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Predicting the three-dimensional structure of a protein from
its sequence alone remains an unsolved problem. However,
by exploiting the information in multiple sequence alignments
(MSAs) of related proteins as raw input features for end-to-
end training, AlphaFold2 [1] was able to predict the 3D atomic
coordinates of folded protein structures at a median GDT-TS
of 92.4% in the latest CASP14 [2] competition. The accuracy
of many of the predicted structures was within the error mar-
gin of experimental structure determination methods. Many
ideas of AlphaFold2 were independently reproduced and im-
plemented in RoseTTAFold [3]. Additionally to single-chain
predictions, RoseTTAFold and later AlphaFold were shown
to generalize to model protein complexes. Evans et al. [4]
have since released AlphaFold-multimer, a refined version of
AlphaFold2 for complex prediction. Thus, two highly accu-
rate open-source prediction methods for single-chain and one
for protein complexes are now publicly available.
To leverage the power of these methods, researchers require

powerful compute-capabilities. First, to build diverse MSAs,
large collections of protein sequences from public reference [5]
and environmental [1, 6] databases are searched using the most
sensitive homology detection methods HMMer [7] and HH-
blits [8]. These environmental databases contain billions of
proteins extracted from metagenomic and -transcriptomic ex-
periments, which often complement databases dominated by
isolate genomes. Due to their large size searches can take up
to hours for a single protein, while requiring over two terabyte
of storage space alone. Second, to execute the deep neural net-
works GPUs with a large amount of GPU RAM are required
even for relatively common protein sizes of ∼1000 residues.
Though, for these the MSA generation dominates the overall
run-time.
To enable researchers without these resources to use Al-

phaFold2, independent solutions based on Google Colabora-
tory were developed. Colaboratory is a proprietary version
of Jupyter Notebook hosted by Google. It is accessible for
free to logged-in users and includes access to powerful GPUs.
Concurrently, Tunyasuvunakool et al. [9] developed an Al-
phaFold2 Jupyter Notebook for Google Colaboratory (referred
to as AlphaFold-Colab), where the input MSA is built by
searching with HMMer against a clustered UniProt and an

eight-fold reduced environmental databases. Resulting in less
accurate predictions, while still requiring long search times.
Here, we present ColabFold, a fast and easy to use soft-

ware for protein structure and homo- and heteromer complex
prediction, for use as a Jupyter Notebook inside Google Co-
laboratory, on researchers’ local computers as a notebook or
through a command line interface. ColabFold speed-ups sin-
gle prediction by replacing AlphaFold2’s homology search with
a 40-60 times faster MMseqs2 [10, 11] search and batch pre-
dictions by ∼ 90 times by avoiding recompilation and adding
an early stop criterion. We show that ColabFold outperforms
AlphaFold-Colab and matches AlphaFold2 on CASP14 targets
and also matches AlphaFold-multimer on the ClusPro [4, 12]
dataset in prediction quality.
ColabFold (Fig. 1) consists of three parts: (1) An MMseqs2

based homology search server to build diverse MSAs and to
find templates. The server efficiently aligns input sequence(s)
against the UniRef100, the PDB70 and an environmental se-
quence set. (2) A Python library that communicates with the
MMseqs2 search server, prepares the input features for (single
or complex) structure inference, and visualizes of results. This
library also implements a command line interface. (3) Jupyter
notebooks for basic, advanced and batch use (Methods “Co-
labFold notebooks”) using the Python library.
In ColabFold we replace the sensitive search methods HM-

Mer and HHblits by MMseqs2. We optimized the MSA gener-
ation by MMseqs2 to have the following three properties: (1)
MSA generation should be fast. (2) The MSA has to capture
diversity well and (3) it has to be small enough to run on
computers with limited RAM. Reducing the memory require-
ment is especially helpful in Google Colaboratory where the
provided system is selected from a pool with widely differing
capabilities. While (1) is achieved through the fast MMseqs2
prefilter for (2 and 3) we developed a search workflow to maxi-
mize sensitivity (Methods “MSA generation”) and a new filter
that samples the sequence space evenly (Methods “New diver-
sity aware filter” and Supplementary Fig. 1). Prediction
quality highly depends on the input MSA. However, often an
MSA with only a few (∼30) sufficiently diverse sequences is
enough to produce high quality predictions (see Jumper et al.,
Fig. 5a).

https://github.com/sokrypton/ColabFold
https://colabfold.mmseqs.com
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Additionally, we combined the BFD and MGnify databases
that are used in AlphaFold2 by HHblits and HMMer respec-
tively into a combined redundancy reduced version we refer to
as BFD/MGnify (Methods “Reducing size of BFD/MGnify”).
The environmental search database presented an opportunity
to improve structure predictions of non-bacterial sequences,
as e.g., eukaryotic protein diversity is not well represented in
the BFD and MGnify databases. Limitations in assembly and
gene calling due to complex intron/exon structures result in
under representation in reference databases. We therefore ex-
tended the BFD/MGnify with additional metagenomic protein
catalogues containing eukaryotic proteins [13, 14, 15], phage
catalogues [16, 17] and an updated version of MetaClust [18].
We refer to this database as ColabFoldDB (Methods “Colab-
FoldDB”). In Supplementary Fig. 2 we show that the Co-
labFoldDB in comparison to the BFD/MGnify produces more
diverse MSAs for PFAM [19] domains with < 30 members.
To compare the accuracy of predicted structures we

compared AlphaFold2 (default settings with templates),
AlphaFold-Colab (no templates), ColabFold-RoseTTAFold-
BFD/MGnify, ColabFold-AlphaFold2-BFD/MGnify and
ColabFold-AlphaFold2-ColabFoldDB on TM-scores for all
targets from the CASP14 competition (Fig. 2a). All three
ColabFold modes were executed without templates. We show
the targets split by free modeling (FM) on the left and the
remaining ones on the right, since we used the FM-targets
for optimization of search workflow parameters. ColabFold is
on average 5x faster for single predictions than AlphaFold2
and AlphaFold-Colab, when taking both MSA generation
(Fig. 2b) and model inference into account.
The mean TM-scores for the FM targets are 0.826,

0.818, 0.79, 0.744 and 0.62 for ColabFold-AlphaFold2-
BFD/MGnify, ColabFold-AlphaFold2-ColabFoldDB, Al-
phaFold2, AlphaFold-Colab and ColabFold-RoseTTAFold-
BFD/MGnify respectively. Over all CASP14 targets the
TM-scores are 0.887, 0.886, 0.888 and 0.754 for the respective
methods, excluding AlphaFold-Colab as it cannot be used
stand-alone. The prediction of target T1084 can be improved
from 0.457 to 0.872 TM-score by ColabFold if MMseqs2’s
compositional filter is disabled (Supplementary Fig. 3).
Supplementary Table 1 contains a list of additional targets
where ColabFold differed significantly from AlphaFold2.
AlphaFold2 was initially released without capabilities to

model complexes. However, we found that by combining two
sequences with a glycine linker [20] it could often successfully
model complexes. Shortly afterwards, Baek [21] found that in-
crementing the model-internal residue index - the method that
was used in RoseTTAFold - could also be used in AlphaFold2.
For high quality predictions it was shown that sequences

should be provided in paired-form to AlphaFold2 [22]. We im-
plemented a similar pairing procedure (Methods “MSA pair-
ing for complex prediction”) and show the complex prediction
capabilities of ColabFold in Fig. 2c. ColabFold achieves the
highest accuracy in complex prediction on the ClusPro [4, 12]
dataset with the AlphaFold-multimer model, however, some
targets performed better using the residue-index mode.
Supplementary Fig. 4a,b shows two examples of Colab-

Fold’s complex prediction capabilities: (a) shows a homo-six-

mer and (b) shows a D-methionine transport system composed
of three different proteins. The inter-complex predicted align-
ment error (PAE) provided by AlphaFold2 helps to rank com-
plexes. We visualize plots of PAE and complex conformation
to help users judge the prediction quality of a complex. An
example for heteromer complex prediction is shown in Sup-
plementary Fig. 4c with its PAE plot. ColabFold complexes
were successfully used to aid the cryo-EM structure determi-
nation of the 120 MDa human nucleopore complex [23].
ColabFold expose many internal parameters of AlphaFold2

such as the recycle count (default 3), which controls the num-
ber of times the prediction is repeatedly fed through the
model. For difficult targets as well as for designed proteins
without known homologs additional recycling iterations can
result in a high quality prediction (Supplementary Fig. 5).
Rerunning the CASP14 benchmark using 12 recycles resulted
in an improvement of targets with litte MSA information re-
sulting in an increased average TM-score of 0.898 (Supple-
mentary Fig. 6).
For high throughput structure prediction, we introduced

several features in ColabFold. (1) MSA generation can be
executed in batch-mode independently from model batch-
inference. (2) We compile only one of the five AlphaFold2
models and reuse weights. (3) We avoid recompilation for
sequences of similar length. (4) We implement early stop cri-
teria, to avoid additional recycles or models if a sufficiently
accurate structure was already found. (5) We developed the
command line tool colabfold_batch to predict structures on
local machines. All together, we show that the proteome of
1762 proteins shorter than 1000 aa of Methanocaldococcus jan-
naschii can be predicted in 48 h with early stopping at pLDDT
of ≥85 on one Nvidia Titan RTX (Fig. 2d), while sacrificing
little-or-no prediction accuracy (Methods “Proteome Bench-
mark”). The average pLDDTs of AlphaFold2 and ColabFold
Stop ≥ 85 were 89.75 and 88.78 in a subsampled set of 50
proteins.
ColabFold builds beyond the initial offerings of Alphafold2

by improving its sequence search, providing tools for model-
ing homo- and heteromer complexes, exposing advanced func-
tionality, expanding the environmental databases and enabling
large-scale batch prediction of protein structures – at a ∼90
times speedup over AlphaFold2.
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FIG. 1. (a) ColabFold has a web and a command line inter-
face, that (b) send FASTA input sequence(s) to a MMseqs2 server
searching two databases UniRef100 and a database of environmen-
tal sequences with three profile-search iterations each. The sec-
ond database is searched using a sequence-profile generated from
the UniRef100 search as input. The server generates two MSAs
in A3M format containing all detected sequences. (c1) For single
structure predictions we filter both A3Ms using a diversity aware
filter and return this to be provided as the MSA input feature to
the AlphaFold2 models. (c2) For complex prediction we pair the
top hits within the same species to resolve the inter-complex con-
tacts and additionally add two unpaired MSAs (same to c1) to
guide the structure prediction. (d) To help researchers judge the
prediction quality we visualize MSA depth and diversity and show
the AlphaFold2 confidence measures (pLDDT and PAE).

FIG. 2. (a) Structure prediction comparison of AlphaFold2 (yel-
low), AlphaFold-Colab (green) and ColabFold-AlphaFold2 with
BFD/MGnify (blue) and with the ColabFoldDB (magenta), and
ColabFold-RoseTTAFold with BFD/MGnify (purple) using predic-
tions of 91 domains of 65 CASP14 targets. The 28 domains from
the 20 free-modeling (FM) targets are shown first. FM targets
were used to optimize MMseqs2 search parameters. Each target
was evaluated for each individual domain (in total 91 domains).
(b) MSA generation and model inference times for each CASP14
FM target sorted by protein length (same colors as before). Blue
shows MSA runtimes for ColabFold-AlphaFold2-BFD/MGnify and
ColabFold-RoseTTAFold-BFD/MGnify. (c) Comparison of Co-
labFold complex predictions in residue-index- (dark blue) and
AlphaFold-multimer (light blue) mode, and to AlphaFold-multimer
(yellow). (d) Runtime of colabfold_batch proteome prediction at
three optimization levels: (dark blue) Always recompile, (blue) de-
fault, (light blue) stop model/recycle evaluation after first predic-
tion with a pLDDT of ≥85. Extrapolated line based on 50 Al-
phaFold2 predictions shown in yellow.
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MATERIALS AND METHODS
Executing ColabFold

ColabFold is available as a set of Jupyter notebooks, to use
on Google Colaboratory or users’ local machines, as well as an
easily installable command line application.
ColabFold notebooks ColabFold has four main Jupyter
notebooks [24]: AlphaFold2_mmseqs2 for basic use that sup-
ports protein structure prediction using (1) MSAs generated
by MMseqs2 (version edb822), (2) custom MSA upload, (3)
using template information, (4) relaxing the predicted struc-
tures using amber force fields [25], and (5) complex predic-
tion. AlphaFold2_advanced for advanced users addition-
ally supports (6) MSA generation using HMMer (same as
AlphaFold-Colab), (7) the sampling of diverse structures by
iterating through a series of random seeds (num_samples),
and (8) control of AlphaFold2 model internals, such as chang-
ing the number of recycles (max_recycle), number of ensem-
bles (num_ensemble), and enabling the stochastic part of the
models via the (is_training) option. The latter enables
dropout during inference, allowing the user to sample solu-
tions from the uncertainty of the model [26] or the ambigu-
ity of co-evolution constraints derived from the input MSA.
AlphaFold2_batch for batch prediction of multiple sequences
or MSAs. The batch notebook saves time by avoiding recom-
pilation of the AlphaFold2 models (“Avoid recompiling dur-
ing batch computation”) for each individual input sequence.
RoseTTAFold for basic use of RoseTTAFold that supports pro-
tein structure prediction using (1) MSAs generated by MM-
seqs2, (2) custom MSAs and (4) sidechain prediction using
SCWRL4 [27]. The RoseTTAFold notebook also has an op-
tion use a slower but more accurate PyRosetta [28] folding
protocol for structure prediction, using constraints predicted
by RoseTTAFold’s neural network.
ColabFold command line interface We initially focused
on making ColabFold as widely available as possible through
our Notebooks running in Google Colaboratory. To meet the
demand for a version that runs on local users’ machines, we re-
leased “LocalColabFold”. LocalColabFold can take command
line arguments to specify an input FASTA file, an output di-
rectory, and various options to tweak structure predictions.
LocalColabFold runs on wide range of operating systems, such
as Windows 10 or later (using Windows Subsystem for Linux
2), macOS, and Linux. The structure inference and energy
minimization are accelerated if a CUDA 11.1 or later com-
patible GPU is present. LocalColabFold is available as free
open-source software at https://github.com/YoshitakaMo/
localcolabfold.
Recognizing the limitations of Google Colaboratory, we

provide the colabfold_batch command line tool through the
colabfold python package. This allows computing of tasks
too large for Google Colab on users’ own computer, e.g. pre-
dicting an entire proteome (Methods “Proteome benchmark”).
It can be installed with pip install colabfold, followed
by pip install -U "jax[cuda]" -f https://storage.
googleapis.com/jax-releases/jax_releases.html. It
can be used as colabfold_batch input_file_or_directory
output_directory, supporting FASTA, A3M and CSV files
as input.

Faster MSA generation with MMseqs2
Generating multiple sequence alignments for AlphaFold2

and RoseTTAFold is a time-consuming task. To improve their
runtime, while maintaining a high prediction accuracy, we im-
plemented optimized workflows using MMseqs2.
MSA generation by MMseqs2 ColabFold sends the query
sequence to a MMseqs2 server [11]. It searches the sequence(s)
with three iterations against the consensus sequences of the
UniRef30, a clustered version of the UniRef100 [29]. We ac-
cept hits with an E-value of lower than 0.1. For each hit, we
realign its respective UniRef100 cluster member using the pro-
file generated by the last iterative search, filter them (Methods
“New diversity aware filter”) and add these to the MSA. This
expanding search results in a speed up of ∼10x as only 29.3
million cluster consensus sequence are searched instead of all
277.5 million UniRef100 sequences. Additionally, it has the
advantages to be more sensitive since the cluster consensus
sequences are used. We use the UniRef30 sequence-profile to
perform an iterative search against the BFD/MGnify or Co-
labFoldDB using the same parameters, filters and expansion
strategy.
New diversity aware filter To limit the number of hits in
the final MSA we use the HHblits (version v3.3.0) diversity
filtering algorithm [8] implemented in MMseqs2 in multiple
stages: (1) During UniRef cluster expansion, we filter each in-
dividual UniRef30 cluster before adding the cluster members
to the MSA, such that no cluster-pair has a higher maximum
sequence identity than 95% (--max-seq-id 0.95. (2) After
realignment enable only the --qsc 0.8 threshold and disable
all other thresholds (--qid 0 --diff 0 --max-seq-id
1.0). Additionally, the qsc filtering is only used if least 100
hits were found (--filter-min-enable 100). (3) During
MSA construction we filter again with the following pa-
rameters: --filter-min-enable 1000 --diff 3000 --qid
0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95.
Here, we extended the HHblits filtering algorithm to filter
within a given sequence identity bucket, such that it cannot
eliminate redundancy across filter buckets. Our filter keeps
the 3000 most diverse sequences in the identity buckets
]0.0-0.2], ]0.2-0.4], ]0.4-0.6], ]0.6-0.8] and ]0.8-1.0]. In buckets
containing less than 1000 hits we disable the filtering.
New MMseqs2 pre-computed index to support ex-
panding cluster members MMseqs2 was initially built to
perform fast many-against-many sequence searches. Mirdita
et al. [11] improved it to also support fast single-against-
many searches. This type of search requires the database
to be index and stored in memory. mmseqs createindex in-
dexes the sequences and stores all time-consuming-to-compute
data structures used for MMseqs2 searches to disk. We load
the index into the operating systems cache using vmtouch
(https://github.com/hoytech/vmtouch) to allow calls to
the different MMseqs2 modules to become near-overhead free.
We extended the index to store, in addition to the already
present cluster consensus sequences, all member sequences and
the pairwise alignments of the cluster representatives to the
cluster members. With these resident in cache, we eliminate
the overhead of the remaining module calls.

https://github.com/YoshitakaMo/localcolabfold
https://github.com/YoshitakaMo/localcolabfold
https://github.com/hoytech/vmtouch
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ColabFold databases
AlphaFold2 requires over 2 terabyte of storage space for its

databases, which is a significant hurdle for many researchers.
We optimized its databases and additionally created another
large environmental sequence database.
Reducing size of BFD/MGnify To keep all required se-
quences and data structures in memory we needed to reduce
the size of the environmental databases BFD and MGnify, as
both databases together would have required ∼517 GB RAM
for headers and sequences alone.
BFD is a clustered protein database consisting of ∼2.2

billion proteins organized in 64 million clusters. MGnify
(2019_05) contains ∼300 million environmental proteins. We
merged both databases by searching the MGnify sequences
against the BFD cluster representative sequences using MM-
seqs2. Each MGnify sequence with a sequence identity of
>30% and a local alignment that covers at least 90% of its
length is assigned to the respective BFD cluster. All unas-
signed sequences are clustered at 30% sequence identity and
90% coverage (--min-seq-id 0.3 -c 0.3 --cov-mode 1 -s
3) and merged with the BFD clusters, resulting in 182 million
clusters. In order to reduce the size of the database we fil-
tered each cluster keeping only the 10 most diverse sequences
using (mmseqs filterresult --diff 10). This reduced the
total number of sequences from 2.5 billion to 513 million, thus
requiring only 84 GB RAM for headers and sequences.
ColabFoldDB We built ColabFoldDB by expanding the
BFD/MGnify with metagenomic sequences from various en-
vironments. To update the database, we searched the pro-
teins from the SMAG (eukaryotes) [14], MetaEuk (eukary-
otes) [13], TOPAZ (eukaryotes) [15], MGV (DNA viruses) [16],
GPD (bacteriophages) [17] and updated version of MetaClust
[18] against the BFD/MGnify centriods using MMseqs2 and
assigned each sequence to the respective cluster if they have
a 30% sequence identity at a 90% sequence overlap (-c 0.9
--cov-mode 1 --min-seq-id 0.3). All remaining sequences
were clustered using MMseqs2 cluster -c 0.9 --cov-mode
1 --min-seq-id 0.3 and appended to the database. We re-
move redundancy per cluster by keeping the most 10 diverse
sequences using (mmseqs filterresult --diff 10). The fi-
nal database consists of 209,335,865 million representative se-
quences and 738,695,580 members. See “Data availability” for
input files. We provide the MMseqs2 search workflow used in
the server (“MSA generation by MMseqs2”) as a standalone
script colabfold_search.sh.
Template information AlphaFold2 searches with HHsearch
through a clustered version of the PDB (PDB70 [8]) to find
the 20 top ranked templates. In order to save time, we use
MMseqs2 [10] to search against the PDB70 cluster represen-
tatives as a prefiltering step to find candidate templates. This
search is also done as part of the MMseqs2 API call on our
server. Only the top 20 target templates according to E-value
are then aligned by HHsearch. The accepted templates are
given to AlphaFold2 as input features. This alignment step is
done in the ColabFold client and therefore requires the subset
of the PDB70 containing the respective HMMs. The PDB70
subset and the PDB mmCIF files are fetched from our server.
For benchmarking, no templates are given to ColabFold.

Modeling protein complexes with ColabFold
ColabFold offers protein complex folding through the spe-

cialized AlphaFold-multimer model and through residue-index
manipulation [3]. Here, we show the steps we took for Colab-
Fold to produce accurate protein complex predictions.
Modeling of protein-protein complexes We implemented
two protein complex prediction modes in ColabFold. One
based on AlphaFold-multimer [4] and one based on the residue
index manipulation of the original AlphaFold2 model. Baek
et al. [3] show that RoseTTAFold is able to model complexes,
despite being trained only on single chains. This is done by
providing a paired alignment and modifying the residue in-
dex. The residue index is used as an input to the models to
compute positional embeddings. In AlphaFold2, we find the
same to be true, although surprisingly the paired alignment
is often not needed (Fig. 2c). AlphaFold2 uses relative posi-
tional encoding with a cap at |i−j|≥ 32. Meaning, any pair
of residues separated by 32 or more are given the same relative
positional encoding. By offsetting the residue index between
two proteins to be > 32, AlphaFold2 treats them as separate
poly-peptide chains. ColabFold integrates this for modeling
complexes.
For homo-oligomeric complexes (Supplementary Fig.

4a), the MSA is copied multiple times for each component. In-
terestingly, it was found that providing a separate MSA copy
(padding by gap characters to extend to other copies) to work
significantly better than concatenating left-to-right.
For hetero-oligomeric complexes (Supplementary

Fig. 4b), a separate MSA is generated for each component.
The MSA is paired according to the chosen pair_mode (“MSA
pairing for complex prediction”). Since pLDDT is only useful
for assessing local structure confidence, we use the fine-tuned
model parameters to return the PAE for each prediction.
As illustrated in Supplementary Fig. 4c, the inter-PAE
(predicted aligned error), the predicted TM-score or interface
TM-score (both derived from PAE) can be used to rank
and assess the confidence of the predicted protein-protein
interaction.
MSA pairing for complex prediction A paired MSA helps
AlphaFold2 to predict complexes more accurately only if or-
thologous genes are paired with each other. We followed a
similar strategy as Bryant et al. [22] to pair sequences accord-
ing to their taxonomic identifier. For the pairing we search
each distinct sequence of a complex against the UniRef100
using the same procedure as described in “MSA generation”.
We return only hits that cover all complex proteins within one
species and pair only the best hit (smallest e-value) with an
alignment that covers the query to at least 50%. The pairing
is implemented in the new MMseqs2 module pairaln.
For prokaryotic protein prediction, we additionally imple-

mented the protocol described in [3] to pair sequences based
on their distances in the genome as predicted from the UniProt
accession numbers.
Taxonomic labels for MSA pairing To pair MSAs for com-
plex prediction, we retrieve for each found UniRef100 member
sequence the taxonomic identifier from the NCBI taxonomy
[30]. The taxonomic labels are extracted from the lowest com-
mon ancestor field (“common taxon ID”) of each UniRef100
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sequence from the uniref100.xml (2021_03) file.
Speeding up AlphaFold2’s model evaluation

Our efforts in speeding up AlphaFold2’s MSA generation
yielded large improvements in its runtime. However, we dis-
covered multiple opportunities within AlphaFold2 to speed up
its model inference, without sacrificing (or only sacrificing very
little) of its accuracy.
Avoid recompiling AlphaFold2 models The AlphaFold2
models are compiled using JAX [31] to optimize the model
for specific MSA or template input sizes. When no templates
are provided, we compile once and, during inference, replace
the weights from the other models, using the configuration
of model 5. This saves 7 minutes of compile time. When
templates are enabled, model 1 is compiled and weights from
model 2 are used, model 3 is compiled and weights from mod-
els 4 and 5 are used. This saves 5 minutes of compile time.
If the user changes the sequence or settings, without changing
the length or number of sequences in the MSA, the compiled
models are reused without triggering recompilation.
Avoid recompiling during batch computation In order
to avoid AlphaFold2 model recompilation for every protein
AlphaFold2 provides a function to add padding to the input
MSA and templates called make_fixed_size. However, this is
not exposed in AlphaFold2. We used the function in our batch
notebook as well as in our command line tool colabfold_batch,
in order to maximize GPU utilization and minimize the need
of model recompilation. We sort the input queries by sequence
length and process them in ascending order. We pad the input
features by 10% (by default). All sequences that lie within the
query length and an additional 10% margin do not require to
be recompiled, resulting in a large speed up for short proteins.
Recycle count AlphaFold2 improves the predicted protein
structure by recycling (by default) 3 times, meaning the pre-
diction is fed multiple times through the model. We exposed
the recycle count as a customizable parameter as additional
recycles can often improve a model (Supplementary Fig. 6)
at the cost of a longer runtime. We also implemented an op-
tion to specify a tolerance threshold to stop early. For some
designed proteins without known homologous sequences, this
helped to fold the final protein (Supplementary Fig. 5).
Speed-up of predictions through early stop AlphaFold2
computes five models through multiple recycles. We noted
that for prediction of high certainty (> 85 pLDDT), all five
models would often produce structures of very similar confi-
dence, for some even without or with less than 3 of recycles.
In order to speed up the computation we added a parameter
to define an early stop criterion that halts additional model
inferences and stops recycling if a given pLDDT or (interface)
pTMscore threshold is reached.

Exposing advanced features
In our investigation of AlphaFold2’s internals, we realized

that we could expose many knobs that might be usefully to
researchers trying to explore AlphaFold2’s full potential.
Sampling of diverse structures To reduce memory require-
ments, only a subset of the MSA is used as input to the model.
Alphafold2, depending on model configuration, subsamples
the MSA to a maximum of 512 cluster centers and 1024 “extra”

sequences. Changing the random seed can result in different
cluster centers and thus different structure predictions. Colab-
Fold provides an option to iterate through a series of random
seeds, resulting in structure diversity. Further structure di-
versity can be generated by using the original or fine-tuned
(use_ptm) model parameters and/or enabling (is_training)
to activate the stochastic (dropout) part of model. Enabling
the latter, can be used to sample an ensemble of models for
the uncertain parts of the structure prediction.
Custom MSAs ColabFold allows researchers to upload their
own MSAs. Any kind of alignment tool can be used to gener-
ate the MSA. The uploaded MSA can be provided in aligned
FASTA, A3M, STOCKHOLM or Clustal format. We con-
vert the respective MSA format into A3M format using the
reformat.pl script from the HH-suite [8].
Lightweight 2D structure renderer For visualization, we
developed a matplotlib [32] compatible module for displaying
the 3D ribbon diagram of a protein structure or complex. The
ribbon can be colored by residue index (N to C terminus)
or by a predicted confidence metric (such as pLDDT). For
complexes, each protein can be colored by chain ID. Instead
of using a 3D renderer, we instead use a 2D line plotting based
technique. The lines that make up the ribbon are plotted in
the order in which they appear along the z-axis. Furthermore,
we add shade to the lines according to the z-axis. This creates
the illusion of a 3D rendered graphic. The advantage over a
3D renderer is that the images are very lightweight, can be
used in animations and saved as vector graphics for lossless
inclusion in documents. As the 2D renderer is not interactive,
we additionally included a 3D visualization using py3Dmol
[33] in the ColabFold notebooks.

Benchmarking ColabFold
We show with multiple datasets that ColabFold does not

sacrifice accuracy for its much faster runtimes.
Benchmark with CASP14 targets We compared
AlphaFold-Colab and AlphaFold2 (commit b88f8da) against
ColabFold using all CASP14 [2] targets. ColabFold-
AlphaFold2 (commit 2b49880) used UniRef30 (2021_03)
[34] and the BFD/MGnify or ColabFoldDB. ColabFold-
RoseTTAFold (commit ae2b519) was executed with papermill
(https://github.com/nteract/papermill) using the Py-
Rosetta protocol [28]. ColabFold-RoseTTAFold-BFD/MGnify
and ColabFold-AlphaFold2-BFD/MGnify used the same
MSAs. AlphaFold-Colab used the UniRef90 (2021_03), MG-
nify (2019_05) and the small BFD. AlphaFold2 used the
full_dbs preset with and default databases downloaded with
the download_all_data.sh script. The 65 targets contain 91
domains, among these are 20 FM-targets with 28 domains. We
compared the predictions against the experimental structures
using TMalign (downloaded 2021/02/24) [35].
Measuring run-times for CASP14 benchmark To pro-
vide more accurate run times we split MSA generation and
model inference measurements. MSA generation times were
repeated five times and averaged.
ColabFold was executed using colabfold_batch. The MM-

seqs2 server which computes MSAs for ColabFold has 2x14
core Intel E5-2680v4 CPUs and 768 GB RAM. Each gener-
ated MSA was processed by a single CPU-core. Runtimes

https://github.com/nteract/papermill
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were computed from server logs.
AlphaFold2 MSA generation runtimes were measured by

running AlphaFold2 without models (providing an empty
string to the --model_names parameter) on the same 2x14
core Intel E5-2680v4 CPUs and 768 GB RAM system. The
AlphaFold2 databases were stored on a software-RAID5 com-
posed of six Samsung 970 EVO Plus 1TB NVMe drives. Run-
times for AlphaFold2 were taken from the features entry of
the timings.json file. For a fair comparison, AlphaFold2 was
modified to allow HMMer and HHblits to access one CPU core.
All ColabFold and AlphaFold2 model inference runtime

measurements were done on systems with 2x16 core Intel
Gold 6242 CPUs with 192 GB RAM and 4x Nvidia Quadro
RTX5000 GPUs. Only one GPU was used in each run.
ColabFold-RoseTTAFold-BFD/MGnify and ColabFold-

AlphaFold2-BFD/MGnify used the same MSAs, runtimes are
shown only once.
AlphaFold-Colab was executed in the browser using a

Google Colab Pro account. Times for homology search were
taken from the notebook output cell “Search against genetic
databases” cell. The JackHMMer search uses 8 threads.
Complex benchmark We compare predictions of seventeen
ClusPro[4, 12] targets to their native structures using DockQ
(commit 3735c16) [36]. We used colabfold_batch (commit
45ad0e9) with BFD/MGnify in residue-index manipulation-
and AlphaFold-multimer mode to predict structures. We use
MSA pairing as described in “MSA pairing for complex pre-
diction” and also add unpaired sequences. Models are ranked
by predicted interface pTMscore as returned by AlphaFold-
multimer. The DockQ AlphaFold-multimer reference numbers
were provided by Richard Evans.
Proteome benchmark We predict the proteome of M. jan-
naschii. Of the 1787 proteins we exclude the 25 proteins longer
than 1000 residues, leaving 1762 proteins of 268 aa average
length. With the colabfold_search wrapper to MMseqs2
we search against the ColabFoldDB (“ColabFoldDB”) in 113
min on a system with an AMD EPYC 7402P 24-core CPU (no
hyperthreading) and 512GB RAM. MMseqs2 had a maximum
resident set size of 308 GB during the search. We then predict
the structures on a single Nvidia Titan RTX with 24 GB RAM
in 46 h using only MSAs (no templates). For each query we
stop early if any recycle iteration reaches a pLDDT of at least
85. Early stopping results in a speed-up of 3.7× over default
and 4.8× over always recompiling. AlphaFold2 (reduced_dbs)
was ran with the reduced_dbs preset and no template infor-
mation was used. We changed the AlphaFold2 source code to
utilize all CPU cores during the homology search.
AlphaFold2 (reduced_dbs, v2.1.1), ColabFold (commit

f5d0cec) default and ColabFold Stop ≥ 85 have an average
pLDDT of 90.68, 90.22 and 89.33 respectively for 50 ran-
domly sampled proteins. These are the same proteins that
were used to extrapolate the run-time of AlphaFold2. Over
all predictions, the pLDDTs for the M. jannaschii proteome
downloaded from the AlphaFoldDB, ColabFold default and
ColabFold Stop ≥ 85 are 89.75, 89.38 and 88.77, respectively.
Software used for analysis Benchmark data analysis
and visualization was done with R/4.1.1, ggplot/3.3.5, cow-
plot/1.1.1, lubridate/1.7.10. ColabFold generated plots were

made using matplotlib/3.1.3. TM-score analysis was done
with TMalign/2021/02/24 and DockQ/3735c16.

CODE AVAILABILITY

ColabFold is free open-source software (MIT) and avail-
able at https://github.com/sokrypton/ColabFold. A lo-
cally installable version is available at https://github.
com/YoshitakaMo/localcolabfold. The ColabFold de-
velopment version shown in this manuscript is available
at https://github.com/konstin/ColabFold. The Co-
labFold server components are free open-source software
(GPLv3) and available at https://github.com/soedinglab/
mmseqs2-app. MMseqs2 is free open-source software (GPLv3)
and available at https://mmseqs.com.

REPORTING SUMMARY

Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY

ColabFold databases are freely (CC-BY-SA 4.0) available at
https://colabfold.mmseqs.com.
MSAs and structures produced during benchmarking:
https:
//wwwuser.gwdg.de/~compbiol/colabfold/manuscript
Input databases used for building ColabFold databases:
UniRef30: https://uniclust.mmseqs.com
BFD: https://bfd.mmseqs.com
MGnify: http://ftp.ebi.ac.uk/pub/databases/
metagenomics/peptide_database/2019_05
PDB70: https://wwwuser.gwdg.de/~compbiol/data/
hhsuite/databases/hhsuite_dbs
MetaEuk:
https://wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/
MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz
SMAG: https://www.genoscope.cns.fr/tara/localdata/
data/SMAGs-v1/SMAGs_v1_concat.faa.tar.gz
TOPAZ: https://osf.io/gm564
MGV: https://portal.nersc.gov/MGV/MGV_v1.0_2021_
07_08/mgv_proteins.faa
GPD:
http://ftp.ebi.ac.uk/pub/databases/metagenomics/
genome_sets/gut_phage_database/GPD_proteome.faa
Further datasets used for benchmarking ColabFold:
PFAM (Pfam-A.seed.gz & Pfam-A.full.gz): http://ftp.
ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0
M. jannaschii proteome:
https://uniprot.org/proteomes/UP000000805
https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/
UP000000805_243232_METJA_v1.tar

https://github.com/sokrypton/ColabFold
https://github.com/YoshitakaMo/localcolabfold
https://github.com/YoshitakaMo/localcolabfold
https://github.com/konstin/ColabFold
https://github.com/soedinglab/mmseqs2-app
https://github.com/soedinglab/mmseqs2-app
https://mmseqs.com
https://colabfold.mmseqs.com
https://wwwuser.gwdg.de/~compbiol/colabfold/manuscript
https://wwwuser.gwdg.de/~compbiol/colabfold/manuscript
https://uniclust.mmseqs.com
https://bfd.mmseqs.com
http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2019_05
http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_database/2019_05
https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs
https://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs
https://wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz
https://wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz
https://www.genoscope.cns.fr/tara/localdata/data/SMAGs-v1/SMAGs_v1_concat.faa.tar.gz
https://www.genoscope.cns.fr/tara/localdata/data/SMAGs-v1/SMAGs_v1_concat.faa.tar.gz
https://osf.io/gm564
https://portal.nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_proteins.faa
https://portal.nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_proteins.faa
http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/GPD_proteome.faa
http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/gut_phage_database/GPD_proteome.faa
http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0
http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0
https://uniprot.org/proteomes/UP000000805
https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/UP000000805_243232_METJA_v1.tar
https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/UP000000805_243232_METJA_v1.tar
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Fig. 1: Schematic diagram of ColabFold. 
a,b, ColabFold has a web and a command line interface (a) that send FASTA input sequence(s) to an 
MMseqs2 server (b) searching two databases, UniRef100 and a database of environmental sequences, 
with three profile-search iterations each. The second database is searched using a sequence profile 
generated from the UniRef100 search as input. The server generates two MSAs in A3M format containing 
all detected sequences. c, For predictions of single structures (i) we filter both A3Ms using a diversity-
aware filter and return this to be provided as the MSA input feature to the AlphaFold2 models. For 
predictions of complexes (ii) we pair the top hits within the same species to resolve the inter-chain 
contacts and additionally add two unpaired MSAs (same as i) to guide the structure prediction. Single 
chain predictions are ranked by pLDDT and complexes by predicted TM-score. d, To help researchers 
judge the prediction quality we visualize MSA depth and diversity and show the AlphaFold2 confidence 
measures (pLDDT and PAE). 
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Fig. 2: Comparison of predictions for single chains and complexes. 
a, Structure prediction comparison of AlphaFold2, AlphaFold-Colab and ColabFold-AlphaFold2 with 
BFD/MGnify and with the ColabFoldDB, and ColabFold-RoseTTAFold with BFD/MGnify using predictions 
of 91 domains of 65 CASP14 targets. The 28 domains from the 20 free-modeling (FM) targets are shown 
first. FM targets were used to optimize MMseqs2 search parameters. Each target was evaluated for each 
individual domain (in total 91 domains). b, MSA generation and model inference times for each CASP14 
FM target sorted by protein length (same colors as before). Blue shows MSA run times for ColabFold-
AlphaFold2-BFD/MGnify and ColabFold-RoseTTAFold-BFD/MGnify. c, Comparison of multimeric 
prediction modes in ColabFold and AlphaFold-multimer. The ColabFold modes include residue-index 
modification with models originally trained for single-chain predictions and those for multimeric prediction 
from AlphaFold-multimer, using DockQ (a quality measure for protein–protein docking models). d, Run 
time of colabfold_batch proteome prediction at three optimization levels: always recompile, default, and 
stop model/recycle evaluation after first prediction with a pLDDT of ≥85. The yellow dashed line 
represents an extrapolation on the basis of the 50 AlphaFold2 predictions. 
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Supplementary Figure 1. Anecdotal example of improved prediction through MSA filtering. MSA coverage
(left) and pLDDTs of predicted ColabFold models (right) for CASP14 target T1038 with two different filtering settings:
Top: Single MSA filtering step with HHblits filtering algorithm and --diff 3000 setting. Middle: Zoomed in view of
first 100 sequences in top. Bottom: Three step MSA filtering as described in methods.
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Supplementary Figure 2. Comparison of Enrichment in PFAM Comparison of homology search hits found from
selected PFAM sequences against BFD/MGnify and ColabFoldDB. We select 2439 PFAM 34.0 entries that have less than
30 sequences in their Pfam-A.full entry. In each of these PFAM families we select from the Pfam-A.seed the longest
sequence. We search this sequence with the ColabFold MMseqs2 workflow against the BFD/MGnify and ColabFoldDB.
From the MSAs we cut the PFAM domains and note how many sequences cover the domain by at least 75%.
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MSA Neff MSA #seq
Target AlphaFold2 ColabFold AlphaFold ColabFold
T1033-D1 1.8 2.2 5 6
T1040-D1 4.7 5.5 38 74
T1043-D1 1.7 5.6 5 57
T1064-D1 2.1 2.3 9 13

Supplementary Table 1. In-depth analysis of CASP14 targets that ColabFold predicted better than
AlphaFold2. The largest improvements were observed in four targets: (1) T1064-D1 is ORF8 from SARS-CoV-2, (2-4)
T1033-D1, T1040-D1, T1043-D1 are single domains from a large RNA polymerase of the crAss-like phage. All of these
target sequences are from the CASP14-FM category and lack homology even in large metagenomic databases like BFD
or MGnify. We compared the MSAs by computing the Neff using hhmake from the HH-suite. Neff is an entropy measure
for multiple sequences alignments, the larger the Neff the more diverse the MSA. Higher Neff values correlate with better
AlphaFold2 predictions (see Jumper et al., Nature, 2021, Fig. 5a). The MMseqs2 search of ColabFold generates for
all targets higher Neff values and therefore better predictions. In target T1033 a single additional sequence is enough
to increase the TM-score from 0.348 (AlphaFold2) to 0.820 (ColabFold-AlphaFold2-BFD/MGnify). During CASP14 the
AlphaFold team searched the RNA polymerase targets as a single sequence instead of separate domains, which resulted
in much larger MSAs (see Jumper et al., Proteins, 2021, Fig. 3), while for our benchmark we searched each domain
separately.
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Supplementary Figure 3. Disabling composition-bias and masking in MMseqs2 result in better accuracy
for some CASP14 targets We turned off two MMseqs2 mechanisms for false positive suppression (--comp-bias-corr
0 --mask-profile 0) and reran our CASP14 benchmark. Target T1084-D1 (highlighted) achieves now a TM-score of
0.891210 instead of 0.456540 in default search mode.
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Supplementary Figure 4. Anecdotal examples showcasing the capabilities of advanced ColabFold features. (a) Setting
the homo-oligomer setting to 6, allows modeling of the homo-6-mer structure of 4-Oxalocrotonate Tautomerase. Colored
by chain (top), pLDDT (predicted Local Distance Difference Test, bottom). The inter PAE (Predicted Aligned Error)
between chains is very low indicating a confident prediction. (b) Providing three different proteins with 2:1:2 homo-
oligomer setting allows modeling a hetero-complex with mismatching symmetries of the D-methionine transport system.
(c) Only one of the five models predicted for CASP14 target H1065 has a high agreement with its native structure during
unpaired complex prediction. Although the pLDDT scores are nearly identical (shown in the middle with colored chains),
the inter-PAE (bottom) is significantly lower (meaning more confident) for the correctly predicted complex (rank 1 vs
rank 2). This demonstrates the utility of PAE (and the derived pTMscore) in ranking complexes.
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Supplementary Figure 5. Example of additional recycle steps improving prediction Occasionally, increasing
the number of recycles can help find a well predicted structure. For this de-novo designed transmembrane protein
(Vorobieva et al. Science, 371(6531), 2021), 15 recycle iterations were needed to produce structure with high pLDDT.
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Supplementary Figure 6. Increasing AlphaFold2 recycles from 3 to 12 results in better accuracy for some
CASP14 targets We increased the number of recycles executed by ColabFold-AlphaFold2 from 3 to 12 (--num-recycle
12) and reran our CASP14 benchmark.


