fig. S1. 

- The published 2-track RosettaFold (16), used for hyperparameter tuning results shown 
in Fig. S19. 

- The published 3-track RosettaFold (16), used for some of the designs shown in Fig. S10. 

- An unpublished “RF-perceiver” where the MSA Transformer (63) track of RosettaFold is 
replaced with a Perceiver architecture (72) to reduce memory cost for MSAs having too 
many sequences. Instead of making all sequence-to-all sequence attention for the input 
MSA, the input MSA is split into two groups, a small seed MSA (up to 128 sequences) 
and an extra MSA (up to 2048 sequences). It first takes a cross-attention that maps the 
extra MSA to the seed MSA, then takes a regular self-attention on the seed MSA. During 
training, backbone-level Frame Aligned Point Error (FAPE) loss (21) was used. For the 
hallucination task, because input is a single sequence, extra MSA features were 
initialized to zeros. This was used for most of the designs in Fig. S10, all RSV-F and 
ACE2 designs except those noted below, and the carbonic anhydrase designs. 

https://www.zotero.org/google-docs/?mBQIF0
https://www.zotero.org/google-docs/?mBQIF0
https://www.zotero.org/google-docs/?mBQIF0
https://www.zotero.org/google-docs/?O7WwqL
https://www.zotero.org/google-docs/?O7WwqL
https://www.zotero.org/google-docs/?O7WwqL
https://www.zotero.org/google-docs/?1CgRTG
https://www.zotero.org/google-docs/?1CgRTG
https://www.zotero.org/google-docs/?1CgRTG
https://www.zotero.org/google-docs/?KJyR2g
https://www.zotero.org/google-docs/?KJyR2g
https://www.zotero.org/google-docs/?KJyR2g
https://www.zotero.org/google-docs/?o6PidK
https://www.zotero.org/google-docs/?o6PidK
https://www.zotero.org/google-docs/?o6PidK
https://www.zotero.org/google-docs/?bgnZA9
https://www.zotero.org/google-docs/?bgnZA9
https://www.zotero.org/google-docs/?bgnZA9
https://www.zotero.org/google-docs/?lzsxlf
https://www.zotero.org/google-docs/?lzsxlf
https://www.zotero.org/google-docs/?lzsxlf
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- An unpublished “RF-Nov05-2021” with multiple architectural improvements adopted from 
AlphaFold2: 1) use of a “ExtraMSAStack” module instead of perceiver architecture, 2) 
use of triangular multiplicative updates and triangular self-attention for pair feature 
updates, 3) communication between 1D, 2D, and 3D tracks through attention biasing, 
and 4) use of recycling that executes the network multiple times with the updated input 
embeddings based on outputs from the previous cycle. In addition to the PDB, the model 
was also trained on 12 million Alphafold-predicted models generated by Facebook (64). 
The model was trained using the masked language model objective as well as distogram 
prediction loss and FAPE loss. This was used to generate rsvfv_hal_2 and rsvfv_hal_3 
(and other designs tested together with them), the Mdm2 binder designs, and the TrkA & 
PD-L1 free hallucinations. 

The protein structure prediction performance of each RosettaFold variant was evaluated based 
on CASP14 targets and 60 recently published de novo designs (not included in the RosettaFold 
training set) as shown in Fig. S21. 

Inpainting models were fine-tuned starting from one of the pre-trained RF versions above. RFjoint 
was based on RF-Nov05-2021, and RFimplicit was based on RF-perceiver (see dedicated 
sections for precise training details). Both PDB and Facebook AF2 models were used for 
training. 

Because RosettaFold only predicts backbone coordinates, we added sidechains to hallucination 
and inpainting outputs using Rosetta and refined the full-atom structure by relaxing once in 
torsion space with predicted pairwise restraints and once in cartesian space with only pairwise 
distance restraints and C𝛼𝛼 coordinate restraints. Outputs from the trRosetta-based hallucination 
pipeline were relaxed similarly, except a structural model was first built by minimizing against 
the predicted pairwise restraints because trRosetta does not directly predict 3D coordinates. 
The output of the final relax step is the model used for downstream analysis and further design. 

Alternate formulations of motif and scaffold losses 

Coordinate RMSD loss 
In addition to the cross-entropy motif loss, sometimes we used an additional RMSD motif loss 
ℒ𝑀𝑀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 defined as the backbone (N, C𝛼𝛼, C) root-mean-squared distance between predicted 
and reference motif coordinates after superposition (73). While using ℒ𝑀𝑀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 alone did not yield 
as good designs as using the cross-entropy loss ℒ𝑀𝑀 alone, a combination of the two losses 
(with weights 𝑤𝑤𝑀𝑀 = 1 and 𝑤𝑤𝑀𝑀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.5) gave the best DAN-lDDT and motif RMSD. 

KL divergence loss 
In some cases we defined the hallucination loss as a Kullback-Leibler (KL) divergence rather 
than entropy, following previous practice(58). Given network predictions 𝑝𝑝(𝑦𝑦) and background 
distributions 𝑞𝑞(𝑦𝑦) discretized over B bins, 

 ℒ𝐻𝐻,𝐾𝐾𝐾𝐾 = −∑ ��∑ ∑ (1 −𝑚𝑚𝑖𝑖𝑖𝑖)∑ 𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� log 𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖�
𝑞𝑞�𝑦𝑦𝑖𝑖𝑗𝑗𝑗𝑗�
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https://www.zotero.org/google-docs/?TpMLAJ
https://www.zotero.org/google-docs/?TpMLAJ
https://www.zotero.org/google-docs/?TpMLAJ
https://www.zotero.org/google-docs/?2eNvzn
https://www.zotero.org/google-docs/?2eNvzn
https://www.zotero.org/google-docs/?2eNvzn
https://www.zotero.org/google-docs/?PneQzR
https://www.zotero.org/google-docs/?PneQzR
https://www.zotero.org/google-docs/?PneQzR
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The background distributions represent residue-residue distance and angle distributions 
conditioned on only sequence separation, without knowledge of the amino acid identities(11, 
74). We generated the background using a separately trained neural network (for trRosetta) or 
by averaging the predictions for 100 random sequences (RosettaFold). The KL hallucination 
loss gave generally similar results as the entropy loss, although entropy yielded designs with 
higher helical content. 

Leaky entropy (free binder hallucination) 
In our standard entropy loss term, the probability distributions over distances and orientations 
are renormalized after removing the last (>20 Å or “no-contact”) bin, and then the entropy is 
computed (Materials and Methods). However, for residue pairs that are not in contact (i.e. most 
of the probability is in the last bin), the total probability of the contact bins before renormalization 
is very low and probably not meaningful, and optimizing their entropy after renormalization can 
create instability. Therefore, we defined an alternate entropy loss where normalization is 
performed over all bins before taking the log (thus making it sensitive to probability “leaking” 
from no-contact into contact bins), but this log probability is multiplied by a probability that 
excludes the last bin before renormalization. This “leaky” entropy is defined as: 

ℒ𝐻𝐻,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = � �����1 −𝑚𝑚𝑖𝑖𝑖𝑖�𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝�𝑦𝑦𝑖𝑖𝑖𝑖�) 
𝐿𝐿

𝑗𝑗≠𝑖𝑖

𝐿𝐿
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� /���(1 −  𝑚𝑚𝑖𝑖𝑖𝑖)
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where 
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Here the probability outside the log is renormalized after excluding the last bin (out of K bins): 

𝑝̂𝑝(𝑦𝑦) =𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦))/ �  
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𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦)) 

and the probability inside the log is renormalized across all bins (but the last bin is excluded in 
the entropy calculation). 

𝑝̅𝑝(𝑦𝑦) =𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦))/�  
𝐾𝐾

𝑘𝑘=1

𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦)) 

Like our standard entropy loss, leaky entropy avoids favoring too much probability in the no-
contact bin, but it more accurately scores the contact bins when their probability is low. Most of 
the designs in this paper are generated using standard entropy. However, we used leaky 
entropy to generate the free-hallucinated interface stubs, as well as the free-hallucinated PD-L1 
binders. In this application, leaky entropy yields better designs than standard entropy, especially 
when used to compute the entropy over inter-chain residue pairs (see “Auxiliary losses” below; 
Fig. S17H). 

https://www.zotero.org/google-docs/?g0Nf1U
https://www.zotero.org/google-docs/?g0Nf1U
https://www.zotero.org/google-docs/?g0Nf1U
https://www.zotero.org/google-docs/?g0Nf1U
https://www.zotero.org/google-docs/?g0Nf1U
https://www.zotero.org/google-docs/?g0Nf1U
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Auxiliary losses 
For some problems we used additional auxiliary loss terms consisting of repulsive, attractive, 
radius-of-gyration, surface nonpolar, and net charge loss terms (Fig. S2): 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎ℒ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟ℒ𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 + 𝑤𝑤𝑛𝑛𝑛𝑛ℒ𝑛𝑛𝑛𝑛 + 𝑤𝑤𝐻𝐻,𝑖𝑖𝑖𝑖ℒ𝐻𝐻,𝑖𝑖𝑖𝑖. 

Repulsive and attractive 
The repulsive and attractive losses ℒ𝑟𝑟𝑟𝑟𝑟𝑟 and ℒ𝑎𝑎𝑎𝑎𝑎𝑎 are partial Lennard-Jones potentials with a 
user-specified characteristic distance 𝜎𝜎 (Fig. S2B)(75). The potentials are a function of the 
distance between predicted backbone atoms of the hallucinated protein and all atoms of a user-
defined binding partner, and averaged over all such pairs (Fig. S2A).  

Radius of gyration 
The radius of gyration loss ℒ𝑟𝑟𝑟𝑟𝑟𝑟 is used to control the overall shape of generated proteins and to 
indirectly favor a well-packed core (Fig. S2B). It is defined as an exponential linear unit with a 
user-specified threshold R0: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅𝑔𝑔−𝑅𝑅0),   𝑅𝑅𝑔𝑔≤𝑅𝑅0
𝑅𝑅𝑔𝑔,                      𝑅𝑅𝑔𝑔>𝑅𝑅0 � 

where the radius of gyration 𝑅𝑅𝑔𝑔 is calculated as the root-mean-squared position of the predicted 
C𝛼𝛼 positions 𝒓𝒓𝐶𝐶𝐶𝐶: 

𝑅𝑅𝑔𝑔 = �
1
𝐿𝐿
�  
𝐿𝐿

𝑖𝑖

�|𝒓𝒓𝐶𝐶𝐶𝐶|�2 

For epitope presentation and receptor decoy hallucinations, we used the repulsive and radius-
of-gyration losses, with 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 1, 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 4 Å, 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 1, and 𝑅𝑅0 = 18 Å. For binder design, we 
used both repulsive and attractive losses, with 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 1, 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 4 Å, 𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎 = 10, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 =
6 Å,𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 1, and 𝑅𝑅0 = 18 Å. The unweighted attractive loss is typically 50-100x smaller than 
the other loss terms, so it is given a higher weight. 

Surface non-polar 
Using only hallucination and motif losses, hallucination sometimes places hydrophobic residues 
at the surface of a protein (although it does not place buried polar residues); this is likely due to 
some of RosettaFold’s training examples being single chains extracted from homooligomeric 
complexes. To discourage this, we compute a loss term that is higher when there are more non-
polar residues (V, I, L, M, W, F) on the surface of the hallucinated protein. First, the number of 
neighbors n_i of each residue i is calculated as the sum of contributions from all other residues j 
weighted by their distance and position in a cone around the Ca-Cb vector of i: 

𝑛𝑛𝑖𝑖 = �  
𝐿𝐿

𝑗𝑗=1

1/(1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑚𝑚)) ∗ ((𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 − 𝜙𝜙𝑖𝑖𝑖𝑖) + 𝑎𝑎)/(1 + 𝑎𝑎))𝑏𝑏 

https://www.zotero.org/google-docs/?Cc7eTX
https://www.zotero.org/google-docs/?Cc7eTX
https://www.zotero.org/google-docs/?Cc7eTX
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This formula is based on the sidechain neighbors selector in RosettaScripts. dij and phi_ij are, 
respectively, the Cb-Cb distance and Ca-Cb / Ca-Cb angles between residues i and j (Fig. 
S2A), and m=1, a=0.5, and b=2 are tuning parameters set to their default values in 
RosettaScripts 
(https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/ResidueS
electors/ResidueSelectors). 

The surface non-polar loss is then defined as 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �  
𝐿𝐿

𝑖𝑖=1

𝛿𝛿𝑖𝑖 ∗ [1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑖𝑖 − 𝑛𝑛0)]/�  
𝐿𝐿

𝑖𝑖=1

[1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑖𝑖 − 𝑛𝑛0)] 

where 𝛿𝛿𝑖𝑖 = 1 if residue i is non-polar and 0 otherwise, and n_0 is a user-defined threshold 
(which we set to 2.5) representing the maximum number of “neighbors” a surface residue can 
have. The quantity 1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝑖𝑖 − 𝑛𝑛0) ranges from 0 to 1 and is higher when a residue is 
closer to the surface. 

Net charge 
The net charge of a protein is important for its solubility, with neutral or positive net charge more 
likely to lead to aggregation (possibly due to nonspecific binding to negatively charged DNA). 
Therefore, we compute the net charge by summing up the number of lysines and arginines and 
subtracting the number of glutamates and aspartates, and applied an exponential rectified linear 
transform at a user-defined threshold (usually -5) so that net charge below this value has a loss 
of 0. Although this loss ℒ𝑛𝑛𝑛𝑛 can be applied during gradient descent via our straight-through 
gradient approximation, it is more stable to optimize during MCMC refinement stages. We only 
used this loss for designs intended for experimental testing, and not when generating designs to 
benchmark method performance. 

Inter- and intra-chain entropy 
During (two-chain) free hallucination for binder design, we compute the entropy loss only over 
the binder intra-chain contacts. We then add a separate loss term for the inter-chain entropy 
ℒ𝐻𝐻,𝑖𝑖𝑖𝑖, which is the sum of the entropy over residue pairs that are not in the same chain. This can 
be either standard entropy or leaky entropy (see above); we used standard entropy for TrkA free 
hallucination (Fig. S17F) and leaky entropy for stub design (Fig. S18) and PD-L1 free 
hallucination (Fig. S17G). 

Automatic motif placement 
The fixed motif-placement method described in the main methods is simple, but requires 
extensive sampling to identify good motif placements and iterative rounds of design to efficiently 
explore the search space. To avoid this sampling and iteration, we developed 2 methods to 
automatically place the motif during optimization. 

Motif placement by exhaustive triplet enumeration 
The first method uses a modified motif loss that rewards recapitulation of the motif in any 
location on the protein. Consider a motif consisting of M discontinuous segments or “contigs” 

https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/ResidueSelectors/ResidueSelectors
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/ResidueSelectors/ResidueSelectors
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being placed on a protein of length L. Exhaustive enumeration of all contig placements in all 
possible positions in the designed sequence would require 𝑂𝑂(𝐿𝐿𝑀𝑀) loss evaluations and is not 
feasible for multi-segment motifs with many contigs (large M>3). However, the M=3 case is still 
practically realizable, so we developed an approach which exhaustively enumerates placements 
for all possible contig triplets from the motif and forces placements of different triplets to be self-
consistent (described below). This was achieved by developing a two-term loss function  

ℒ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ℒ𝑠𝑠𝑠𝑠𝑠𝑠 + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 

The first term ℒ𝑠𝑠𝑠𝑠𝑠𝑠 forces recapitulation of the entire motif by averaging over ( 3𝑀𝑀)  ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 scores 
controlling how well each individual 𝑎𝑎𝑎𝑎𝑎𝑎 triplet fits into the hallucinated structure: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠 = 1/( 3𝑀𝑀) �  
 

𝑎𝑎𝑎𝑎𝑎𝑎∈{𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 

Given network predictions 𝑝𝑝(𝑦𝑦), triplet-wise satisfaction scores ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 are calculated as a 
weighted average of cross entropy scores 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 + 𝐻𝐻𝑗𝑗𝑗𝑗𝑏𝑏𝑏𝑏 + 𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 for placing contigs a,b,c at 
positions i,j,k in the sequence: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑏𝑏𝑏𝑏 = �  
 

𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 

where 𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 = −∑   
𝑦𝑦∈{𝑑𝑑,⍵,𝜃𝜃,𝜑𝜑,𝜃𝜃𝑇𝑇,𝜑𝜑𝑇𝑇} 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦0), , 𝑦𝑦𝑖𝑖𝑖𝑖 is the predicted distance or orientation 

angle between positions i and j, and 𝑦𝑦 
0 is the desired value of the geometric parameter between 

contigs a and b. The best placement of 3 contigs is the (i,j,k) that minimizes 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎. To favor 
emergence of a single best placement during optimization, we weight the 3-body cross entropy 
scores by their statistical weight:  

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 =𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛽𝛽𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎)/�  
 

𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑒𝑒𝑒𝑒𝑒𝑒 (−𝛽𝛽𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎) 

The inverse temperature parameter 𝛽𝛽 controls the strength of constraints and is increased 
throughout optimization from 2 to 20. 

In the triplet decomposition, it is possible that different triplets abc and abd sharing a pair of 
contigs ab may yield optimal placements 𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑙𝑙𝑙𝑙𝑙𝑙 such that 𝑖𝑖𝑖𝑖 ≠ 𝑙𝑙𝑙𝑙. To discourage this, we 
use a “triplet consistency” loss defined as the negative symmetrized cross-entropy between 
marginal probabilities of placements of a given contig pair in different triplets, averaged over all 
order 4 permutations of contigs a,b,c,d : 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = −1/( 4𝑀𝑀) �  
 

𝑎𝑎,𝑏𝑏,𝑐𝑐,𝑑𝑑∈{𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞}

1
 𝐿𝐿 
2�  

 

𝑖𝑖,𝑗𝑗

� 𝑝𝑝𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎(𝑐𝑐) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖𝑗𝑗

𝑎𝑎𝑎𝑎(𝑑𝑑) + 𝑝𝑝𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎(𝑑𝑑) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎(𝑐𝑐)� 

where 𝑝𝑝𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎(𝑐𝑐) = ∑   

𝑘𝑘 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 is the probability of placing 2 contigs a,b at positions i,j marginalized 
over the placements of a 3rd contig c. 
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During optimization, we use ℒ𝑠𝑠𝑠𝑠𝑠𝑠 + ℒ𝑐𝑐𝑐𝑐𝑐𝑐 instead of ℒ𝑀𝑀 as the motif loss term, and at the end of 
optimization we identify contig placements by looking for high-scoring cliques in the weighted 
adjacency matrix 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼(𝑐𝑐) + 𝑝𝑝𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼(𝑏𝑏) + 𝑝𝑝𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏(𝑎𝑎) averaged over all triplets a,b,c.  

Motif placement by greedy search 
Although fully differentiable, the triplet enumeration method above requires 𝑂𝑂(𝐿𝐿3𝑀𝑀3) memory for 
a length L protein with M contigs, and only approximately computes the motif loss when 𝑀𝑀 > 3. 
An alternative method uses a greedy search algorithm to place the contigs and applies the 
exact motif loss given this placement. On each optimization step, this method will: 

1. Place 2 of the contigs by computing the cross-entropy between their inter-contig 
geometries and network predictions at all possible starting residue numbers i and j 
where they can be placed, respectively. Try this for all pairs of contigs and keep the 
placement of the 2 contigs with the lowest score. 

2. Place remaining contigs one at a time, minimizing its inter-contig cross entropy with the 
already-placed contigs, until all have been placed. 

3. Once all contigs are placed, the standard motif loss is calculated for that placement and 
used to compute the gradient.  

Contigs are required to remain in a user-defined order. Positions that would result in the contigs 
overlapping with each other or prevent the placement of the remaining contigs are scored as 
positive infinity. Because greedy searches can miss global optima, we added the top 3 scoring 
results at each step to a search tree, yielding a collection of possible contig placements.  

Intuitively, this method will initially place contigs in positions that randomly happen to score well, 
but after a few gradient updates, these regions will match the contigs more and more and the 
process becomes self-reinforcing. Because this method only evaluates pairs of contigs, it 
requires 𝑂𝑂(𝐿𝐿2) memory and 𝑂𝑂(𝑀𝑀) time. 

Catalytic site scaffolding with TrRosetta & Alphafold 
In initial tests, we found that only using AF to hallucinate scaffolds for keto-steroid isomerase 
(KSI) led to poor recapitulation of the active-site side-chains. We were only able to obtain 
designs that fully recapitulated the catalytic sidechain geometry when optimization was over a 
multiple sequence alignment rather than a single sequence; the landscape may be too rugged 
with the high resolution sidechain-based loss in the single sequence case. However, adopting 
the two-stage method with trRosetta-based losses in the 1st stage allowed accurate catalytic 
sites to be scaffolded (Materials and Methods). We think there are two reasons why using 
TrRosetta early in optimization is beneficial: 

1. Using a low-resolution model early in optimization and switching to a high-resolution 
model is common practice to avoid local minimums and to navigate the rugged 
landscape. Even if the structure module is disabled and the predicted distances are used 
during optimization, we suspect the triangle attention in AlphaFold's evoformer and 3D 
track in RoseTTAFold, adds an extra physical constraint contributing to traps or local 
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minimums in the optimization landscape. Since TrRosetta does not have this constraint it 
has the ability to navigate between radically structural conformations during optimization. 

2. During optimization, it is not clear if the desired sidechains configuration will be achieved 
until the end of the trajectory. A low-resolution score function is needed to approximate 
the desired sidechain configuration early in the optimization. One such function is the 
orientation of ca-cb vector from one position and cb-ca vector of the other position. 
These can be defined using the interresidue orientations predicted by TrRosetta. 
AlphaFold's distogram predictions are a poor approximation of this, often resulting in 
sidechains pointing in the wrong direction, even when the cb atoms are correct. 

Training RosettaFold to perform fixed backbone sequence design (RFimplicit) 
When we first began to explore inpainting with RosettaFold, we realized that RosettaFold 
already has some capacity to simultaneously complete protein sequence and structure, given 
that, during training, some of the sequence (MSA) information is corrupted/masked. Because of 
this, we reasoned that, simply by improving RosettaFold’s ability to predict sequence given 
structure, it might implicitly learn to inpaint both sequence and structure when both are masked. 
This was indeed the case (Fig. S3F), although the results were of lower quality than with the 
explicitly-trained RFjoint model (Fig. S4E). The training of this model is described below. As with 
RFjoint, structure related losses were applied over the entire predicted protein, and the sequence 
cross entropy loss is only applied at masked regions. 

We started from a pre-trained RosettaFold model (RosettaFold perceiver, see supplementary 
text “RosettaFold variants” section for architectural details). This model was originally trained 
solely for structure prediction, on the PDB set of proteins described in (16). The model was 
trained for 300 epochs, with 21120 examples per epoch and a batch size of 64. The AdamW 
Optimizer with default pytorch parameters was used. The learning rate was set to 5x10-4, with a 
linear warm up for the first 16000 optimization steps, and a linear decay for 200000 optimization 
steps. Proteins were cropped as in (16), with a crop size of 300 residues. The number of MSA 
seed sequences was 128, and the number of extra MSA sequences was 2048. 

After this structure-prediction training, the model was further fine-tuned for an additional 5 
epochs on both sequence design and structure prediction tasks with a fixed learning rate of 
5x10-4. In the fixed-backbone sequence design task, which comprised 75% of the fine-tuning 
examples, we replaced 90-100% of the sequence input with “mask” tokens while retaining the 
native backbone features as a template structure input (16). For the remaining 25% of fine-
tuning examples, classic structure prediction was performed, with 15% of the MSA randomly 
masked, no masking of the query sequence, and inputting homolog template structures as usual 
(16). As a control, we also started joint training from a completely untrained RosettaFold model, 
and saw training saturation at very poor losses on both sequence design and structure 
prediction (Fig. S3C). This suggests that pre-training on structure prediction was needed to 
achieve high performance on the sequence design task.  

For all fine tuning examples, we used the following loss formula, which had increased weight on 
the cross entropy over sequence prediction logits compared with the original RosettaFold (15): 

https://www.zotero.org/google-docs/?JQmh90
https://www.zotero.org/google-docs/?JQmh90
https://www.zotero.org/google-docs/?JQmh90
https://www.zotero.org/google-docs/?OvEZiQ
https://www.zotero.org/google-docs/?OvEZiQ
https://www.zotero.org/google-docs/?OvEZiQ
https://www.zotero.org/google-docs/?0oqNat
https://www.zotero.org/google-docs/?0oqNat
https://www.zotero.org/google-docs/?0oqNat
https://www.zotero.org/google-docs/?aQcW9m
https://www.zotero.org/google-docs/?aQcW9m
https://www.zotero.org/google-docs/?aQcW9m
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ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.05ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  1ℒ𝑎𝑎𝑎𝑎 + 0.025ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 0.5ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 0.05ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 0.05ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ + 0.05ℒ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

Where ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a cross entropy loss over the distogram and anglegram as described in (15), 
predictions ℒ𝑎𝑎𝑎𝑎 is a cross entropy loss over any masked positions in the input MSA, ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a 
cross entropy loss on binned backbone dihedral angle predictions, ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is a backbone level 
frame aligned point error (18), with a relu cutoff of 20. ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is calculated as  ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  =

 ∑  𝐿𝐿
𝑖𝑖=1 �(𝜃𝜃�𝐶𝐶𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1  −  𝜃𝜃𝐶𝐶𝐶𝐶𝑖𝑖,𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1)2  + �(𝜃𝜃�𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝐶𝐶𝐶𝐶𝑖𝑖+1  −  𝜃𝜃𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝐶𝐶𝐶𝐶𝑖𝑖+1)2 where 𝜃𝜃�𝑎𝑎𝑖𝑖,𝑏𝑏𝑗𝑗,𝑐𝑐𝑘𝑘 is the planar 

angle between atoms a, b, and c from residues i, j, and k (respectively) resulting from a 
backbone prediction, 𝜃𝜃𝑎𝑎𝑖𝑖,𝑏𝑏𝑗𝑗,𝑐𝑐𝑘𝑘 is the ideal planar bond angle between those atoms, and L is the 
number of amino acids in the protein. ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ is calculated as ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ  =

 ∑  𝐿𝐿
𝑖𝑖=1 �(𝐷𝐷�𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1  −  𝐷𝐷𝐶𝐶𝑖𝑖,𝑁𝑁𝑖𝑖+1)2 where 𝐷𝐷�𝑎𝑎𝑖𝑖,𝑏𝑏𝑗𝑗 and 𝐷𝐷𝑎𝑎𝑖𝑖,𝑏𝑏𝑗𝑗 are the predicted and ideal covalent bond 

lengths between atoms a and b from residues i, and j, respectively. ℒ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the lDDT loss as 
calculated in (15). 
This version of RoseTTAFold did not have latent information recycling like AF2 or newer 
versions of RoseTTAFold do, but we found that recycling the predicted structure and inputting it 
again as a template without masking, along with inputting the original masked sequence yielded 
improved outputs. Therefore, for most inpainting problems using RFimplicit, we ran 5-15 iterations 
of the aforementioned recycling to get a final optimized design. If there is a functional motif 
whose structure must be maintained, we include the native structure of this motif as an 
additional template input for each iteration so as to encourage the model to respect its 
geometry. A single design of 100 amino acids in length, using 10 iterations of inpainting, takes 
5.3 seconds on a GeForce RTX 2080 GPU. 

Comparing the performance of different methods in a benchmarking test 
To allow comparison both between hallucination and inpainting (Fig. S5) and between different 
RFjoint training regimes (Fig. S4D-E), we established a benchmarking test designed to test motif 
scaffolding. From the set of 34 proteins listed above, we selected those without missing internal 
residues, and, for each protein and each mask length (10, 20, 30, 40, 50 or 60 residues), 
masked (up to) 20 random non-redundant regions. The networks were then tasked with 
replacing these masked residues with protein that would support the structure of the unmasked 
protein (the “Motif”). For each protein and mask window size, the median (of the up to 20 
designs) AlphaFold pLDDT in the replaced region (i.e. how confident AlphaFold is with the 
region that has been built) and the AlphaFold RMSD of the “motif” to the corresponding region 
in the input crystal structure was compared. 

Benchmarking AlphaFold performance 

Rosetta ab initio folding 
To compare AlphaFold structure predictions on single-sequence inputs with energy-based 
structure prediction (Fig. S7E-G), we collected the experimentally determined structures of 34 
de novo designed proteins that were released in the PDB after April 30th, 2018, the cutoff date 
for the AlphaFold training set. The single sequences were input to AlphaFold and Rosetta ab 
initio folding (13) and the RMSD to the true structure was calculated. The pnear metric, a 

https://www.zotero.org/google-docs/?mfQJT9
https://www.zotero.org/google-docs/?mfQJT9
https://www.zotero.org/google-docs/?mfQJT9
https://www.zotero.org/google-docs/?rLQWe8
https://www.zotero.org/google-docs/?rLQWe8
https://www.zotero.org/google-docs/?rLQWe8
https://www.zotero.org/google-docs/?ZnwJUU
https://www.zotero.org/google-docs/?ZnwJUU
https://www.zotero.org/google-docs/?ZnwJUU
https://www.zotero.org/google-docs/?NnFxhG
https://www.zotero.org/google-docs/?NnFxhG
https://www.zotero.org/google-docs/?NnFxhG
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summary statistic of how strongly a design model is encoded by its sequence, was calculated 
as in (13). For NMR structures, the minimum RMSD across all states was recorded. Similarly, 
the minimum RMSD across all five AF models was recorded. The PDB accession codes of the 
34 structures are: 2KL8, 5UOI, 5UP1, 5UP5, 5UYO, 5VLI, 6E5C, 6LLQ, 6MSP, 6W2R, 
6W2V_A, 6W2V_B, 6W2W, 6W3F, 6W3G, 6W3W, 6W40, 6WI5, 6WMK_A, 6WMK_B, 6X9Z, 
6XH5, 6XI6, 6YWC, 6YWD, 7JZM, 7JZU, 7K3H, 7KUW, 7M0Q, 7MWQ_A, 7MWQ_B, 
7MWR_A, 7MWR_B. (Accession codes with a trailing “_A” or “_B” denote using chain A or B 
from that structure, as it had two different de novo structures.) 

Single sequence predictions using AlphaFold 
To evaluate the ability of AlphaFold to predict the structure of proteins using single sequences, 
we predicted the structure of 153 structurally validated natural proteins and 86 structurally 
validated de novo proteins (Fig. S7). A 32-protein subset of the de novo set (plus 20 unpublished 
structures) was also used for the inpainting benchmarks in Fig. S3D-F. 

The list of natural proteins by PDB accession code is: 1a2y_C, 1a32_A, 1aaj_A, 1acf_A, 1agy_A, 
1b0b_A, 1bk2_A, 1bkr_A, 1bm8_A, 1cc8_A, 1cei_A, 1ctf_A, 1elw_A, 1enh_A, 1ew4_A, 1ez3_A, 
1fna_A, 1fzy_A, 1gou_A, 1h4a_A, 1h4y_A, 1hz6_A, 1i27_A, 1i2t_A, 1ifb_A, 1ifc_A, 1igd_A, 
1iib_A, 1iu1_A, 1iul_A, 1iz6_A, 1jbe_A, 1kaf_A, 1kf5_A, 1khy_A, 1kmt_A, 1l3k_A, 1l8r_A, 1lis_A, 
1lou_A, 1lu4_A, 1luz_A, 1mjc_A, 1mn8_A, 1nps_A, 1o8x_A, 1opd_A, 1pgx_A, 1poh_A, 1prq_A, 
1r69_A, 1r6j_A, 1r77_A, 1row_A, 1sau_A, 1sen_A, 1su9_A, 1t2i_A, 1t2p_A, 1t3x_A, 1t3y_A, 
1tg0_A, 1tig_A, 1tsf_A, 1ttz_A, 1tud_A, 1tul_A, 1ubi_A, 1ugh_A, 1unq_A, 1uow_A, 1vcc_A, 
1vkk_A, 1wdv_A, 1wlz_A, 1x6x_A, 1xmk_A, 1xmt_A, 1yn3_A, 1z2u_A, 1zlm_A, 1zma_A, 
1zuu_A, 2a28_A, 2acy_A, 2b29_A, 2bf5_A, 2chf_A, 2cxd_A, 2dfb_A, 2dyj_A, 2fe5_A, 2fi1_A, 
2fwh_A, 2g6f_A, 2gzv_A, 2h28_A, 2h3l_A, 2he4_A, 2hhg_A, 2i24_A, 2i4a_A, 2i4s_A, 2iay_A, 
2ic6_A, 2icp_A, 2igd_A, 2j5y_A, 2jek_A, 2nqw_A, 2nr7_A, 2nsz_A, 2nt4_A, 2nwd_A, 2oml_A, 
2oss_A, 2pcy_A, 2ppp_A, 2qjz_A, 2qsk_A, 2qy7_A, 2r2z_A, 2ra9_A, 2re2_A, 2v1m_A, 2ve8_A, 
2vq4_A, 2vwr_A, 2wwe_A, 2x35_A, 2y4x_A, 2y72_A, 2z0t_A, 2zib_A, 2zxj_A, 3b79_A, 3co1_A, 
3cx2_A, 3d4e_A, 3dke_A, 3ess_A, 3ey6_A, 3f2z_A, 3fk8_A, 3gbw_A, 3hp4_A, 3hyn_A, 3ich_A, 
3klr_A, 3nbm_A, 3q6l_A, 4lzt_A, 4m3s_A 

The list of de novo proteins is: 1QYS, 2KL8, 2KPO, 2LN3, 2LTA, 2LVB, 2N2T, 2N2U, 2N3Z, 
2N76, 3R2X, 4EEF, 4KY3, 4KYZ, 4UOS, 5BVL, 5CW9, 5CWB, 5CWC, 5CWD, 5CWF, 5CWG, 
5CWH, 5CWI, 5CWJ, 5CWL, 5CWO, 5KPE, 5KPH, 5L33, 5TPH, 5TPJ, 5TRV, 5TS4, 5U35, 
5UOI, 5UP1, 5UP5, 5UYO, 5VID, 5VLI, 5VMR, 6CZG, 6CZH, 6CZI, 6CZJ, 6D0T, 6DG6, 
6DKM_A, 6DKM_B, 6DLM_A, 6DLM_B, 6E5C, 6LLQ, 6MRR, 6MRS, 6MSP, 6NUK, 6W2R, 
6W2V, 6W2W, 6W3D, 6W3F, 6W3G, 6W3W, 6W40, 6WI5, 6X1K, 6X9Z, 6YWC, 6YWD, 7BPL, 
7BPM, 7BPN, 7BPP, 7BQB, 7BQC, 7BQD, 7BQE, 7BQM, 7BQN, 7BQQ, 7BQR, 7BQS, 7JZM, 
7JZU 

RSV-F site V immunogen design 

Hallucination 
For the first round of experimental testing and the distributions of metrics in Fig. S8, 600 designs 
were hallucinated using 600 steps of gradient descent, repulsive loss (𝜎𝜎=3.5 Å, weight = 2), and 
rog loss (threshold = 16 Å, weight = 1), and motif from 5tpn chain A residues 163-181. From 

https://www.zotero.org/google-docs/?e6l9bU
https://www.zotero.org/google-docs/?e6l9bU
https://www.zotero.org/google-docs/?e6l9bU
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this, 7 designs with AF pLDDT > 80, AF motif RMSD < 2 Å were chosen for experiments. A 
subset of these designs were “refined” using a greedy mutational walk with Alphafold2: all point 
mutants are predicted by AF, the one with the best pLDDT is kept, and the procedure repeated, 
until pLDDT ceases to improve or 5 mutations have been made. From the original hallucinations 
and AF-refined designs, 7 final designs were selected for testing. The successful binder 
rsvfv_hal_1 has 5 mutations that were introduced by the AF greedy refinement step. Two of the 
designs were solubly expressed and one design, rsvfv_hal_1, bound the antibody with a KD of 
0.9 μM (Fig. 2C, Fig. S11A) and had a melting point of 78°C by circular dichroism (CD) 
spectroscopy (Fig. S11B). The design model for rsvfv_hal_1 had solvent-exposed hydrophobic 
residues, so we generated another round of designs after adding loss terms penalizing surface 
hydrophobics and favoring net negative charge (see above). 

For the 2nd round of experiments, designs were made using a multi-stage pipeline. Initially, 
10,000 hallucinations were generated with the settings above, using either the motif above or 
with an additional strand (chain A 163-191) to support the motif. 577 hits with AF pLDDT > 75, 
motif AF-RMSD < 1.2 Å and radius of gyration < 16 Å were selected to serve as “seeds” for 
further refinement and diversification. Starting from each seed, multiple trajectories of 300-1000 
MCMC steps were run with surface nonpolar (weight 1) and net charge (target charge -7, weight 
0.02) losses. Designs were filtered on AF pLDDT, AF motif RMSD, and SAP score and used to 
seed additional rounds of MCMC. Finally, designs were subjected to 20-100 steps of MCMC 
with two-chain hallucination to eliminate any side-chain clashes with the antibody from residues 
outside the epitope motif; these runs were kept short to avoid creating unwanted positive 
interactions. A total of 13,157 hallucinations were generated over 9 rounds of hallucination, and 
the 30 best designs (AF pLDDT > 85, AF motif RMSD < 0.65 Å, radius of gyration < 16 Å, SAP 
score < 35, net charge < -5, Rosetta score/residue < -3, Rosetta ddG < -10) were chosen for 
testing. Rosetta ddG was calculated after superimposing the design on the native motif in 
complex with hRSV90 antibody minimizing sidechains in Rosetta. Of 30 selected designs from 
the second round, 17 expressed in E coli, 3 were monomeric, and 2 designs, rsvfv_hal_2 and 
rsvfv_hal_3, bound hRSV90 with KD’s of 1.0 μM and 1.3 μM (Fig. 2C, S11; the KD values are 
likely under-estimated due to lack of saturation of the binding curves). 

Inpainting 
For inpainting of RSV-F site V immunogens, designs were initially scaffolded from either just the 
native motif (A 163-181) or the native motif and an adjacent strand (A 184-191). In the latter 
case, the additional strand was either connected using the native residues (A 182-183), or RFjoint 

was allowed to redesign the connection. RFjoint was also allowed to redesign the sequence of 
non-interface residues. Different combinations of lengths to inpaint were randomly sampled to 
yield a diversity of solutions. 

Given the small size of the input motif, it was unsurprising that many of the outputs had poor (< 
80) AlphaFold pLDDT, despite being predicted to scaffold the motif accurately. We therefore 
devised a refinement protocol, where the best topologies from the first round were resampled by 
providing some proportion of their inpainted residues (10, 25 or 50%, with sequence masked) to 
the network during inpainting, along with the native motif. This yielded outputs with similar 
topologies but better AlphaFold confidence metrics. 254 designs passed filters: 
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● AF pLDDT > 80 
● AF motif RMSD < 1 Å 
● Net charge < 20 
● Rosetta ddG < -7 
● SAP score < 38 
● Rosetta score/residue < -2.5 

These were subsequently structurally clustered to remove designs with TM-scores > 70 
between designs, to yield the final set of 56 that were ordered and experimentally characterized. 

Di-iron binding protein design 

Hallucination 
800 hallucinations were generated using the reference PDB and motif residues shown in Table 
S1. Many outputs had good pLDDT and AF-RMSDs over the motif, but all the designs contained 
buried polar residues interacting with the metal-coordinating histidines and 
aspartates/glutamates (Fig. S12). We hypothesize that these residues were generated by 
hallucination because RosettaFold does not explicitly model metal ions, and therefore tried to 
satisfy the polar groups of the metal-coordinating sidechains using additional hallucinated 
sidechains. Although this ability could have interesting potential applications in designing buried 
polar networks(76), we did not pursue these designs further here. 

Inpainting 
The input motif we sought to scaffold was extracted from bacterial cytochrome b-1 (PDB 
accession 1BCF), and comprised four approximately parallel helices (residues A18-25, A47-54, 
A92-99 and A123-130, harboring motif residues GluA18, GluA51, HisA54, GluA94, GluA127, HisA130. 
Eight potential looping orders were inpainted (Fig. S13B), randomly sampling connecting 
lengths between helices of 16-30 residues, with 8-15 residues inpainted at the N- and C-termini. 
For each looping order, 500 designs were generated.  

While confidently predicted by AlphaFold to scaffold the motif, we noticed that some designs 
had a higher-than-ideal number of surface hydrophobic residues (as assessed by SAP units 
(65)). Given the ability of RFjoint to design sequence-given-backbone, for some designs, we used 
RFjoint to modestly redesign the sequence to reduce the SAP score. Specifically, we redesigned 
hydrophobic surface residues to reduce the predicted aggregation propensity (given either the 
AlphaFold or RFjoint model as backbone-input). 

The following filters were used for filtering the inpainted designs: 

● AlphaFold mean pLDDT > 80 
● AlphaFold pTM score > 0.7 
● RMSD of AlphaFold-predicted motif to native < 1 Å 
● Net charge between -25 and -5 
● Surface hydrophobicity (SAP units) < 40 (for designs without surface-redesign) or < 34 

(for designs with surface redesign) 
● Rosetta Iron-binding energy of at least one site < -2.4 

https://www.zotero.org/google-docs/?gNfgZz
https://www.zotero.org/google-docs/?gNfgZz
https://www.zotero.org/google-docs/?gNfgZz
https://www.zotero.org/google-docs/?jxwtsf
https://www.zotero.org/google-docs/?jxwtsf
https://www.zotero.org/google-docs/?jxwtsf
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We experimentally tested 96 inpainted designs and found that 76 showed clear soluble 
expression. As it was impractical to characterize all 76, we chose the 12 most highly expressed, 
to assess metal binding by measuring the spectroscopic shift in Co2+ absorbance. 8 of the 12 
designs displayed a spectroscopic shift at wavelengths consistent with coordination of Co2+ 
when incubated with CoCl2, and the 3 with the largest shifts were characterized further 
(dife_inp_1-3, Fig. 3B, S13E). It is likely that many of the other uncharacterized designs also 
could fold as intended and bind iron. 

EF-hand design 

Hallucination 
For the hallucinated Ef-hand designs tested, for single design trajectory we used 400 steps of 
gradient descent with an amino acid length of 100. We either used one EF-hand domain or two. 
We therefore used chain A 19-33 as the contig for 1-motif hallucination or in addition chain A 
55-68 for 2-motif hallucination from the native (PDB ID 1PRW). The following amino acid 
positions from the native were forced during design 20D, 22D, 23G, 24D, 25G, 26T, 27I, 28T, 
and 31E. For 2-motif hallucination we also forced positions 56D, 58D, 59G, 60N, 61G, 62T, 63I, 
64D, and 67E. Arginine, cysteine, and histidine were excluded from the amino acids the network 
was allowed to use during design. The losses used were cce (weight of 1), entropy (weight of 
1), and net charge (weight of 0.5). The contig regions were placed randomly along the 
hallucinated proteins. Designs were filtered by AlphaFold mean pLDDT > 82, RMSD of 
AlphaFold-predicted motif to native < 2 Å, and RMSD of AlphaFold-predicted design to 
Rosettafold design < 2 Å. 

Inpainting  
The 55 inpainted EF-hand designs tested experimentally contain 51 designs from RFjoint, and 4 
designs from RFimplicit.  

For RFjoint designs, we began with 18,000 inpainted designs: 9,000 using native 1PRW as an 
input template and 9,000 from a version of 1PRW where the backbone is identical but the 
sequence contains a K30W mutation. In all designs, we combinatorially sampled template 
inputs that contained 

● 5-20 masked residues at the N terminus, followed by residues A16-35 from 1PRW 
● 10-25 masked residues between A35 and domain A52-71 from 1PRW 
● 5-20 masked residues after A71 

We chose to inpaint the second set of 9,000 off of the K30W mutant because the downstream 
functional assay (tryptophan-enhanced fluorescence) requires tryptophan to be near the ion 
binding site, and we reasoned that final designs might be higher quality if the model was 
conditioned on a TRP residue in its input, rather than retrospectively making a TRP mutation on 
an unconditioned design. The AF2 pLDDT distributions for these two sets of 9,000 designs were 
nearly identical (mean 77 vs 76), and their motif AF-RMSD distributions were also similar. Given 
this, we reasoned that a K30W mutation likely would have minimal effect on a design’s AF2 
prediction metrics (especially given it is a surface mutation in the design). Thus for any designs 
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which passed filters (see below) but were not conditioned on the K30W mutation, we manually 
added the mutation without further calculation. 

We filtered this initial set of 18,000 by AF2 pLDDT > 80, and the individual EFhand domain AF-
RMSDs both being < 1. This yielded 1496 sequences, all of which now had the K30W mutation 
discussed above. We next created two mutants for each of these sequences to add a second 
TRP near the binding sites - T26W and F65W (numbering with reference to 1PRW). We then 
used AF2 to predict the structure of all mutants to ensure the addition of a second TRP was not 
deleterious for a design’s AF2 metrics. Using a filter of AF2 pLDDT < 83.7, AF-RMSD of both 
domains individually < 1.0, and SAP score < 36, we filtered this set of 2992 designs to the final 
set of 51 for testing.  

For 4 RFimplicit designs, we started from two hallucinated designs which initially scaffolded the 
EFhand motif(s) from 1PRW (Table S2), denoted here as EFhand_hal_A and EFhand_hal_B.  

We inpainted 300 designs seeding off of EFhand_hal_A by combinatorially sampling template 
inputs that contained  

● 5-13 masked residues at the N-terminus, followed by residues A11-30  
● 15-24 masked residues between residue A30 and domain A50-81 
● 4-8 residues after residue A81 

We inpainted 300 designs seeding off of EFhand_hal_B by combinatorially sampling template 
inputs that contained  

● 0-4 masked residues at the N-terminus, followed by residues A7-17 
● 13-28 masked residues between residue A17 and domain A31-55 
● 6-16 masked residues after residue A55 

Designs were filtered using AF2 pLDDT > 80 and backbone RSMD between the AF2 prediction 
and the native 1PRW EF-hand on at least one of the motifs. We arbitrarily chose 1 design that 
passed these filters from each of the two sets of 300 designs. For both proteins, two mutants 
were created. For both mutants, the K30W (numbering with respect to 1PRW) mutation as seen 
above was made. Then the T26W mutation was made for one mutant, and the F65 mutant 
mutation was made for the other. This process yielded 4 tested designs, one of which showed 
terbium binding activity in the yeast display terbium binding assay (Fig. S14, EFhand_inp_2).  

PD-L1 binder (PD-1 mimetic) design 
We used hallucination and inpainting to scaffold a 2-segment beta-sheet motif from the high-
affinity consensus (HAC) PD-1 interface toward PD-L1 (5IUS chain A residues 63-82, 119-140) 
(15) Given the immunoglobulin-like topology of PD-1, these 2 segments do not have nearby N- 
and C-termini and therefore cannot easily be linked by a short hairpin; therefore, it is non-trivial 
to scaffold them into any fold other than their native immunoglobulin. 

trRosetta hallucination 
We used trRosetta to hallucinate 100,611 PD-1 mimetic designs and selected a subset of 
66,501 with DAN-lDDT > 0.6 and interface RMSD < 1.5 Å to sequence-design using the Rosetta 

https://www.zotero.org/google-docs/?jmcOAW
https://www.zotero.org/google-docs/?jmcOAW
https://www.zotero.org/google-docs/?jmcOAW
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FastDesign mover with layer design and fragment-based PSSMs to constrain amino acid 
choices in the protein. We also constrained interface residues (chain A 64, 66, 68, 70, 73 -75, 
77-78, 81, 85, 89-91, 124, 126, 128, 132, 134, 136, 139) to only repack (keeping only native 
amino acids at these positions) and put harmonic coordinate restraints to these residues to 
ensure they didn’t move during relaxation. We then filtered designs on a panel of Rosetta- and 
deep-learning-based metrics (Fig. S1A): interface RMSD (backbone RMSD over 22 interface 
positions between trRosetta hallucination and reference structure), DAN-lddt (DeepAccNet 
predicted lDDT), cce10 (cross-entropy of residue-residue distances and angles of the design 
model to trRosetta predictions for the design sequence, filtered to pairs within 10 Å (13)), 
avg_all_frags (a measure of local sequence-structure agreement (13)), score_res_monomer 

(Rosetta energy per residue), ddg (Rosetta ∆∆G of binding), and contact_molecular_surface 

(a measure of the interface area (4)). We selected 3,042 designs for testing which had 
interface RMSD < 0.8 Å and (DAN-lDDT > 0.75 or cce10 < 2.1 or avg_all_frags < 2.1) and DAN-
lDDT > 0.7 and avg_all_frags < 2.5 and score_res_monomer < -2 and 
contact_molecular_surface > 475 and ddg < -50. 

Inpainting 
We generated 2 sets of inpainted designs: “free” inpaintings where only the binding motif was 
used as input, so RFjoint would have to generate the entire scaffold from scratch; and “guided” 
inpaintings where the binding motif, as well as guiding structural information input by hand, were 
provided. All designs were modeled in the presence of the target PD-L1, analogous to “two-
chain” hallucination (Materials and Methods).  

For free inpainting, we manually chose a looping order for the design to be inpainted with, 
starting at the N-terminus with motif segment A119-140 from 5IUS, then allowing 22-29 
inpainted residues, then segment A63-82 from 5IUS, and finally 28-39 inpainted C-terminal 
residues. Additionally, we allowed RFjoint to redesign residues 67, 69, 71, 73, 75, and 77 in the 
input motif (i.e. mask and re-predict amino-acid identity, taking the most probable amino acid at 
each position, without masking structure) in case they changed from core to surface, or vice 
versa, after inpainting. We generated 314 designs using this approach. The successful binder 
pdl1_inp_1 is a refined (see below) version of a parent design from this set. 

For guided inpainting, we tried to bias RFjoint to explore a topology of a beta-sheet buttressed by 
2 helices that was observed in high-scoring hallucinations. To do this we manually placed 5 
“guiding” residues in an input structure and asked inpainting to generate a design containing the 
interface motif which generally goes through the backbone atoms of the guide residues. 4 of the 
guide residues correspond to the rough location of N and C termini of two helices that might 
buttress the sheet. The 5th guide residue is placed in the middle of one of the buttressing 
helices, at an elevated distance above the interfacial beta-sheet so as to induce a bend in the 
helix to pack against the sheet without clashes. To obtain a diversity of designs, we sampled 
input coordinates for each guide residue from a uniform random sphere of radius 2 Å around its 
original manually chosen position, and also combinatorially sampled the lengths of the regions 
to be inpainted. Specifically, we combinatorially sampled the following template inputs, with 
each masked region being uniformly sampled from allowed window lengths: 

https://www.zotero.org/google-docs/?6Rm0HN
https://www.zotero.org/google-docs/?6Rm0HN
https://www.zotero.org/google-docs/?6Rm0HN
https://www.zotero.org/google-docs/?OYQWUG
https://www.zotero.org/google-docs/?OYQWUG
https://www.zotero.org/google-docs/?OYQWUG
https://www.zotero.org/google-docs/?Pr9KUp
https://www.zotero.org/google-docs/?Pr9KUp
https://www.zotero.org/google-docs/?Pr9KUp
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● Residues A119-140 from 5IUS 
● 4-6 masked residues between the previous segment and guiding residue 1 
● 12-14 masked residues between guiding residues 1 and 2 
● 4-7 masksed residues between guiding residue 2 and A63-82 from 5IUS  
● 5-8 masked residues between the previous segment and guiding residue 3 
● 11-13 masked residues between guiding residues 3 and 4  
● 9-12 masked residues between guiding residues 4 and 5  
● 0-3 masked  

Given these inputs, RFjoint was able to generate a diverse family of PD-1 mimetics with this fold. 
We generated 1000 parent designs using this approach, although no descendants of these 
parent designs ended up having binding activity. 

After initial design runs, designs with pLDDT > 80 and inter-chain PAE < 10 were refined using 
RFjoint to (1) “resample” the protein by randomly re-inpainting a fraction of the residues, (2) 
redesign only the sequence (keeping structure) of hydrophobic surface / boundary residues or 
(3) changing the order in which elements of the protein appear in primary sequence while 
keeping the overall fold of the protein (“relooping”). Combinations of (1), (2) and (3) were used 
for exploring near the topology proposed by inpainting initially, as well as optimizing a design for 
low net charge and low SAP score. We generated a total of 2,025 refinements off of the initial 
“free inpainting” set and 415 refinements off of the initial “guided inpainting” set, using the AF2 
predictions of designs as input backbones for refinement over a maximum of 3 rounds of 
filtering (pLDDT > 80, inter-chain PAE < 10) and refinement. The final designs for experimental 
characterization were redundancy-reduced by mmseqs2 at 90% identity cutoff, and then filtered 
by Rosetta DDG < -30, SAP score < 40, net charge < -4, AF2 inter-PAE < 10, and AF2 pLDDT 
> 80. This final filtering yielded the pool of 31 tested sequences, one of which bound PD-L1 
(Fig. 5A-C).  

Testing trRosetta-hallucinated PD-1 mimetics 
Designs were reverse-translated and split in 2 halves to be synthesized by Twist on a 300-bp 
oligonucleotide chip, assembled by PCR, and transformed into yeast for homologous 
recombination with pETCON3. Yeast culture and sorting were performed as described in 
Materials and methods, using biotinylated PD-L1 (R & D Systems). A series of 4 sorts were 
performed: first twice at 1 μM PD-L1 with avidity, then 1 μM, and then at 100 nM, 10 nM, and 1 
nM (Fig. S1B). Cells from the final sort were plated on CTUG agar plates and 56 colonies were 
Sanger sequenced to identify the designs. The 3 most abundant designs were validated by 
labeling clonal yeast cultures in a titration of PD-L1 and measuring on an Attune NxT flow 
analyzer (Invitrogen) (Fig. S1C). The resulting data was processed by manually choosing a 
FITC threshold for expression (log10 FITC > 3.2) and fitting a hyperbola 𝑦𝑦 = 𝐴𝐴 𝑥𝑥

𝑥𝑥+𝐾𝐾
 with free 

parameters A, K to the mean PE-H/FITC-H, where A is the maximal binding signal and K is the 
apparent Kd. Plots in (Fig. S1C) are shown with data normalized to fitted A so all curves saturate 
at 1. Competition experiments with unlabeled wildtype PD-1 were performed with clonal yeast 
cultures of the binders in a similar manner (Fig. S1E). 



58 

Bivalent TrkA binder design by hallucination followed by inpainting 

We began the design process by aligning the structure of the TrkA minibinder bound to a single 
domain of TrkA (PDBID: 7N3T) to the complex of TrkA with its native ligand, nerve growth factor 
(PDBID: 2IFG). Having obtained the relative positions of the two minibinders in a signaling 
competent TrkA arrangement, we defined the functional motif as residues 5-18 on each of the 
minibinder chains. We carried out 600 steps of gradient descent with the usual motif and 
hallucination losses and forcing the native identity on motif residues 5, 6, 9, 10, 12, 13, 14, 16, 
17 and 18 from both minibinder chains. To avoid clashes with TrkA, we applied a repulsive loss 
against the coordinates from the appropriately aligned TrkA structure (𝜎𝜎=3.5 Å, weight = 5). 
Because many of the residues in either of the two motif segments were further from each other 
than the 20 Å distogram horizon, we also found it necessary to apply a coordinate rmsd loss 
(weight = 1), which has no such distance maximum, to encourage the two motifs to have the 
correct orientation to each other. The resulting 380 designs were filtered (cce loss < 1.0, 
coordinate rmsd loss < 1.5 Å and entropy loss < 2.0) down to 9 seed designs. After manual 
inspection for designs with well-packed secondary structure elements and minimal loops, we 
chose to diversify one design of an elongated three helix. 

To diversify the seed designs, we used inpainting to change the length and position of the two 
loop regions connecting each helix. First, we made 20 “jittered” structures by adding gaussian 
noise ~N(0,1) to “guide points” two residues inside each loop region. (Since inpainting is 
deterministic, this approach allowed us to sample different inpainting solutions for loops of the 
same length.) For each jittered structure, we inpainted the loops while varying their lengths 
between -3 and +7 residues of the original length, generating 1280 designs. After filtering for 
well folded designs (AF pLDDT > 80) that interact with TrkA (inter-PAE < 10 Å for at least one 
binding site), one design remained. This design and derivative mutants were assayed for TrkA 
binding by biolayer interferometry. 

Mdm2 binder (p53 helix scaffold) design by hallucination 
We generated 6000 initial (monomer) hallucinations using the same settings as in RSV-F site V 
above, with the motif defined as 1ycr chain B 17-29 or 19-29. We kept native amino acids on the 
motif except at positions 20, 24, 25, and 28, since these faced away from the target and may 
need to be designed to pack against the scaffold. 28 filtered designs (AF pLDDT > 85, motif AF-
RMSD < 1 Å, Rosetta score/residue < -2.5, rog < 14 Å) were used to seed two-chain 
hallucination runs of 300 MCMC steps each. Some of these designs were further refined in 
additional rounds of MCMC. Eventually 17,492 designs were generated from two-chain 
hallucination, which were filtered (inter-chain PAE < 7 Å, pLDDT_binder > 85, AF-Rosetta ddG 
< -48, SAP score < 33, target-aligned binder RMSD < 5 Å, net charge < -5) and manually 
inspected to identify the best designs. 

Native protein scaffold search 
How necessary was it to use deep learning methods to scaffold the chosen functional sites? 
Without the ability to generate protein backbones, we would be limited to grafting the motifs into 
existing native protein backbones. To estimate the difficulty of using this non-deep learning 
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approach, we used the Rosetta MotifGraft (77) mover to search the PDB for proteins that we 
could potentially graft the motifs into, with the following requirements: 

1. The resulting chimera does not clash with the binding target (if applicable). 
2. For motifs with multiple segments, all of the starting and ending backbone atoms of the 

motif have a combined RMSD less than 1A to the graft sites in the native proteins. For 
added flexibility, each motif segment could replace a native segment up to 50 aa longer 
or shorter than itself. (ie - A short loop in the motif could replace a long native loop, so 
long as the starting and ending points were close to each other.) 

3. For motifs with only a single element, the corresponding native segment be the same 
length and have an all backbone RMSD less than 1A. We could not filter on just the 
RMSD of the starting and ending points because it poorly constrains the orientation of 
the amino acids, resulting in non-plausible chimera junctions. 

To account for sequence (and structural) redundancy, the sequences of all single protein chains 
in the Protein Data Bank (PDB) solved by x-ray crystallography were clustered at a 30% 
sequence identity threshold using mmseqs2 (78) and assigned to a unique cluster. The number 
of suitable native scaffolds reported in Table S3 is the number of clusters that had at least one 
match, excluding the cluster that the motif was taken from. The frequency is that number divided 
by the total number of clusters in the PDB. 
The number of matches is still likely an overestimate, since many of the matched native proteins 
are highly structurally homologous to the original structure the motif was taken from and 
therefore unlikely to scaffold the motif in a meaningfully different way. Additionally, there is no 
constraint that the matched native proteins be small or compact, an advantage in potentially 
downstream applications and a requirement that the hallucinated designs generally fulfill.  
For the RSV-F site V motif, we performed a more detailed analysis against both the PDB100 
and the AlphaFold proteomes database (41) (Fig. S20). The motif, which contains a single 
contiguous segment, was searched against all possible positions in all structures (or models) in 
the 2 databases, and the lowest backbone RMSD was recorded for each structure. We filtered 
out any structure containing clashes (defined as heavy atoms closer than 2Å) to the antibodies 
against this motif in PDB:5TPN, as well as any whose sequence was more than 50% identical to 
5TPN. Only 2 results (6w16, 5wb0) remained with RMSDs lower than our best designs (or a 
frequency of 2/(355712+161370) = 3.9x10-6 across the 2 databases), and even these are 
distantly related (36% identity) to 5TPN and highly related (90% identity) to each other. Before 
filtering out homologs and receptor clashes, we obtained 67 scaffolds in the databases 
(frequency 1x10-4) better than our best design. 

 

https://www.zotero.org/google-docs/?XtH6pb
https://www.zotero.org/google-docs/?XtH6pb
https://www.zotero.org/google-docs/?XtH6pb
https://www.zotero.org/google-docs/?ZypQtd
https://www.zotero.org/google-docs/?ZypQtd
https://www.zotero.org/google-docs/?ZypQtd
https://www.zotero.org/google-docs/?okiQse
https://www.zotero.org/google-docs/?okiQse
https://www.zotero.org/google-docs/?okiQse
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Supplementary Figures 
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Figure S1. trRosetta-based hallucination and testing of PD-1 mimetics 
(A) Distributions of metrics for PD-1 hallucinations, Rosetta designs, and experimental library 
(Supplementary Text). (B) PE (binding) vs FITC (surface displayed protein) signal during FACS 
sorting of PD-1 mimetics. Sort 2 (1 μM PD-L1 with avidity) and 3 (1 μM PD-L1, no avidity) are 
not shown. (C) Binding signal (Methods) from clonal yeast cultures versus receptor 
concentration for HAC PD-1 and designs isolated from pooled sorting. Apparent Kd values in nM 
are: HAC PD-1: 4.10; pd1_mim1: 15.9; pd1_mim2: 12.5; pd1_mim3: 42.9. (D) Crystal structure 
of HAC PD-1 (discontinuous interface motif in 2 shades of orange) and design models of 3 
experimentally isolated binders. “RMSD” denotes the backbone RMSD between design model 
and template motif at 22 interface residues (Methods). (E) Normalized PE (binding) signal for 
clonal yeast cultures expressing the 3 binders in the presence of receptor and receptor + 
unlabeled purified wildtype PD-1. (F) Distribution of sequence length, amino-acid identity to 
HAC PD-1, and TM-score to HAC PD-1 for the 3,038 experimentally tested designs. The values 
for HAC PD-1 and the 3 binders shown in (D) are plotted as vertical bars. (G) Comparison of 
trRosetta and RosettaFold for hallucinating PD-1 mimetics. AlphaFold predicted lDDT and motif 
backbone RMSD (AF model versus native motif) for hallucinations generated using trRosetta, 
RosettaFold, or trRosetta followed by Rosetta-based sequence design. 
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Figure S2. Auxiliary and alternative loss terms 
(A) Schematic of the pairwise distances and orientation angles whose distributions are predicted 
by trRosetta and RosettaFold and which are used to define the motif and hallucination losses. 
(B) Schematic of radius of gyration and distances used to calculate repulsive and attractive 
losses (Supplementary Text). (C) Functional forms of the losses. (D) Distributions of DAN-lDDT, 
motif RMSD, and fraction of residues that are helix for designs generated using entropy or KL 
divergence hallucination losses (Supplementary Text), for scaffolding a 2-segment motif from 
C3d (1GHQ chain A residues 104-126, 170-185). (E) DAN-lDDT and motif RMSD for the same 
C3d scaffolding problem as in (D), but with varying the loss term weights for the cross-entropy 
based motif loss (wM,CE) or RMSD-based motif loss (wM,RMSD). 
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Figure S3. Training and inpainting with RFimplicit 
(A) NMR structure of 2KL8 (left) alongside models of selected inpainting examples of the protein 
with a masked window size of 20 residues. Green denotes areas of sequence and structure that 
the network was allowed to see, gray denotes areas that the network inpainted. (B) Functional 
site scaffolding examples designed with RFimplicit. (Left) AF2 prediction of design EFhand_inp_2 
from Fig. S16 scaffolding the EFhand calcium binding site, with RMSD on the motif of 0.7Å 
between the prediction and the native 1PRW. (Right) AF2 prediction of design dife_impl_1 
scaffolding the di-iron binding site from bacterioferritin protein 1BCF, with an RMSD on the motif 
of 0.5Å between the prediction and the native, and an AF2 pLDDT of 91. (C) Training curves of 
RFimplicit show that starting the training procedure from a pretrained RosettaFold model (red) 
results in better sequence design accuracy and structure prediction accuracy than starting from 
a completely untrained RosettaFold (green). (D) Sequence recovery of RFimplicit vs Vanilla 
RosettaFold on a set of 52 de novo proteins (Supplementary Text, “Single sequence predictions 
using AlphaFold”) shows RFimplicit outperforms the baseline model at protein sequence design. 
(E) CA-LDDT of RFimplicit vs Vanilla RosettaFold shows the model is able to retain its structure 
prediction capabilities on the same set of 52 de novo proteins even after learning protein 
sequence design. (F) AF-RMSD of the “motif” (unmasked) region when performing the 
inpainting benchmark seen in Fig. 1F-G (main text) using RFimplicit vs Vanilla RosettaFold, and a 
masked window size of 20 residues.  
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Figure S4. Training of joint sequence-structure recovery RosettaFold.  
(A) Depiction of the three tasks used to train RFjoint, which were trained with equal likelihood 
(see Algorithm 1). Task 1 comprised a fixed-backbone sequence design task of a continuous 
segment of a given protein, without the immediate up- and downstream protein visible (see 
Methods). Task 2 comprised an inpainting task, where the model was tasked with predicting the 
sequence and structure of a continuous section of protein, also without up- and downstream 
protein visible. Asterisks indicate “guiding points” provided as inputs during inpainting to Task 3 
is the structure prediction task originally used to train RosettaFold. (B) Training curve for RFjoint, 
showing total training (red) and validation (black crosses) losses decreasing. (C) A selection of 
different losses associated with each of the three tasks. RFjoint does not severely deteriorate in 
its ability to predict protein structures (task 3, green line), but its ability to inpaint structure (task 
2) improves dramatically (blue line). The model also learns to predict the sequence of a fixed 
backbone (task 1, orange line). (D) Masking out the structure and sequence of the flanking 
regions (depicted in (A), Tasks 1 and 2) improves inpainting performance. RFjoint was compared 
to an identically-trained model, except that flanking regions were not masked during training, on 
the benchmarking task described in Fig. S5. Both AlphaFold pLDDT in the inpainted region 
(top), and the “Motif” RMSD of the AlphaFold predictions (bottom) were marginally better for 
RFjoint. (E) RFjoint outperforms RFimplicit, both in terms of the AlphaFold pLDDT in the inpainted 
region (left), and in the “Motif” RMSD of the AlphaFold prediction (right). Graphs in D and E 
correspond to a masked window of 30 residues.  
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Figure S5. Comparison of hallucination and inpainting design quality 

(A) Inpainting versus hallucination AlphaFold pLDDT, as a measure of overall design quality, for 
various window sizes over which sequence and structure were rebuilt by both methods. Each 
point corresponds to a crystal structure from a benchmarking set of de novo proteins. (B) 
Inpainting versus hallucination motif AF-RMSD for the same benchmarking set. The “motif” is 
defined as the region of the protein that was not masked for rebuilding. (C) Percentage 
sequence recovery in the rebuilt region of protein, in the same benchmarking set. 
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Figure S6. Generating diversity with inpainting 
(A) With a large region of structure masked, inpainting can sometimes produce confidently-
predicted designs that scaffold the input motif. Two designs are shown, with the dramatically 
different looping order (left) or topology (right) highlighted with spectrum colors. Both designs 
scaffold the input “motif” (dark gray). (B) Analysis performed on the inpainting benchmarking 
data shown in Fig. S5. While the proportion of inpainted designs passing AlphaFold filters (> 75 
pLDDT, < 1.5 Å, orange line) decreases with increasing size of the masked window, those 
designs that do pass filters, and thus successfully scaffold the motif, show more scaffold 
diversity (as assessed by AF-RMSD to the native masked region) than those designs with a 
smaller inpainted region (blue line). (C) Further diversity can be explicitly generated by 
perturbing the input coordinates. During training, RFjoint was trained to Cɑ-coordinates as 
approximate positional information (see Methods). Therefore at inference, input Cɑ-coordinates 
can be randomly translated (uniformly sampled from within depicted spheres, left), and the 
model thus outputs diverse inpainted structure (right, gray) capable of supporting the unmasked 
“Motif” (right, green). All designs shown in (C) have pLDDT (both total pLDDT and just in the 
inpainted region) > 80 and “Motif” AF-RMSD < 1.2 Å, and represent examples from each of 30 
clusters (clustered at total TM score cutoff of 0.95).  
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Figure S7. Using AlphaFold for in silico evaluation of de-novo-designed proteins 
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(A) AF pLDDT (mean across all 5 models) using single-sequence input (no multiple-sequence 
alignment) for a benchmark set of 153 native proteins (79), 86 structurally validated de novo 
proteins, and experimentally tested or visually displayed designs in this study. (B) RMSDs 
between AF predictions and crystal structures (averaged across all 5 models) for the same 
proteins as in (A). (C) AlphaFold pLDDT distributions of hallucinations for 3 representative 
design problems (blue). The designs are filtered to those with high plDDT and low motif RF-AF 
RMSD (orange), and then the sequence is redesigned using Rosetta Fastdesign and scored 
again by AlphaFold (green). (D) Scatterplots of AF pLDDT versus Rosetta score (energy) per 
residue, showing that AF quality estimates correlate with energy-function-based quality 
estimates. (E) RMSD between predicted and crystal structure via Rosetta ab initio (“forward 
folding”) versus AlphaFold for 34 de novo designs not in the AF training set (Supplementary 
Text). All predictions used only single-sequence input. (F) pnear, a measure of the confidence of 
an ab initio prediction, versus AF pLDDT, for the de novo designs in (E). (G) RMSD between AF 
predictions and crystal structures versus AF pLDDT for the de novo designs in (E). 

 
 

https://www.zotero.org/google-docs/?xbnTsD
https://www.zotero.org/google-docs/?xbnTsD
https://www.zotero.org/google-docs/?xbnTsD
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Figure S8. Structural diversity of hallucinated and inpainted RSV-F site V scaffolds 
(A) Random subsample of 1000 hallucinations, 500 refined hallucinations (Materials and 
Methods), and 1000 inpaintings for the RSV-F site V epitope scaffolding problem, and (B) 
subset of designs with AF pLDDT > 75 and motif AF-RMSD < 1.5 Å. All pairwise structural 
distances (1 - TM-score) were projected into 2 dimensions using classic multidimensional 
scaling. 8 clusters were identified using k-means, and design models of cluster representatives 
(black-outlined markers) with highest pLDDT are shown in (C) with motif region in purple. The 
number of k-means clusters was chosen arbitrarily. Inpaintings (triangles) and hallucinations 
(circles, squares) occupy different regions of structure space. (D) Distributions of AlphaFold 
pLDDT, motif AF-RMSD, and pairwise TM-scores within hallucinations, refined hallucinations, 
and inpaintings, either in full set or only designs with pLDDT > 75 and motif AF-RMSD < 1.5 Å 
(“filtered”). 
 



73 
 



74 

Figure S9. RosettaFold and AlphaFold models of hallucinations 
RosettaFold (RF) and AlphaFold (AF) models of hallucinations for (A) RSV-F site V and (B) site 
II epitope scaffolds, (C) ACE2 receptor traps, and (D) carbonic anhydrase and (E) ketosteroid 
isomerase (KSI) active-site scaffolds. These include the designs shown in the main figures, as 
well as additional designs. Functional motifs are highlighted in purple. The N- and C-termini in 
some designs have been colored blue and red (respectively) to highlight that hallucination can 
find diverse topological solutions, despite having similar overall folds. Because the KSI designs 
were hallucinated using AlphaFold model 3 (AF3), validation models were predicted with AF 
model 4 (AF4). Detailed metrics for these designs can be found in Table S2.  
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Figure S10. Distribution of plDDT and motif RMSD of hallucinations before filtering 
Distributions of (A) AlphaFold pLDDT and (B) backbone RMSD between native motif and AF 
predictions from hallucinated sequences, for design problems presented in Fig. 2-3. 
Parentheses indicate the number of designs. Red lines indicate designs filtered and chosen for 
display in main figures. 
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Figure S11. Experimental characterization of RSV-F site V scaffolds 

(A) Binding response (response units) versus time on SPR for RSV-F site V designs, point 
mutants, and control RSV F protein. Computed KD values are shown in Fig. 2. (B) Mean residue 
ellipticity at 220 nm versus temperature from CD. Melting points (Tm) values calculated from a 
two-state fit are shown in the inset. (C) CD spectra of point mutants with complete loss of 
activity. (D-E) Compensated PE-A (hRSV90 binding) versus compensated FITC-A (yeast 
display) for a pool of 56 RSV-F site V inpaints with (D) no target or (E) 100nM binding target. (F) 
RosettaFold (RF) and Alphafold2 (AF) models of inpainted designs recovered from the sorted 
cells in (E). 
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Figure S12. Di-iron hallucinations containing buried hydrogen-bond networks 
(A) Two di-iron hallucinations and close-ups (C, E) of the residues near the metal binding site. 
Structures are AF predictions after AMBER relax (80). The native protein used as a 
hallucination reference is shown in (B, D) after aligning to the hallucinations on the backbone 
atoms of the functional residues (orange in native, purple in hallucinations). Metals shown in (C, 
E) are taken from the native structure after superimposition. Note the presence of hallucinated 
polar residues (gray histidines and tyrosines) to form hydrogen-bonding networks with the 
functional histidines and glutamates, which were constrained to their native identities during 
hallucination. 

https://www.zotero.org/google-docs/?seXvzV
https://www.zotero.org/google-docs/?seXvzV
https://www.zotero.org/google-docs/?seXvzV
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Figure S13. A subset of successful di-iron binding proteins designed with RFjoint 

A total of 4000 inpainted designs haboring the bacterioferritin (1BCF) di-iron binding site and 
encompassing 8 unique looping orders were generated with RFjoint. (A) 57.9% of outputs had 
AlphaFold pLDDT in the inpainted region > 80 (left), and 43.7% of these designs had a 
predicted RMSD to the input motif < 1Å (right). (B) All 8 looping orders produced designs with 
AlphaFold pLDDT > 80 and motif AF-RMSD < 1Å. Looping orders are with respect to residue-
indices in the native bacterioferritin protein (left). (C) After filtering and modest sequence 
optimization with RFjoint (see supplementary methods), 96 designs were ordered encompassing 
all 8 looping orders. (D-G) Characterization of three successful designs. (D) AlphaFold 
predictions of the three designs (right-most three designs), colored to highlight the different 
looping orders from the native bacterioferritin (left). Iron atoms, aligned to the motif, are depicted 
in gray for clarity. (pLDDT/Motif AF-RMSD: dife_inp_1:  92/0.65Å; dife_inp_2: 94/0.64Å; 
dife_inp_3: 90/0.76Å) (E) Designs at 200 μM were incubated with an 8X molar excess of CoCl2. 
All three designs show absorbance spectra consistent with Co2+ binding in a tetra/penta-
coordinate state to the designs (solid yellow lines). Such absorbance was not present in the 
absence of Co2+ (solid blue lines), or with mutant designs where the 6 coordinating residues 
were mutated to alanine (dashed yellow lines). (F) All designs showed circular-dichroism (CD) 
spectra consistent with helical proteins. (G) Analysis of protein stability by CD-melts. All three 
designs were stabilized by binding to metal ions (8X molar excess of Co2+). Note that dife_inp_1 
data (E-G) is the same as in Figure 3, reproduced here for convenience. 
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Figure S14. Characterization of EF-hand designs 

Experimental and computational characterization of EF-hand designs tested experimentally. (A) 
AF2 prediction of inpainted proteins EFhand_inp_1 and EFhand_inp_2 (top row) and 
hallucinated proteins EFhand_hal_1 and EFhand_hal_2 (bottom row) next to their terbium 
fluorescence spectra from a yeast-based initial screen (Materials and Methods). The same 
negative control spectrum (PDB accession 4DT5, orange) is duplicated across all plots. (B) 
Computational metrics of inpainted EF-hand designs from RFjoint that were tested by yeast 
display. In addition to standard filters like motif AF-RMSD and AF2 pLDDT, designs were also 
filtered by their SAP score and net charge. (C) Size exclusion chromatogram at 280 nm 
absorbance for EFhand_inp_1 suggests the protein occupies a stable monomeric state.  
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Figure S15. Experimental characterization of inpainted PD-L1 binder  
(A) Crystal structure of HAC PD-1 (binding interface motif in orange) in complex with PD-L1 
(blue) and design model of pdl1_inp_1 (motif in purple). The overall fold of the design is quite 
different from HAC PD-1, as the former contains two buttressing helices against the interfacial 
sheet instead of the original beta-sandwich. The design also includes an additional beta strand 
which extends the sheet in its C-terminus. (B) The looping order of the interfacial beta strands in 
the design (purple / dark purple) has changed dramatically from the HAC PD-1, demonstrating 
the ease of relooping secondary structure elements while maintaining the desired motif with 
inpainting. Notably, the order in which the two discontiguous strand-loop-strand submotifs 
appear in primary structure has switched, as well as the order in which strands 3 and 4 from 
HAC PD-1, which become strands 1 and 2 in the design, respectively. (C) Binding signal (PE-H) 
normalized to yeast surface expression (FITC-H) of clonal yeast population displaying 
pdl1_inp_1 labeled with 0 or 50 nM PD-L1, or 50 nM PD-L1 + 5 μM unlabeled PD-1. Loss of 
binding upon PD-1 competition suggests that pdl1_inp_1 binds PD-L1 at the native PD-1 
binding site. (D) Fluorescence activated cell sorting data from yeast display binding 
experiments. Titles denote the concentration of a disulfide linked homodimeric PD-L1 target 
present in the binding reaction. Sort #1 denotes the first pooled sort of 31 designs, Sort #2 
denotes the second sort performed with the enriched population of yeast displaying binding 
activity from Sort #1.  
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Figure S16. Experimental characterization of a bivalent TrkA binder 

(A) Association and dissociation kinetics of several TrkA binder variants as measured by 
biolayer interferometry. WT is the designed binder, F27R and F68R are mutants knocking out 
either one of the designed binding interfaces, and F27R F68R is a double-mutant knocking out 
both interfaces. (B) Kinetic traces of all four TrkA binder variants compared at the same 
concentration (1111 nM) show that wt binds the most TrkA, both single site mutants bind similar 
amounts, and the double mutant binds negligible amounts of TrkA. These data show that either 
binding site is sufficient to bind TrkA, indicating that we successfully made a bivalent TrkA 
binder. 
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Figure S17. Multi-chain hallucination for binder design 
Schematic of the variations on binder hallucination methods. Hallucinated binder gray, binding 
partners blue, motifs purple. (A) Motif scaffolding (B) Motif scaffolding while enlarging existing 
interfaces. (C) Free binder hallucination. (D) Design metrics of 17,450 Mdm2 binder 
hallucinations. “Monomer -> 2-chain” are designs after one round of two-chain MCMC 
refinement starting from high-scoring hallucinated monomers (Supplementary Text). “2-chain -> 
2-chain” are designs after an additional round of filtering and MCMC refinement. Metrics for the 
native p53 helix and the 3 highlighted designs are shown in green and red lines, respectively. 
(E) RF and AF design models of the Mdm2 binder designs shown in Fig. 5G. New binding 
interactions (hallucinated residues within 5 Å of the target) are in green. (E) Free-hallucinated 
TrkA and (F) PD-L1 binder designs. (G) Design metrics for free-hallucinated PD-L1 binders 
using the “leaky” entropy loss (orange), compared to the standard entropy loss (blue) 
(Supplementary Text). 
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Figure S18. Free hallucination 12 residue stub placement on native targets 
(A) Freely hallucinated 12 residue stubs against native proteins. Gray hallucinated stub; Orange 
native binder. (B) Hallucinated stubs network docked on alternative hydrophobic grooves to 
those of native binders. Boxed structures show side chains packing against targets. Structure 
PDB IDs listed. 
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Figure S19. Hyperparameter tuning and motif-placement methods for hallucination 
(A) DeepAccNet-predicted lDDT (DAN-lDDT) and backbone RMSD between hallucination 
model and reference crystal structure at 22 interface residues for a hyperparameter scan for 
gradient descent using RosettaFold with a 2-segment motif from HAC PD-1 (residues 63-82 and 
119-140). Plotted are mean and 90% confidence interval of 50-100 trajectories per condition. 
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Optimal parameters were dropout = 0.2, learning rate = 0.05. Running 600 iterations gave the 
best results but 400 steps was comparable and therefore used for most problems. (B) Loss 
trajectories for gradient descent (GD) followed by MCMC, MCMC only, or MCMC followed by 
GD. (C) Distributions of final losses for the trajectories shown in (B). (D-E) Motif backbone 
RMSD and DAN-lDDT for (D) PD-1 mimetics hallucinated with different motif placement 
methods (Supplementary Text). Motif consists of 2 discontinuous segments as shown in Fig. 
S1. “Fixed, initial” is an initial run of the fixed motif placement method where contigs are placed 
anywhere along a given length, and “Fixed, optimized” is a run where gaps between contigs are 
chosen based on results from the “initial” run. (E) Same methods but with a 2-segment motif 
from C3d (1GHQ: A104-126,A170-185) and a “fixed, optimized” run was not done. 
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Figure S20. RMSD of RSV-F motif hits in PDB and AlphaFold proteomes database 
Distribution of best RMSD between the RSV-F epitope (PDB 5tpn, chain A residues 163-181) 
and each structure in the PDB or AlphaFold proteomes database. The motif RMSD of the best 5 
hallucinated designs are plotted for comparison. The frequency of finding an RMSD as good as 
any of these designs or better was 3.9x10-6 (see “Native protein scaffold search” in 
Supplementary Text). 
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Figure S21. Structure prediction performance of neural networks used in this study  
(A) Average GDT-TS of prediction methods on the CASP14 targets. AlphaFold predictions were 
made with the same MSA and templates used for the RosettaFold variants. (B) Average GDT-
TS of prediction methods on 60 de novo designs not included in the RosettaFold training set. 
The error bars represent a 95% confidence interval. 
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Supplementary Tables 
Table S1. Natural proteins used for mimetic design 
“Motif residues” indicate residues that were constrained to native geometry during hallucination. 
Sometimes only a subset of the motif residues actually comprise a binding interface or catalytic 
site; these are denoted “functional residues”. 

Native protein 
(Reference) 

PDB 
ID 

Chain Motif residues Functional residues Binding 
partner(s) 

HAC PD-1 (81) 5IUS A A63-82, A119-
140 

A64, 66, 68, 70, 73-75, 
77-78, 81, 85, 89-91, 
124, 126, 128, 132, 
134, 136, 139 

PD-L1 

RSV-F site II 
(82) 

3IXT P P254-277  Antibody 

RSV-F site V 
(28) 

5TPN A A163-181  Antibody 

ACE2 (83) 6VW1 A A24-42  SARS-CoV2 
receptor 
binding 
domain 

EF-hand (84) 1PRW A A21-31,A56-67 A21-31,A56-67 Ca2+ 

Di-Fe (30) 1BCF A A18-25,A47-
54,A94-
97,A123-130 

A18, 51, 54, 94, 127, 
130 

Fe2+ 

Carbonic 
anhydrase II 
(85) 

5YUI A A62-65,A93-
97,A118-120 

A94,A96,A119,A199 Zn2+ 

Δ5-3-ketosteroid 
isomerase (37) 

1QJG A A14,A38,A99 A14,A38,A99 equilenin 

p53 N-term 
helix (86) 

1YCR B B17-27 A19, 23, 26, 27 Mdm2 

TrkA minibinder 
(4) 

7N3T A A5-18 A5, 6, 9, 10, 12, 13, 
14, 16, 17, 18 

TrkA 

  

https://www.zotero.org/google-docs/?D3Jgmv
https://www.zotero.org/google-docs/?D3Jgmv
https://www.zotero.org/google-docs/?D3Jgmv
https://www.zotero.org/google-docs/?ACDpgL
https://www.zotero.org/google-docs/?ACDpgL
https://www.zotero.org/google-docs/?ACDpgL
https://www.zotero.org/google-docs/?BNo7Ia
https://www.zotero.org/google-docs/?BNo7Ia
https://www.zotero.org/google-docs/?BNo7Ia
https://www.zotero.org/google-docs/?InFtA6
https://www.zotero.org/google-docs/?InFtA6
https://www.zotero.org/google-docs/?InFtA6
https://www.zotero.org/google-docs/?CQnGMr
https://www.zotero.org/google-docs/?CQnGMr
https://www.zotero.org/google-docs/?CQnGMr
https://www.zotero.org/google-docs/?Tf9bHF
https://www.zotero.org/google-docs/?Tf9bHF
https://www.zotero.org/google-docs/?Tf9bHF
https://www.zotero.org/google-docs/?XcVZkc
https://www.zotero.org/google-docs/?XcVZkc
https://www.zotero.org/google-docs/?XcVZkc
https://www.zotero.org/google-docs/?buqG32
https://www.zotero.org/google-docs/?buqG32
https://www.zotero.org/google-docs/?buqG32
https://www.zotero.org/google-docs/?j2gPfM
https://www.zotero.org/google-docs/?j2gPfM
https://www.zotero.org/google-docs/?j2gPfM
https://www.zotero.org/google-docs/?bjW7Ma
https://www.zotero.org/google-docs/?bjW7Ma
https://www.zotero.org/google-docs/?bjW7Ma
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Table S2. RMSDs between native protein, design model, and AlphaFold model 
All RMSDs are in angstroms. Columns in red are the metrics reported in the main text and 
figures. RMSD values in parentheses (for hcA and KSI) are full-atom RMSDs over the catalytic 
sidechains. KSI designs are generated using AF, and “Design” refers to models generated using 
the ensembling approach over AF models 1,2,3,5 and “AF” refers to AF model 4 (Materials and 
methods). 

 
Overall Motif 

Design AF 
plDDT 

RMSD, 
Design to AF 

RMSD, 
Design to AF 

RMSD, Design 
to native 

RMSD, AF 
to native 

rsvfv_hal_1 82 1.37 1.06 1.31 0.7 

rsvfv_hal_2 88 0.75 0.34 0.67 0.64 

rsvfv_hal_3 86 0.85 0.24 0.65 0.65 

rsvf-v_854 82 2.45 0.65 0.71 0.75 

rsv_inp_1 83 0.91 0.5 0.51 0.59 

rsv_inp_2 83 0.76 0.57 0.6 0.81 

rsv_inp_3 88 1.14 0.55 0.74 0.85 

rsv_inp_4 81 1.69 0.64 0.5 0.87 

dife_inp_1 92 0.3 0.24 0.61 0.65 

dife_inp_1_mutant 87 n/a n/a n/a 0.71 

dife_inp_2 94 0.91 0.39 0.54 0.64 

dife_inp_2_mutant 95 n/a n/a n/a 0.79 

dife_inp_3 90 0.54 0.31 0.72 0.76 

dife_inp_3_mutant 92 n/a n/a n/a 0.89 

dife_inp_4 88 1.04 0.77 0.32 0.85 

dife_inp_5 90 0.82 0.67 0.39 0.71 

dife_inp_6 93 0.77 0.39 0.99 0.92 

dife_inp_7 95 0.4 0.27 0.64 0.68 

dife_inp_8 90 0.72 0.62 0.31 0.8 

Di-Fe_86 84 1.97 0.89 0.4 0.9 

Di-Fe_56 84 2.28 0.74 0.46 0.87 

EFhand_inp_1 87 0.86 0.82 0.29 0.69 

EFhand_inp_2 87.5 1.7 0.3 0.8 0.7 
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EFhand_hal_1 82.2 1.42 0.59 0.36 0.52 

EFhand_hal_2 82.8 0.76 0.47 0.55 0.73 

hcA_1 73 1.44 0.73 (2.23) 0.75 (1.39) 1.04 (1.97) 

hcA_2 71 1.62 0.46 (1.74) 0.46 (1.36) 0.62 (2.02) 

ksi_1 (AF) 84 1.04 0.30 (0.30) 0.30 (1.22) 0.30 (1.20) 

ksi_2 (AF) 72 1.06 0.16 (0.22) 0.43 (1.63) 0.53 (1.65) 

pdl1_inp_1 84 0.79 0.51 1 1.1 

trkA_56 89 2.53 2.06 1.15 2.34 

mdm2_hal_1 88.6 1.70 1.75 0.73 1.29 

mdm2_hal_2 84.1 1.95 0.83 0.59 0.63 

mdm2_hal_3 81.7 1.14 1.00 0.77 0.68 
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Table S3. Interface metrics of protein-binder designs 

AlphaFold inter-PAE, binder pLDDT, AF-Rosetta ddG, and target-aligned binder RMSD 
(Materials and Methods) for protein-binder designs presented in this paper. Note that designs 
based off of motifs are listed here and in Table S2, but the free hallucinations are only shown 
here. pdl1_inp_1 and trkA_56 were not designed using 2-chain hallucination, so there were no 
RF complex design models to use for target-aligned binder RMSD calculations. 

Design Inter-PAE Binder pLDDT AF-Rosetta ddG Target-align  
binder RMS  

pdl1_inp_1 5.695 88.5 -49.9 N/A 

trkA_56 8.428 88.4 -51.8 N/A 

mdm2_hal_1 5.904 87.6 -47.2 2.93 

mdm2_hal_2 4.822 89.7 -45.8 3.36 

mdm2_hal_3 6.208 87.1 -45.9 3.48 

trkA_freehal_1 6.40 87.4 -32.5 3.87 

trkA_freehal_2 4.63 92.1 -35.8 1.24 

pdl1_freehal_1 5.58 84.8 -38.23 3.43 

pdl1_freehal_2 9.72 82.3 -26.36 1.58 

pdl1_freehal_3 8.87 81.0 -37.15 1.59 
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Table S4. Frequency of suitable native scaffolds 

 
Native protein 

 
PDB ID 

 
Chain 

 
Motif residues 

Scaffolds in the PDB with <1Å motif 
RMSD 

Number Frequency 

RSV-F site II 3IXT P P254-277 0 0 

RSV-F site V 5TPN A A163-181 1 3.76e-05 

ACE2 6VW1 A A24-42 1874 7.05e-02 
 

EF-hand (double) 1PRW A A21-31,A56-67 30 1.13e-03 

EF-hand (single) 1PRW A A56-67 77 2.90e-03 

Di-iron 1BCF A A18-25,A47-54,A94-
97,A123-130 

3 1.13e-04 

Carbonic 
anhydrase II 

5YUI A A62-65,A93-
97,A118-120 

1 3.76e-05 

C3d 1GHQ A A104-126,A170-185 2 7.52e-05 

HAC PD-1 5IUS A A63-82, A119-140 56 2.11e-03 
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Table S5. Similarity of designs to native proteins 
Designed proteins were compared to protein in the PDB and the Facebook AF2 models 
database (64) for structural and sequence similarity with TM-align (71) and blastp (87), 
respectively (Materials and Methods). TMalign “% ID” refers to the number of identities over the 
aligned region divided by the number of aligned residues. BLAST “% ID” refers to the number of 
identities over the best HSP, normalized to the length of the query sequence (design). 

 TMalign to PDB TMalign to FB AF2 BLAST to NR 

Design Top hit 
TM 

score 
% 
ID Top hit 

TM 
score 

% 
ID Top hit E-value 

% 
ID 

dife_inp_1 5vju_A 0.89 9.2 A0A4S8HXL5 0.87 8.5 None NA NA 

dife_inp_1_mut
ant 5vju_A 0.88 9.2 A0A4S8HXL5 0.90 9.2 None NA NA 

dife_inp_2 7jic_B 0.84 3.5 A0A328DJV2 0.87 9.7 WP_000675503.1 2.24E-02 23 

dife_inp_2_mut
ant 7jic_B 0.82 3.5 A0A1D2MQT9 0.89 8.8 None NA NA 

dife_inp_3 1yo7_A 0.85 12.3 A0A3S2NBQ8 0.87 12.5 None NA NA 

dife_inp_3_mut
ant 4phq_B 0.83 13 A0A2N1PYQ6 0.89 11.6 None NA NA 

dife_inp_4 6egc_A 0.84 22.4 A0A1J0A759 0.87 5.7 None NA NA 

dife_inp_5 6egc_A 0.85 14.8 A0A1D8FWU8 0.84 18.6 None NA NA 

dife_inp_6 5vjs_A 0.80 10.2 A0A131Z7Y1 0.87 4.7 None NA NA 

dife_inp_7 5vjs_A 0.84 10.5 A0A1D1UXZ2 0.87 9.7 None NA NA 

dife_inp_8 5vju_A 0.85 30.7 J9JP71 0.88 9.9 2LFD_A 9.30E-03 22 

rsv_inp_1 5a2q_G 0.61 16.1 A0A2V8WE05 0.63 15.7 1G2C_A 5.40E-01 40 

rsv_inp_2 6apd_B 0.64 42.1 A0A2V9VQU5 0.65 11.1 XP_021434148.1 6.38E+00 30 

rsv_inp_3 5clr_A 0.60 10.2 I2B993 0.69 13.3 WP_120068072.1 1.24E+00 29 

rsv_inp_4 5g4y_A 0.67 11.5 A0A2N5ZAK5 0.66 8.1 WP_159887573.1 5.70E+00 35 

trkA_56 2d4c_A 0.80 8.1 UPI00083C0126 0.83 8.1 None NA NA 

rsvfv_hal_1 6ntr_D 0.69 10.4 A0A2H6GLY6 0.77 10.1 3KPE_A 8.90E-01 26 

rsvfv_hal_2 
4dmg_
A 0.71 11.9 A0A290HYD2 0.78 12.1 RZV56203.1 3.12E+00 20 

rsvfv_hal_3 4auk_A 0.69 11.4 R7HWW9 0.76 12.9 WP_154333053.1 4.53E+00 31 

rsvf-v_854 5wb0_F 0.58 21.9 UPI000B354BFA 0.67 8.6 1G2C_A 5.80E-02 27 

rsvf-v_870 5csl_B 0.67 16.7 A0A413CFN9 0.72 11.5 1G2C_A 2.63E+00 27 

https://www.zotero.org/google-docs/?ytM2Rm
https://www.zotero.org/google-docs/?ytM2Rm
https://www.zotero.org/google-docs/?ytM2Rm
https://www.zotero.org/google-docs/?RRmLDH
https://www.zotero.org/google-docs/?RRmLDH
https://www.zotero.org/google-docs/?RRmLDH
https://www.zotero.org/google-docs/?gv9ZCw
https://www.zotero.org/google-docs/?gv9ZCw
https://www.zotero.org/google-docs/?gv9ZCw
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rsvf-v_828 6cp8_A 0.62 13.6 UPI0009045699 0.67 10.5 None NA NA 

rsvf-v_903 2x32_B 0.63 5 UPI0011AE9EE2 0.74 8.2 3KPE_A 1.56E-01 32 

rsvf-v_1050 5wti_Z 0.59 12.7 A0A524IGV4 0.63 1.6 AIZ95772.1 3.16E-02 32 

rsvf-ii_141 6ivm_A 0.68 10 A0A366EM18 0.74 9.1 HHG91166.1 6.16E+00 17 

rsvf-ii_171 5j0l_E 0.86 12.5 A0A1Y6CLD7 0.89 8.7 AWV19065.1 3.23E-01 34 

rsvf-ii_118 2yfa_A 0.74 15.4 A0A0M0J6I0 0.81 9 CCW60917.1 1.54E+00 27 

rsvf-ii_29 4jeh_B 0.78 9.1 R6XLH6 0.82 4.5 RKX18559.1 2.83E-01 17 

rsvf-ii_158 2j0o_A 0.86 11.1 A0A354DBJ4 0.88 8.2 WP_068486906.1 3.04E-01 29 

ace2_76 7jh6_A 0.81 14.6 A0A073CH21 0.86 10.4 QIN87098.1 5.91E+00 21 

ace2_1157 2j0o_A 0.76 11.8 A0A1Y2MHD8 0.83 3.5 WP_100023565.1 1.17E+00 24 

ace2_1007 5tqy_A 0.80 10.5 A0A4R7HW16 0.86 9.6 None NA NA 

ace2_1846 5iig_A 0.82 9.4 UPI00041B2217 0.81 10.3 None NA NA 

ace2_600 4q2g_B 0.72 11.1 R5GU22 0.81 5 EPE07190.1 2.41E+00 27 

ace2_109 3zcj_B 0.80 9.2 A0A3N0EL48 0.85 6.7 ROL44962.1 1.58E-01 22 

hcA_1 2hb0_A 0.77 17.2 A0A376L8Y0 0.75 14.8 WP_107852251.1 3.10E-01 30 

hcA_2 6ohh_B 0.79 15.5 A0A3D3R120 0.81 10.5 WP_021068970.1 6.97E+00 23 

ksi_1 (AF) 5k59_B 0.73 6.2 M3UPS5 0.78 4.2 WP_147602516.1 4.22E-01 21 

ksi_2 (AF) 1z8k_A 0.58 5.6 Q66636 0.61 7.1 KAF3849996.1 2.21E+00 25 

Di-Fe_86 6h2f_H 0.76 5.9 X0WN74 0.85 7.8 None NA NA 

Di-Fe_56 6ezv_X 0.75 3.5 A0A399XE29 0.78 3.5 TGO06933.1 1.45E+00 19 

pdl1_inp_1 5ldz_F 0.61 8.3 A0A2N1TGW6 0.67 6.7 WP_071803821.1 3.28E-02 25 

EFhand_inp_1 4by5_B 0.75 20.7 A0A2E7SWA3 0.77 21.4 XP_020433196.1 1.38E-17 52 

EFhand_inp_2 1juo_A 0.65 15.9 UPI00052857BB 0.72 23.2 None 9.52E-05 35 

EFhand_hal_1 2f8p_A 0.72 26.3 A0A0A1TVZ3 0.82 16.9 XP_019463585.1 5.04E-02 36 

EFhand_hal_2 6afs_B 0.67 3.1 UPI0004131E18 0.76 12.2 WP_092746209.1 6.09E-02 23 
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mdm2_hal_1 5h78_A 0.77 17.9 A0A2T4JJG5 0.85 15.8 None NA NA 

mdm2_hal_2 1fjg_T 0.78 17.9 A0A429CN45 0.86 16.4 XP_012788760.1 2.38E+00 27 

mdm2_hal_3 6w2v_B 0.86 16.7 A0A1F7QLQ5 0.90 11.7 XP_030199201.1 7.14E+00 27 

trkA_freehal_1 5wyl_A 0.75 7.9 UPI0012EDFAF2 0.81 4.7 WP_165006269.1 3.64E+00 25 

trkA_freehal_2 2oku_A 0.82 6.7 A0A4R8UL89 0.83 9.5 None NA NA 

pdl1_freehal_1 3q5d_A 0.77 12.1 A0A292YNZ8 0.80 4.9 WP_132874866.1 7.67E+00 33 

pdl1_freehal_2 4jhc_A 0.78 10 A0A521U212 0.86 10.3 MSR05998.1 4.94E+00 25 

pdl1_freehal_3 2ygt_A 0.75 3.3 A0A538M5E7 0.79 11.9 PVH99412.1 2.20E+00 32 
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Supplementary Algorithms 
Algorithm S1. Joint RosettaFold training Epoch  
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Supplementary Data 
Data S1. PDB files of all designs in paper 
Data S2. FASTA files of all designed sequences in paper 
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