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Abstract

Discretizations of Langevin diffusions provide a powerful method for sampling and Bayesian

inference. However, such discretizations require evaluation of the gradient of the potential

function. In several real-world scenarios, obtaining gradient evaluations might either be com-

putationally expensive, or simply impossible. In this work, we propose and analyze stochastic

zeroth-order sampling algorithms for discretizing overdamped and underdamped Langevin

diffusions. Our approach is based on estimating the gradients, based on Gaussian Stein’s

identities, widely used in the stochastic optimization literature. We provide a comprehen-

sive sample complexity analysis – number noisy function evaluations to be made to obtain an

ǫ-approximate sample in Wasserstein distance – of stochastic zeroth-order discretizations of

both overdamped and underdamped Langevin diffusions, under various noise models. We also

propose a variable selection technique based on zeroth-order gradient estimates and establish

its theoretical guarantees. Our theoretical contributions extend the practical applicability of

sampling algorithms to the noisy black-box and high-dimensional settings.

1 Introduction

First generation sampling algorithms, for example, Metropolis-Hastings algorithm are oblivious to
the geometry of the target density as a result of which they suffer from slower rates of convergence.
However, they are efficiently implementable and widely applicable, as they are based only on exact
density function evaluations; see, for example, [BRS93, KLS95, MT96, LS90, LV07, DJ20, MFR20],
for more details about such algorithms. Motivated by statistical physics principles, various re-
searchers developed second-generation of sampling algorithms, that leverage geometric informa-
tion regarding the target density [RR98, Nea11, RT96, ST99a, ST99b, GC11, BBKG18]. Such
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algorithms are based on gradient-based discretizations of continuous-time underdamped or over-
damped Langevin diffusions. Although such algorithms were developed much earlier, recently
strong theoretical guarantees have been established for sampling in the works of [DM17, DM+19,
Dal17, DK19, CCBJ18, CCAY+18, DCWY19] and several others. Such algorithms typically per-
form empirically better and exhibit faster rates of convergence compared to the first generation
sampling algorithms mentioned above.

In this work, given a density function π : Rd → R, with potential function f : Rd → R, of the
form

π(θ) =
e−f(θ)

∫

Rd e−f(r) dr
(1)

we consider the problem of sampling when we only have access to noisy evaluations of the potential
function f . We refer to this problem as stochastic zeroth-order sampling. Our approach is based
on discretizing overdamped and underdamped Langevin diffusions using stochastic zeroth-order
oracles, which, when queried returns noisy unbiased evaluations, F (x, ξ), of the function value
f(x). That is, we have E[F (x, ξ)] = f(x), where ξ is the random noise in our function evaluations,
which is not necessarily an additive noise. Our motivations for studying such problems are three-
fold:

• Computationally Complexity of Gradient-evaluation: A majority of existing discretiza-
tions of Langevin diffusions require computing the gradient of the potential function f in each
iteration. It is well-know that for a wide class of functions which could be expressed based on com-
positions of elementary differentiable functions, the computational cost of evaluating the gradient
is 4 to 5 times more than that of evaluating the function; see, for example [GW08]. Furthermore,
in order to compute the gradient, it is necessary to store several intermediate gradients, which in-
creases the memory requirement. Hence, for several potential functions, Langevin-discretization
based sampling algorithms might end up spending more time and memory for computing and
storing gradients in each iteration. To reduce the wall-clock runtimes of such sampling algo-
rithms, it is of interest to develop discretization of Langevin diffusions based only on function
evaluations.

• Non-availability of Analytic form of Potential Function: In a variety of scientific prob-
lems, the potential function f might not even be available in closed form, either due to the
sheer size of the dataset (see, for example [STRR15]), or due to the constraints in the physical
process underlying the statistical model (see, for example [Bea03, GW11, KDV12]). In these
situations, we do not have access to the analytical from of true potential function, let alone its
gradients, which are required for discretizing Langevin diffusions. Hence, it is of great interest
to develop discretization of Langevin diffusions based on noisy function evaluations to widen the
applicability of Bayesian inference. It is worth mentioning here that, in the case of Metropolis-
Hastings algorithms, [AR09, STRR15] developed and analyzed the so-called Pseudo-Marginal
Metropolis-Hasting algorithms which work with unbiased noisy density evaluations. However,
similar algorithms for sampling based on discretizing Langevin diffusions are lacking in the liter-
ature, except for the recent work on [ADL16] which considered a pseudo-marginal Hamiltonian
Monte Carlo algorithm. Our second motivation for this work is to fill this gap and to develop
and analyze a unified framework for stochastic zeroth-order discretization of Langevin diffusions
for Bayesian inference.
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• Automating Bayesian Inference: From a practitioner’s perspective, statistical modeling is
an inherently iterative process. The probabilistic model is typically refined during the scientific
process based on the fit to the data. In the context of sampling, this process could be understood
as changing the potential function f in the modeling process. However, each time the function f is
changed, it is also invariably required to re-code the sampling algorithm based on the analytically
computed gradient of the function f under consideration. Our third motivation in this work is
to automate this process, to help the practitioner with quick experimentation. As we will see
later, our proposed methodology allows for sampling from a wide variety of density functions
in a unified manner, as long as we have an oracle to obtain (noisy) evaluations of the potential
function f . It is worth mentioning that recently [RGB14, RTCB15, KTR+17] developed related
automated Bayesian inference algorithms based on variational inference.

1.1 Preliminaries

Consider the continuous-time Langevin diffusion process {LT : T ∈ R+} given by the following
stochastic differential equation,

dLT = −∇f(LT )dT +
√
2dWT , (2)

where T ∈ R+ and {WT : T ∈ R+} is a d-dimensional Brownian motion and ∇f(θ) ∈ R
d denotes

the gradient of f(θ). The Euler-Maruyama discretization of the process in (2) is given by the
following Markov chain:

xn+1 = xn − hn+1 ∇f(xn) +
√

2hn+1εn+1, (3)

for the discrete time index n = 0, 1, 2 . . .. Here εn ∈ R
d is a sequence of independent standard

Gaussian vectors, hn denotes the step-size and an initial point x0 is assumed to be given. The above
discretization is called as the Langevin Monte Carlo (LMC) sampling algorithm. The update step
of the LMC sampling algorithm shares similarity with the standard gradient descent algorithm
from the optimization literature. As a prelude to the rest of the paper, our main idea in this
work is to provide a non-asymptotic analysis of using stochastic zeroth-order gradient estimators
(described in details in Section 1.2) in place of the true gradient in (3) and related discretizations.

Denoting the distribution of the random vector xn by ̟n, to evaluate the performance of
the sampling algorithm, the 2-Wasserstein distance between ̟n and the target density π(θ) is
considered. For measures, p and q defined on (Rd,B(Rd)), the 2-Wasserstein distance is defined
as:

W2(p, q) :=

(

inf
̺∈̺(p,q)

∫

Rd×Rd

‖θ − θ′‖22 d̺(θ, θ′)
)1/2

, (4)

where ̺(p, q) is the set of joint distribution that has p and q as its marginals. The performance of
the sampling updates is measured by the above 2-Wasserstein distance between the distribution
̟n and the target density π, i.e., W2(̟n, π). Specifically, the iteration complexity of the algorithm
is defined as the number of iterations N , required to get W2(̟N , π) ≤ ǫ. We also define the notion
of oracle complexity which is the number of calls to the first-order or stochastic zeroth-order oracle
used to obtain W2(̟N , π) ≤ ǫ. For the LMC algorithm in (3), as we use only one gradient
evaluation in each iteration, the oracle and iteration complexity becomes the same.
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In order to obtain theoretical guarantees, a common assumption made in the literature on
LMC is that the function f is smooth and strongly convex.

Assumption 1.1 Letting ‖ · ‖ = ‖ · ‖2 denote the Euclidean norm on R
d, the potential function

f ,

A1: is strongly convex i.e., f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) ≥ m
2 ‖θ − θ′‖2, for m > 0.

A2: has Lipschitz continuous gradient, i.e., ‖∇f(θ)−∇f(θ′)‖ ≤ M‖θ − θ′‖ for M > 0.

The above assumptions on the potential function in-turn makes the density function π strongly
log-concave and smooth. Such an assumption is satisfied in several sampling and Bayesian infer-
ence problems including sampling from mixture of Gaussian distributions and Bayesian logistic
regression. Further assuming access to certain inaccurate gradients, [DK19] provide theoretical
guarantees for sampling under Assumption 1.1. Specifically, instead of the true gradient ∇f(xn)
in each step, it is assumed that we observe gn = g(xn) = ∇f(xn) + ζn, for a sequence of random
noise vectors ζn that satisfies certain bias and variance assumption. Then, the noisy LMC updates
corresponds to the case of the updates in Equation 3, with ∇f(xn) replaced by gn. For such an
update, [DK19] have the following non-asymptotic result. Before providing the result, we remark
that due to the assumptions on the stochastic gradient made in (5), this setting is referred to as
stochastic first-order setting.

Theorem 1.2 [DK19] Assume that the bias and variance of ζn satisfies respectively, for all n =
1, 2, . . .,

E[‖E(ζn|xn)‖2] ≤ δ2bd and E[‖ζn −E(ζn|xn)‖2] ≤ δ2vd. (5)

Let the function f satisfy Assumption 1.1. If h ≤ 2/(m +M), the following result holds true.

W2(̟n, π) ≤ (1−mh)nW2(̟0, π) + 1.65
M

m
(hd)1/2 +

δb
√
d

m
+

δ2v(hd)
1/2

1.65M + σ
√
m
.

Remark 1 More generally, if the bounded bias and variance condition are changed to

E[‖E(ζn|xn)‖2] ≤ δ2bd
α and E[‖ζn −E(ζn|xn)‖2] ≤ δ2vd

β,

respectively, for some α, β > 0, the conclusion turns into

W2(̟n, π) ≤(1−mh)nW2(̟0, π) +
1.65M(hd)1/2

m
+

δbd
α/2

m

+
δ2vhd

β

1.65M(hd)1/2 + δbdα/2 + δv(mh)1/2dβ/2
.

Furthermore, in the case that β > max{1, α}, the last term is dominated by dβ/2.
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1.2 The Zeroth-order Methodology

The use of zeroth-order information (i.e., noisy function evaluations) for optimizing a function goes
back to the works of [KW52, Blu54], that used stochastic version of finite-difference gradient ap-
proximation methods for estimating the maximum of a regression function (or equivalently mode
of a density function). Since, then zeroth-order optimization has developed into an independent
field in itself; see, for example [Spa05, CSV09, AH17, LMW19] for an more up-to-date account
of this field. More recently, the focus has been more on developing a non-asymptotic under-
standing of stochastic zeroth-order optimization [GL13, DJWW15, NS17, BG19]. Despite the fact
that stochastic zeroth-order optimization is a well-developed field, to the best of our knowledge,
there is no prior work on using related techniques for the closely related problem of zeroth-order
discretizations of Langevin diffusions; specifically in terms of non-asymptotic analysis.

We now describe the precise assumption made on the stochastic zeroth-order oracle in the first
part of this work.

Assumption 1.3 For any θ ∈ R
d, the stochastic zeroth-order oracle outputs an estimator F (θ, ξ)

of f(θ) such that, E [F (θ, ξ)] = f(θ), E [∇F (θ, ξ)] = ∇f(θ), and E
[
‖∇F (θ, ξ)−∇f(θ)‖2

]
≤ σ2.

The assumption above assumes that we have accesses to a stochastic zeroth-order oracle which
provides unbiased function evaluations with bounded variance. It is worth noting that in the above,
we do not necessarily assume the noise ξ is additive. Our gradient estimator is then constructed
by leverage the Gaussian smoothing technique [NS17, GL13, BG19], which is amenable for fine-
grained non-asymptotic analysis. Specifically, for a point θ ∈ R

d, we define an estimate gν,b(θ), of
the gradient ∇f(θ) as follows:

gν,b(θ) =
1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξi)

ν
ui (6)

where ui ∼ N(0, Id) and are assumed to be independent and identically distributed. An interpre-
tation of the gradient estimator in (6) as a consequence of Gaussian Stein’s identity, popular in
the statistics literature [Ste72], was provided in [BG19]. Finally, the parameter b is called as the
batch-size parameter. It turns out that in the stochastic zeroth-order setting invariably we require
b > 1, which in turn leads to the (zeroth-order) oracle complexity being an order b times that of
iteration complexity. In Section 2 and 3.1, we use the above gradient estimation technique in the
context of discretizing overdamped and underdamped Langevin diffusion and develop their oracle
and iteration complexities. In order to establish the results, we will use the following Lemma due
to [BG19] which provides an upper bound on the variance of gν,b.

Lemma 1.1 [BG19] Let gν,b be defined as in (6). Then under Assumption 1.3, and condition A1
of Assumption 1.1, we have,

E
[
‖gν,b(θ)−∇fν(θ)‖2

]
≤ 2(d+ 5)(‖∇f(θ)‖2 + σ2)

b
+

ν2M2(d+ 3)3

2b
(7)

E
[
‖gν,b(θ)−∇f(θ)‖2

]
≤ 4(d+ 5)(‖∇f(θ)‖2 + σ2)

b
+

3ν2M2(d+ 3)3

2
(8)

where fν(θ) = Eu[f(θ + νu)].
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One-point versus two-point evaluation: The gradient estimator in (6) is referred to as the two-
point estimator in the literature. The reason is that, for a given random vector ξ, it is assumed
that the stochastic function in (6) could be evaluated at two points,F (θ1, ξ) and F (θ2, ξ). Such an
assumption is satisfied in several statistics, machine learning and simulation based optimization
and sampling; see for example in [Spa05, MP07, Dip03, ADX10, DJWW15, GL13, NS17]. Yet
another estimator is the one-point estimator which assumes that for each ξ, we observe only one
noisy function evaluation F (θ, ξ). Admittedly, the one-point setting is more challenging than the
two-point setting. Specifically, in the one-point feedback setting, Lemma 1.1 no longer holds.
From a theoretical point of view, the use of two-point evaluation based gradient estimator is
primarily motivated by the sub-optimality (in terms of oracle complexity) of one-point feedback
based stochastic zeroth-order optimization methods either in terms of the approximation accuracy
or dimension dependency.

The use of one-point feedback for stochastic zeroth-order gradient estimation could be traced
back to [NY83]. Motivated by this, there has been several works in the machine learning commu-
nity focusing on leveraging it for zeroth-order convex optimization. Specifically, considering the
class of convex functions (without any further smoothness assumptions) and adversarial noise (i.e.,
roughly speaking, with noise vectors not necessarily assumed to be independent and identically
distributed (i.i.d.)), [BLE17] proposed a polynomial-time algorithm and an oracle complexity of
O(d21/ǫ2). This was improved to O(d5/ǫ2) recently in [Lat20]. Further assuming Lipschitz smooth
convex functions, [BLNR15] and [GKL+17], in the i.i.d noise case, obtained an oracle complexity
of O(d7.5/ǫ2) and O(d/ǫ3) respectively. The best known lower bound in this case is known to be
O(d2/ǫ2), which was established by [Sha13]. Further assuming (β − 1) differentiable derivatives,
for β > 2, [BP16] obtained as oracle complexity of O(d2/ǫ2β/(β−1)) and O(d2/ǫ(β+1)/(β−1)) re-
spectively for the convex and strongly-convex setting, with i.i.d. noise case; see also [APT20]. In
contrast to the above discussion, with two-point feedback it is possible to obtain much improved
oracle complexities (i.e., linear in dimension and optimal in ǫ) for stochastic zeroth-order optimiza-
tion, as illustrated in [NS17, GL13, DJWW15, ADX10]. Given this subtle differences between the
two-point and one-point evaluation settings for stochastic zeroth-order gradient estimation, in Sec-
tion 4 we consider the effect of one-point gradient estimation technique for stochastic zeroth-order
discretization of overdamped and underdamped Langevin diffusions.

1.3 Our Contributions

Under the availability of the stochastic zeroth-order oracles, we make the following contributions
to the literature on sampling.

1. We first consider the case of strongly log-concave and smooth densities and analyze a stochastic
zeroth-order version of Euler-discretization of overdamped and underdamped Langevin diffu-
sions, under the two-point feedback setting in Section 2. For both cases, we characterize the
oracle and iteration complexities to obtain ǫ-approximate samples in term of W2 metric.

2. We next consider in Section 2.3, a stochastic zeroth-order version of the recently proposed Ran-
domized Midpoint Sampling method of the underdamped Langevin diffusion and characterize
the oracle and iteration complexities to obtain ǫ-approximate samples in term of W2 metric. We
show that for certain range of ǫ, this method achieves improved oracle complexity compared to
the above method.

6



3. While the above contributions are for strongly log-concave densities, in Section 3.1, we consider
the more general class of densities satisfying log-Sobolev inequality and establish the oracle and
iteration complexities of stochastic zeroth-order discretizations.

4. While all of the above contributions use the two-point stochastic zeroth-order feedback setting,
in Section 4, we next consider the case of one-point feedback and characterize the corresponding
oracle and iteration complexities for all the above discretizations.

5. Next, in Section 5, we consider variable selection for zeroth-order sampling. We specifically
assume the unobserved function f is sparse in the sense that it depends only on s of the
d coordinates. We provide a variable selection method based on the estimated zeroth-order
gradient, which in conjunction with the above discretizations reduces the oracle and iteration
complexities to be only poly-logarithmically dependent on the dimensionality d thereby enabling
high-dimensional sampling.

Our contributions provide several theoretical insights on the performance of stochastic zeroth-
order sampling algorithms, and widen the applicability of theoretically sound Bayesian inference
to various practical situations where we do not know the analytical form of the potential function.
All proofs are relegated to the appendix.

2 Oracle Complexity Results under Strong Log-concavity

We now leverage the stochastic zeroth-order gradient estimation methodology introduced in Sec-
tion 1.2 for discretizing underdamped and overdamped Langevin diffusions. Throughout this
section, we assume the target density is strongly log-concave and smooth (recall Assumption 1.1).

2.1 Zeroth-Order Langevin Monte Carlo

Replacing the true gradient in the first-order Langevin Monte Carlo algorithm in (3), with the
zeroth-order gradient estimation in (6), we obtain the following Zeroth-Order LMC (ZO-LMC)
algorithm:

xn+1 = xn − h gν,b(xn) +
√
2hεn+1 (9)

for n = 0, 1, 2, · · · , N − 1. Apart from the choice of step-size h, the ZO-LMC also requires two
additional tuning parameters, the smoothing parameter ν and the batch-size b of the zeroth-order
gradient estimator b, that need to be set. Although ZO-LMC could be interpreted as a form of
LMC with inaccurate gradient as in [DK19], the corresponding theoretical result from [DK19]
cannot be used directly for obtaining the oracle complexity of ZO-LMC, as the variance of the
gradient in (6) is not bounded unless we make restrictive assumptions on the true gradient of f .
We now state the main result of this section, which describes the oracle complexity of ZO-LMC.

Theorem 2.1 Let the potential function f satisfy Assumption 1.1. Then, for the ZO-LMC algo-
rithm in (9), under Assumption 1.3, by choosing

h =
ǫ2

d2
, b = max(1, σ2)d, ν =

ǫ√
d
, (10)

7



we have W2(̟N , π) ≤ ǫ for 0 < ǫ ≤ min

(

d
√

2
M+m ,

√
m(d+5)
8M2

)

, after

N = O
(

d

ǫ2
· log

(
d

ǫ

))

. (11)

iterations. Hence, the total number of calls to the stochastic zeroth-order oracle is given by,

Nb = O
(
max(1, σ2) · d2

ǫ2
· log

(
d

ǫ

))

. (12)

Remark 2 Recall that for the exact gradient based LMC algorithm, to obtain W2(̟N , π) ≤ ǫ, we
require N = O

(
d/ǫ2 · log(d/ǫ)

)
(see [DK19]) which matches (11). Thus, ZO-LMC matches the

performance of LMC in terms of iteration complexity required to obtain W2(̟N , π) ≤ ǫ. How-
ever, in each iteration of the LMC algorithm, we only require one gradient evaluation. Hence, the
total number calls to the first-order oracle is also given by O

(
d/ǫ2 · log(d/ǫ)

)
. For the ZO-LMC,

in contrast we require b = d calls to the stochastic zeroth-order oracle in each iteration. Hence,
the oracle complexity is given by (12). By a straight forward modification of the proof of Theo-
rem 2.1, for the ZO-LMC, if we restrict ourself to b = 1, the iteration complexity increases to
N = O

(
d2/ǫ2 · log(d/ǫ)

)
, which will then also be the oracle complexity. Thus, the price we pay to

match LMC in the absence of true gradient information is O(d).

Remark 3 Recently [DCWY19] analyzed the standard Metropolis Random Walk algorithm (MRW),
which is a zeroth-order algorithm, in the non-noise setting. Specifically, [DCWY19] showed that
to achieve samples that are ǫ-close to the target π in total variation distance, MRW requires
O(d2 log(1/ǫ) calls to the non-noisy zeroth-order oracles. Considering the non-noisy setting, the
result appears to seemingly have an exponential improvement in terms of ǫ. However, this result
was obtained under the so-called warm start condition on the distribution of the initial vector xo,
which seems to be an opaque condition hiding the true complexity of the problem. For example, it
is not clear how to pick such a warm start distribution for a given target π, in particular in the
stochastic zeroth-order setting that we consider in this work. As a way to potentially avoid this
opaque warm start condition, [DCWY19] suggests to set x0 ∼ N(x∗, Id), where x∗ is the unique
minimizer of f(x) and Id is the d× d identity covariance matrix. For this choice of initial vector,
to obtain a sample which is ǫ-close to the target π in total variation distance, [DCWY19] showed
that MRW requires an oracle complexity of O(d2 log(1/ǫ). However, in the zeroth-order setting,
the oracle complexity of finding an ǫ-minimizer of a strongly-convex and smooth function f(x),
is well-studied problem in stochastic optimization – it is upper and lower bounded by O(d/ǫ); see
for example [DJWW15, JNR12, NS17, GL13]. This seems to negate the actual oracle complexity
improvements shown in [DCWY19], as it really seems to require extremely careful initial distribu-
tions (i.e., knowledge of the exact minimzer), even in the non-noisy setting. Notwithstanding the
fact that the results in [DCWY19] are for the non-noisy setting, they are essentially no better than
the oracle complexity results established for ZO-LMC algorithm in Theorem 2.1, which also has the
advantage that it does not require any opaque warm start conditions or special initial distributions.

2.2 Zeroth-Order Kinetic Langevin Monte Carlo

In the previous section, we consider the stochastic zeroth-order discretizations of the overdamped
Langevin diffusions. It is known that in the first-order setting, discretizations of underdamped

8



Langevin diffusion obtain improved oracle complexities [DRD+20, CCBJ18]. Under Langevin dif-
fusion process (also called as kinetic Langevin diffusion process) is given by the following stochasic
differential equation:

dVT = (γVT +∇f(LT )) dT +
√

2γdWT (13)

dLT = VTdT.

where Id is the d×d identity matrix. We refer the reader to [EGZ+19, CCBJ18, DRD+20] for more
details about the above diffusion process and related theoretical results. Specifically, it was shown
in [CCBJ18, DRD+20] that first-order discretizations of the kinetic diffusion process (referred to
as KLMC in [CCBJ18]) in (13) have better rates of convergence compared to similar first-order
discretizations of the continous-process in (2). Specifically, recall that for the right choice of tuning
parameters, LMC (i.e., first-order discretizations of (2)) requires that N = O(d/ǫ2 · log(d/ǫ)) for
W2(̟N , π) ≤ ǫ. Whereas, it was shown in [CCBJ18, DRD+20] N = O(

√
d/ǫ · log(d/ǫ)) suffices

([DRD+20] provides a much sharper result compared to [CCBJ18]). We emphasize that the above
result does not immediately imply that KLMC might be the algorithm to use always (in comparison
to LMC); indeed when considering also the dependence of the bound on the strong-convexity
and smoothness parameters (though the condition number of the sampling density defined as
M/m), [DRD+20] precisely characterize when KLMC might be preferred over the vanilla LMC.
The bottom line of their analysis is none of the method is uniformly better over the other method.

The Euler-discretization of the SDE in (13), which is a first-order sampling algorithm is given
by the following iterations:

x̃n+1 = ψ0(h)x̃n − ψ1(h)∇f(xn) +
√

2γǫ̃n+1 (14)

xn+1 = xn + ψ1(h)x̃n − ψ2(h)∇f(xn) +
√

2γǫn+1

where (ǫ̃n+1, ǫn+1) ∈ R
2d is a a sequence of i.i.d standard Normal vectors, independent of (x̃0, x0)

and ψ0(t) = e−γt and ψn+1 =
∫ T
0 ψn(s)ds. We refer to this algorithm as KLMC following the

terminology of [DRD+20]. Based on this, we now consider the ZO-KLMC updates as:

x̃n+1 = ψ0(h)x̃n − ψ1(h)gν,b(xn) +
√

2γǫ̃n+1 (15)

xn+1 = xn + ψ1(h)x̃n − ψ2(h)gν,b(xn) +
√

2γǫn+1

where gν,b is the zeroth-order gradient estimator as in (6). In comparison to the ZO-LMC algo-
rithm, the ZO-KLMC algorithm has an additional tuning parameter γ that needs to be set. For
the ZO-KLMC algorithm, we have the following complexity result.

Theorem 2.2 Let the potential function f satisfy Assumption 1.1. If the initial point (x̃0, x0)
is chosen such that x̃0 ∼ N(0, Id), then, ensuring γ ≥

√
m+M , for the ZO-KLMC, under

Assumption 1.3, by choosing,

h =
mǫ

12γM
√
d
, ν =

ǫ√
d
, b =

d1.5 max(1, σ2)

ǫ
, (16)

we have W2(̟N , π) ≤ ǫ for 0 < ǫ ≤ 12Mγ2
√
d

m2 after

N = Õ
(√

d

ǫ

)

(17)
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iterations. Here Õ hides poly-logarithmic factors in 1/ǫ. Hence, the total number of calls to the
stochastic zeroth-order oracle is given by

Nb = Õ
(
d2 max(1, σ2)

ǫ2

)

. (18)

Remark 4 We note that compared to ZO-LMC, while ZO-KLMC obtains improved iteration com-
plexity, the iteration complexity still remains the same. The improvement in the iteration com-
plexity is indeed a consequence of a similar improvement in the first-order setting as demonstrated
in [CCBJ18, DRD+20].

2.3 Zeroth Order Randomized Midpoint Method

Given that the ZO-KLMC offers no improvement over ZO-LMC in terms of oracle complexity
despite its improved iteration complexity, it is worth examining if there are other discretizations
that obtain improvements in oracle complexities. Towards that, in this section we analyze the
zeroth-order version of the Randomized Mid-Point discretization of the underdamped Langevin
diffusion, proposed in [SL19]. In the first-order setting, [CLW20] recently showed that the Ran-
domized Mid-Point discretization of underdamped Langevin diffusion achieves the information
theoretic lower bounds for sampling. See also [HBE20] for additional probabilistic results.

The crux of the randomized midpoint method is based on first representing the kinetic Langevin
Monte Carlo in (13) in its integral format, and estimating the integrals based on a randomization
technique. We also mention in passing that the randomized midpoint idea shares some simi-
larities to symplectic integration methods [SS92] from the sampling literature and extragradient
method [Kor76] from the optimization literature, with the main difference being the randomized
choice of step-size which leads to improved oracle complexities. We now provide the algorithm
in the zeroth-order setting and the corresponding theoretical result. Let ǫ

(i)
n ∈ R

d, i = 1, 2, 3, be
a sequence of Gaussian random vectors generated according to the procedure described in Ap-
pendix A of [SL19]. Let αn be a sequence of uniform random variables supported on the interval
[0, 1]. Then the zeroth-order Randomized Mid-Point Method (ZO-RMP) is given by the following
updates:

xn+ 1

2

= xn +
1− e−2αnh

2
vn − u

2

(

αnh− 1− e−2(αnh)

2

)

gν,b(xn) +
√
uǫ

(1)
n+1 (19)

xn+1 = xn +
1− e−2h

2
vn − uh

2
(1− e−2(h−αnh))gν,b

(

xn+ 1

2

)

+
√
uǫ

(2)
n+1 (20)

vn+1 = vne
−2h − uhe−2(h−αnh)gν,b

(

xn+ 1

2

)

+ 2
√
uǫ

(3)
n+1. (21)

We remark that we use the same choice of batch-size, b, in (19), (20) and (21), as using different
batch sizes has no effect on the oracle complexity.

Theorem 2.3 Define κ = M/m to be the condition number of the potential f which satisfies
Assumption 1.1. Furthermore, let the stochastic zeroth-order oracle satisfy Assumption 1.3. Let
x∗ be the minimizer of f , and x0 be such that E [f(x0)− f(x∗)] = O(d), and v0 = 0. Then, for

10



0 ≤ ǫ ≤ 1, by choosing,

h = Cmin




(ǫ
√
m)

1

3

(dκ)
1

6 log
(
1
ǫ

) 1

6

,min

(
(m

d

) 1

3

,

(
Mm

16σ2

) 1

3

,
√
m

)

ǫ
2

3 log

(
1

ǫ

)− 2

3



 b =
dκ

h3
ν =

uh2

d1.5

(22)

for the ZO-RMP method described in (19)-(21), with u = 1/M , we have W2(̟N , π) ≤ ǫ after

N = Õ






max







d
1

6κ
7

6

(ǫ
√
m)

1

3

,

κmax

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)

ǫ
2

3













(23)

iterations. Hence, the total-number of zeroth-order oracle calls are given by

2Nb = Õ







max








d
5

3κ
8

3

ǫ
4

3

,

dκ2 max

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)4

ǫ
8

3















. (24)

Remark 5 The analysis of the randomized midpoint algorithm in [SL19], for the first-order set-
ting, requires access to exact minimizer x∗ as the initializer. We relax this requirement to the
having a point x0 satisfying E [f(x0)− f(x∗)] = O(d), which is a milder requirement. It is well-
known from the stochastic optimization literature, that under Assumption 1.3, and 1.1, in the
zeroth-order setting, using the zeroth-order version of stochastic gradient algorith, the oracle com-
plexity of finding a point x0 such that E [f(x0)− f(x̄)] = O(d) where x̄ is the minimizer of f , is
O(κ log d) [DJWW15, NS17].

Remark 6 Note that even though the iteration complexity of ZO-RMP still matches with RMP
(except for the dimension dependence which is unavoidable in the zeroth-order setting), and is
better than KLMC for all values of ǫ, the oracle complexity for ZO-RMP is not uniformly bet-

ter than ZO-KLMC for all ǫ. However, observe that when h = C (ǫ
√
m)

1
3

(dκ)
1
6 log( 1

ǫ )
1
6

, i.e., when ǫ ≥

max

(√
d
M , 16σ2

M
3
2

√
d
, 1√

dmM

)

the oracle complexity of ZO-RMP is Õ

(

d
5
3 κ

8
3

ǫ
4
3

)

which is indeed better

compared to Õ
(
d2

ǫ2

)

for ZO-KLMC.

We end this section by mentioning that developing lower bounds on the oracle complexity
of sampling from strongly log-concave densities, in the stochastic zeroth-order setting that we
consider is an interesting open problem.

3 Oracle Complexity Results under Log-Sobolev Inequality

The algorithms and oracle complexity results in the previous sections were stated for smooth
and strongly log-concave densities (i.e., under Assumption 1.1), which covers important classes
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of problems in sampling and Bayesian inference. However, the fundamental idea behind the non-
asymptotic convergence results of the discretization based sampling algorithm are essentially based
on the following facts: (i) the underlying continuous (underdamped or overdamped) Langevin dif-
fusion converges to its equilibrium state (i.e., to the target distribution π in this case) exponentially
fast in various metrics, and (ii) consequently, the potential function is smooth enough that the
error due to discretization is not extremely large. Roughly speaking, condition A1 and A2 in
Assumption 1.1 corresponds respectively to the above facts, respectively. However, it is well-know
that the overdamped Langevin diffusion converges to its equilibrium under much weaker conditions
that strong log-concavity; indeed as long as the target density satisfies functional inequalities like
Poincare or Log-Sobolev inequalities, the overdamped Langevin diffusion converges to its equilib-
rium exponentially faster in various metrics; see, for example [BGL13]. Motivated by the above
fact, recently [VW19] demonstrated that the LMC algorithm also exhibits rapid convergence to
the target density if it has access to the exact gradient evaluations of the potential function f .
As a consequence, one could sample from densities that are not essentially strongly log-concave,
there by extending the applicability of LMC algorithms for a wider class of Bayesian inference
problems. In this section, we analyze the performance of stochastic zeroth-order discretization of
overdamped Langevin diffusions when the target density satisfies log-Sobolev inequality.

Assumption 3.1 A density π is said to satisfy Log-Sobolev Inequality (LSI) with a constant λ > 0
if for all smooth function g : Rd → R with finite variance,

∫

Rd

g2(θ) log g2(θ)π(θ)dθ −
∫

Rd

g2(θ)π(θ)dθ log

∫

Rd

g2(θ)π(θ)dθ ≤ 2

λ

∫

Rd

‖∇g(θ)‖2π(θ)dθ. (25)

In Section ??, we show that mixture of Gaussian densities with unequal covariance satisfies the
above assumption, while it does not satisfy condition A1 of Assumption 1.1, and discuss applica-
tions to Bayesian variable selection. The above assumption also leads to the following equivalent
formulation. Let Hπ(̟), and Jπ(̟) be the Kullback-Leibler (KL) divergence of ̟ with respect
to π, and the relative Fisher Information respectively which are defined as follows:

Hπ(̟) =

∫

Rd

̟(θ) log
̟(θ)

π(θ)
dθ Jπ(̟) =

∫

Rd

̟(θ)

∥
∥
∥
∥
∇ log

̟(θ)

π(θ)

∥
∥
∥
∥

2

dθ. (26)

One can verify that LSI is equivalent to the following condition by plugging g2 = ̟/π in (25):

Hπ(̟) ≤ 1

2λ
Jπ(̟). (27)

We also know that when π satisfies LSI, Talagrand inequality holds [BGL13], i.e., for all ̟,

λ

2
W2(̟,π)2 ≤ Hπ(̟). (28)

With this background, we provide our oracle complexity result of ZO-LMC algorithm when the
density satisfies LSI and is smooth.

Theorem 3.2 Let the target density π satisfy Assumption 3.1 and let the potential function f be
satisfy condition A2 in Assumption 1.1. Let x0 ∼ ̟0 which satisfies Hπ(̟0) ≤ ∞. Then for the
ZO-LMC update as in (9), under Assumption 1.3, by choosing,

b =
384M2(d+ 5)max(1, σ2)

hλ2
, ν =

√
h

d+ 3
, h =

ǫ2

d
, (29)
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we have W2(̟N , π) ≤ ǫ, for all 0 ≤ ǫ ≤ α
4L2 , after N iterations where

N = Õ

(
d

ǫ2

)

. (30)

Hence, the total number of calls to the stochastic zeroth-order oracle is given by

Nb = Õ

(
max(1, σ2) d3

ǫ4

)

(31)

Remark 7 Note that in comparison to condition A1 of Assumption 1.1, the assumptions required
for the above theorem are weaker. Specifically, in place of condition A1 in Assumption 1.1, we
have Assumption 3.1. Condition A2 is regarding the smoothness is required to handle error that
arises due to discretization of continuous time dynamics. For this wider class of densities, the
price to pay is that the dependency on both the dimension d and ǫ increases in comparison to
Theorem 2.1.

Remark 8 Given that ZO-LMC exhibits convergence (albeit with a slightly weaker ǫ and d depen-
dency, it is natural to ask if ZO-KLMC also exhibits similar convergence. However, even in the
first-order setting this question is open. Indeed, kinetic Langevin diffusions are a class of degenerate
diffusions which require a different class of function inequalities (called as hypocoercivity [Vil09])
for them to converge to their equilibrium. It is an open question to show that the discretize sampling
algorithm (KLMC or appropriate modifications) also convergence under hypocoercivity and appro-
priate smoothness assumptions on the potential function f , either given access to exact first-order
oracles or stochastic zeroth-order oracles. We leave this question as future work.

4 One-Point Setting: Independent noise per function evaluation

As discussed in Section 1.2, there are subtle differences between the availability of one and two-
point evaluation based stochastic zeroth-order gradients. In this section, we examine this difference
in more detail. Recall that while defining the zeroth-order gradient estimator in (6), we assumed
that the function can be evaluated at two points, namely, θ + νui, and θ, with the same noise
ξi. This implies, when the noise is additive, i.e., F (θ, ξ) = f(θ) + ξ, the gradient estimator is not
affected by the noise. Because in that case we have, F (θ+ νui, ξi)− F (θ, ξi) = f(θ+ νui)− f(θ).
We emphasize that this is our main reason for consider general non-additive noise in the previous
sections. For example, under multiplicative noise, consider the case where F (θ, ξ) = ξf(θ), E [ξ] =
1, and f(θ) is L-Lipschitz continuous; then Assumption 1.3 holds.

Now we will examine the one-point setting in that the noise in the two function evaluations of
the gradient estimator is not the same. Specifically, first we show that allowing the noise ξi, and ξ′i
in F (θ + νui, ξi), and F (θ, ξ′i) to be independent additive noise, deteriorates the iteration and/or
oracle complexities of zeroth-order discretizations considered in the previous settings. Formally,
we work under the following assumption in the one-point stochastic zeroth-order setting.

Assumption 4.1 The stochastic zeroth-order oracle is such that for each point x, the observed
function evaluation F (θ, ξ) is given by F (θ, ξ) = f(θ) + ξ where E [ξ] = 0, and E

[
ξ2
]
= σ2.

Under Assumption 4.1, the upper bound on the variance of the gradient estimator as stated in
Lemma 1.1 no longer holds. Instead, we have the following result.
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Lemma 4.1 Let gν,b(θ) in (6), be defined under the one-point setting. Then under Assumption 4.1
and condition A1 of Assumption 1.1, we have

E

[

‖gν,b(θ)−∇fν(θ)‖2
]

≤2(d + 5)‖∇f(θ)‖2
b

+
ν2M2(d+ 3)3

2b
+

2dσ2

bν2
,

E

[

‖gν,b(θ)−∇f(θ)‖2
]

≤
4(d + 5)

(

‖∇f(θ)‖2 + σ2

ν2

)

b
+

3ν2M2(d+ 3)3

2
+

4dσ2

bν2
.

The main difference in the one-point setting, in terms of the variance of the gradient estimator is
the presence of the third term, which is of the order of 1/bν2. This causes the additional difficulties
in terms of setting the parameters b and ν in the zeroth-order gradient estimator, which in turn
causes the oracle complexities to deteriorate. Based on the above result on the variance, we provide
the oracle complexity results for ZO-LMC, ZO-KLMC and ZO-RMP under Assumption 4.1 on the
stochastic zeroth-order oracle, in Theorem 4.2, 4.3 and 4.4 respectively.

Theorem 4.2 (ZO-LMC under Strong Log-concavity) Let the potential function f satisfy
Assumption 1.1. Then, for ZO-LMC algorithms under Assumption 4.1, by choosing

h =
ǫ2

d2
, b =

max(1, σ2) · d
ǫ2

, ν =
ǫ√
d
, (32)

we have W2(̟N , π) ≤ ǫ for 0 < ǫ ≤ min

(

d
√

2
M+m ,

√
m(d+5)
8M2

)

, after N iterations, where

N = O

(
d

ǫ2
log

(
d

ǫ

))

. (33)

Hence, the total number of calls to the stochastic zeroth-order oracle is given by,

Nb = O

(
max(1, σ2) d2

ǫ4
log

(
d

ǫ

))

. (34)

Theorem 4.3 (ZO-KLMC under Strong Log-concavity) Let the function f satisfy Assump-
tion 1.1. If the initial point (x̃0, x0) is chosen such that x̃0 ∼ N(0, Id), then, ensuring γ ≥√
m+M , under Assumption 4.1 for the ZO-KLMC, by choosing,

h =
mǫ

12γM
√
d

ν =
ǫ√
d

b =
d1.5 max(1, σ2)

ǫ3
(35)

we have W2(̟N , π) ≤ ǫ for 0 < ǫ ≤ 12Mγ2
√
d

m2 , after

N = Õ

(√
d

ǫ

)

(36)

iterations. Hence, the total number of oracle calls to the stochastic zeroth-order oracle is given by

Nb = O

(
max(1, σ2) d2

ǫ4

)

. (37)
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Theorem 4.4 (ZO-RMP under Strong Log-concavity) Let the potential function satisfy As-
sumption 1.1 and let x∗ be the minimizer of f , x0 be such that E [f(x0)− f(x̄)] = O(d), and v0 = 0.
Let the stochastic zeroth-order oracle satisfy Assumption 4.1. Then, for 0 ≤ ǫ ≤ 1, by choosing,

h = Cmin




(ǫ
√
m)

1

3

(dκ)
1

6 log
(
1
ǫ

) 1

6

,min

(
(m

d

) 1

3

,

(
Mm

16σ2

) 1

3

,
√
m

)

ǫ
2

3 log

(
1

ǫ

)− 2

3



 b =
d4κ

h7
ν =

uh2

d1.5

(38)

for the ZO-RMP described in (19)-(21), we have W2(̟N , π) ≤ ǫ after

N = Õ






max







d
1

6κ
7

6

(ǫ
√
m)

1

3

,

κmax

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)

ǫ
2

3













(39)

iterations. Hence, the total-number of zeroth-order oracle calls are given by

2Nb = Õ







max








d
16

3 κ
10

3

ǫ
8

3

,

d4κ2 max

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)8

ǫ
16

3















. (40)

Remark 9 As before, the oracle complexity of ZO-RMP in this setting is not uniformly better than

that of ZO-KLMC. We do observe that when h = C (ǫ
√
m)

1
3

(dκ)
1
6 log( 1

ǫ )
1
6

, i.e., when ǫ ≥ max

(√
d
M , 16σ2

M
3
2

√
d
, 1√

dmM

)

the oracle complexity of ZO-RMP is Õ

(

d
16
3 κ

10
3

ǫ
8
3

)

which is worse compared to Õ
(
d2

ǫ4

)

for ZO-

KLMC. However, it is better than that of ZO-KLMC in the opposite regime.

We now present the corresponding result when the target density is not strongly log-concave
but satisfies LSI.

Theorem 4.5 (ZO-LMC under Log-Sobolev Inequality) Let the target density π satisfy As-
sumption 3.1 and let the potential function f satisfy condition A2 of Assumption 1.1. Let x0 ∼
̟0(x) which satisfies Hπ(̟0) ≤ ∞. Then for the ZO-LMC update as in (9), under Assump-
tion 4.1, by choosing,

b =
384M2(d+ 5)max(1, σ2)

h2λ2
, ν =

√
h

d+ 3
, h =

ǫ2

d
, (41)

we have, W2(̟N , π) ≤ ǫ, for all 0 ≤ ǫ ≤ λ
4L2 after

N = Õ

(
d

ǫ2

)

(42)

iterations. Hence, the total number of calls to the zeroth-order oracle is given by

Nb = Õ

(
d4

ǫ6

)

. (43)
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Remark 10 (One-point setting with non-additive noise ) Given the above result, it is nat-
ural to examine the effect of non-additive noise on the oracle complexities. For this case, we
have the following result under an additional smoothness assumption on the stochastic function
evaluations F (x, ξ).

Lemma 4.2 Let the function F (θ, ξ) be Lipschitz continuous in its second argument, i.e., |F (θ, ξ)−
F (θ, ξ′)| ≤ L|ξ − ξ′|. Under the above condition, Lemma 4.1 holds. Consequently, all the above
complexity results in this section holds.

Remark 11 (Effect of Higher-order smoothness) While the oracle complexities under the
one-point evaluation setting are worse than that of the two-point setting, they could be made to
approach that of the two-point setting when we make the stronger assumption that the potential
function is assumed to the β-times differentiable and the (β − 1)-derivatives are Lipschitz con-
tinuous. Similar phenomenon has been observed in the case of highly-smooth convex stochastic
zeroth-order optimization; see, for example [BP16, APT20]. As the precise statements and the
proofs are similar to that of the above theorems, we omit the details.

5 Variable Selection for High-dimensional Black-box Sampling

In practical black-box settings, due to the non-availability of the analytical form of f(θ), one might
potentially over-parametrize f(θ), in terms of number of covariates selected for modeling. Hence,
the problem of variable selection, in a zeroth-order setting becomes crucial. To address this issue,
in this section, we study variable selection under certain sparsity assumptions on the objective
function f , to facilitate sampling in high-dimensions. Throughout this section, we assume one
could observe exact function evaluations, without any noise. We emphasize that we make this
assumption purely for technical convenience and to convey the theoretical results insightfully;
all results presented in this section extends to the noisy setting in a straightforward manner.
Specifically, we make the following assumption on the structure of f .

Assumption 5.1 We assume that f(θ) : Rd → R is s sparse, i.e., the function f depends only
on (the same) s of the d coordinates, for all θ, where s ≪ d. We denote the true support set
as S∗. This implies that for any θ ∈ R

d, we have ‖∇f(θ)‖0 ≤ s, i.e., the gradient is s-sparse.
Furthermore, define ∇fν(θ) = Eu [∇f(θ + νu)] for a standard gaussian random vector u. Then
the gradient sparsity assumption also implies that ‖∇fν(θ)‖0 ≤ s for all θ ∈ R

d. Furthermore, we
assume that the gradient lies in the following set that characterizes the minimal signal strength in
the relevant coordinates of the gradient vector:

Ga,s =

{

∇f(θ) : ‖∇f(θ)‖0 ≤ s and sup
θ∈Rd

inf
j∈S∗

|[∇f(θ)]j| ≥ a

}

As a consequence, we also have that ∇fν(θ) ∈ Ga,s. The above assumption makes a homogenous
sparsity assumption on the sparsity and the minimum signal strength of the gradient. Roughly
speaking, a represents the minimum signal strength in the gradient so that efficient estimation of
the support S∗ is possible in the sample setting. The above sparsity model on the function f ,
converts the problem to variable selection in a non-Gaussian sequence model setting:

[gν,n]j = [∇fν(θ)]j + ζj j = 1, . . . , d.
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Hence, ζj are zero-mean random variables as [gν,n]j is an unbiased estimator of [∇fν(θ)]j . We refer
the reader to [BNST18] for recent results on variable selection consistency in Gaussian sequence
model setting. We also make the following assumption on the query point selected to estimate the
gradient.

Assumption 5.2 The query point θ ∈ R
d selected is such that ‖∇f(θ)‖2 ≤ R.

Our algorithm for high-dimensional black-box sampling with variable selection is as follows:

• Pick a point θ (which is assumed to satisfy Assumption 5.2) and estimate the gradient gν,n at
that point and compute the estimator Ŝ of S∗ as Ŝ = {j : |[gν,n]j | ≥ τ}.

• Run any of the zeroth-order sampling algorithm on the selected set of coordinates Ŝ of f(θ).

Here, for the first step, we need to select n, τ and ν. We separate the set of relevant variables by
thresholding |[gν,n]j | at τ . We now provide our result on the probability of erroneous selection.

Theorem 5.3 Let f satisfy Assumption 1.1 and the query point selected satisfy Assumption 5.2.

Set τ = (a−Mν
√
s)/2 and assume that ν ≤ min

(
a

2M
√
s
, R
MC2

√
s

)

and

n ≥ max

(

8RC
√
s

a

(
1

K2
log

4d

ǫ

)3/2

, K1
8RC

√
s

a
,

(
8RC

√
s

a

)4
)

where C,C2 are constants. Then we have Pr{Ŝ 6= S∗} ≤ ǫ.

Remark 12 The number of queries n to the function f depends only logarithmically on the di-
mension d and is a (low-degree) polynomial in the sparsity level s. Combining this fact with the
result in Theorem 2.1 we see that the total number of queries to the function f (for the sampling
error measured in 2-Wasserstein distance) is only poly-logarithmic in the true dimension d and
is a low-degree polynomial in the sparsity level s. Thus when s ≪ d, we see the advantage of
variable selection in black-box sampling using the two-step approach. The above results assumes
that the sparsity level s and signal strength is known. It would be interesting to construct adaptive
estimators similar to those for Gaussian sequence model in [BNST18]. Furthermore, exploring
appropriately defined notions of non-homogenous sparsity assumptions is also challenging.

6 Discussion

In this work, we proposed and analyzed zeroth-order discretizations of overdamped or under-
damped Langevin diffusions. We provide a through analysis of the oracle complexity of such
sampling algorithms under various noise models on the zeroth-order oracle and provide simulation
results corroborating the theory. Recall that our zeroth-order gradient estimators used in this
work were based on Gaussian Stein’s identity and could be used for the case when f is defined on
the entire Euclidean space R

d.In several situation, for example, in sampling from densities with
compact support [BDMP17, BEL18] and in computing volume of convex body [BGVV14], one
needs to compute the gradient of the function (and density) supported on M ⊂ R

d. For these sit-
uations, one can use a version of Stein’s identity based on score functions to compute the gradient
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and Hessian. To explain more, we first recall some definitions. The score function Sp : M → R
d

associated to density p(u) defined over M is defined as

Sp(u) = −∇u[log p(u)] = −∇up(u)/p(u).

In the above definition, the derivative is taken with respect to the argument u and not the param-
eters of the density p(u). Based on the above definition, we have the following versions of Stein’s
identity; see, for example, [GM15].

Proposition 6.1 Let U be a M-valued random vector with density p(u). Assume that p : M → R

is differentiable. In addition, let g : M → R be a continuous function such that EU [∇g(U)] exists
and the following is true:

∫

u∈M ∇u (g(u)p(u)) du = 0. Then it holds that

EU [g(U) · S(U)] = EU [∇g(U)],

where S(u) = −∇p(u)/p(u) is the score function of p(u).

In order to leverage the above identities to estimate the gradient of a given function f(θ) : M → R,
consider g(U) = f(θ+U) where U ∼ p(u) is a M-valued random variable and appeal to the above
Stein’s identity above, as done in Section 2 for with Gaussian random variables. A special case
of the above idea, when the space M is a Riemannian sub-manifold embedded in an Euclidean
space was considered in [LBM20] in context of stochastic zeroth-order Riemannian optimization.
We postpone a rigorous analysis of the estimation and approximation rates in the general setting,
and their applications to black-box sampling on non-Euclidean spaces for future work.
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Stochastic Zeroth-order Discretizations of Langevin Diffusions for Bayesian

Inference: Supplementary Material

7 Notations

We use a ∧ b and a ∨ b to denote the minimum and maximum of a and b respectively. The L2

norm of a random vector X : Ω → R
d is defined to be ‖X‖L2

= E[‖X‖22]1/2. The Lp norms of a
random matrix M : Ω → R

d×d are defined as follows.

‖M‖Lp,2 = E[‖M‖p2]1/p,
‖M‖Lp ,F = E[‖M‖pF ]1/p,

where ‖ · ‖2 is the spectral norm, and ‖ · ‖F is the Frobenius norm. For simplicity, we write
‖ · ‖ = ‖ · ‖2 and ‖ · ‖Lp = ‖ · ‖Lp ,• when there is no ambiguity. Furthermore, we omit the subscript
h in xt,h in places where is no confusion for simplicity.

8 Proofs for Section 2

8.1 Proofs for Oracle Complexity of ZO-LMC

Proof. [of Theorem 2.1] The proof follows by first calculating the bias and variance of the gradient
estimator in our zeroth-order setting, where the error term ζn = gν,b(xn)−∇f(xn). First, by Stein’s

23



identity, E[gν,1(x, u)] = E[∇f(x+ νu)] = ∇fν(x), where we denote fν(x) = E[f(x+ νu)]. Under
Assumption 1.1 on smoothness of f , in the case where b = 1, we have the following calculation for
the bias.

‖E[ζn | xn]‖2 = ‖E[∇f(xn + νu) | xn]−∇f(xn)‖2 ≤ E[(Mν‖u‖)2] ≤ M2ν2d. (44)

Next, for b ≥ 1 in general, gν,b(x) =
1
b

∑b
k=1 gν,1(x, uk), the bias and variance could be calcu-

lated as follows. Specifically, for the bias, we have

‖E[ζn | xn]‖2 = ‖E[gν,b(xn)−∇f(xn) | xn]‖2 ≤ ‖E[gν,1(xn)−∇f(xn) | xn]‖2 ≤ M2ν2d.

From Lemma 2.1 of [BG19], we have,

E[‖ζn −E[ζn | xn]‖2] ≤
ν2

2b
M2(d+ 3)3 +

2(d+ 5)
(
σ2 + ‖∇f(xn)‖2L2

)

b
.

Next, we follow a similar framework to the proof of Theorem 4 in [DK19], but with modifica-
tions to adapt to the variance that is not uniformly bounded. Recall that ∆n = L0 − xn, ∆t+1 =
Lh − xt+1, where Ln = L0 −

∫ T
0 ∇f(Ls)ds+

√
2Wn follows the Langevin diffusion with stationary

distribution π. Moreover, ‖∆n−hU‖ = ‖∆n−h[∇f(xn+∆n)−∇f(xn)]‖ ≤ (1−mh)‖∆n‖, ‖V ‖ =

‖
∫ h
0 [∇f(Ls)−∇f(L0)]ds‖ ≤ 1.65M(h3d)1/2. Thus,

‖∆n+1‖L2
= ‖∆n − hU − V + hζn‖L2

≤ {‖∆n − hU‖2L2
+ h2‖ζn −E[ζn | xn]‖2L2

}1/2 + ‖V ‖L2
+ h‖E[ζn | xn]‖L2

≤
{

(1−mh)2‖∆n‖2L2
+ h2

(

ν2

2b
M2(d+ 3)3 +

2(d+ 5)
(
σ2 + ‖∇f(xn)‖2L2

)

b

)}1/2

+ 1.65M(h3d)1/2 +Mνhd1/2

≤
{

(1−mh)2‖∆n‖2L2
+ h2

(

ν2

2b
M2(d+ 3)3 +

2(d+ 5)
(
σ2 + 2M2‖∆n‖2L2

+ 2‖∇f(L0)‖2L2

)

b

)}1/2

+ 1.65M(h3d)1/2 +Mνhd1/2

≤
{

(1−mh)2‖∆n‖2L2
+ h2

(

ν2

2b
M2(d+ 3)3 +

2(d+ 5)
(
σ2 + 2Md

)

b

)}1/2

+
4M2h2(d+ 5)

b(1−mh)
‖∆n‖L2

+ 1.65M(h3d)1/2 +Mνhd1/2

≤
{

(1−mh)2‖∆n‖2L2
+ h2

(

ν2

2b
M2(d+ 3)3 +

2(d+ 5)
(
σ2 + 2Md

)

b

)}1/2

+
mh

2
‖∆n‖L2

+ 1.65M(h3d)1/2 +Mνhd1/2.

Here we use the fact that
√
a2 + b+ c ≤

√
a2 + b+ c

2a , E[‖∇f(L)‖2] ≤ Md, and that we choose h,
and b such that h/ (b(1−mh)) ≤ m/(8M2(d+ 5)). By Lemma 9 in [DK19], the above inequality
leads to

‖∆n‖L2
≤ (1− 0.5mh)n‖∆0‖L2

+
3.3M

√
hd

m
+

2νM
√
d

m
+

νM
√
h

2
√
mb

(d+ 3)
3

2 +
3
√

h(d+ 5)(σ2 + 2Md)√
mb

.
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Therefore, using the fact W2(̟n+1, π) ≤ ‖∆n+1‖L2
, and W2(̟0, π) = ‖∆0‖L2

, we obtain the
bound in Wasserstein distance.

W2(̟n, π) ≤(1− 0.5mh)nW2(̟0, π) +
3.3M

√
hd

m
+

2νM
√
d

m
+

νM
√
h

2
√
mb

(d+ 3)
3

2 +
3
√

h(d+ 5)(σ2 + 2Md)√
mb

.

(45)

Choosing h, b, ν, and N as in (10), and (11) we have W2(̟N , π) ≤ ǫ.

8.2 Proofs for Oracle Complexity of ZO-KMLC

Proof. [of Theorem 2.2] Let (Vn,n, Ln,t), t ∈ [0, h] be a stationary kinetic Langevin process for
each n ∈ N, i.e.,

dVn,t = −(γVn,t +∇f(Ln,t))dt+
√

2γdWn,t,

dLn,t = Vn,tdt,

starting from V0,0 ∼ N(0, Id), L0,0 ∼ π, and satisfying Vn,h = Vn+1,0, Ln,h = Ln+1,h. Define
(Ṽn,t, L̃n,t) by the following discretized version of kinetic Langevin diffusion,

dṼn,t = −(γṼn,t + g(L̃n,0))dt+
√

2γdWn,t,

dL̃n,t = Ṽn,tdt,

or equivalently,

Ṽn,t = e−γtṼn,0 −
∫ t

0
e−γ(t−s)ds · g(L̃n,0) +

√

2γ

∫ t

0
e−γ(t−s)dWn,t,

L̃n,t = L̃n,0 +

∫ t

0
Ṽn,sds.

Define a different kinetic Langevin process (V̂n,t, L̂n,t) with initial condition V̂n,0 = Ṽn,0, L̂n,0 =
L̃n,0, i.e.,

dV̂n,t = −(γV̂n,t +∇f(L̂n,t))dt+
√

2γdWn,t,

dL̂n,t = V̂n,tdt

Assume that (Ṽ0,0, L̃0,0) is chosen such that Ṽ0,0 = V0,0 and W2(̟0, π) = ‖L̃0,0 − L0,0‖L2
. By

definition of Wasserstein distance, we have W2(̟n, π) ≤ ‖L̃n,0 − Ln,0‖L2
.

Now we denote en =

∥
∥
∥
∥
P

−1

[
Ṽn,0 − Vn,0

L̃n,0 − Ln,0

]∥
∥
∥
∥
L2

, where P
−1 =

[
Id γId
−Id 0

]

, P = γ−1

[
0 −γId
Id Id

]

corresponds to the contraction to the kinetic Langevin process. See [DRD+20]. Note that ‖L̃n,0−
Ln,0‖L2

≤
√
2γ−1en and ‖Ṽn,0 − Vn,0‖L2

≤ en. Observe that,

Ṽn,h − V̂n,h =

∫ h

0
e−γ(h−s)

(

∇f(L̂n,s)− gν,b(L̂n,0)
)

ds
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≤
∫ h

0
e−γ(h−s)

(

∇f(L̂n,s)−∇f(L̂n,0) +∇f(L̂n,0)− gν,b(L̂n,0)
)

ds

≤
∫ h

0
e−γ(h−s)

(

∇f(L̂n,s)−∇f(L̂n,0)− ζ̂n,0 +E

[

ζ̂n,0|L̂n,0

]

−E

[

ζ̂n,0|L̂n,0

])

ds

≤
∫ h

0
e−γ(h−s)

(

∇f(L̂n,s)−∇f(L̂n,0)
)

ds

︸ ︷︷ ︸

A1

−
∫ h

0
e−γ(h−s)

(

ζ̂n,0 −E

[

ζ̂n,0|L̂n,0

])

ds

︸ ︷︷ ︸

A2

−
∫ h

0
e−γ(h−s)

(

E

[

ζ̂n,0|L̂n,0

])

ds

︸ ︷︷ ︸

A3

(46)

Similarly,

L̃n,h − L̂n,h ≤
∫ h

0

∫ s

0
e−γ(s−u)

(

∇f(L̂n,u)−∇f(L̂n,0)
)

duds

︸ ︷︷ ︸

B1

−
∫ h

0

∫ s

0
e−γ(s−u)

(

ζ̂n,0 −E

[

ζ̂n,0|L̂n,0

])

duds

︸ ︷︷ ︸

B2

−
∫ h

0

∫ s

0
e−γ(s−u)

(

E

[

ζ̂n,0|L̂n,0

])

duds

︸ ︷︷ ︸

B3

(47)

Combining (46), and (47), we have

en+1 =

∥
∥
∥
∥
P

−1

[
Ṽn,h − Vn,h

L̃n,h − Ln,h

]∥
∥
∥
∥
L2

≤
∥
∥
∥
∥
P

−1

[
A1 −A2 −A3

B1 −B2 −B3

]

+ P
−1

[
V̂n,h − Vn,h

L̂n,h − Ln,h

]∥
∥
∥
∥
L2

≤
∥
∥
∥
∥
P

−1

[
V̂n,h − Vn,h

L̂n,h − Ln,h

]

− P
−1

[
A2

B2

]∥
∥
∥
∥
L2

+

∥
∥
∥
∥
P

−1

[
A1

B1

]∥
∥
∥
∥
L2

+

∥
∥
∥
∥
P

−1

[
A3

B3

]∥
∥
∥
∥
L2

(48)

Now we will upper bound the above three terms. Observe that,

‖A1‖L2
=

∥
∥
∥
∥

∫ h

0
e−γ(h−s)(∇f(L̂n,s)−∇f(L̂n,0))ds

∥
∥
∥
∥
L2

≤ M

∫ h

0
‖L̂n,s − L̂n,0‖L2

ds

≤M

∫ h

0

∫ s

0
‖V̂n,u‖L2

duds ≤ 1

2
Mh2 max

u∈[0,h]
‖V̂n,u‖L2

. (49)

‖B1‖L2
=

∥
∥
∥
∥

∫ h

0

∫ s

0
e−γ(s−u)(∇f(L̂n,u)−∇f(L̂n,0))ds

∥
∥
∥
∥
L2

≤ 1

6
Mh3 max

u∈[0,h]
‖V̂n,u‖L2

. (50)

So, combining (49), and (50), and using the fact ‖V̂n,u‖L2
≤ ‖Vn,u‖L2

+‖V̂n,u−Vn,u‖L2
≤

√
d+en,

and choosing h ≤
√
2/(10γ), we obtain

∥
∥
∥
∥
P

−1

[
A1

B1

]∥
∥
∥
∥
L2

≤
√
3‖A1‖L2

+
√
2γ‖B1‖L2

≤ 1

2
Mh2

(

√
3 +

√
2γh

3

)

(
√
d+ en) ≤ Mh3(

√
d+ en).

(51)
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Using (44) we have
∥
∥
∥
∥
P

−1

[
A3

B3

]∥
∥
∥
∥
L2

≤
√
3‖A3‖L2

+
√
2γ‖B3‖L2

≤
(

√
3h+

√
2γh2

2

)

Mν
√
d ≤ 2Mhν

√
d, (52)

and
∥
∥
∥
∥
P

−1

[
V̂n,h − Vn,h

L̂n,h − Ln,h

]

− P
−1

[
A2

B2

]∥
∥
∥
∥

2

L2

=

∥
∥
∥
∥
P

−1

[
V̂n,h − Vn,h

L̂n,h − Ln,h

]∥
∥
∥
∥

2

L2

+

∥
∥
∥
∥
P

−1

[
A2

B2

]∥
∥
∥
∥

2

L2

− 2E

[[
V̂n,h − Vn,h

L̂n,h − Ln,h

]⊤ [
2Id γId
γId γ2Id

] [
A2

B2

]]

.

Note that,
∥
∥
∥
∥
P

−1

[
V̂n,t − Vn,t

L̂n,t − Ln,t

]∥
∥
∥
∥
L2

≤ e−mt/γ

∥
∥
∥
∥
P

−1

[
V̂n,0 − Vn,0

L̂n,0 − Ln,0

]∥
∥
∥
∥
L2

= e−mt/γen. (53)

Using Lemma 1.1, we also have,

‖A2‖2L2
=

∥
∥
∥
∥

∫ h

0
e−γ(h−s)

(

ζ̂n,0 −E

[

ζ̂n,0|L̂n,0

])

ds

∥
∥
∥
∥

2

L2

=

(
1− e−γh

)2

γ2

∥
∥
∥ζ̂n,0 −E

[

ζ̂n,0|L̂n,0

]∥
∥
∥

2

L2

≤h2
∥
∥
∥gν,b(L̂n,0)−∇fν(L̂n,0)

∥
∥
∥

2

L2

≤
2h2(d+ 5)(‖∇f(L̂n,0)‖2L2

+ σ2)

b
+

h2ν2M2(d+ 3)3

2b

≤
2h2(d+ 5)(2‖∇f(L̂n,0)−∇f(Ln,0)‖2L2

+ 2‖∇f(Ln,0)‖2L2
+ σ2)

b
+

h2ν2M2(d+ 3)3

2b

≤
2h2(d+ 5)(2M2‖L̂n,0 − Ln,0‖2L2

+ 2‖∇f(Ln,0)‖2L2
+ σ2)

b
+

h2ν2M2(d+ 3)3

2b
.

Using the fact that ‖L̂n,0 − Ln,0‖2L2
≤ 2γ−2e2n, and ‖∇f(Ln,0)‖2L2

≤ Md, we hence obtain

‖A2‖2L2
≤ 8M2h2(d+ 5)

bγ2
e2n + h2A4 (54)

where A4 =
2(d+5)(2Md+σ2)

b + ν2M2(d+3)3

2b . Similarly, we have

‖B2‖2L2
≤ 2M2h4(d+ 5)

bγ2
e2n +

h4

4
A4 (55)

So, using (54), and (55), we have
∥
∥
∥
∥
P

−1

[
A2

B2

]∥
∥
∥
∥

2

L2

≤ 3‖A2‖2L2
+ 2γ2‖B2‖2L2

≤
(

3h2 +
γ2h4

2

)(
8M2(d+ 5)

bγ2
e2n +A4

)

. (56)

Now using (53), (56), and using the facts that, E
[

A2|L̂n,0

]

= 0, E
[

B2|L̂n,0

]

= 0, V̂n,h − Vn,h is

independent of A2, B2 given L̂n,0, and L̂n,h − Ln,h is independent of A2, B2 given L̂n,0, we get
∥
∥
∥
∥
P

−1

[
V̂n,h − Vn,h

L̂n,h − Ln,h

]

− P
−1

[
A2

B2

]∥
∥
∥
∥
L2
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≤
[(

8M2

(

3h2 +
γ2h4

2

)
d+ 5

bγ2
+ e

− 2mh
γ

)

e2n + 4h2A4

] 1

2

≤
[(

32M2h2(d+ 5)

bγ2
+ e

− 2mh
γ

)

e2n + 4h2A4

] 1

2

≤
[(

32M2h2(d+ 5)

bγ2
+

(

1− mh

2γ

)2
)

e2n + 4h2A4

] 1

2

≤
[(

1− mh

4γ

)2

e2n + 4h2A4

] 1

2

. (57)

The second inequality follows as h ≤
√
2/(10γ), the third inequality follows if we choose h ≤

min(γ/m,
√
2/(10γ)), and the last inequality follows if we choose b ≥ 512M2(d+5)

3m2 . Combining,
(48), (51), (52), and (57), we get

en+1 ≤
[(

1− mh

4γ

)2

e2n + 4h2A4

] 1

2

+Mh3en +Mh3
√
d+ 2Mhν

√
d.

Using Lemma 9 of [DK19], and choosing h ≤ min(γ/m,m/(12γM)) we have mh/(4γ)−3Mh2/2 ≥
mh/(8γ), and thus

en+1 ≤
(

1− mh

8γ

)n+1

e0 +
12Mγh

√
d

m
+

16Mνγ
√
d

m
+

2h
√
A4

√

mh
8γ

(

2− mh
4γ − 3Mh2

2

)

≤
(

1− mh

8γ

)n+1

e0 +
12Mγh

√
d

m
+

16Mνγ
√
d

m
+

4
√
h√
m

(√

2(d+ 5)(
√
2Md+ σ)√

b
+

νM(d+ 3)
3

2

√
2b

)

Then we obtain

W2(̟n, π)

≤
√
2γ−1en

≤
√
2γ−1

(

1− mh

8γ

)n+1

W2(̟0, π) +
24Mh

√
d

m
+

32Mν
√
d

m

+
4
√
h

γ
√
m

(

2
√

(d+ 5)(
√
2Md+ σ)√

b
+

νM(d+ 3)
3

2

√
b

)

Now, choosing h, ν, b, and N as in (16), we get (17), and (18).

8.3 Proofs for Oracle Complexity of ZO-RMP

Before proceeding, we also recall that (x∗n(t), v
∗
n(t)) when t ∈ [0, h] is the true solution to the

underdamped Langevin diffusion with the initial point (xn, vn) coupled with xn+ 1

2

through a
shared Brownian motion defined as follows:

x∗n(t) = xn +
1− e−2t

2
vn − u

2

∫ t

0

(

1− e−2(t−s)
)

∇f(x∗n(s))ds +
√
u

∫ t

0

(

1− e−2(t−s)
)

dBs (58)
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v∗n(t) = vne
−2t − u

(∫ t

0
e−2(t−s)∇f(x∗n(s))ds

)

+ 2
√
u

∫ t

0
e−2(t−s)dBs. (59)

We also recall some preliminary results from [SL19].

Lemma 8.1 (Lemma 6[SL19]) Let {x(t)}t∈[0,h], and {v(t)}t∈[0,h] be the true solution to the
underdamped Langevin diffusion (58), and (59) on t ∈ [0, h]. Then for h ≤ 1/20, and u = 1/M ,
we have

E

[

sup
t∈[0,h]

‖x(0) − x(t)‖2
]

≤ O
(
h2‖v(0)‖2 + u2h4‖∇f(x(0))‖2 + udh3

)
(60)

E

[

sup
t∈[0,h]

‖∇f(xt)‖2
]

≤ O(‖∇f(x(0))‖2 +M2h2‖v(0)‖2 +Mdh3) (61)

E

[

sup
t∈[0,h]

‖v(t)‖2
]

≤ O(‖v(0)‖2 + u2h2‖∇f(x(0))‖2 + udh) (62)

Lemma 8.2 Let αn be sampled uniformly randomly from [0, 1] at iteration n. Let xn+ 1

2

be the

intermediate value at step n. Let {x∗n(t)}t∈[0,h] be the true solution to (58), and (59) with the initial
point x∗n(0) = xn coupled to xn+ 1

2

through a shared Brownian motion. Then, under Assumption 1.3

and Assumption 1.1, for h ≤ 1/20, we have

E

[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

≤O

(

M2h6E
[
‖vn‖2

]
+ (h8 + h7κ−1)E

[
‖∇f(xn)‖2

]

+Mdh7 + h7κ−1σ2 + h8
)

. (63)

Proof. [of Lemma 8.2] For notational simplicity, we drop the subscript n from αn below. First,
note that we have

E

[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

≤M2
E

[

‖xn+ 1

2

− x∗n(αh)‖2
]

≤M2
E

[

‖u
2

∫ αh

0
(1− e−2(αh−s))(gν,b(xn)−∇f(x∗n(s))ds‖2

]

≤u2M2

4
E

[∫ αh

0
(1− e−2(αh−s))2ds

∫ αh

0
‖gν,b(xn)−∇f(x∗n(s))‖2ds

]

≤h3E

[∫ αh

0
‖gν,b(xn)−∇f(x∗n(s))‖2ds

]

≤2h3E

[∫ αh

0

(
‖gν,b(xn)−∇f(xn)‖2 + ‖∇f(xn)−∇f(x∗n(s))‖2

)
ds

]

≤2h3E

[∫ αh

0

(
‖gν,b(xn)−∇f(xn)‖2 +M2‖xn − x∗n(s)‖2

)
ds

]

≤2h3E

[ ∫ αh

0

(
3ν2

2
M2(d+ 3)3 +

4(d+ 5)
(
σ2 + ‖∇f(xn)‖2

)

b
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+M2O
(
h2‖vn‖2 + u2h4‖∇f(xn)‖2 + udh3

)
)

ds

]

=2h4E

[

3ν2

2
M2(d+ 3)3 +

4(d+ 5)
(
σ2 + ‖∇f(xn)‖2

)

b
+M2O

(
h2‖vn‖2 + u2h4‖∇f(xn)‖2 + udh3

)

]

The first and the sixth inequality follows from the first condition of Assumption 1.1, the second
inequality follows from (19), and (58), the third inequality follows from Cauchy-Schwarz inequality,
the fourth inequality follows from choosing u = 1/M and the fact that 1 − e−2(αh−s) ≤ 2h, the
fifth inequality follows from Young’s inequality, the seventh inequality follows from Lemma 1.1
and Lemma 8.1. Choosing b, and ν as in (22), we have,

E

[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

≤O
(
M2h6E

[
‖vn‖2

]
+ (h8 + h7κ−1)E

[
‖∇f(xn)‖2

]
+Mdh7 + h7κ−1σ2 + h8

)

Lemma 8.3 Let gν,b(xn) be defined as in (6). Then under the conditions of Lemma 8.2, we have

E

[

‖∇f(xn+ 1

2

)− gν,b(xn+ 1

2

)‖2
]

≤O
(
M2h5κ−1

E
[
‖vn‖2

]
+ h3κ−1

E
[
‖∇f(xn)‖2

]
+ h4 +Mdh6κ−1 + h3κ−1σ2

)
(64)

Proof. [of Lemma 8.3] Using Lemma 1.1 and Young’s inequality, we have

E

[

‖∇f(xn+ 1

2

)− gν,b(xn+ 1

2

)‖2
]

≤ 3ν2

2
M2(d+ 3)3 +

4(d + 5)
(

σ2 +E

[

‖∇f(xn+ 1

2

)‖2
])

b

≤3ν2

2
M2(d+ 3)3 +

4(d+ 5)
(

σ2 + 2E
[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

+ 2E
[
‖∇f(x∗n(αh))‖2

])

b
.

Furthermore, using Lemma 8.2, and (61), and the fact that h is small, we get

E

[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

+E
[
‖∇f(x∗n(αh))‖2

]

≤O
(
M2h2E

[
‖vn‖2

]
+E

[
‖∇f(xn)‖2

]
+Mdh3 + h7κ−1σ2 + h8

)
.

Hence, we have

E

[

‖∇f(xn+ 1

2

)− gν,b(xn+ 1

2

)‖2
]

≤O
(
M2h5κ−1

E
[
‖vn‖2

]
+ h3κ−1

E
[
‖∇f(xn)‖2

]
+ h4 +Mdh6κ−1 + h3κ−1σ2

)

Lemma 8.4 Let Eα denote the expectation with respect to α at each iteration n. Let E [·] be the
expectation with respect to other randomness present in iteration n. Let {x∗n(t)}t∈[0,h] be the true
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solution to (58), and (59) with the initial point x∗n(0) = xn coupled to xn+ 1

2

, vn, and xn+1 through

a shared Brownian motion. Then, under Assumption 1.3–1.1, for h ≤ 1/20, and u = 1/M , we
have

E
[
‖Eαxn+1 − x∗n(h)‖2

]
≤O

(
(h10 + h9κ−1)E

[
‖vn‖2

]
+ u2(h12 + h7κ−1)E

[
‖∇f(xn)‖2

]

+ud(h11 + h10κ−1) + u2h7κ−1σ2 + u2h8
)

(65a)

E
[
‖Eαvn+1 − v∗n(h)‖2

]
≤O

(
(h7κ−1 + h8)E

[
‖vn‖2

]
+ u2(h10 + h5κ−1)E

[
‖∇f(xn)‖2

]

+u2h6 + u2h5κ−1σ2 + ud(h9 + h8κ−1)
)

(65b)

E
[
‖xn+1 − x∗n(h)‖2

]
≤O

(
h6E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh7 + u2h7κ−1σ2

)

(65c)

E
[
‖vn+1 − v∗n(h)‖2

]
≤O

(
h4E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh5 + u2h7κ−1σ2

)

(65d)

Proof. [of Lemma 8.4]

a) Using Lemma 8.2, and 8.3, we have

E
[
‖Eαxn+1 − x∗n(h)‖2

]

≤E

[

‖uh
2
Eα(1− e−2(h−αh))gν,b(xn+ 1

2

)− u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤2E

[

‖uh
2
Eα(1− e−2(h−αh))(gν,b(xn+ 1

2

)−∇f(xn+ 1

2

))‖2
]

+2E

[

‖uh
2
Eα(1− e−2(h−αh))∇f(xn+ 1

2

)− u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤2u2h4E
[

‖Eα(gν,b(xn+ 1

2

)−∇f(xn+ 1

2

))‖2
]

+2E

[

‖uh
2
Eα(1− e−2(h−αh))∇f(xn+ 1

2

)− u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤O
(
h9κ−1

E
[
‖vn‖2

]
+ u2h7κ−1

E
[
‖∇f(xn)‖2

]
+ u2h8 + udh10κ−1 + u2h7κ−1σ2

)

+2E

[

‖uh
2
Eα(1− e−2(h−αh))(∇f(xn+ 1

2

)−∇f(x∗n(αh))) +
uh

2
Eα(1− e−2(h−αh))∇f(x∗n(αh))

−u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤O
(
h9κ−1

E
[
‖vn‖2

]
+ u2h7κ−1

E
[
‖∇f(xn)‖2

]
+ u2h8 + udh10κ−1 + u2h7κ−1σ2

)

+2u2h4E
[

‖Eα(∇f(xn+ 1

2

)−∇f(x∗n(αh)))‖2
]

≤O
(
h9κ−1

E
[
‖vn‖2

]
+ u2h7κ−1

E
[
‖∇f(xn)‖2

]
+ u2h8 + udh10κ−1 + u2h7κ−1σ2

)

+O
(
h10E

[
‖vn‖2

]
+ u2(h12 + h11κ−1)E

[
‖∇f(xn)‖2

]
+ udh11 + u2h11κ−1σ2 + u2h12

)

≤O
(
(h10 + h9κ−1)E

[
‖vn‖2

]
+ u2(h12 + h7κ−1)E

[
‖∇f(xn)‖2

]
+ ud(h11 + h10κ−1)

+u2h7κ−1σ2 + u2h8
)
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The second inequality follows from Young’s inequality, the third and fifth inequality uses the
fact 1−e−2(α−αh) ≤ 2h, the fifth inequality follows from the fact uh

2 Eα(1−e−2(h−αh))∇f(x∗n(αh))−
u
2

∫ h
0 (1− e−2(h−s))∇f(x∗n(s))ds = 0.

b) Next, note that

E
[
‖Eαvn+1 − v∗n(h)‖2

]

=E

[

‖Eαuhe
−2(h−αh)gν,b(xn+ 1

2

)− u

∫ h

0
e−2(h−s)∇f(x∗n(s))ds‖2

]

=E

[

‖Eαuhe
−2(h−αh)(gν,b(xn+ 1

2

)−∇f(xn+ 1

2

) +∇f(xn+ 1

2

)−∇f(x∗n(αh)) +∇f(x∗n(αh)))

−u

∫ h

0
e−2(h−s)∇f(x∗n(s))ds‖2

]

≤2u2h2E
[

‖gν,b(xn+ 1

2

)−∇f(xn+ 1

2

)‖2
]

+ 2u2h2E
[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

≤2u2h2O
(
M2h5κ−1

E
[
‖vn‖2

]
+ h3κ−1

E
[
‖∇f(xn)‖2

]
+ h4 +Mdh6κ−1 + h3κ−1σ2

)

+2u2h2O
(
M2h6E

[
‖vn‖2

]
+ (h8 + h7κ−1)E

[
‖∇f(xn)‖2

]
+Mdh7 + h7κ−1σ2 + h8

)

≤O
(
(h7κ−1 + h8)E

[
‖vn‖2

]
+ u2(h10 + h5κ−1)E

[
‖∇f(xn)‖2

]
+ u2h6

+u2h5κ−1σ2 + ud(h9 + h8κ−1)
)

The first inequality follows from using, Eα∇f(x∗n(αh))) − u
∫ h
0 e−2(h−s)∇f(x∗n(s))ds = 0, and

e−2(h−αh) ≤ 1, and the second inequality follows from Lemma 8.2, and 8.3.

c) For the next part, note that we have

E
[
‖xn+1 − x∗n(h)‖2

]

≤E

[

‖uh
2
(1− e−2(h−αh))gν,b(xn+ 1

2

)− u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤E

[

‖uh
2
(1− e−2(h−αh))(gν,b(xn+ 1

2

)−∇f(xn+ 1

2

) +∇f(xn+ 1

2

)−∇f(x∗n(αh))

+∇f(x∗n(αh))) −
u

2

∫ h

0
(1− e−2(h−αh))∇f(x∗n(s))ds +

u

2

∫ h

0
(1− e−2(h−αh))∇f(x∗n(s))ds

−u

2

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤4u2h4E
[

‖gν,b(xn+ 1

2

)−∇f(xn+ 1

2

)‖2
]

+ 4u2h4E
[

‖∇f(xn+ 1

2

)−∇f(x∗n(αh))‖2
]

+E

[

‖uh(1 − e−2(h−αh))∇f(x∗n(αh)) − u

∫ h

0
(1− e−2(h−αh))∇f(x∗n(s))ds‖2

]

+u2E

[

‖
∫ h

0
(1 − e−2(h−αh))∇f(x∗n(s))ds −

∫ h

0
(1− e−2(h−s))∇f(x∗n(s))ds‖2

]

≤O
(
h9κ−1

E
[
‖vn‖2

]
+ u2h7κ−1

E
[
‖∇f(xn)‖2

]
+ u2h8 + udh10κ−1 + u2h7κ−1σ2

)

+O
(
h10E

[
‖vn‖2

]
+ u2(h12 + h11κ−1)E

[
‖∇f(xn)‖2

]
+ udh11 + u2h11κ−1σ2 + u2h12

)
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+16h4E

[

sup
t∈[0,h]

‖x∗n(0) − x∗n(t)‖2
]

+ 4u2h4E

[

sup
t∈[0,h]

‖∇f(x∗n(t))‖2
]

≤O
(
(h10 + h9κ−1)E

[
‖vn‖2

]
+ u2(h7κ−1 + h12)E

[
‖∇f(xn)‖2

]

+u2h8 + (udh10κ−1 + udh11) + u2h7κ−1σ2
)

+O
(
h6E

[
‖vn‖2

]
+ u2h8E

[
‖∇f(xn)‖2

]
+ udh7

)

+O(h6E
[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ udh7)

≤O
(
(h10 + h9κ−1)E

[
‖vn‖2

]
+ u2(h7κ−1 + h12)E

[
‖∇f(xn)‖2

]

+u2h8 + (udh10κ−1 + udh11) + u2h7κ−1σ2
)

+O(h6E
[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ udh7)

≤O
(
h6E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh7 + u2h7κ−1σ2

)

The third inequality follows from Young’s inequality, the fourth inequality follows from Lemma 8.2,
and 8.3, and the fact 1− e−2(α−αh) ≤ 2h, and the fifth inequality follows from (60),and (61).

d) Finally, note that we have

E
[
‖vn+1 − v∗n(h)‖2

]

≤2u2h4E
[

‖gν,b(xn+ 1

2

)−∇f(xn+ 1

2

)‖2
]

+O(h4E
[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ udh5)

≤O
(
h9κ−1

E
[
‖vn‖2

]
+ u2h7κ−1

E
[
‖∇f(xn)‖2

]
+ u2h8 + udh10κ−1 + u2h7κ−1σ2

)

+O(h4E
[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ udh5)

≤O
(
h4E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh5 + u2h7κ−1σ2

)

The first inequality follows from Lemma 2 of [SL19], and the second inequality follows from
Lemma 8.3.

Lemma 8.5 Under conditions of Lemma 8.4,

E [f(xn+1(0)) − f(xn(h))] ≤ O
(
Mh5E

[
‖vn‖2

]
+ uh3E

[
‖∇f(xn)‖2

]
+ dh6 + uh4κ−1σ2 + uh5

)

(66)

Proof. [of Lemma 8.5] Note that, we have

E [f(xn+1(0))− f(xn(h))]

≤uh3E
[
‖∇f(xn(h))‖2

]
+

M

h3
E
[
‖Eαxn+1(0)− xn(h)‖2

]
+

M

2
E
[
‖xn+1(0) − xn(h)‖2

]

≤uh3O(M2h2E
[
‖vn‖2

]
+E

[
‖∇f(xn)‖2

]
+Mdh3)

+
M

h3
O
(
(h10 + h9κ−1)E

[
‖vn‖2

]
+ u2(h12 + h7κ−1)E

[
‖∇f(xn)‖2

]
+ ud(h11 + h10κ−1) + u2h7κ−1σ2 + u2h8

)

+
M

2
O
(
h6E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh7 + u2h7κ−1σ2

)

≤O
(
Mh5E

[
‖vn‖2

]
+ uh3E

[
‖∇f(xn)‖2

]
+ dh6 + uh4κ−1σ2 + uh5

)
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Lemma 8.6 At iteration n, with the initial point (xn, vn), for the updates (19), (20), and (21),
we have

N−1∑

n=0

E
[
‖vn‖2

]
≤ O

(

u2h

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndu+Nu2h3κ−1σ2 +Nu2h4

)

(67)

Proof. [of Lemma 8.6] From Lemma 11 of [SL19], we have

E

[
1

2u
‖vn(h)‖2 + f(xn(h))

]

≤E

[
1

2u
‖vn‖2 + f(xn)

]

− 2

3
hME

[
‖vn‖2

]
+O

(
uh3E

[
‖∇f(xn)‖2

]
+ dh

)
(68)

From Lemma 11 we also have,

E
[
‖vn+1‖2 − ‖vn(h)‖2

]

≤ 2

h2
E
[
‖vn+1 − vn(h)‖2

]
+ 4h2E

[
‖vn(h)‖2

]

≤ 2

h2
O
(
h4E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh5 + u2h7κ−1σ2

)

+4h2O(E
[
‖vn‖2

]
+ u2h2E

[
‖∇f(xn)‖2

]
+ udh)

≤O
(
h2E

[
‖vn‖2

]
+ u2h2E

[
‖∇f(xn)‖2

]
+ u2h6 + udh3 + u2h5κ−1σ2

)
(69)

The second inequality above follows from (62). From Lemma 8.5, we have

E [f(xn+1(0)) − f(xn(h))] ≤ O
(
Mh5E

[
‖vn‖2

]
+ uh3E

[
‖∇f(xn)‖2

]
+ dh6 + uh4κ−1σ2 + uh5

)

Now, from (68), (69) and Lemma 8.5, we get

E

[
1

2u
‖vn+1‖2 + f(xn+1)

]

= E

[
1

2u
(‖vn+1‖2 − ‖vn(h)‖2) + f(xn+1)− f(xn(h)

]

+E

[
1

2u
‖vn(h)‖2 + f(xn(h))

]

≤O
(
Mh2E

[
‖vn‖2

]
+ uh2E

[
‖∇f(xn)‖2

]
+ uh6 + dh3 + uh5κ−1σ2

)

+O
(
Mh5E

[
‖vn‖2

]
+ uh3E

[
‖∇f(xn)‖2

]
+ dh6 + uh4κ−1σ2 + uh5

)

+E

[
1

2u
‖vn‖2 + f(xn)

]

− 2

3
hME

[
‖vn‖2

]
+O

(
uh3E

[
‖∇f(xn)‖2

]
+ dh

)

Choosing h such that, 1
3hM ≥ Mh2, i.e., h ≤ 1

3 , we get

E

[
1

2u
‖vn+1‖2 + f(xn+1)

]

≤O
(
uh2E

[
‖∇f(xn)‖2

]
+ dh+ uh4κ−1σ2 + uh5

)
+E

[
1

2u
‖vn‖2 + f(xn)

]

− 1

3
hME

[
‖vn‖2

]
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Summing both sides from n = 0 to N − 1, we get

N−1∑

n=0

E

[
1

2u
‖vn+1‖2 + f(xn+1)

]

≤O

(

uh2
N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndh+Nuh4κ−1σ2 +Nuh5

)

+E

[

1

2u

N−1∑

n=0

(
‖vn‖2 + f(xn)

)

]

− 1

3
hM

N−1∑

n=0

E
[
‖vn‖2

]

Since, ‖v0‖ = 0, and E [f(x0)] − f(x∗) ≤ O(d), and consequently, E [f(x0)− f(xN)] ≤ O(d), we
have

1

3
hM

N−1∑

n=0

E
[
‖vn‖2

]
≤ O

(

uh2
N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndh+Nuh4κ−1σ2 +Nuh5

)

N−1∑

n=0

E
[
‖vn‖2

]
≤ O

(

u2h
N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndu+Nu2h3κ−1σ2 +Nu2h4

)

Lemma 8.7 At iteration n, with the initial point (xn, vn), for the updates (19), (20), and (21),
we have

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
≤ O

(
M

h

∣
∣
∣E

[

∇f(xN)⊤vN
]∣
∣
∣+MNd+Nh3κ−1σ2 +Nh4

)

N−1∑

n=0

E
[
‖vn‖2

]
≤ O

(

u
∣
∣
∣E

[

∇f(xN)⊤vN
]∣
∣
∣+Ndu+Nu2h3κ−1σ2 +Nu2h4

)

Proof. [of Lemma 8.7] From (15) in Lemma 12 of [SL19] we have,

E

[

∇f(xn(h))
⊤vn(h)

]

≤E

[

∇f(xn)
⊤vn

]

− 1

6
uhE

[
‖∇f(xn)‖2

]
+O

(
MhE

[
‖vn‖2

]
+ uh3E

[
‖∇f(xn)‖2

]
+ dh2

)
(70)

From Lemma 12 of [SL19] we also have,

E

[

∇f(xn+1)
⊤vn+1 −∇f(xn(h))

⊤vn(h)
]

≤2u

h
E
[
‖∇f(xn+1)−∇f(xn(h))‖2

]
+

2M

h2
E
[
‖vn+1 − vn(h)‖2

]
+ uh2E

[
‖∇f(xn(h))‖2

]
+MhE

[
‖vn(h)‖2

]

≤2M

h
E
[
‖xn+1 − xn(h)‖2

]
+

2M

h2
E
[
‖vn+1 − vn(h)‖2

]
+ uh2E

[
‖∇f(xn(h))‖2

]
+MhE

[
‖vn(h)‖2

]

Now from (65c), (65d), and Lemma 8.1 we have,

E

[

∇f(xn+1)
⊤vn+1 −∇f(xn(h))

⊤vn(h)
]

≤2M

h
O
(
h6E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh7 + u2h7κ−1σ2

)
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+
2M

h2
O
(
h4E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh5 + u2h7κ−1σ2

)

+uh2O(M2h2‖vn‖2 + ‖∇f(xn)‖2 +Mdh3) +MhO(‖vn‖2 + u2h2‖∇f(xn)‖2 + udh)

≤O
(
MhE

[
‖vn‖2

]
+ uh2E

[
‖∇f(xn)‖2

]
+ dh2 + uh6 + uh5κ−1σ2

)
(71)

Combining (70), and (71), we get

E

[

∇f(xn+1)
⊤vn+1

]

≤E

[

∇f(xn)
⊤vn

]

− 1

6
uhE

[
‖∇f(xn)‖2

]

+O
(
MhE

[
‖vn‖2

]
+ uh2E

[
‖∇f(xn)‖2

]
+ dh2 + uh6 + uh5κ−1σ2

)
.

Summing both sides from n = 0 to N − 1, and using Lemma 8.6, we get

N−1∑

n=0

E

[

∇f(xn+1)
⊤vn+1

]

≤
N−1∑

n=0

E

[

∇f(xn)
⊤vn

]

− 1

6
uh

N−1∑

n=0

E
[
‖∇f(xn)‖2

]

+O

(

Mh
N−1∑

n=0

E
[
‖vn‖2

]
+ uh2

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndh2 +Nuh6 +Nuh5κ−1σ2

)

≤
N−1∑

n=0

E

[

∇f(xn)
⊤vn

]

− 1

6
uh

N−1∑

n=0

E
[
‖∇f(xn)‖2

]

+O

(

MhO

(

u2h

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndu+Nu2h3κ−1σ2 +Nu2h4

)

+uh2
N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndh2 +Nuh6 +Nuh5κ−1σ2

)

≤
N−1∑

n=0

E

[

∇f(xn)
⊤vn

]

− 1

6
uh

N−1∑

n=0

E
[
‖∇f(xn)‖2

]

+O

(

uh2
N−1∑

n=0

E
[
‖∇f(xn)‖2

]
+Ndh+Nuh4κ−1σ2 +Nuh5

)

Now choosing 1
24uh ≥ uh2, and v0 = 0, we have,

1

8
uh

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
≤ O

(∣
∣
∣E

[

∇f(xN )⊤vN
]∣
∣
∣+Ndh+Nuh4κ−1σ2 +Nuh5

)

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
≤ O

(
M

h

∣
∣
∣E

[

∇f(xN )⊤vN
]∣
∣
∣+MNd+Nh3κ−1σ2 +Nh4

)

Using Lemma 8.6, we have,

N−1∑

n=0

E
[
‖vn‖2

]
≤O

(

u
∣
∣
∣E

[

∇f(xN)⊤vN
]∣
∣
∣+Ndu+Nu2h3κ−1σ2 +Nu2h4

)
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Proof. [of Theorem 2.3] From Theorem 3 in [SL19], we have

qN ≤e−
Nh
2κ q0 +

N∑

n=1

2κ

h

(
2E

[
‖Eαvn+1 − v∗n(h)‖2

]
+ 3E

[
‖Eαxn+1 − x∗n(h)‖2

])

+
N∑

n=1

(
2E

[
‖vn+1 − v∗n(h)‖2

]
+ 3E

[
‖xn+1 − x∗n(h)‖2

])
(72)

where qN = E
[
‖xN − yN‖2 + ‖xN + vN − yN − wN‖2

]
. We also have,

e−
Nh
2κ q0 ≤

ǫ2d

4m
(73)

From Lemma 8.4,

N∑

n=1

2κ

h

(
2E

[
‖Eαvn+1 − v∗n(h)‖2

]
+ 3E

[
‖Eαxn+1 − x∗n(h)‖2

])

≤O

(

(h6 + κh7)
N∑

n=1

E
[
‖vn‖2

]
+ u2(κh9 + h4)

N∑

n=1

E
[
‖∇f(xn)‖2

]

+Nκu2h5 +Nu2h4σ2 +Nud(κh8 + h7)
)

(74)

N∑

n=1

(
2E

[
‖vn+1 − v∗n(h)‖2

]
+ 3E

[
‖xn+1 − x∗n(h)‖2

])

≤
N∑

n=1

(
O
(
h4E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh5 + u2h7κ−1σ2

)

O
(
h6E

[
‖vn‖2

]
+ u2h4E

[
‖∇f(xn)‖2

]
+ u2h8 + udh7 + u2h7κ−1σ2

))

≤O

(

h4
N∑

n=1

E
[
‖vn‖2

]
+ u2h4

N∑

n=1

E
[
‖∇f(xn)‖2

]
+Nu2h8 +Nudh5 +Nu2h7κ−1σ2

)

(75)

Combining (74), and (75), we have

N∑

n=1

2κ

h

(
2E

[
‖Eαvn+1 − v∗n(h)‖2

]
+ 3E

[
‖Eαxn+1 − x∗n(h)‖2

])

+

N∑

n=1

(
2E

[
‖vn+1 − v∗n(h)‖2

]
+ 3E

[
‖xn+1 − x∗n(h)‖2

])

≤O

(

(h4 + κh7)
N∑

n=1

E
[
‖vn‖2

]
+ u2(h4 + κh9 + h4)

N∑

n=1

E
[
‖∇f(xn)‖2

]

+Nudh5 +Nud(κh8 + h7) +Nu2h4σ2 +Nκu2h5
)

(76)
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From the proof of Theorem 3 of [SL19] we have,
∥
∥
∥E

[

∇f(xN)⊤vN
]∥
∥
∥ ≤ 4d+ 6MqN

Then we have,

N−1∑

n=0

E
[
‖vn‖2

]
≤O

(
qN +Ndu+Nu2h3κ−1σ2 +Nu2h4

)
(77)

and

N−1∑

n=0

E
[
‖∇f(xn)‖2

]
≤ O

(
dM

h
+

M2

h
qN +MNd+Nh3κ−1σ2 +Nh4

)

(78)

From (76), (77), and (78), and setting N = 2κ
h log

(
20
ǫ2

)
we have

N∑

n=1

2κ

h

(
2E

[
‖Eαvn+1 − v∗n(h)‖2

]
+ 3E

[
‖Eαxn+1 − x∗n(h)‖2

])

+
N∑

n=1

(
2E

[
‖vn+1 − v∗n(h)‖2

]
+ 3E

[
‖xn+1 − x∗n(h)‖2

])

≤O
(
(h3 + κh7)qN +Ndu(h4 + κh7) + duh3 + duh3 +Nu2h4σ2 +Nu2κh5

)

≤O

(

(h3 + κh7)qN +
d

m
(h3 + κh6) log

(
1

ǫ

)

+
h3κ−1

m2
σ2 log

(
1

ǫ

)

+
h4

m2
log

(
1

ǫ

))

From (72), and (73),

qN ≤ ǫ2d

4m
+O

(

(h3 + κh7)qN +

(
d

m
(h3 + κh6) +

h3

Mm
σ2 +

h4

m2

)

log

(
1

ǫ

))

Using, (h3 + κh7) ≤ 1/2, we have,

qN
2

≤ ǫ2d

4m
+O

((
d

m
(h3 + κh6) +

h3

Mm
σ2 +

h4

m2

)

log

(
1

ǫ

))

Choosing, h = Cmin

(

(ǫ
√
m)

1
3

(dκ)
1
6 log( 1

ǫ )
1
6

,min

(
(
m
d

) 1

3 ,
(
Mm
16σ2

) 1

3 ,
√
m

)

ǫ
2

3 log
(
1
ǫ

)− 2

3

)

, we get,

E
[
‖xN − yN‖2

]
≤ qN ≤ ǫ2d

m

So, the iteration complexity is given by,

N = Õ






max







d
1

6κ
7

6

(ǫ
√
m)

1

3

,

κmax

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)

ǫ
2

3












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The total number of zeroth-order oracle calls are given by,

Nb = Õ







max








d
5

3κ
8

3

ǫ
4

3

,

dκ2 max

(
(
d
m

) 1

3 ,
(

σ2

Mm

) 1

3

, 1√
m

)4

ǫ
8

3















9 Proofs for Section 3.1

Proof. [of Theorem 3.2] Let us define the following continuous time SDE with the initial point x̂0:

x̂t = −gν,b(x̂0)dt+
√
2dWn

Observe that x̂h has the same distribution as xn+1 when x̂0 = xn. Let z denote ({ui}bi=1, {ξi}bi=1}).
To show the dependence of gν,b(ˆ̂x0) on z we will use gν,b(x̂0, z) to denote gν,b(x̂0) just for this proof.
Let ρt0z(x̂t, x̂0, z) be the joint distribution of x̂t, x̂0, and z. Observe that conditioned on x̂0, and
z, gν,b(x̂0, z) is deterministic. Then by Fokker-Plank equation, we have

∂ρt|0,z(x̂t|x̂0, z)
∂t

= ∇ ·
(

ρt|0,z(x̂t|x̂0, z)gν,b(ˆ̂x0, z)
)

+∆ρt|0,z(x̂t|x̂0, z)

Then the time evolution of ρt(x) is given by

∂ρt(x)

∂t
= Ex0,z

[
∂ρt|0,z(x|x0, z)

∂t

]

≤Ex0,z

[

∇ ·
(

ρt|0,z(x̂t|x̂0, z)gν,b(ˆ̂x0, z)
)

+∆ρt|0,z(x̂t|x̂0, z)
]

=Ex0,z

[

∇ ·
(

ρt|0,z(x̂t|x̂0, z)gν,b(ˆ̂x0, z)
)]

+∆ρt(x̂t)

=

∫

Rd

∫

R2d

∇ ·
(

ρt,0,z(x̂t, x̂0, z)gν,b(ˆ̂x0, z)
)

dx0dz +∆ρt(x̂t)

=∇ ·
(
ρt(x)E0,z|t [gν,b(x̂0, z)|x̂t = x]

)
+∆ρt(x̂t) (79)

Now, as shown in [VW19] we have,

∂Hπ(ρt(x))

∂t
=

∫

Rd

∂ρt(x)

∂t
log

(
ρt(x)

π(x)

)

dx

Then using (79), we have

∂Hπ(ρt(x))

∂t

=

∫

Rd

(
∇ ·

(
ρt(x)E0,z|t [gν,b(x̂0, z)|x̂t = x]

)
+∆ρt(x̂t)

)
log

(
ρt(x)

π(x)

)

dx

=

∫

Rd

∇ ·
((
ρt(x)E0,z|t [gν,b(x̂0, z)|x̂t = x]

)
+∇ρt(x̂t)

)
log

(
ρt(x)

π(x)

)

dx
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=

∫

Rd

∇ ·
(

ρt(x)

(

∇ log

(
ρt(x)

π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)

))

log

(
ρt(x)

π(x)

)

dx

Now we use the fact that ∇ · (ax) = ax · ∇a+ a∇ · x where a is a scalar, and x is a vector:

∂Hπ(ρt(x))

∂t

=

∫

Rd

∇ ·
(

ρt(x)

(

∇ log

(
ρt(x)

π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)

)

log

(
ρt(x)

π(x)

))

dx

−
∫

Rd

ρt(x)

〈(

∇ log

(
ρt(x)

π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)

)

,∇ log

(
ρt(x)

π(x)

)〉

dx

Now as ρt(x)
(

∇ log
(
ρt(x)
π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)
)

log
(
ρt(x)
π(x)

)

decays to 0 as x goes

to infinity, we have,
∫

Rd

∇ ·
(

ρt(x)

(

∇ log

(
ρt(x)

π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)

)

log

(
ρt(x)

π(x)

))

dx = 0

Then we get,

∂Hπ(ρt(x))

∂t

=−
∫

Rd

ρt(x)

〈(

∇ log

(
ρt(x)

π(x)

)

+E0,z|t [gν,b(x̂0, z)|x̂t = x]−∇f(x)

)

,∇ log

(
ρt(x)

π(x)

)〉

dx

=− Jπ(ρt(x)) −
∫

Rd

∫

Rd

∫

R2d

ρt(x, x̂0, z)

〈

gν,b(x̂0, z)−∇f(x),∇ log

(
ρt(x)

π(x)

)〉

dzdxdx̂0

=− Jπ(ρt(x)) +Et0z

[〈

∇f(x̂t)− gν,b(x̂0, z),∇ log

(
ρt(x)

π(x)

)〉]

(80)

The second equality above follows from (26), and in the last line we have substituted xt in place
of x. Now we will upper bound the second term above.

Et0z

[〈

∇f(x̂t)− gν,b(x̂0, z),∇ log

(
ρt(x)

π(x)

)〉]

≤Et0z

[
‖∇f(x̂t)− gν,b(x̂0, z)‖2

]
+

1

4
Et0z

[∥
∥
∥
∥
∇ log

(
ρt(x)

π(x)

)∥
∥
∥
∥

2
]

≤2M2
Et0

[
‖x̂t − x̂0‖2

]
+ 2E0z

[
‖∇f(x̂0)− gν,b(x̂0, z)‖2

]
+

1

4
Jπ(ρt(x)) (81)

Now, from Lemma 1.1, we have,

E0z

[
‖∇f(x̂0)− gν,b(x̂0, z)‖2

]
≤ 4(d+ 5)E0z

[
‖∇f(x̂0)‖2

]

b
+ C1 (82)

where C1 =
4(d+5)σ2

b + 3ν2M2(d+3)3

2 . We also have, with τ0 ∼ N(0, Id)

Et0

[
‖x̂t − x̂0‖2

]
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=Et0

[

‖ − tgν,b(x̂0, z) +
√
2tτ0‖2

]

≤2dt+ 2t2E0z

[
‖∇f(x̂0)− gν,b(x̂0, z)‖2

]
+ 2t2E0

[
‖∇f(x̂0)‖2

]
(83)

Combining (81), (82), and (83), for t ≤ 1/(2M) we get

Et0z

[〈

∇f(x̂t)− gν,b(x̂0, z),∇ log

(
ρt(x)

π(x)

)〉]

≤1

4
Jπ(ρt(x)) + 4M2td+ (2 + 4M2t2)E0z

[
‖∇f(x̂0)− gν,b(x̂0, z)‖2

]
+ 4M2t2E0

[
‖∇f(x̂0)‖2

]

≤1

4
Jπ(ρt(x)) + 4M2td+ 3

(

4(d+ 5)E0

[
‖∇f(x̂0)‖2

]

b
+ C1

)

+ 4M2t2E0

[
‖∇f(x̂0)‖2

]

≤1

4
Jπ(ρt(x)) + 4M2td+ 3C1 +

(
12(d + 5)

b
+ 4M2t2

)

E0

[
‖∇f(x̂0)‖2

]

≤1

4
Jπ(ρt(x)) + 4M2td+ 3C1 +

(
12(d + 5)

b
+ 4M2t2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

)

(84)

We get the last inequality using Lemma 12 of [VW19]. Now combining, (80), and (84), we get,

∂Hπ(ρt(x))

∂t

≤− 3

4
Jπ(ρt(x)) + 4M2td+ 3C1 +

(
12(d + 5)

b
+ 4M2t2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

)

Using (27), we get

∂Hπ(ρt(x))

∂t

≤− 3λ

2
Hπ(ρt(x)) + 4M2td+ 3C1 +

(
12(d + 5)

b
+ 4M2t2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

)

(85)

Taking t ≤ h, we get,

∂Hπ(ρt(x))

∂t

≤− 3λ

2
Hπ(ρt(x)) + 4M2hd+ 3C1 +

(
12(d + 5)

b
+ 4M2h2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

)

Multiplying both sides with e
3λt
2 , and integrating from t = 0 to h, we get

e
3λh
2 Hπ(ρh(x))−Hπ(ρ0(x))

≤2(e
3λh
2 − 1)

3λ

(

4M2hd+ 3C1 +

(
12(d + 5)

b
+ 4M2h2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

))

≤2h

(

4M2hd+ 3C1 +

(
12(d + 5)

b
+ 4M2h2

)(
4M2

λ
Hπ(ρ0(x)) + 2Md

))

=

(

8M2h2d+ 3hC1 +

(
24(d + 5)h

b
+ 8M2h3

)

Md

)

+
4M2

λ

(
24(d + 5)h

b
+ 8M2h3

)

Hπ(ρ0(x))
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As in [VW19], in the penultimate step we use the fact ea ≤ 1 + 2a for 0 < a = 3λh
2 , and h ≤ 2

3λ .
Hence, we have

Hπ(ρh(x)) ≤ e−
3λh
2

(

1 +
4M2

λ

(
24(d + 5)h

b
+ 8M2h3

))

Hπ(ρ0(x))

+e−
3λh
2

(

8M2h2d+ 3hC1 +

(
24(d+ 5)h

b
+ 8M2h3

)

Md

)

.

Choosing b ≥ 384M2(d+5)
λ2 , and h ≤ λ

12M2 , we get,

1 +
4M2

λ

(
24(d + 5)h

b
+ 8M2h3

)

≤ 1 +
λh

2
≤ e

λh
2 .

Then we have,

Hπ(ρh(x)) ≤ e−λhHπ(ρ0(x)) +

(

8M2h2d+ 3hC1 +

(
24(d + 5)h

b
+ 8M2h3

)

Md

)

Observe that when x̂0 = xn, ρ0 is same as ̟n, and then ρh(x) is same as ̟n+1. Then

Hπ(̟n+1)

≤e−λhHπ(̟n) +

(

8M2h2d+ 3hC1 +

(
24(d + 5)h

b
+ 8M2h3

)

Md

)

≤e−(n+1)λhHπ(̟0) +
1

1− e−λh

(

8M2h2d+ 3hC1 +

(
24(d + 5)h

b
+ 8M2h3

)

Md

)

Choosing n = N = 1
λh log

(
ǫ2

Hπ(̟0)

)

, and using 1− e−λh ≥ λh
2 , for h ≤ 1

λ , we get

Hπ(̟N )

≤ǫ2 +

(
16M2hd

λ
+

6

λ

(
4(d+ 5)σ2

b
+

3ν2M2(d+ 3)3

2

)

+

(
48(d + 5)

b
+ 16M2h2

)
Md

λ

)

Choosing b, ν, and h as in (29), we get

Hπ(̟N ) = O(ǫ2)

Using, (28), we get,

W2(̟N , π) = O(ǫ)

10 Proofs for Section 4

Proof. [of Lemma 4.1] First note that, we have

gν,b(θ)−∇fν(θ) =
1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξ′i)
ν

ui −∇fν(θ)
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=
1

b

b∑

i=1

f(θ + νui)− f(θ)

ν
ui −∇fν(θ) +

1

b

b∑

i=1

ξi − ξ′i
ν

ui.

Hence, we have

E

[

‖gν,b(θ)−∇fν(θ)‖2
]

=E





∥
∥
∥
∥
∥

1

b

b∑

i=1

f(x+ νui)− f(θ)

ν
ui −∇fν(θ)

∥
∥
∥
∥
∥

2


+E





∥
∥
∥
∥
∥

1

b

b∑

i=1

ξi − ξ′i
ν

ui

∥
∥
∥
∥
∥

2




+2E

[〈(

1

b

b∑

i=1

f(x+ νui)− f(θ)

ν
ui −∇fν(θ)

)

,

(

1

b

b∑

i=1

ξi − ξ′i
ν

ui

)〉]

.

Now note that, using independence of ξi, ξ′i, and ui, we have ∀ i

E

[〈(
f(x+ νui)− f(θ)

ν
ui −∇fν(θ)

)

,

(
ξi − ξ′i

ν
ui

)〉]

=E

[〈
f(x+ νui)− f(θ)

ν
ui −∇fν(θ), ui

〉]

E

[
ξi − ξ′i

ν

]

= 0

We also have, ∀ i 6= j,

E

[〈(
f(x+ νui)− f(θ)

ν
ui −∇fν(θ)

)

,

(
ξj − ξ′j

ν
uj

)〉]

=E

[〈
f(x+ νui)− f(θ)

ν
ui −∇fν(θ), uj

〉]

E

[
ξj − ξ′j

ν

]

= 0 (86)

Using, Lemma 1.1, we hence have,

E





∥
∥
∥
∥
∥

1

b

b∑

i=1

f(x+ νui)− f(θ)

ν
ui −∇fν(θ)

∥
∥
∥
∥
∥

2


 ≤ 2(d+ 5)‖∇f(θ)‖2
b

+
ν2M2(d+ 3)3

2b
. (87)

Furthermore, we have

E





∥
∥
∥
∥
∥

1

b

b∑

i=1

ξi − ξ′i
ν

ui

∥
∥
∥
∥
∥

2


 =
1

b2

b∑

i=1

E

[
(ξi − ξ′i)

2

ν2

]

E
[
‖ui‖2

]
=

2dσ2

bν2
. (88)

Combining, (87), (86), and (88), we obtain Lemma 4.1.
Proof. [of Theorem 4.2] Using Lemma 4.1, (45) changes to,

W2(̟n, π) ≤(1− 0.5mh)nW2(̟0, π) +
3.3M

√
hd

m
+

2νM
√
d

m
+

νM
√
h

2
√
mb

(d+ 3)
3

2

+
3
√

h(d+ 5)(σ
2

ν2 + 2Md)
√
mb

.

Now the last term involves ν in the denominator. To counter the effect we have to increase the
sample size to b = d

ǫ2 .
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Proof. [of Lemma 4.2] First note that, we have

gν,b(θ)−∇fν(θ) =
1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξ′i)
ν

ui(θ)−∇fν(θ)

=
1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξi)

ν
ui −∇fν(θ) +

1

b

b∑

i=1

F (θ, ξi)− F (θ, ξ′i)
ν

ui

Hence, we have

E

[

‖gν,b(θ)−∇fν(θ)‖2
]

=2E





∥
∥
∥
∥
∥

1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξi)

ν
ui −∇fν(θ)

∥
∥
∥
∥
∥

2




+2E





∥
∥
∥
∥
∥

1

b

b∑

i=1

F (θ, ξi)− F (θ, ξ′i)
ν

ui

∥
∥
∥
∥
∥

2


 .

Using, Lemma 1.1, we have,

E





∥
∥
∥
∥
∥

1

b

b∑

i=1

F (θ + νui, ξi)− F (θ, ξi)

ν
ui −∇fν(θ)

∥
∥
∥
∥
∥

2


 ≤ 2(d+ 5)(‖∇f(θ)‖2 + σ2)

b
+

ν2M2(d+ 3)3

2b
.

(89)

Furthermore, note that

E





∥
∥
∥
∥
∥

1

b

b∑

i=1

F (θ, ξi)− F (θ, ξ′i)
ν

ui

∥
∥
∥
∥
∥

2


 =
1

b2

b∑

i=1

E

[
(F (θ, ξi)− F (θ, ξ′i))

2

ν2

]

E
[
‖ui‖2

]

≤L2

b2

b∑

i=1

E

[
(ξi − ξ′i)

2

ν2

]

E
[
‖ui‖2

]
=

2dL2σ2

bν2
. (90)

Combining, (89), and (90), we get the result stated in Lemma 4.1.

11 Proofs for Section 5

Proof. [of Theorem 5.3] First, we have,

Pr{Ŝ 6= S∗} = Pr{ max
j∈D\S∗

|[gν,b]j | > τ or min
j∈S∗

|[gν,b]j| < τ}

≤ Pr{ max
j∈D\S∗

|[gν,b]j | > τ}+ Pr{min
j∈S∗

|[gν,b]j | < τ}

≤
∑

j∈D\S∗

Pr{|ζj | > τ}+
∑

j∈S∗

Pr{|ζj | > a′ − τ},
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where a′ = a − Mν
√
s ≤ a − ‖∇f(θ) − ∇fν(θ)‖ is a lower bound for |[∇fν(θ)]j |. Next we

utilize concentration inequalities to give a bound for the tail of approximation error ζj . Denote

[gν,1]j =
f(θ+νu)−f(θ)

ν uj
def
= φ(ν, u)uj , where φ(ν, u) is sub-exponential with

‖φ(ν, u)‖Ψ1
= sup

p≥1
p−1(E[|φ(ν, u)|p])1/p

≤ sup
p≥1

p−1(E[|f(θ + νu)− f(θ)−∇f(θ)⊤νu
ν

|p])1/p + sup
p≥1

p−1(E[|∇f(θ)⊤u|p])1/p

≤ 1

2
Mν sup

p≥1
p−1(E[‖u‖2p])1/p + ‖∇f(θ)‖ sup

p≥1
p−1(E[‖u‖p])1/p

≤ Mν‖u‖2Ψ2
+ ‖∇f(θ)‖‖u‖Ψ2

≤ 2R‖u‖Ψ2
,

where ‖·‖Ψ1
= supp≥1 p

−1
E[|·|p]1/p and ‖·‖Ψ2

= supp≥1 p
−1/2

E[|·|p]1/p are the sub-exponential and
sub-Gaussian norm respectively (see, for example [Ver18] for more details). In the last inequality
we require that ν ≤ R

M‖u‖Ψ2

. Note that u ∼ N(0, Id) can be replaced by
∑

k∈S∗ ukek ∼ N(0, Is)

due to Assumption 5.1. Moreover, we have the following estimate.

‖u1‖Ψ2
≤ inf{c > 0 : E

[

exp

{
u21
c2

}]

≤ 2} =

√

8

3

def
= C1,

‖u‖Ψ2
≤ inf{c > 0 : E

[

exp

{‖u‖2
c2

}]

≤ 2}

=

√

2

1− 2−2/d

≤
√

d

log 2(1 − log 2)

def
= C2

√
d,

which implies that ‖φ(ν, u)‖Ψ1
≤ 2RC2

√
s, ‖u1‖Ψ2

≤ C1. We now state the following concentra-
tion inequality proved in [BFY18].

Lemma 11.1 Let (Xi, Yi), i = 1, . . . , n be n independent copies of random variables X and Y .
Let X be a sub-Gaussian random variable with ‖X‖ψ2

≤ Υ1, and Y be a sub-exponential random
variable with ‖Y ‖ψ1

≤ Υ2 for some constants Υ1 and Υ2. Then for any t ≥ K ·max{Υ3
1,Υ1} ·Υ2,

we have

Pr

{∣
∣
∣
∣

n∑

i=1

[
Xi · Yi −E(XY )

]
∣
∣
∣
∣
≥ t

}

≤ 4exp

{

−K1 ·min

[(
t√

nΥ1 ·Υ2

)2

,

(
t

Υ1 ·Υ2

)2/3]}

,

where K and K1 are absolute constants.

From Lemma 11.1, for n ≥ max

{

K1
2RC

√
s

τ ,
(
2RC

√
s

τ

)4
}

, we have:

Pr{|ζj | ≥ τ} = Pr

{∣
∣
∣
∣
∣

1

n

n∑

k=1

gkν,1 −E[gν,1]

∣
∣
∣
∣
∣
≥ τ

}
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≤ 4exp

{

−K2

(
nτ

‖φ(ν, u)‖Ψ1
‖u1‖Ψ2

)2/3
}

≤ 4exp

{

−K2

(
nτ

2RC
√
s

)2/3
}

,

where C = C1C2 =
√

8
3 log 2(1−log 2) ,K1,K2 are absolute constants. Therefore, by setting the

threshold τ = a′/2, the probability of error is bounded by

Pr{Ŝ 6= S∗} ≤
∑

j∈D\S∗

Pr{|ζj | > τ}+
∑

j∈S∗

Pr{|ζj | > a′ − τ}

≤ 4(d− s)exp

{

−K2

(
nτ

2RC
√
s

)2/3
}

+ 4sexp

{

−K2

(
n(a′ − τ)

2RC
√
s

)2/3
}

= 4dexp

{

−K2

(
n(a−Mν

√
s)

4RC
√
s

)2/3
}

.

Given a pre-specified error rate ǫ > 0, it suffices to have ν ≤ a
2M

√
s
∧ R

MC2

√
s

and

n ≥ 8RC
√
s

a

(
1

K2
log

4d

ǫ

)3/2

∨K1
8RC

√
s

a
∨
(
8RC

√
s

a

)4

.
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