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SUMMARY
The recently reported B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) includes 34 mutations in the spike protein relative to the Wuhan strain, including 15 mutations in the
receptor-binding domain (RBD). Functional studies have shown Omicron to substantially escape the activity
of many SARS-CoV-2-neutralizing antibodies. Here, we report a 3.1 Å-resolution cryoelectron microscopy
(cryo-EM) structure of theOmicron spike protein ectodomain. The structure depicts a spike that is exclusively
in the 1-RBD-up conformation with highmobility of RBD.Manymutations cause steric clashes and/or altered
interactions at antibody-binding surfaces, whereas others mediate changes of the spike structure in local re-
gions to interfere with antibody recognition. Overall, the structure of the Omicron spike reveals how muta-
tions alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) emerged as a human pathogen in 2019 in Wuhan, China,

causing a disease now known as coronavirus disease 19

(COVID-19), which is characterized by fever, acute respiratory

illness, andpneumonia (Callaway et al., 2020; Cucinotta andVa-

nelli, 2020; Zhou et al., 2020). At the time of writing this article,

more than 274 million infections had been reported worldwide,

with over 5 million deaths (https://arcg.is/0fHmTX, 2021).

Numerous variants have been discovered through sequencing

over the past 2 years, with some major lineages designated as

variants of concern (VOCs) due to increased transmissibility,

disease severity, resistance to neutralizing antibodies elicited

by vaccines, or reduced efficacy of treatments (Planas et al.,

2021a; Washington et al., 2021). These VOCs are designated

alpha, beta, delta, and gamma by the World Health Organiza-

tion, each of which contains a characteristic set of mutations.

The Omicron (B.1.1.529) VOC, first detected in southern Africa

in November 2021, has spread rapidly to over 60 countries.

The astonishingly high transmission rate (R0 >3) and short

doubling time (2–3 days) of Omicron cases suggests it could

soon become dominant (Burki, 2021). The alarming number of

mutations in the spike protein (34), including at least 15 in the re-

ceptor-binding domain (RBD), the primary target for neutralizing

antibodies, results in substantially compromised efficacy of

vaccines and therapeutic antibodies (Cameroni et al., 2021;

Cao et al., 2021; Carreño et al., 2021; Liu et al., 2021a; Planas

et al., 2021b). Elucidating the structural basis of viral escape be-
This is an open access article und
comes a high priority for understanding viral evolutionary path-

ways and developing new therapeutics.

SARS-CoV-2 utilizes a highly glycosylated spike protein (S) to

mediate entry into host cells. S, a class I fusion protein, forms a

trimer that adopts a metastable prefusion conformation that un-

dergoes large structural rearrangements in fusion of the host

and viral cell membranes (Bosch et al., 2003; Shang et al.,

2020). Host cell angiotensin-converting enzyme 2 (ACE2) receptor

binding is thought to destabilize the prefusion trimer, leading to

sheddingof the S1 subunit and transition of S2 to anelongated he-

lical postfusion conformation (Benton et al., 2020; Cai et al., 2020;

Hoffmann et al., 2020; Wang et al., 2020). The RBD of S1 un-

dergoes conformational motions between an ‘‘up’’ state where

the ACE2 receptor-binding site is accessible, and a ‘‘down’’ state

where it is hidden (Walls et al., 2020; Wrapp et al., 2020).

Neutralizing antibodiesmost often target the domains at the top

of the spike: RBD (Barnes et al., 2020; Brouwer et al., 2020; Cao

et al., 2020; Cerutti et al., 2021c; Chen et al., 2020; Ju et al.,

2020; Liu et al., 2020b; Pinto et al., 2020; Rapp et al., 2021; Shi

et al., 2020; Tortorici et al., 2020; Zost et al., 2020), and N-terminal

domain (NTD) (Cerutti et al., 2021a, 2021b; Chi et al., 2020;McCal-

lum et al., 2021a; Suryadevara et al., 2021). The large number of

mutations in Omicron has raised questions about its evolutionary

origin. Some have proposed that it developed in a chronically in-

fected individual with an impaired immune response, whereas

others think it developed in parallel with other variants in a popu-

lation not monitored by sequencing (Kupferschmidt, 2021). Muta-

tions in VOCs accumulatemainly in the S protein. Omicron has 15,

eight, and 11 mutations in RBD, NTD, and S2 subunits
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Figure 1. Cryo-EM structure of prefusion

SARS-CoV-2 Omicron (B.1.1.529) spike

(A) Cryo-EM map of SARS-CoV-2 Omicron S2P

spike in the prefusion state shown in two orthog-

onal views. The density for the single RBD up is

barely visible at the optimal contour level due to

high mobility of the domain. NTD is colored in or-

ange, RBD in green, glycans in blue, the rest of the

trimer in gray.

(B) Relative population of RBD states observed in

cryo-EM structures of SARS-CoV-2 spike for

different variants.

(C) Structure of SARS-CoV-2 Omicron spike in the

1 RBD-up state with mutations highlighted in red.

Mutations observed in previous variants are

labeled in gray, new Omicron mutations are

labeled in black. See also Figures S1, S2, and S3;

Tables S1 and S2.
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respectively, with six of the 34 mutations observed in other VOCs

or variants of interest. The RBDmutations include G339D, S371L,

S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A,

Q493R,G496S, Q498R, N501Y, and Y505H. Someof thesemuta-

tions have known functional consequences, such as K417N,

S447N, E484A, and Q493R, which contribute to immune escape

(Harvey et al., 2021; Wang et al., 2021b), and N501Y which con-

tributes to higher infectivity (Tian et al., 2021). However,

other Omicron mutations in RBD and other domains have un-

known functional impact, individually or in combination.

Here we present the cryoelectron microscopy (cryo-EM)

structure of the Omicron spike, which adopts an exclusively 1-

up RBD conformation. The overall architecture of the spike is

conserved, but the mobility of RBDs appears increased over

other variants. Surface differences appear to be localized around

sites of antibody recognition, with serious implications for im-

mune evasion.

RESULTS

Cryo-EM structure of Omicron spike
For structure determination, we produced a soluble version of

the Omicron spike corresponding to residues 1 to 1,208 of the

ectodomain, and including two proline mutations in S2 that
2 Cell Reports 38, 110428, March 1, 2022
have previously been used to stabilize

the spike in its prefusion form (Walls

et al., 2020; Wrapp et al., 2020), and a

C-terminal His tag. The protein was ex-

pressed in Expi293 cells and purified by

His-tag affinity chromatography, and

this protein was used for the preparation

of cryo-EM grids. The spike appeared to

show a slight preferred orientation on

the cryo-EM grids, so we collected data

with a 30� tilt angle. We collected and

processed 13,695 cryo-EM movies to

obtain a 3D reconstruction at 3.1 Å reso-

lution (Figures 1A, S1, and S2, Table S1).

The overall structure is similar to the
Wuhan spike, with only a 1-RBD-up conformation identified

through ab initiomap generation and 3D classification. The elec-

tron density for the RBD in the up position is blurred compared

with the density of the RBDs in the down position (Figure 1A).

To investigate this behavior, we performed 3D variability anal-

ysis, a procedure that allows visualization of structural heteroge-

neity, like partial occupancy andmolecular motions, by sampling

the heterogeneity of a 3D reconstruction in 3D linear subspace

models (variability components) (Punjani and Fleet, 2021). The

main variability component observed within the final particle

set showed an oscillatorymotion for the RBD up (Figure S3), sug-

gesting that the RBD up exists in multiple conformations. The

electron densities for the two RBDs down were not equivalent,

with the best RBD density observed for protomer B (Figure S1E).

The single 1-RBD-up conformation observed for Omicron is

also typical of the gamma variant (Wang et al., 2021a; Zhang

et al., 2021b), while for other variants an equilibrium of different

states has been reported (Figure 1B) (Gobeil et al., 2021; Yurko-

vetskiy et al., 2020; Zhang et al., 2021a, 2021b). Specifically, the

blurred density for the RBD up observed in Omicron spike was

reported for the alpha variant (Gobeil et al., 2021).

Most of the Omicron mutations were visible in the cryo-EM

structure and their location in the context of spike is depicted

in Figure 1C. Mutations D69–70 (NTD), S373P (RBD), N679K,
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and P681H (proximal to the S1/S2 cleavage site) belonged to

flexible regions that could not be resolved in the cryo-EM struc-

ture. The remaining 30 mutations were visible in the cryo-EM

map although the side chains of mutated residues G142D,

G339D, S477N, T478K, andG496Swere not resolved (Figure S2,

Table S2). The RBD mutations are mostly clustered near the in-

ter-protomer RBD-RBD interface and many of them overlap

with the ACE2-binding site, while the NTD mutations are located

in the flexible loops distal from the trimer axis. The S2 mutations

are mostly located at the top of the subunit, at the interface with

S1.

Similarity and difference between Omicron and D614G
spike
To evaluate whether the Omicronmutations induce overall orien-

tation changes among spike domains, we superimposed the

structures of Omicron variant to the D614G wild type (WT) with

1-up RBD (PDB: 7KRR) (Figure 2A). The comparison revealed

an overall root-mean-square deviation (RMSD) of 1.1 Å and

0.6 Å for S1 and S2 subunits respectively. The measured dis-

tance between NTDs of the three protomers showed that the

NTD from protomer A (NTDA), which has an RBD up, is 5 Å closer

to the NTD of protomer B (NTDB) than that of the D614G spike

(Figure 2B). We also observed that the S2 helix bundle (residues

988 to 1,033) has a shorter distance and increased buried acces-

sible surface area (bASA) between protomers than the WT spike

(Figure 2C and Table S3).

We then determined the center of mass (COM) for NTD, NTD0,
SD2, SD1, and RBD and used COMs to calculate angles be-

tween these domains. The result revealed that protomer A has

a smaller angle between NTD0, SD2, and SD1, while the angles

between other domains are highly similar to the WT spike (Fig-

ure 2D). The angles between the five domains in protomers B

and C have no difference compared with the WT. We then

measured the bASA between the above domains and found

that almost every domain-domain interface bASA increases

slightly in Omicron compared with the WT (Table S3). Remark-

ably, NTD has a 3-fold increased bASA with adjacent RBD,

coupled to a 2-Å reduced distance between RBD and NTD

through the orientation change in NTD. In summary, our analyses

showed increased inter-domain interactions of the Omicron

spike.

Effects of Omicron mutations on spike conformation
We next mapped the Omicron mutations to the spike structure

and assessed their potential effects on spike conformation.

The majority of the RBD mutations are located in the receptor-

binding motif (RBM), inner-side, and outer-side epitope regions

(Figure 3A). The superimposition of the Omicron and WT RBDs

showed an RMSD of 0.75 Å. We then calculated Ca distance

for each RBD residue between Omicron and WT, and observed

that six mutations (S371L, S373P, S375F, G446S, S477N, and

T478K) are located at regions with Ca distance larger than 2 Å

(Figure 3B), suggesting that these mutations may account for

the conformational change in the Omicron RBD. In particular,

we observed that mutations S371L, S373P, and S375F not

only alter the conformation of loop 371–376 but also result in

the motion of helix 365–370 closer to helix 337–343, which
may alter the conformation of the N-linked glycosylation at

N343 (Figure 3C left panel). The formation of new hydrogen

bond networks by mutations G446S, G496S, Q498R, and

N501Y stabilize loop 443–451 to a new conformation (Figure 3C

right panel).

The majority of NTD mutations are located at the antigenic

supersite targeted by most NTD-directed neutralizing anti-

bodies. Our Omicron structure revealed substantial conforma-

tional changes in the NTD supersite (Figure 3D left and middle

panels). We also determined part of the N3 loop with G142D

and D143–145 (Figure 3D right panel). In addition, in the two

RBD-down protomers, we observed Omicron S2 mutations

N764K and N856K to form new hydrogen bonds with SD1 and

SD2 domains from adjacent protomers respectively (Figure 3E).

Two conserved residues nearby these mutations also form addi-

tional hydrogen bonds in Omicron spike (Figure S4C). Because

both SD1 and SD2 undergo a substantial rearrangement when

the RBD switches to the up conformation, these interactions

may help to stabilize the RBD in the down conformation by lock-

ing SD1 and SD2, an effect similar to other S2 mutations (Gobeil

et al., 2021).

Mechanisms of antibody escape
Previous studies showed that the Omicron variant impairs

neutralization of numerous RBD- and NTD-directed antibody

classes that represent convergent human antibody response

to SARS-CoV-2 (Cameroni et al., 2021; Cao et al., 2021; Liu

et al., 2021a; Planas et al., 2021b). To understand the structural

basis of immune evasion by Omicron, we superimposed the

published structures of SARS-CoV-2 antibody/RBD or NTD

complexes to the Omicron RBD or NTD and identified mutations

substantially contributing to neutralization reduction. Previous

studies showed consistently that K417N and Q493R impair

neutralization of class 1 and 2 antibodies (Amanat et al., 2021;

Wang et al., 2021b). Our structural analysis revealed that the

impairment of neutralization is probably through steric clash

and reduced polar interactions (Figures 4A and S5A).

E484A reduces polar interactions with class 2 antibodies. For

class 3 antibodies, G446S induces steric clashes with CDRH3.

The Omicron structure also revealed that the conformational

changes in loop 443–451 enhance steric hindrance (Figure S5B

left panel). For class 4 antibodies, the altered conformation of he-

lix 365–370 and loop 371–376 reduces the interaction with the

CDRH3 tip of class 4 antibodies (Figures 4B andS5B right panel),

which may increase the entropy of the epitope/paratope interac-

tion. In addition, the mutations at 371, 373, and 375 are likely to

impair recognition of quaternary epitope recognizing class 1 or 2

antibodies (Figure S5C). The NTD point mutations and deletions

alter the antigenic supersite substantially (Figure 4C), abolishing

neutralization by most NTD-directed neutralizing antibodies (Liu

et al., 2021b).

DISCUSSION

We report the cryo-EM structure of the SARS-CoV-2 spike of the

highly transmissible Omicron variant, which includes an unprec-

edented number of mutations and achieves an unprecedented

level of antibody escape. While the structure is similar overall
Cell Reports 38, 110428, March 1, 2022 3



Figure 2. Structural comparison of SARS-CoV-2 Omicron spike with D614G WT

(A) Superposition of Omicron spike with D614G spike. The S2 subunit is used for superimposition.

(B) Distance between NTDs of Omicron spike and D614G spike.

(C) The inter-protomer distance between S2 helices in Omicron is shorter than that observed in D614G spike.

(D) Measured angles between NTD, NTD0, SD2, SD1, and RBD showed that protomer Awith an up-RBD has altered angles between NTD0, SD2, and SD1. The two

protomers with RBDs down show similar domain orientation. Thus, only angles of the Omicron spike are shown. See also Table S3.
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to the D614G spike, it exists in an all 1-RBD-up conformation

with high mobility of RBD. Conformational differences associ-

ated with Omicron mutations occlude known antibody-binding

sites and thus are also likely to contribute to antibody evasion.

The observed 1-RBD-up spike conformation may have

evolutionary advantage. For example, the cryptic epitopes,

which are only available in the RBD up and are recognized by

antibody classes 1 and 4, have a lower frequency of exposure
4 Cell Reports 38, 110428, March 1, 2022
compared with the WT. Together with high mobility of the

RBD up and mutations, the Omicron spike can shed off recog-

nition by dominant human antibodies elicited by infection and

vaccination. Since many antibodies recognize two RBDs up

simultaneously to enhance neutralization through avidity, the

reduced number of RBDs up may decrease this effect (Liu

et al., 2020a; Rapp et al., 2021). In this study, we observed

that S2 mutations N764K and N856K may play a role in



Figure 3. Omicron spike mutations alter local conformation and polar interaction pattern

(A) Superposition of Omicron RBD with WT RBD. The Omicron RBD is colored in green and WT RBD in gray. The dark line shows the footprint of the RBM.

(B) Per-residue Ca distance between Omicron and WT RBD. RBD mutations in Omicron are labeled. The Omicron-specific mutations labeled in red resulted in

dramatic and broad antibody neutralization resistance.

(C) Details of conformation changes in Omicron RBDs. Left: 367–375 conformation change. Right: 444–448 loop conformation change. Black and yellow dashed

lines show hydrogen bonds in Omicron and WT RBDs respectively.

(D) Comparison of Omicron and WT NTD. Left: structure for WT NTD with the NTD supersite colored cyan. Middle: structure for Omicron NTD; the blue residues

show the NTD supersite on Omicron, the red residues labeled the Omicron mutations. Right: details of N3 loop change in Omicron compared with WT.

(E) S2 mutations N764K and N856K in Omicron form new polar interactions with SD2 and SD1 from adjacent protomers respectively. See also Figure S4.
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stabilizing RBDs in the down conformation through additional

interactions with SD1 and SD2 domains. L547K and L981F

are close to the RBD in the down conformation of adjacent pro-

tomers (Figure S4D), which may also contribute by altering S2/
RBD interactions. The four mutations are also close to the S2

helix bundle (Figures 2D and S4D), and may contribute to the

observed S2 conformational change, but the mechanism re-

mains unclear.
Cell Reports 38, 110428, March 1, 2022 5



Figure 4. Structural basis of neutralizing antibody escape by Omicron

(A) Surface diagram of class 1 and 2 antibodies bound to RBD. Left: VH3-53-derived antibodies with CB6 as an example (PDB: 7C01). Middle: VH1-58/VK3-20-

derived antibodies with A23-58.1 (PDB: 7LRS)-binding mode shown. Right: VH1-2-derived antibody with 2-15 (PDB: 7L57)-binding mode shown. Mutations in

Omicron RBD are colored in red.

(B) Surface diagram of the class 3 and 4 antibodies bound to Omicron RBD, antibody REGN10987 (PDB: 6XDG), S309 (PDB: 6WPT), 10–40 (PDB: 7SD5), and

DH1047 (PDB: 7LD1) are shown.

(C) Cartoon diagrams of the Omicron andWTNTDs in complex with antigenic supersite-directed antibodies and 5-7 (PDB: 7RW2). Omicron mutations are shown

as red spheres. See also Figure S5.
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A convergent antibody response in humans results in distinct

spike regions subject to antibody neutralization. Antibodies

directed against RBD embody one of the primary immune de-

fenses against SARS-CoV-2. Omicron spike contains 15 muta-

tions in RBD, many overlapping the recognition surfaces of

neutralizing antibodies. Compared with other VOCs, Omicron

also accumulated mutations extensively within and surrounding

the RBM. These mutations lead to the escape of antibodies of all

major structural classes—including classes 1, 2 and 3—which

has been observed to a lesser extent with other VOCs. In

contrast, Omicron has two unique clusters of mutations in the

RBD. One cluster is G446S, G496S, and Q498R. This cluster of

mutations cooperatively alter the loop 443–451 recognized by

classes 1, 2, and 3 antibodies, suggesting the result of strong im-

mune selection pressure. The second mutation cluster is S371L,

S373P, and S375F, which alter the conformation of loop 371–376

and helix 365–370. These mutations allow Omicron to evade

class 4 antibodies (Saunders et al., 2021), directed to a highly

conserved region on the ‘‘side’’ of RBD, which has so far been

observed with no other VOC. Besides, two additional classes

of antibodies, quaternary epitope recognizing class 1 and 2 an-

tibodies (e.g., 2–43 and S2M11) (Rapp et al., 2021; Tortorici

et al., 2020) and S309-like class 3 antibodies (Andreano et al.,
6 Cell Reports 38, 110428, March 1, 2022
2021), are also impaired by the three mutations. In addition, helix

365–370 tends to have stronger interaction with the base of the

N-linked glycosylation at N343, which plays roles in stabilizing

two adjacent RBDs down (Rapp et al., 2021). Together with

G339D, these mutations may alter the orientation of the N-linked

glycosylation at N343, which may affect antibody binding to

adjacent epitope regions.

NTD-directed antibodies also constitute an important de-

fense, withmost neutralizers directed to a single antigenic super-

site (Cerutti et al., 2021b; McCallum et al., 2021a). Similar to

other VOCs, Omicron contains mutations and deletions directly

within loops of the supersite, providing a structural explanation

for escape from this major class of antibodies (McCallum et al.,

2021b). Overall, this is consistent with the idea that Omicron

evolved in response to the immune pressure of neutralizing

antibodies.

The conformational and electrostatic changes induced by

RBD mutations help to understand the enhanced ACE2-binding

affinity by the Omicron spike (Lan et al., 2022; Mannar et al.,

2021; Yin et al., 2021). The electrostatic analysis revealed the

RBM to contain more positive charges than the Wuhan strain

(Figure S4E). The increased positive electrostatic potential re-

sulting from Omicron mutations T478K, Q493R, and Q498R
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may thus result in an increased affinity for the negatively charged

residues on ACE2.

In summary, this study reports the structural impact of muta-

tions emerged with the Omicron variant on the architecture of

SARS-CoV-2 spike. The cryo-EM structure reveals the details

of Omicron spike conformational modulation and immune

evasion in the context of the natural evolution of the virus. As

the Omicron mutations overlap with epitopes of neutralizing an-

tibodies, our structural analysis explains the antibody resistance

and informs the identification of effective therapeutic and pro-

phylactic strategies.

Limitations of the study
The cryo-EM reconstruction reported in this paper showed a

very blurred density for the RBD in the up conformation, not

modeled in the deposited coordinates. The two RBDs down

were not equivalent in terms of map quality, with the RBD in pro-

tomer B showing higher resolution. Poor EM density was also

observed for other regions: residues 14–25, 69–77, 144–152,

177–185, 246–259, 678–688, 828–838 (protomer A), and 828–

849 (protomer B and C) were not visible in the cryo-EMmap.Mu-

tations G142D, E214a, E214c, G339D, S447N, T478K, and

G496S were modeled as stubs in the associated coordinates.

Mutations S373P, N679K, and P681H were not modeled since

they were not visible in the map.

The effect of the mutations on the antigenicity of the Omicron

spike is discussed exclusively from a structural perspective or

based on immunological data reported in other manuscripts.
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Chemicals, peptides, and recombinant proteins

FectoPRO Polyplus Cat# 101000007

Expi293 Expression Media Thermo Scientific Cat# A14635

Opti-MEMTM Reduced Serum Media Thermo Scientific Cat# 31985-070

IMAC Sepharose 6 Fast Flow GE Healthcare Cat# 17092109

Tris Base Thermo Scientific Cat# BP152-5
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HEPES Sigma Cat# H3375

Critical commercial assays

Spin Miniprep Kit Qiagen Cat# 27106

Hispeed Plasmid Maxi Kit Qiagen Cat# 12663

HisTrap Fast Flow GE Healthcare Cat# 17-0921-09

Ni-NTA Agarose Thermo Scientific Cat# R90115

Deposited data

Cryo-EM structure of the SARS-CoV-2

spike glycoprotein Omicron B.1.1.529

variant

This paper PDB: 7THK

Cryo-EM map of the SARS-CoV-2 spike

glycoprotein Omicron B.1.1.529 variant

This paper EMDB: EMD-25896

Experimental models: Cell lines

Expi293F Cells Thermo Scientific Cat# A14527

Recombinant DNA

pCMV3-B.1.1.1529 spike Li et al., 2021 N/A

paH vector https://www.addgene.org/154754/ Cat# 154754

Software and algorithms

Coot Emsley and Cowtan, 2004 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot

cryoSPARC Punjani et al., 2017 https://cryosparc.com

Leginon Suloway et al., 2005 https://sbgrid.org/software/titles/leginon

Molprobity Davis et al., 2004 http://molprobity.biochem.duke.edu

Phenix Adams et al., 2010 https://www.phenix-online.org

The PyMOL Molecular Graphics System,

Version 2.0

Schrödinger, LLC https://pymol.org/2/support.

html#page-top

RELION Scheres, 2012 https://www3.mrc-lmb.cam.ac.uk/relion/

index.php/Main_Page

DeepEMhancer Sanchez-Garcia et al., 2021 https://github.com/rsanchezgarc/

deepEMhancer

EMRinger Barad et al., 2015 https://github.com/fraser-lab/EMRinger

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

UCSF Chimera X Pettersen et al., 2021 https://www.cgl.ucsf.edu/chimerax/

GraphPad Prism Software GraphPad Prism Software, Inc. N/A

PDBePISA Krissinel and Henrick, 2007 https://www.ebi.ac.uk/pdbe/pisa/

Python v3.8.3 Python https://www.python.org/

The R Project for Statistical Computing R Core Team https://www.r-project.org/

R bio3d package Grant et al., 2006 http://thegrantlab.org/bio3d/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lawrence

Shapiro (lss8@columbia.edu).

Materials availability
Expression plasmids generated in this study for expressing SARS-CoV-2 protein will be shared upon request.

Data and code availability
d Cryo-EM maps and fitted coordinates of Omicron spike have been deposited with accession code EMDB: EMD-25896 and

PDB: 7THK, respectively.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Expi293 cells were from ThermoFisher Scientific Inc (ThermoFisher, cat#A14527).

METHOD DETAILS

Expression and purification of SARS-CoV-2 spike
The ectodomain with 2P and furin mutations of SARS-CoV-2 B.1.1.529 trimer was synthesized, fused to an 83 His tag at the C ter-

minus and then cloned into the paH vector. To purify the S trimer protein, the expression vector was transiently transfected into

Expi293 cells using FectoPRO (Polyplus-transfection SA). Two days after transfection, the S trimer protein was purified using Ni-

NTA resin (Invitrogen).

Cryo-EM sample preparation
The sample for cryo-EM analysis of SARS-CoV-2 S2P Omicron spike was concentrated to 0.5 mg/mL final trimer concentration. To

prevent aggregation during vitrification, 0.005% (w/v) n-dodecyl b-D-maltoside was added to the sample prior to plunge freezing.

Cryo-EM grids were prepared by applying 2 mL of sample to a freshly glow-discharged UltrAuFoil gold grid 0.6/1 300 mesh; the sam-

ple was vitrified in liquid ethane using a Vitrobot Mark IV with a blot time of 3 s.

Cryo-EM data collection, processing and structure refinement
Cryo-EM data were collected using the Leginon software (Suloway et al., 2005) installed on a Titan Krios electron microscope

operating at 300 kV, equipped with a Gatan K3-BioQuantum direct detection device. The total dose was fractionated for 2.5 s

over 50 raw frames. Processing of the first 1000 micrographs showed a slight preferred orientation in the 2D classes. The following

micrographs were collected applying a 30� tilt (Tan et al., 2017). Motion correction, CTF estimation, particle picking, extraction, 2D

classification, ab initio model generation, 3D classification, 3D refinements and local resolution estimation were carried out in cry-

oSPARC 3.2 (Punjani et al., 2017). Bayesian polishing was performed in RELION on the final particle set (Scheres, 2012; Zivanov

et al., 2019). The final 3D reconstruction was obtained using non-uniform refinement with C1 symmetry, achieving a resolution of

3.1 Å. 3D variability analysis (Punjani and Fleet, 2021) was performed to confirm the absence of RBDs down conformations and to

sample themobility of the final particle set in distinct states. 3D classification using the two extremes of the variability mode did not

improve the quality of the map, and the particles were merged in a consensus refinement. Particles were symmetry-expanded in

C3 to produce a locally refined map using a mask built around the NTD, subsequently used to refine the NTD model and visualize

most of its mutations.

The structural model of SARS-CoV-2 spike PDB entry 6VYB (Walls et al., 2020) was used as initial template for model building of the

trimer. PDB entries 7EAM (Li et al., 2021) and 7L2C (Cerutti et al., 2021b) were used as initial templates to build the RBD and the NTD

respectively. Automated and manual model building were iteratively performed using real space refinement in Phenix (Adams et al.,

2010) and Coot (Emsley and Cowtan, 2004) respectively. Density-modified maps were produced using DeepEMhancer (Sanchez-

Garcia et al., 2021) and Resolve Cryo-EM tool in Phenix (Terwilliger et al., 2020) to support manual model building. Geometry vali-

dation and structure quality assessment were performed using EMRinger (Barad et al., 2015) and Molprobity (Davis et al., 2004).

Map-fitting cross correlation (Fit-in-Map tool) and figures preparation were carried out using PyMOL and UCSF Chimera (Pettersen

et al., 2004) and Chimera X (Pettersen et al., 2021). A summary of the cryo-EM data collection, reconstruction and refinement sta-

tistics is shown in Table S1.

The cryo-EM structural model and maps are in the process of being deposited in the RCSB PDB and EMDB.
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Calculation of domain angles and distances and identification of domain interfaces
PyMOL was used to perform the angle and distance calculations and generate plots. We superposed different spikes by aligning the

S2 domain in PyMOL. For each domain, we selected a set of residues and used their Ca for determining the center of mass of the

domain. The residues used are NTD (residues 27 to 69, 80 to 130, 168 to 172, 187 to 209, 216 to 242, and 263 to 271), NTD0 (residues
44 to 53 and 272 to 293), RBD (residues 334 to 378, 389 to 443, and 503 to 521), SD1 (residues 323 to 329 and 529 to 590), SD2

(residues 294 to 322, 591 to 620, 641 to 691, and 692 to 696) (Gobeil et al., 2021). PISA was used to identify interface residues,

as well as calculate buried accessible surface area and identify polar interactions (Winn et al., 2011). To identify viral mutations re-

sulting in antibody escape, we first used PyMOL to superimpose the RBD (or NTD for analysis of anti-NTD antibodies) domains of the

wildtype and Omicron variant. Omicron mutations that clash with antibodies were then identified. These results were further

confirmed from the published neutralization data (Liu et al., 2021a).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cryo-EMdatawere processed and analyzed using cryoSPARC andRELION. Cryo-EM structural statistics were analyzedwith Phenix

and Molprobity. Statistical details of experiments are described in method details or Figure Legends.
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