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Abstract. By seeing whether a Liouville type theorem holds for positive, bounded, and/or
finite energy p-harmonic and p-quasiharmonic functions, we classify proper metric spaces
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classifications have earlier been obtained for Riemann surfaces and Riemannian manifolds.
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relationship to the p-hyperbolicity of the metric space and its ends. In particular, we
characterize spaces that carry nonconstant p-harmonic functions with finite energy as
spaces having at least two well-separated p-hyperbolic sequences. We also show that every
such space X has a function f ¢ L?(X) + R with finite p-energy.
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1. Introduction

The classical Liouville theorem states that every bounded holomorphic function
in the whole plane is constant. A similar statement is true for harmonic and p-
harmonic functions in R”, 1 < p < oo.

In the 1960s, Riemann surfaces were classified according to existence of global
analytic or harmonic functions in various classes (bounded, positive and finite-
energy), which culminated in the 1970 monograph by Sario and Nakai [55]. Together
with Wang and Chung, they extended this classification to Riemannian manifolds in
the monograph [56] from 1977. Holopainen [35] extended this classification further
to p-harmonic functions on Riemannian manifolds in 1990, see also Kilpelédinen [43,
Theorem 1.8] for some similar results for Euclidean domains. Subsequently, in the
1990s, first-order analysis on metric spaces began to be studied and it has since
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seen a growing interest. Our main aim is to obtain a similar classification of metric
spaces as in the monographs mentioned above. We refer to later sections for the
definitions.

Throughout the paper, except for Sections 2 and 9, we assume that 1 < p < oo
and that X is an unbounded proper connected metric space equipped with a locally
doubling measure p supporting a local p-Poincaré inequality.

Definition 1.1. We say that X belongs to the Liouuville type class
OY, p if every positive p-harmonic function on X is constant;
O%,  if every bounded p-harmonic function on X is constant;
O%, p if every p-harmonic function on X with finite energy is constant;

O% pp if every bounded p-harmonic function on X with finite energy is constant.
The corresponding classes OF, p, Op g, Opp and Og) 5, for quasiharmonic functions
(where the dependence on p is implicit) are defined similarly. Moreover, we say that
X e 0 if X is p-parabolic in the sense of Definition 4.2.

par

Our classification result can be summarized as follows.

Theorem 1.2. We have the following inclusions:

Ohp & Ohp C Ohpp = Ofp 2 O0b,
U U I I
Ogr & 04 C Ogpp = Ogp-

Moreover, Ofyp \ O p, Ofp \ Ob,, and O% g \ O% g are nonempty.

Some of these inclusions are of course trivial. In the setting of orientable Rie-
mannian manifolds, it was shown in Sario—Nakai-Wang—Chung [56] (for p = 2) and
Holopainen [35] (for general p) that

Ob e & Ohp & Oy COYpp =0 and O & Oipp- (1.1)

(Whenever we discuss manifolds we implicitly assume that they are connected and
have dimension > 2.)

A class of functions called “quasiharmonic” was also considered in [56]. How-
ever, those functions are solutions to Au = 1, while our quasiharmonic functions are
continuous quasiminimizers of the p-energy. Such quasiminimizers were introduced
in Giaquinta—Giusti [23], [24] as a unified treatment of variational inequalities, el-
liptic partial differential equations and quasiregular mappings, see [13] and [16] for
further discussion and references.

Since Riemann, planar Euclidean domains have been classified using conformal
mappings: two planar domains belong to the same category if there is a conformal
mapping between them. One of the motivations for studying the classes in (1.1)
is that some of them are conformally invariant on Riemann surfaces, when p = 2.
Consequently, two conformally equivalent Riemann surfaces either both belong to
such a class or neither belongs to that class.

For higher-dimensional Euclidean domains and p # 2, conformal mappings are
too rigid, and instead quasiconformal or quasisymmetric mappings are used. For n-
dimensional Riemannian manifolds, n-harmonicity and n-parabolicity are conformal
invariants.

The theory of quasiconformal mappings was extended to metric measure spaces
in Heinonen—Koskela [31], [32], see also Heinonen—Koskela—Shanmugalingam-T'y-
son [33, Section 9]. Quasiconformal mappings do not preserve harmonic or p-
harmonic functions, but they do preserve quasiharmonic functions (with p = @)
in proper connected spaces with a uniformly locally Ahlfors @Q-regular measure
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supporting a uniformly local @-Poincaré inequality, see Korte-Marola—Shanmuga-
lingam [48, Theorem 4.1] and also Heinonen—Kilpeldinen-Martio [30, Corollary 4.7].
Quasiconformal mappings between such spaces therefore preserve the classes Og B

and OSP, and, by [33, Theorem 9.10], also OSD and OgBD. Hence it is natural
to include quasiharmonic Liouville type classes in our study. The existence of non-
constant global quasiharmonic functions on one (but not the other) space therefore
gives a convenient way of checking whether two metric measure spaces can be qua-
siconformally equivalent. As far as we know, even for p = 2 and in the setting of
Riemann surfaces, it is not known whether the classes 0%, and O%p are quasi-
conformally invariant, see Sario-Nakai [55, p. 7]. On the other hand, it was noted
already therein that O%, is quasiconformally invariant in that setting.

For complete Riemannian manifolds, the case p = 2 is also related to the Brown-
ian motion: 2-parabolicity is equivalent to the fact that almost surely the Brownian
motion starting from a compact set K will intersect each neighborhood of K in-
finitely often, see Grigor'yan [27, Theorem 5.1]. Thus the classification of metric
measure spaces as in Theorem 1.2 has roots in the theory of Brownian motion,
in complex dynamics (see [53, Theorem 0.1]), and in the study of quasiconformal
maps.

A natural way of distinguishing between different spaces and manifolds is through
their ends at infinity. For instance, (unweighted) R™ has one end if n > 2 and this
end is p-hyperbolic if and only if 1 < p < n. For n = 1, R has two ends which are
both p-parabolic. An end, or a space, is p-hyperbolic if it is not p-parabolic, see
Definition 4.2.

We show that if X has two p-hyperbolic ends, then X ¢ O¥ ;. The converse
is not true as explained in Example 8.5, but using the new concept of p-hyperbolic
sequences we are able to give the following characterization.

Theorem 1.3. X ¢ O 5, if and only if there are two disjoint p-hyperbolic se-
quences {Fp}o2, and {G,}52, which are well-separated in the sense that the p-
modulus of the family T'(F1,G1) of all curves from Fy to Gy salisfies

Mod,(I'(Fy,Gh)) < oc.

In this case, X is also p-hyperbolic, i.e. OF,, C O sp-
In particular, X ¢ O% pp, if X has two p-hyperbolic ends.

As (unweighted) R™ € OFp C O 5y forall 1 < p < co and n > 1, but is
p-parabolic only for p > n, we see that OF, & O} 5p, (cf. Theorem 1.2).

For p = 2, similar characterizations of the bounded and finite-energy Liouville
theorems (i.e. of X € O%p resp. X € O%p) by means of well-separated massive
and/or hyperbolic sets were obtained for Riemannian manifolds, see Grigor’yan [25,
Proposition 1 and Theorem 2], [27, Theorem 13.10 (b)] and the references therein. In
the setting of Gromov hyperbolic spaces with uniformly local assumptions (of dou-
bling and p-Poincaré inequality), the validity of the finite-energy Liouville theorem
for p-harmonic functions (i.e. X € O% ) was characterized using uniformization
in Bjorn-Bjérn-Shanmugalingam [14, Theorem 10.5]. See Remark 6.3 for how our
results in this paper improves upon that.

Hyperbolic sequences can be seen as subsets of the hyperbolic parts of the
“boundary at co” of the metric space X. For simply connected complete Rieman-
nian manifolds M of negative sectional curvature, such a “boundary at co”, M (o0),
was introduced by Eberlein—O’Neill [20] and identified with the “sphere at co”. If
M, in addition, has negatively pinched sectional curvature —b?> < K < —a? < 0,
then it is possible to solve the asymptotic Dirichlet problem with any continuous
boundary data on the sphere at infinity. This follows from Choi [18, Theorems 4.5
and 4.7] and Anderson [3] for p = 2, and has been generalized to p > 1 by Pansu [54]
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and Holopainen [37, Theorem 2.1], see also the discussion in [37, p. 3394]. These ex-
istence results imply that M ¢ O%, 5, but do not address the existence of p-harmonic
functions with finite energy. On Gromov hyperbolic spaces, the above solvability of
the Dirichlet problem at infinity was deduced in Holopainen-Lang—Vah&kangas [39,
Theorem 6.2] for p > 1, under various additional assumptions.

Choi [18, Definition 5.1] considers ends on a finitely connected complete 2-
dimensional Riemannian manifold with sectional curvature K < —a? < 0 and
shows that if the surface is orientable with f K = —o0, then it carries many non-
constant bounded harmonic functions, see [18, Theorem 5.13 and Corollary 5.14].
The Dirichlet problem for p-harmonic functions in unbounded domains with ends
towards infinity was solved in Bjorn-Bjorn—Li [9, Theorems 6.6, 7.6 and 7.7] in the
setting of Ahlfors Q-regular spaces under certain assumptions on @, p and the mea-
sure. The notions of parabolic and hyperbolic ends have also been used in the study
of some other partial differential equations, see for instance Korolkov—Losev [47] for
the case of the stationary Schrodinger equation.

Under global assumptions, the Liouville theorem (Theorem 3.2) for positive
quasiharmonic functions on metric spaces was obtained in Kinnunen—Shanmuga-
lingam [45]. In [13], we proved the so-called finite-energy Liouville theorem for
noncomplete spaces with global assumptions under various additional assumptions.
We can now deduce the Liouville theorem for finite-energy quasiharmonic func-
tions without those additional assumptions, as a direct consequence of our identity
OZ)BD = OgD (and Theorem 3.2) provided that X is complete, see Corollary 6.2.
Moreover, using tools from Bjorn-Bjorn [7] we are able to lift this also to noncom-
plete spaces, see Theorem 9.1. The weighted real line and Example 8.1 show that
the finite-energy Liouville theorem fails if the global assumptions are relaxed to
uniformly local ones.

The following theorem shows that the Liouville type class O%, is related to
the question of whether every function with finite energy on X can be written as a
global Sobolev function plus a constant, i.e. whether DP(X) = N*?(X) + R. this
is the case for p = 2, then the classical theory of Dirichlet forms and the associated
spectral decomposition can be extended to the Dirichlet space D?(X) of functions
with finite energy, where the associated Dirichlet form is in terms of the Cheeger
differential structure as in Koskela—Rajala—Shanmugalingam [50].

Theorem 1.4. If X ¢ O%,,, then DP(X) # N'"?(X) + R.

Example 7.1 shows that the converse fails. However, if X € O%, , and X supports
a global (p,p)-Sobolev inequality (in addition to our standing assumptions), then
DP(X) = N'P(X) + R, see Proposition 7.3.

The rest of this paper is structured as follows. Definitions of the concepts related
to the function spaces studied in this paper are given in Section 2, and the concepts
regarding p-harmonicity and related useful tools are given in Section 3. Section 4 is
devoted to the definitions of p-hyperbolic ends and p-hyperbolic sequences in metric
measure spaces and a brief discussion of them. In Section 5 we prove the existence
of nonconstant p-harmonic functions with finite energy under the assumption that
the metric measure space has at least two distinct p-hyperbolic sequences. We
follow this up by a discussion of classification of metric measure spaces in Section 6.
In this section we also provide the proofs of Theorems 1.2 and 1.3. The third
main theorem of the paper, Theorem 1.4, is proved in Section 7. In that section the
converse of Theorem 1.4 is also discussed. Section 8 is devoted to providing examples
that illustrate the sharpness of the results given in the paper. Example 8.3 is also
essential when deducing most of the noninclusions in Theorem 1.2. Finally, Section 9
provides an extension of the finite-energy Liouville theorem to the noncomplete
setting.
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2. Preliminaries

We assume throughout the paper that X is a metric space equipped with a metric
d and a positive complete Borel measure u such that 0 < p(B) < oo for all balls
B C X. In this section we also assume that 1 < p < oco. For proofs of the facts
stated in this section we refer the reader to Bjorn-Bjorn [5] and Heinonen-Koskela—
Shanmugalingam—Tyson [34].

A notion critical to this paper is that of p-modulus of families of curves in X.
A curve is a continuous mapping from an interval. We will only consider locally
rectifiable curves, and they can always be parameterized by their arc length ds.

Definition 2.1. Let I" be a family of locally rectifiable curves in X. The p-modulus
of T' is the number

Mod,,(T') := inf/ PP du,
pJX

where the infimum is taken over all nonnegative Borel functions p on X such that
fﬂ/pds > 1 for each v € I

From now on, unless otherwise said, all our curves will be nonconstant, com-
pact and rectifiable, i.e. of finite length. We follow Heinonen and Koskela [32] in
introducing upper gradients (in [32] they are referred to as very weak gradients).

Definition 2.2. A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function w on X if for all curves 7 : [0,1,] = X,

ur(0) ~ ur1,))] < [ g (21)
¥
where we follow the convention that the left-hand side is co whenever at least one
of the terms therein is infinite. If ¢ is a nonnegative measurable function on X and
if (2.1) holds for p-almost every curve, then g is a p-weak upper gradient of u. A
property holds for p-almost every curve if it fails only for a curve family with zero
p-modulus.

The notion of p-weak upper gradients was introduced in Koskela-MacManus [49].
It was also shown therein that if g € L} (X) is a p-weak upper gradient of u, then
one can find a sequence {g; 52, of upper gradients of f such that lg;—9gllLrx) — 0.

If u has an upper gradient in LP (X), then it has a minimal p-weak upper
gradient g, € L}, .(X) in the sense that g, < g a.e. for every p-weak upper gradient
g € LY (X) of u, see Shanmugalingam [58]. The minimal p-weak upper gradient
is well defined up to a set of measure zero in the cone of nonnegative functions in
LY (X). Moreover, g, = g, a.e. in the set {z € X : u(x) = v(x)}, in particular
Imin{u,c} = JuX{u<c} for ¢ € R. Note also that a modification of an upper gradient
on a Borel set of measure zero need not yield an upper gradient, but a modification
of a p-weak upper gradient on a set of measure zero still yields a p-weak upper
gradient.

Following Shanmugalingam [57], we define a version of Sobolev spaces on X.
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Definition 2.3. For a measurable function u : X — [—o0, o], let

1/p
fullvrooe = ([ duvint [ g#an)
X 9 Jx

where the infimum is taken over all upper gradients g of u. The pre-Newtonian
space on X is
N'P(X) = {ut ull o) < o).

The Newtonian space N*P(X)/~, where f ~ hif and only if || f —h[| y1.0(x) = 0,
is a Banach space and a lattice, see [57]. We are also interested in the homogeneous
version of Sobolev spaces. The Dirichlet space DP(X) is the collection of all mea-
surable functions on X that have an upper gradient in LP(X).

We say that u € NL.P(X) if for every € X there exists 7, such that u €

loc

NYP(B(z,ry)). The local spaces LY (X) and Df (X) are defined similarly. Note
that if X supports a local p-Poincaré inequality (as in Definition 2.7 below) then it
follows by truncations and Fatou’s lemma that N 7(X) = DP (X).

In this paper we assume that functions in the above function spaces Nllo’f (X),
Dy (X) are defined everywhere (with values in [—00, 00]), not just up to an equiv-
alence class in the corresponding function space.

For a measurable set E C X, the space N''P(E) is defined by considering
(E,d|g, 1| p) as a metric space in its own right. The spaces N,-F(E), LP(E), LF., (E),
DP(E) and DE (F) are defined similarly.

loc

Definition 2.4. The (Sobolev) capacity of a set E C X is the number

Oy (B) = Cy(B) = inf [ullfr .

where the infimum is taken over all u € N*P(X) such that « = 1 on E.

A property is said to hold quasieverywhere (q.e.) if the set of all points in X
at which the property fails has Cp-capacity zero. The capacity is the correct gauge
for distinguishing between two Newtonian functions. If u € N*P(X), then u ~ v if
and only if u = v q.e. Moreover, if u,v € Nﬁ)’f(X) and v = v a.e., then u = v q.e.

Definition 2.5. The (Dirichlet) capacity of the pair (E, F') of disjoint sets in X is
cappy (B, F) = / Gu dpt;
X

where the infimum is taken over all functions v € DP(X) with v > 1 on E and
u<0on F.

The following equality was proved for compact sets in Kallunki-Shanmugalin-
gam [42]. Since we need it for general closed sets, we provide a short proof. Here
and later we let I'(E, F') be the collection of all curves in X with one end point in
FE and the other in F.

Lemma 2.6. Let E and F be disjoint closed subsets of X. Then
Mod,(I'(E, F)) = capp» (E, F).

Proof. Let v € DP(X) be admissible for capp,(E, F)). Then every upper gradient
g of v is admissible for Mod,,(I'(E, F)) and hence

Modp(I‘(E,F))g/Xgpdu.
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Taking infimum over all upper gradients g of v and then taking infimum over all v
admissible for capp, (F, F') proves one inequality in the lemma.
Conversely, let p € LP(X) be admissible for Mod,(I'(E, F)) and consider the

function
u(z) = min{l,inf/pds},
Ty

with the infimum taken over all curves (including constant curves) 7 connecting
x to F. By Bjorn—Bjorn-Shanmugalingam [11, Lemma 3.1], « has p as an upper
gradient, v = 0 on F and uw = 1 on E. Since p € LP(X), we infer from Rogovin—
Rogovin—Jarvenpaa—Jarvenpad—Shanmugalingam [41, Corollary 1.10] that u is mea-
surable and thus v € DP(X). It follows that

cappy (E.F) < [ 2 d
b's
and taking infimum over all p € L?(X) admissible for Mod,(I'(E, F')) concludes the
proof. O

As in Bjérn-Bjorn [6], we define the following local versions of the notions of
doubling measures and Poincaré inequality.

Definition 2.7. We say that the measure p is doubling within a ball By if there is
a doubling constant C' > 0 (depending on By) such that for all balls B = B(z,r) :=
{y € X :d(y,z) < r} C By,

u(2B) < Cu(B),

where AB = B(x, Ar).

Similarly, the p-Poincaré inequality holds within a ball By if there are constants
C > 0 and A > 1 (both depending on By) such that for all balls B C By, all
integrable functions u on AB, and all upper gradients g of u in AB,

1/p
][ |u—uB|du<CrB<][ gpdu> , (2.2)
B AB

where up := f5udp = [Zudp/p(B) and rp is the radius of B.

Each of these properties is called local if for every x € X there is some r > 0
(depending on z) such that the property holds within B(x,r). The property is
called uniformly local if r, C' and A are independent of z. If it holds within every
ball B(xg,70) in X with C and X independent of z¢ and rg, then it is called global.

3. Quasiharmonic and p-harmonic functions

From now on, except for Section 9, we assume that X is an unbounded proper
connected metric space. We also assume that 1 < p < 0o, that p is locally doubling
and supports a local p-Poincaré inequality, and that Q C X is an open set.

A metric space X is proper if every closed bounded set in X is compact. It follows
that X is complete. Moreover, Proposition 1.2 and Theorem 1.3 in Bjérn-Bjorn [6]
imply that under the above assumptions, the doubling property and p-Poincaré
inequality actually hold within every ball in X.

Definition 3.1. A function u € Nﬁ)’f(Q) is a quasiminimizer in Q if there exists
Q. > 1 such that

/;é gy dp < Qu/;é Jurtp AR (3.1)
@#0 @#0
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for all ¢ € N, (Q), where
NJP(Q) == {pla: o€ NYP(X) and ¢ = 0 on X \ Q}.

A quasiharmonic function is a continuous quasiminimizer.
If Q, = 11in (3.1), then u is a minimizer, and if it is in addition continuous,
then it is a p-harmonic function.

Functions from NO1 "P(Q) can be extended by zero in X \ Q and we will regard
them in that sense if needed.

Note that the property of being a quasiminimizer depends on the index p even
though we have refrained from making that explicit in the notation. The integrals
in (3.1) can be infinite but then they are infinite simultaneously. Under our as-
sumptions, locally Lipschitz functions are dense in N,-7(Q), see [6, Theorem 8.4].
It therefore follows from Bjorn-Bjérn-Shanmugalingam [11, Theorem 5.7] (or [5,
Theorem 5.45]) that Lipschitz functions with compact support in Q are dense in
N& P(Q). Hence, the definition of quasiminimizers can equivalently be based on
such compactly supported Lipschitz test functions. The integration in (3.1) can
moreover equivalently be over supp ¢ rather than the set where ¢ # 0, see Bjorn [4,
Proposition 3.2]. Note also that Ny”(X) = N'?(X), which has consequences for
globally defined quasiminimizers on X.

Any quasiminimizer can be modified on a set of capacity zero so that it becomes
locally Holder continuous. This follows from the results in Kinnunen—Shanmugalin-
gam [45, p. 417]. The assumptions therein are different from ours, but see Bjorn—
Bjorn [6, Theorem 10.2 and the discussion around it] for how those results apply
under the local assumptions considered here. Such a continuous representative is
called a quasiharmonic function or, for @, = 1, a p-harmonic function.

The Liouville theorem given below follows from the Harnack inequality proved
in [45, Corollary 7.3] or Bjérn—Marola [15, Corollary 9.4].

Theorem 3.2. Assume that u is globally doubling and supports a global p-Poincaré
inequality. If u is a positive quasiharmonic function on X, then it is constant. In
particular, X € Opp C Ofp.

The following lemma will be convenient when proving Theorem 1.4.

Lemma 3.3. If u € NY?(X) is quasiharmonic on X, then it is constant.

Proof. Let u be quasiharmonic on X. If u € N'?(X) = Ny**(X), then testing (3.1)
with —u € Ny P(X) yields

/ g du < Qu/ G dp=0.
u#0 u#0

This together with the local p-Poincaré inequality shows that u is locally a.e.-
constant, and as u is continuous and X connected, u is constant. O

The following lemma about convergence of p-harmonic functions is a useful tool.

Lemma 3.4. Let Q; be open sets such that Q; C Q411, j = 1,2,..., and X =
U;X’:l Q. Assume that u; € DP(X) is p-harmonic in Q; and that there is a constant
M such that for all j = 1,2, ...,

luj| <M in X and ||gu,llLe(x) < M.

Then there are (finite) convex combinations

N; N;

’&j = Zj\k’juk’ with S\j,k Z 0 and ij’k = 1,
k=j k=j
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of the sequence {uj};?’;l, which converge locally uniformly in X to a function u €
DP(X) that is p-harmonic in X, satisfies |u| < M and moreover

||gﬂ]. — gu”Lp(X) — 07 CLSj — OQ. (32)

Proof. Theorem 5.4 in [6] implies that for every ball By C X, thereissome 1 < ¢ <p
such that a ¢-Poincaré inequality holds within this ball in the sense of Definition 2.7.
This better Poincaré inequality allows us to apply the continuity and convergence
results for p-harmonic functions from Kinnunen—Shanmugalingam [45] and Shan-
mugalingam [59], see also the discussion in [6, Section 10].

More precisely, by [45, Proposition 3.3 and Theorem 5.2] and the fact that
luj| < M on X, the (tail of the) sequence {u;}72, is equi(Holder)-continuous on
every ball in X, see also [5, Theorem 8.14]. Thus an appeal to the Ascoli theorem
and the Harnack convergence principle ([59, Theorem 1.2] or [5, Theorem 9.37]),
together with a Cantor diagonalization argument, yields a subsequence, also denoted
{u;}52,, that converges uniformly on balls in X to a function u that is p-harmonic
in X. Note that u € N'?(B) for every ball B and that |u| < M on X. It remains
to prove (3.2).

Since the sequence {gy,}72; is bounded in LP(X), we can use the reflexivity
of LP(X) to extract a subsequence, still denoted {gu,}32;, that converges weakly
to a nonnegative function g € LP(X). Mazur’s lemma (applied iteratively to the
subsequences {g.; };’i ) then provides us with a sequence of convex combinations

N (k) N(k)
gk = Z NjkGu;,  With Aj x> 0 and Z Ajk =1,
i=k g=k

such that |lgx — gllzr(x) < 27%. Let g =g+ > 2, lgx — g|- Then § € LP(X) and
gr < gin X forall k=1,2,....

Note that the functions g, are p-weak upper gradients of the corresponding
convex combinations

N (k)
Ve = Z )\j,kuj.
j=k

Hence g,, < gi a.e. in X and

N(k)

9o Lo (x) < llgrllex) < Z gkl gu e (x) < M. (3.3)
=k

Next, choose an increasing sequence of balls Bj, so that X = U;‘;l B;. The
sequence {vg }2, satisfies |vg| < M on X. In view of (3.3), it is therefore bounded
in N“’(Ej) for every j = 1,2,.... Since Ej is a complete doubling metric space by
Bjorn—Bjorn [6, Propositions 1.2 and 3.4], it follows from Ambrosio-Colombo-Di
Marino [2, Corollary 41] that the Newtonian space N'?(B;)/~ is reflexive (where
f ~ hif and only if ||f — h||y1rx) = 0). Thus, using weakly converging subse-
quences and Mazur’s lemma again (this time for subsequences in N1?(B;)), for
each j =1,2,... we can find a further convex combination

U = 5\j7kvk, with 5\j,k >0 and ;\jk =1,

such that ||a; — uHNl,p(EJ_) < 277, In particular, ||ga, —ullze(s,) < 277. As

Gu < Ga; + Gu—a; and  ga; < Gu + Ga;—u,
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we consequently have ||ga, — gullzr(5,) < 277. In particular, ga, — g, in LP(B) for
each ball B and a.e. in X, as j — oc.

Note that the sequence {i;}32, (being a convex combination of locally uniformly
converging functions) also converges locally uniformly in X to w.

Now, since g,, < gr < g a.e. in X, we conclude that also

N()

Ga; < Z Nj kv, < § € LP(X).
h=j

The Lebesgue dominated convergence theorem therefore implies that gq;, — g, in
L?(X), which concludes the proof. O

We will use solutions of the Dirichlet problem and more precisely so-called p-
harmonic extensions, which we define next, following Hansevi [28, Definition 4.6].

Definition 3.5. Assume that Cp,(X \ Q) > 0. Let f € DP(X). Then the p-
harmonic extension Hqf of f in € is the unique p-harmonic function in € such

that f — Hof € DE(2), where
DE(Q) :={pla: e € DP(X) and ¢ =0 on X \ Q}.
We also let Hof = f on X \ Q to get a globally defined function when needed.

The p-harmonic extension exists and is unique by Hansevi [28, Theorem 4.4].
If Q is bounded and f € N'P(X), then the definition of Hqf coincides with other
definitions in the literature, such as in Shanmugalingam [58, Theorem 5.6], Bjorn—
Bjorn-Shanmugalingam [10, Definition 3.3] and [5, Definition 8.31]. The existence,
uniqueness and other properties of Hqf in bounded sets were obtained in these
references.

The following relation between capp, and harmonic extensions in unbounded
sets will be useful.

Proposition 3.6. Let Fy and Fy be two disjoint closed sets with capp,(Fo, F1) <
0o. Then there is f € DP(X) such that f = j on Fj, j = 0,1. Moreover for any
such f,

cappy (Fo, F1) = / G p dp,  where @ = X\ (Fo U Fy). (3.4)
b'e

Proof. As capp, (Fo, F1) < oo, the existence of such a function f is immediate.
The definition of the harmonic extension in [28, Definition 4.6] shows that Hqf
solves the minimization problem in the definition of cap p, (Fo, F1), i.e. it satisfies
(3.4). O

Remark 3.7. Since we consider p-harmonic functions on unbounded sets in this
paper, results from Hansevi [28], [29] will be of primary importance here. We
therefore comment on how the assumptions therein compare with ours.

In [28], X is assumed to be proper, connected and supporting a global (p, p)-
Poincaré inequality (with an averaged LP-norm also on the left-hand side of (2.2)).
However, the only use of the Poincaré inequality in the existence theorem [28, The-
orem 3.4], the comparison principle [28, Lemma 3.6] and the convergence theorem
for obstacle problems [29, Theorem 3.2] is through Maz'ya’s inequality on a se-
quence of balls (on p. 98 and again on p. 102) with no need of uniform control of
the constants. Therefore, it is enough to require that p supports a (p, p)-Poincaré
inequality on all sufficiently large balls, see the proof of Maz'ya’s inequality in [5,
Theorem 5.53]. Under our standing assumptions, such a (p,p)-Poincaré inequal-
ity on balls (with constants depending on the ball) follows from Bjérn-Bjorn [6,
Theorems 1.3 and 5.1].
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The inner regularity results in [28, Theorem 4.4] and the tools from Kinnunen—
Shanmugalingam [45], Shanmugalingam [59], Kinnunen—Martio [44] and Bjoérn—
Bjorn [5], used in [28] and [29] are of local nature and therefore hold under our
local assumptions. Note that since X is assumed to be connected and proper, the
local doubling property and Poincaré inequality self-improve so that they actually
hold within every ball By C X (with constants depending on By), which is enough
for such local regularity results, see the discussion in [6, Section 10].

In particular, the resolutivity and uniqueness results for Perron solutions with
continuous boundary data on unbounded p-parabolic sets from [29, Section 7] are
available under our assumptions and will be used later.

4. Hyperbolic ends and hyperbolic sequences

The theory of ends was originally developed to study the classification of Riemann
surfaces, as in Sario—Nakai [55]. Heuristically, for us an end represents a point of X
at co. For example, if X is homeomorphic to S' x R, then in our sense it has two
ends. However, note that if the metric on X is such that at least one of the ends is
hyperbolic and rotationally invariant, then from a geometric group theoretic point
of view this end contains a copy of S'. In this paper we still consider this end as
one point at oco.

Definition 4.1. We say that a sequence {F,}2; is a chain at oo of X (called
a chain of X for simplicity) if there is a point g € X and a strictly increasing
sequence of radii R,, — oo such that F, is a component of X \ B(zg, R,) and
Fn+1 C F,.

Two chains {F,}52; and {G,}32, at oo are said to be equivalent if for each
positive integer k there are n, and my such that F,, C Gy and G,,, C Fy. This
equivalence relationship partitions the class of all chains of X into pairwise disjoint
equivalence classes, called ends of X.

From Kline-Lindquist-Shanmugalingam [46, Lemma 5.11] we know that the
choice of xg does not play a central role in the construction of ends. Traditionally,
an end of a manifold or a metric space X is a sequence {F,}52; of connected
sets that are components of complements of compact subsets K, C X such that
F,11 C F, for each n and X = (J;2 | K,,, see e.g. Choi [18, Definition 5.1]. For us
it is more convenient to have ends made up of closed sets. Given our assumption
that X is proper, replacing F;,, with its closure merely gives an equivalent notion of
ends.

The papers Grigor'yan [26], [27] and Holopainen [36] used different definitions
of “ends”, sufficient for their purposes. Since in this paper we will be discussing the
possibility of a metric space having more than one end and even infinitely many
ends, we need the precise terminology here.

The terminology we follow is adapted from Adamowicz—Bjorn—Bjérn—Shanmu-
galingam [1] and Estep [21]. The equivalence class that contains a chain {F,}3°
was denoted [F,,] in [21] and [46]. However, it was shown in [21] that if {F,}32,
and {G,}52, are two chains at oo such that for each k there is a positive integer
my, with Fj,,, C Gy, then the two chains are equivalent. Therefore in discussing an
end, it suffices to discuss a chain at oo that represents the end. Hence from now
on, we will also call a chain an end.

Recall the definitions of Mod, and T'(E,F') from Section 2. Given an end
{F,}22, and E C X, note that

F(Ea Fn+1) C F(E7Fn)
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As in Holopainen [36] and Holopainen-Koskela [38] we give the following definitions.
On metric measure spaces, the study of p-parabolicity and p-hyperbolicity began
in [38] and Holopainen—Shanmugalingam [40].

Definition 4.2. The end {F,}7%, is p-hyperbolic if

lim Mod, (T'(B(xo, 1), Fy,)) > 0.

n—oo

The space X is p-hyperbolic if

lim Mod, (I'(B(zo,1), X \ B(zg,n))) > 0.

n—oo
We say that an end or X is p-parabolic if it is not p-hyperbolic.

It follows directly from the definition that if X has a p-hyperbolic end, then
X is a p-hyperbolic space. Conversely, if X is a p-hyperbolic space with finitely
many ends, then it has a p-hyperbolic end. Example 8.5 below shows that there
is a p-hyperbolic space with infinitely many p-parabolic ends but no p-hyperbolic
end.

Remark 4.3. Since the metric measure space X is proper, we know from Shanmu-
galingam [60, Theorem 4.2] that if {F,}22, is an end of X, then it is p-hyperbolic
if and only if

Mody, (Tioc(B, {Fn}nz1)) > 0,

where B = B(zo,1) and Tioc(B, {F,};2,) is the collection of all locally rectifiable
curves v starting in B and intersecting F;, for each n =1,2,.... Note that

Dioe(B, {F,}22 ) = ﬂ Tioe(B, F,) and  Mod,(Tioc(B, F,)) = Mod,(I'(B, F,)),

n=1

vzhere FlOC(E, F),) is the collection of all locally rectifiable curves in X starting in
B and intersecting F,.

Euclidean spaces R™, n > 2, have exactly one end, and this end is p-parabolic if
and only if p > n. Parabolicity can in many situations be characterized by volume
growth conditions, see [8, Theorem 5.5], [19, Proposition 3.4], [27, Theorems 7.3
and 14.6], [36, Section 4] and [38, Theorem 1.7].

Our aim in this paper is to investigate when a metric measure space carries
nonconstant p-(quasi)harmonic functions. For functions with finite energy, this
property turns out to be closely related to the following notion, which extends the
concepts given in Definition 4.2.

Definition 4.4. Let g € X. A sequence {F,,}32, is a p-hyperbolic sequence if it
is a decreasing sequence of nonempty closed sets such that:
(a) for each r > 0 there is n > 0 such that B(xg,r) N F,, = &;
(b)
lim Mod,(I'(B(xzo,1), Fy,)) > 0. (4.1)

n—oo

Since X is proper, it follows that (a) is equivalent to (), —, F,, = @. This equiva-
lence need not hold in nonproper spaces. It follows directly from the definitions that
every p-hyperbolic end forms a p-hyperbolic sequence, and that the existence of a
p-hyperbolic sequence implies that X is p-hyperbolic. The following lemma shows
that in Definitions 4.2 and 4.4, the ball B(zg,1) can equivalently be replaced by
any compact set with positive capacity, see also Holopainen—-Shanmugalingam [40,
Proof of Lemma 3.5].
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Lemma 4.5. Let {F,}$2, be a decreasing sequence of closed sets in X satisfying
condition (a) of Definition 4.4. Also let K1 and Ky be compact sets with Cp(K;) >
0,7=1,2. Then

lim capp, (K1, F,) =0 if and only if lim capp,(Ks, Fy,) = 0.
n—oo n—oo

Proof. By replacing K resp. Ko by K1UK5 we see that we may assume, without loss
of generality, that K; C K. It follows from [6, Proposition 4.8 and Lemma 4.10]
that there is a ball B such that K5 is contained in a rectifiably pathconnected
component G of B. Note that as X is locally doubling and supports a local Poincaré
inequality, it is locally quasiconvex, and hence G is an open set.

As K is compact, there is f € N*P(X) such that f =0in X\ G and f =1 on
K. Let v = Hg\ g, f be the p-harmonic extension of f in G'\ K as in Definition 3.5.
We start by showing that m := infx, v > 0. If not, then the strong maximum
principle (see [45] or [5, Theorem 8.13], together with [6, Section 10]) shows that
v=0in G\ K;. Moreover, v =0 in X \ G, and since v = 1 in K;, we would have
that v = yx, € N"?(X) and g, = 0 a.e. The p-Poincaré inequality on B then
implies that v is constant a.e. (and thus g.e.) in B, which contradicts C,(K;) > 0.
Note from [6, Theorem 1.3] that our assumptions on X imply the validity of a p-
Poincaré inequality on arbitrary balls (with constants depending on the ball). Thus
m > 0.

Let n be large enough so that F,, N B = @. Let u = Hx\(x,ur,)f be the
p-harmonic extension of f in X \ (K; U F,,). By Proposition 3.6,

/ gh dp = capp, (K1, F).
X

The comparison principle (see for example Hansevi [28, Lemma 3.6]) implies that
u > v in B. Hence u > m in Ko, and thus u/m is admissible for capp, (K2, F},).
Therefore

mP cappp (K2, F,) < / 9P dp = cappp (K1, Fp) < cappp (Ko, Fy,).
X

Since m is independent of n, letting n — oo concludes the proof. O

5. Existence of nonconstant p-harmonic functions
with finite energy

Theorem 5.1. Assume that there are two disjoint p-hyperbolic sequences {Fp}52 4
and {G, 152, such that Mod,(I'(F1,G1)) < co. Then X supports a nonconstant
bounded p-harmonic function with finite energy, i.e. X ¢ O% 5p.

Observe that Mod,(I'(F1,G1)) = capps (F1, G1), by Lemma 2.6. Before proving
Theorem 5.1, we first show how it implies the following important corollary. At the
same time, Example 8.1 shows that Theorem 5.1 can be used also when X only has
one end, and that end is p-hyperbolic. The converse of Theorem 5.1 is proved in
Proposition 6.4 below.

Corollary 5.2. If X has at least two p-hyperbolic ends, then X supports a noncon-
stant bounded p-harmonic function with finite energy, i.e. X ¢ O% pp.

Proof. A p-hyperbolic end is automatically a p-hyperbolic sequence. Denote the
two p-hyperbolic ends as {F,}52; and {G,}52,, with F} NG; = @. We may also



14 Anders Bjorn, Jana Bjorn and Nageswari Shanmugalingam

assume that they are created as in Definition 4.1 with the same strictly increasing
sequence of radii {R,};2 ;. Testing Mod, (I'(F>, G2)) with

p _ XB(CEO,RQ)
Ry — Ry

then shows that Mod,,(I'(F2, G2)) < co. Hence (after shifting indices), the corollary
follows from Theorem 5.1. O

To prove Theorem 5.1 we first need to understand connectivity properties of
curves between two p-hyperbolic sequences, or equivalently the relationship between
the corresponding capacities. This will be the content of the following two lemmas.

Lemma 5.3. Suppose that {F,}52, and {G,}2, are two disjoint p-hyperbolic
sequences in X. Then

lim capp,(Fn, Gp) > 0.

n—oo

Recall that cappr(Fy, Gr) = Mod,(I'(F,,, Gy)).

Proof. Because of the monotonicity of capp, and choosing a subsequence if nec-
essary, without loss of generality we may assume that capp,(F1,G1) < co. Let
B = B(xg,1). By Theorem 10.2 in Bjérn-Bjorn [6] there are positive constants C
and A such that the weak Harnack inequality

][ vdu < Cinfo (5.1)
B B

holds for all nonnegative p-harmonic functions v in AB. From the definition of
p-hyperbolic sequences, we can find N such that ABN(Fy UGy) = @. Let n > N
be fixed but arbitrary. As cappp(Fn,Grn) < 00, there is f € DP(X) with f =0 on
F, and f =1 on G,. It follows from (4.1) and Lemma 2.6 that C,(F,) > 0. By
Proposition 3.6

cappp (Fn, Gn) = / gu dp,
X
where u = Hx\(r,uq,)f is the p-harmonic extension of f in X \ (F, UG,). Let

m=infu and M =supu.
B B

We distinguish two cases. If {5 udp > 1, then the weak Harnack inequality (5.1)
implies that 2Cm > 1 and hence any upper gradient of the function 2Cu is ad-

missible for Mod,,(T'(B, F,)). Taking infimum over all such upper gradients implies
that

Mody (DB, Fo)) < [ he, du= (20 capp, (Fo Go).
X
On the other hand, if fB udp < %, then applying the weak Harnack inequality (5.1)

to the p-harmonic function 1 — u, we see that 2C(1 — M) > 1. Thus, any upper
gradient of the function 2C(1 — u) is admissible for Mod,(I'(B, G,,)) and hence

Modp(F(E, Gp)) < /ngc(l_u) dp = (2C)P cappp (Frn, Gr)-
Combining the above two inequalities, we have

. 1 ) ) — _
nl;ngo cappp (Fn, Gpn) > oy nlgr;o min{Mod,(I'(B, F,,)),Mod,(I'(B,Gy))} > 0.

O
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Lemma 5.4. Suppose that {F,}52, and {Gp}52, are two disjoint decreasing se-
quences of closed nonempty sets in X satisfying (a) of Definition 4.4. Assume that
Mod, (T'(F1,G1)) < oo and that

lim Mod,(T'(Fy, Gp)) =: 2¢ > 0.

n—oo

Then {F,}22, and {G,}52, are p-hyperbolic sequences.
Proof. Since, by Lemma 2.6,
2¢o < cappy (F1,G1) < o0,

there is a function v € DP(X) such that 0 <u <1lon X,u=0on F; and u =1
on G1. Let B be a sufficiently large ball such that

/ gh dp < co.
X\B

By changing g,, on a set of zero measure, we can assume that it is a Borel function.

Let n be large enough so that F,, and G, are disjoint from B. The curve family
T, = T'(F,,G,) can be written as the union I UT”, where I'" contains the curves
from T',, passing through B, while I'” consists of those curves from I',, which avoid

B. By the choice of u, the function p := gux y\ 5 is admissible for Mod,,(I'"") and
hence Mod,,(T"") < cg. Since every curve in I' has a subcurve in I'(B, F},), it follows
from [5, Lemma 1.34] or [34, p. 128] that

Mod, (T'(B, F,,)) > Mod,(I'") > Mod,(T,,) — Mod,,(T"") > co,

and similarly Mod,(I'(B,G,,)) > co. Thus, by Lemmas 2.6 and 4.5, {F,}°°, and
{G,}22, are p-hyperbolic sequences. O

Proof of Theorem 5.1. Since cappp (F1, G1) = Mod,(I'(F1,G1)) < oo by Lemma 2.6,
there is f € DP(X) such that f =0 on F} and f =1 on Gj.

As in the proof of Lemma 5.3, for each n > 1, let u, = Hx\(r,ua,)f be the
p-harmonic extension of f in X \ (F,, UG,,). By Proposition 3.6,

/ G dp = cappy(Fn, G) < cappy (1, C1).
X

Lemma 3.4 provides us with a p-harmonic function v on X and convex combi-
nations

Ny, Ny
Uy = Z Ajntj, where 0 < Aj;, <1 and Z Njn =1,
j=n j=n

such that v, — u locally uniformly and ||g,, — gullzr(x) — 0 as n — oo. Hence

1/p 1/p Nn 1/p
(/ gb du) = lim (/ ab du) < lim Z Ajn (/ 9u, dp)
X n—oo \ [y n—>ooj:n X

< capr(Fl,Gl)l/p < 0,

showing that u is a bounded p-harmonic function in X with finite energy.
Moreover, each v, is admissible for capp,(Fy, , Gy, ), and so by Lemma 5.3,

n— o0

lim 9> du > lim cappy(Fn,,Gn,) >0,
X " n—oo

showing that [ 95 dp > 0 and so w is nonconstant. O
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6. Classification of metric measure spaces

Recall from Definition 3.1 and the equality Ny?(X) = N'?(X) that a function
u € NYP(X) is quasiharmonic in X if for each ¢ € N?(X) we have

loc
/ ghdp < Qu/ Grogp A1t (6.1)
P#0 p#0

Theorem 6.1. If X supports a nonconstant quasiharmonic function with finite
energy, then X ¢ OY 5. In particular,

O];{D = O%BD = O%D = OgBD'

A direct consequence of this result together with Theorem 3.2 is the following
improvement of one of the main results in Bjérn—Bjérn—Shanmugalingam [13, The-
orem 1.1] under the additional assumption that X is complete (which under our
standing assumptions follows from the properness of X). In Section 9 we explain
how to obtain it for noncomplete spaces.

Corollary 6.2. Assume that p is globally doubling and supports a global p-Poincaré
inequality. If u € DP(X) is a quasiharmonic function on X with finite energy, then
it 1s constant. In particular, X € Og D

Proof of Theorem 6.1. We prove the contrapositive statement. So assume that X €
O% pp and that u is a quasiharmonic function on X with finite energy [ g# du < oc.
Our aim is to show that w is constant, and we do so by showing that g, = 0 a.e.
in X.

Fix g € X and let B; = B(zo,j),j =1,2,.... As X is unbounded, Cp,(X\B;) >
0. For each positive integer & let uy = min{k, max{—k,u}}. Let vy ; = Hp,uy be
the p-harmonic extension of uy in B;. Then |vy ;| < k and

/gﬂdu:/ gﬁk.du+/ gﬁkduﬁ/gﬁkdu<oo~
x B; 7 X\B, X

Lemma 3.4 provides us with convex combinations ¥y ; of the sequence {Uk,j};?il
which converge locally uniformly in X to a bounded function v, € DP(X) that is
p-harmonic in X, and moreover

l96x; — 9o llr(x) = 0, asj — oo.

As we have assumed that X € O, 5, (at the beginning of the proof), v, must be
constant on X. Thus g,, =0 and gs, ; — 0 in LP(X) as j — oo.

Since ¢y,; := Uk,; — ur are convex combinations of functions in NYP(X), we
see that ¢ ; € N'P(X) and guyy, ; < Gu—u, + go,,- The quasiminimizing prop-
erty (6.1) of u then implies that

/gfidu=/ gﬁdu+/ g dp
X Pk, 70 Pk, =0

< Qu / Jurpn, A+ / Jutor, A
#k,j 70 #k,;=0

§ Qu /X(gu—uk + gfzk,j )p du

§2pQu(/ gﬁdu+/ gﬁkjdu),
|u|>k X ’

where @, is the quasiminimizing constant associated with u. Letting j — oo and
then & — oo shows that g, = 0 a.e. in X. From the local Poincaré inequality, the
connectivity of X and the continuity of u we conclude that u must be constant
on X. O



Classification of metric measure spaces and their ends using p-harmonic functions 17

Remark 6.3. It follows directly from Theorem 6.1 that the following two equivalent
conditions can be added to Theorem 10.5 in Bjorn—Bjérn—Shanmugalingam [14]:
(¢) There exists a nonconstant bounded p-harmonic function on (X,d, ) with
finite p-energy.
(d) There exists a nonconstant quasiharmonic function on (X, d, ) with finite
p-energy.
Similar modifications can also be made in the conclusions in [14, Example 10.8].

We are now ready to state and prove the converse of Theorem 5.1.

Proposition 6.4. If X supports a nonconstant bounded p-harmonic function with
finite energy, then there are two disjoint p-hyperbolic sequences {F,}52 1 and {G,,}22 4
such that Mod,(T'(F1, G1)) < co. In particular, X is p-hyperbolic.

To prove Proposition 6.4, we shall need the following definition, which extends
the well-known notion of p-parabolic spaces to open subsets, see Proposition 6.6
below. For manifolds and p = 2, this definition appeared in Grigor’yan [25, Defini-
tion 3], [27, Section 14.1] and for metric spaces and p > 1 in Hansevi [29, Defini-
tion 4.1].

Definition 6.5. An unbounded open set Q C X is p-parabolic if for each compact
set K C § there exist functions u; € N'P(Q) such that u; > 1 on K for all
7=1,2,... and

/Qgﬁj dp— 0 asj— oo. (6.2)

Proposition 6.6. X is p-parabolic in the sense of Definition 6.5 if and only if it
is p-parabolic in the sense of Definition 4.2.

Proof. If X is p-hyperbolic in the sense of Definition 4.2, then fixing g € X and

K := B(zp, 1), we know that

lim Mod,,(I'(K, X \ By)) =: ¢ > 0,

where B,, = B(zg,n). Now suppose that there is a sequence u; € N''P(X) as in
Definition 6.5, related to the compact set K, and for each positive integer n > 2
let 7, be a 1-Lipschitz function on X such that 0 < 7, < 1on X, n, =1 on
Bn_1, and 1, = 0 outside B,,. Then v, ; := n,u; € N'P(X) with v, ; = 1 on
the compact set K and v, ; = 0 outside B,,. It then follows from the definition of
p-weak upper gradients that for p-almost every curve v € T'(K, X \ B,) we have
that 1 < [ gy, , ds. Since

vy ; S UGXBA\Bn_y + Gu; X By s

we see that

Mody (MK, X\ B <2 ([ s [ gt an).
X 1

n— n

Letting n — oo gives us that

0<c§2p/g5jd,u,
X

which then forbids the sequence u; from satisfying (6.2), that is, X cannot be
p-parabolic in the sense of Definition 6.5.
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Conversely, if X is not p-parabolic in the sense of Definition 6.5, then there exist
co and a compact set Ky C X such that for every u € NVP(X) with u > 1 on Ky,

/gﬁd,cho>0.
X

In particular,
lim capp, (Ko, X \ By) > co,
n—oo

which in combination with Lemmas 2.6 and 4.5 implies that
lim Mod,(I'(B1, X \ B,)) > 0,
n—oo
that is, X is p-hyperbolic in the sense of Definition 4.2. O

Proof of Proposition 6.4. Suppose that v € DP(X) is a bounded nonconstant p-
harmonic function v on X with finite energy. Without loss of generality we may
assume that

infu=-1 and supu=2.

X X
Setting 2 = {z : u(xz) < 0}, choose a point g € Q. For n = 1,2,..., let F,, =
Q\ B(zg,n). We shall show that the sequence {F,,}2°, is p-hyperbolic.

Assume not. Let K C Q be an arbitrary compact set. Then by Lemmas 2.6
and 4.5, capp, (K, F,) = Mod,(I'(K,F,)) — 0 as n — oo. In particular, for
sufficiently large n, there exist u, € DP(X) such that u, =1 in K, u, = 0 in F,,
0<wu, <1lin X and

/gﬁndu—ﬂ) as n — o0o.
X

Since uy,|o has bounded support we see that u,, € N1P(Q). As K was arbitrary, we
conclude that 2 is p-parabolic in the sense of Definition 6.5. Since u = 0 on 01,
applying Corollary 7.7 in Hansevi [29] (see Remark 3.7) to the constant function
f = 0 then implies that w = 0 in , which is a contradiction. Thus, the sequence
{F,}22, is p-hyperbolic, and hence X is p-hyperbolic.

Similarly, considering €' = {x : u(x) > 1} and z{, € @', we conclude that
G, = 9 \ B(x{,n) also forms a p-hyperbolic sequence. Clearly, the two sequences
are disjoint. Moreover, any upper gradient g for u is admissible for Mod, (I'(F1, G1))
and hence Mod,(I'(F1, G1)) < oo. O

Proof of Theorem 1.3. One implication follows directly from Theorem 5.1, while
the other (and the p-hyperbolicity) follows from Proposition 6.4. The last part
(about p-hyperbolic ends) follows from Corollary 5.2. O

Proof of Theorem 1.2. The inclusions

Oyp C Ofp C Ohpp
] U U
Obp C Opp C Ofpp

are trivial. That Oy, = Ofpp = Op = Ogpp follows from Theorem 6.1, while
the inclusion OB, C O%pp follows from Theorem 1.3. We have thus shown all
inclusions.

As (unweighted) R" € Ogp C Ofpp forall 1 < p < oo and n > 1 (e.g. by
Theorem 3.2), but is p-parabolic only for p > n, we see that Ob & OF zp and
that R" € Ogp \ 08, if p < n.
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By Example 8.3 below, there is a measure p on R (satisfying our standing
assumptions) such that

(R, p) € Ogp \ Ofip-
It follows directly that

(R, 1) € Ofp \ Opp, and (R, p) € 04\ Ogp-

Finally, consider the Poincaré n-ball BY as in Sario-Nakai-Wang—Chung [56,
Section 1.2.4], namely B} = B(0,1) C R", n > 3, equipped with the Poincaré-type
metric ds, = (1 — |2[?)*dz, a < —1, and the corresponding Lebesgue measure.
This makes B? into an unbounded proper Riemannian manifold (and thus metric
space) satisfying our standing assumptions. By [56, Lemma 1.2.8 and 1.2.9], X €
O%p \ Ok p- D

7. DP(X)=N"(X)+R

This section is devoted to Theorem 1.4, and we start with its proof. The rest of the
section discusses the converse of Theorem 1.4.

Proof of Theorem 1.4. Since X ¢ O¥, ,, there is a nonconstant p-harmonic function
u € DP(X). Suppose that there is some ¢ € R such that u + ¢ € N»?(X). Then
u + ¢ is also nonconstant and p-harmonic on X, but this is in contradiction with
Lemma 3.3. O

The following example shows that DP(X) = N'P(X) + R can fail even when
X € O%p = 0fp.

Example 7.1. Let X = R" (unweighted) with p > n > 1 and let

u(@) = (1-27z - (4,0,...,0)]),.
=0

J

Then both {z : u(z) = 0} and {z : u(z) > i} have infinite measure and thus
u ¢ NYP(X) + R. However,

oo
/ ghdx = Z 21(n=P)y, < oo,
Rn =0

where w,, is the volume of the unit ball in R™. Thus v € DP(X).
Note that X € Of), by Corollary 6.2, and even X € Og)p by Theorem 3.2.

In Proposition 7.3 below we show that the converse of Theorem 1.4 holds pro-
vided that X supports the following global (p, p)-Sobolev inequality.

Definition 7.2. X supports a global (p, p)-Sobolev inequality if there is a constant

C > 0 such that
[ wrduzc [ gan (7.1)
X X

whenever u € NVP(X).

One can equivalently require (7.1) to just hold for bounded u € N1?(X) with
bounded support, see [34, Proposition 7.1.35]. If X is a simply connected complete
Riemannian manifold with sectional curvature K < —a? < 0, then it supports a
global (p, p)-Poincaré inequality, see Holopainen—Lang—Véhikangas [39, p. 129].
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The global (p, p)-Sobolev inequality holds if and only if the Rayleigh quotient

P
Ry(X) i inf AX I

v f X lulP dp
where the infimum is taken over all u € N'?(X) with [Ju| x1»(x) > 0.

Classically, the Rayleigh quotient for p = 2 equals the first eigenvalue A; (the
bottom of the spectrum) of the 2-Laplacian. In the nonlinear case, the Rayleigh
quotient is associated with a nonlinear eigenvalue problem that has even been stud-
ied on metric spaces (with upper gradients as here), see e.g. Garcia Azorero—Peral
Alonso [22] (on R™) and Latvala-Marola—Pere [51].

It was shown in Li-Wang [52, Theorem 1.4 (2)] that if M is a complete 2-
hyperbolic Riemannian manifold with A; > 0, then the measure of balls centered
at a point in M grows at least exponentially with respect to the radius. A similar
exponential volume growth was identified in Buckley—Koskela [17, Theorem 0.1 (2)]
for proper p-hyperbolic metric measure spaces supporting a global (p, p)-Sobolev
inequality.

Proposition 7.3. If in addition to our standing assumptions on X, we know that
X € 0%, and X supports a global (p,p)-Sobolev inequality, then

DP(X) = N"P(X)+R.

Proof. Let f € DP(X), o € X and set B; = B(zo,j), j = 1,2,.... As X is
unbounded, Cp(X \ B;) > 0. For each positive integer k, let vy = Hp, f be the
p-harmonic extension of f in Bg. By the global (p, p)-Sobolev inequality,

/|f_Uk|pd/~L§C/ 95—, Al
X X

< 2p0</ 9% du+/ gh, du) < 2”“0/ g% dp. (7.2)
X X X

Thus for each j =1,2, ...,

[owracse( [ 1r-orat [ iea)

J J J

<22P+1c(/ g?du—k/ |f|pdy).
X B
As NMP(X) = DP

o P (X)) (see Section 2), and X is proper, we see that f € N'P(B;) C
L?(Bj), and so {v;}32, is a bounded sequence in N7(B;).

Now an argument as in the proof of Lemma 3.4 shows that we have a sequence
{0}, of convex combinations of {vj}32,, that converges in N''P(B;) for each j
to a function v on X, with g, € LP(X). By Shanmugalingam [59, Theorem 1.1], the
function v is p-harmonic in each B; and thus in X. Since X € O%, [, the function
v must be constant, say v =c. As in (7.2),

[ s =epan=tim [ 17 orde<tims [ |f - apdu<c [ gpdu
B, k—oo J,; k—oo JXx X

After letting also j — oo, we see that [ |f—c[P dy is finite, that is, f—c € NTP(X).
The converse inclusion is trivial. O
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8. Examples related to Liouville type classes

In this section we explore some examples that illustrate the (non)equality of the
Liouville classes. As mentioned in the introduction, the Euclidean space R™ has
only one end when n > 2, and that end is p-hyperbolic only when 1 < p < n. On
the other hand, R has two distinct ends.

We begin with an example showing that R? can be equipped with a weight so
that it has two well-separated p-hyperbolic sequences, even though it only has one
end, cf. Theorem 1.3.

Example 8.1. Let X = R? be equipped with the Euclidean distance and the
measure dy = w dx, where

w(z) = e @A) and A= {z = (21,32) : |22] < 11|}

Alsolet 1 <p < 2.
Observe that as w is “uniformly almost constant” on every ball of radius 1, u is
uniformly locally doubling and supports a uniformly local 1-Poincaré inequality.
Even though X only has one end, it is still possible to use Theorem 5.1 to show
that X supports a nonconstant bounded p-harmonic function with finite energy.
Let 29 = (0,0), B = B(xg,1) and

”

F, ={z = (z1,22) € A: 21 > 2n},
G,={zx=(r1,20) €A1 < -2n}, n=12 ..

Now, by symmetry,
Mod,,(I'(B,R* \ (—2n,2n)?)) > Mod,(I'(B, F},))
Mod® (I(B,R?\ (~=2n,20)%), (8.1

1
1
where Mod?2 denotes the standard p-modulus in unweighted R? with respect to the
Lebesgue measure. Since 1 < p < 2, we know that unweighted R? is p-hyperbolic
and hence the right-hand side in (8.1) has a positive lower bound as n — oco. It
follows that X is p-hyperbolic and that {F,}22 ; is a p-hyperbolic sequence in X.
Similarly {G,,}52, is a p-hyperbolic sequence in X.
Next, every curve connecting Fj to G7 must pass through the strip

S:={zeR?: |z < i},

whose characteristic function y g is thus admissible for the family I'(F7, G1) of such
curves. A simple calculation then shows that

MOdP(F(Fl, G1)) S /

Xs dp < oo.
R2

Hence Theorem 5.1 is applicable and provides us with a bounded p-harmonic func-
tion in X with finite energy.

Note that R? equipped with the Lebesgue measure does not support any non-
constant bounded p-harmonic function. It therefore follows from Proposition 6.4

that Mod;{2 (T'(Fy,Gp)) = oo for each positive integer n.

We have seen that spaces with at least two p-hyperbolic ends support noncon-
stant bounded p-harmonic functions with finite energy, while parabolic spaces do
not. For spaces with only one end, which is p-hyperbolic, Example 8.1 and un-
weighted R™ with 1 < p < n show that they may or may not support nonconstant
bounded p-harmonic functions with finite energy. A natural question is what hap-
pens in spaces with only one p-hyperbolic end and at least one p-parabolic end.
The following examples and Proposition 8.4 show that both situations are possible.
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Example 8.2. Consider
X ={z = (21,22) € R® 1 3, <0} U ([-1,1] x (0,00)),
equipped with the Euclidean distance and the measure e~ 456(=:4) dz: where
A= {(z1,22) : —|a1] < 2 <0} U ([~1,1] x (0,00)).

Also let 1 < p < 2. Similar to Example 8.1, we see that X has one p-hyperbolic
end and contains two disjoint p-hyperbolic sequences

F,={x=(x1,22) € A:z1 >2n} and G, ={x=(r1,22) € A: 21 < —-2n},

n =1,2,..., while the strip [—1, 1] x (0, 00) forms a p-parabolic end. The uniformly
local doubling property and a uniformly local 1-Poincaré inequality are also satis-
fied. Theorem 5.1 now implies that X supports a nonconstant bounded p-harmonic
function with finite energy.

In the following example we will see that when suitably equipped with a weight,
R carries a nonconstant positive 2-harmonic function but no nonconstant bounded
2-harmonic function.

Example 8.3. Consider R equipped with the Fuclidean distance and the weight

for some fixed @ > —1. The measure du(z) = w(x) dz is uniformly locally doubling
and supports a uniform local 1-Poincaré inequality. As pointed out above, R has two
ends, denoted oo and —oo. By Proposition 8.4 below, the end at oo is p-parabolic
for each p > 1, while the end at —oo is p-hyperbolic if (and only if) 1 <p <1+«
(which then also requires « > 0). Moreover, (R, u) is a p-hyperbolic space in this
case, since it has a p-hyperbolic end. It thus follows, from Proposition 8.4 again,
that
(R, 1) € (05N 0Gp) \ (O pUOE,,) when 1 <p<1+a.

par

Proposition 8.4. Consider the real line R, equipped with the Euclidean distance
and the measure dy = wdx, where p is locally doubling and supports a local p-
Poincaré inequality. Then the following are true.
(a) Fach quasiharmonic function (with respect to u) on R is bounded if and only
if it has finite energy.
(b) The end at oo is p-hyperbolic if and only if

oo
/ w'/=P) dr < oo (8.2)
0
(c) The end at —oo is p-hyperbolic if and only if
0
/ w77 dr < oo, (8.3)
(d) The space (R, ) € OB, if and only if both (8.2) and (8.3) fail.
(e) If both (8.2) and (8.3) hold then there exists a nonconstant bounded global

p-harmonic function with finite energy, i.e. (R,p) & O pp-
(f) If (8.2) holds and (8.3) fails (or (8.2) fails and (8.3) holds), then

(R, 1) € (05 N Ogp) \ O p-
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() If both (8.2) and (8.3) fail then (R, u) € Ofp N OG-

Weights ¢ on R as above were characterized in Bjorn-Bjérn—Shanmugalin-
gam [12, Theorem 1.2]. In particular it was shown that for each bounded interval
I there is a (global) A, weight @ on R such that w = w on I.

Proof. (a) This follows from [13, Proposition 6.5].
(b) To see that the end at oo is p-hyperbolic when (8.2) holds, consider the
family I'r = I'([-1, 0], [R, 00)), R > 0, and let p be admissible for Mod,(I'g). Since

R R 1/p R 1/p
1 g/ pdr < (/ ppdu> (/ w!/(=P) dx) < Cllpll Lo o)
0 0 0

with C independent of R, letting R — oo shows that the end at oo is p-hyperbolic.
On the other hand, if (8.2) fails then the function

w!/ P ()Xo, (1)
f()R wl/(l_p) dx

PR(t) ==

is admissible for Mod,(I'r) (as we may assume that w is a Borel function), with

R 1-p
/ pPdu = (/ w!/ =P dx) —0, as R— oo,
R 0

and so the end at oo is p-parabolic. Thus (b) has been shown, (c) is shown similarly,
and (d) follows immediately.
The remaining statements follow from [13, Theorems 1.2 and 1.3]. O

As the next example shows, when a metric space has infinitely many ends, the
p-hyperbolicity of the space does not imply the existence of a p-hyperbolic end.

Example 8.5. The weighted infinite binary tree X from [13, Example 7.2] is an
example of a space that does not belong to O% 5, for any 1 < p < co. By The-
orem 1.3, X is p-hyperbolic. It is equipped with the geodesic metric, giving each
edge unit length. Each geodesic ray, emanating from the root vy, defines an end at
infinity and corresponds to exactly one point in the so-called visual boundary of X.

Fixing one such geodesic ray v from the root, the measure on X is comparable
to 2™ (*) dm(z), where m is the 1-dimensional Lebesgue measure on each edge
and 7 (z) is the closest point on v to z. Since the weight w(z) = 27 () is non-
increasing along each geodesic ray, an argument as in Proposition 8.4 (b) together
with Remark 4.3 tells us that the corresponding end must be p-parabolic. Thus,
X is a p-hyperbolic space having only p-parabolic ends. It is also uniformly locally
doubling and supports a uniformly local 1-Poincaré inequality.

9. The finite-energy Liouville theorem in noncom-
plete spaces

Recall that the standing assumptions from Section 3 are not required in this section.

Theorem 9.1. Assume that X is a (not necessarily complete) metric space equipped
with a globally doubling measure v supporting a global p-Poincaré inequality, where
1<p<oo.

If u € DP(X) is a quastharmonic function on X with finite energy, then it is
constant.
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This shows that Theorem 1.1 in Bjérn-Bjérn—-Shanmugalingam [13] holds even
if none of the sufficient conditions (a)—(d) therein is satisfied.

As in Definition 3.1, a function u € Nﬁ)’f (X) is a quasiminimizer on the entire
space X if

/ ghdp < Qu/ Givpdn forall p € N'P(X),
»#0 ®#0

and a quasitharmonic function is a continuous quasiminimizer. However, the defi-
nition of quasiminimizers on strict subsets of noncomplete spaces is more involved,
see [13, Section 3] for such a definition and further discussion.

Proof. If X is bounded, then this follows directly from [13, Theorem 1.1]. So we
may assume that X is unbounded. As in [7] we let X be the completion of X. The
metric d extends directly to X and we define the complete Borel regular measure i
on X by letting

A(E)=p(ENX) for every Borel set £ C X,

and then complete it, see [7, Corrigendum]|. It follows from [7, Propositions 3.3
and 3.6] that fi is globally doubling and supports a global p-Poincaré inequality
on X , with the same doubling and Poincaré constants.

By [7, Theorem 4.1], there is & € D?(X) such that @ = u CX-q.e. in X and

9; 3 < Aogux a.e.in X, (9.1)

where Ay only depends on p, the global doubling constant and both constants in
the global p-Poincaré inequality. Let $ € N?(X) and ¢ = @|x. Then, gytp x <

Yi15.x ae in X, and thus using (9.1),

i AL / B < 41, / JRASRTIEY X A R
? ® ® ?

)

Therefore 4 is a quasiminimizer on X , and hence has a continuous representative
(see Section 3) that we can also call 4. By (9.1), we see that @ has finite energy
in X , and thus by Corollary 6.2, @ is constant. As v is continuous, it must also be
constant. O
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