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A B S T R A C T 

The radiative counterpart of the supermassive black hole at the Galactic Centre, Sagittarius A 
∗, displays flaring emission in the 

X-ray band atop a steady, quiescent level. Flares are also observed in the near-infrared band. The physical process producing 

the flares is not fully understood and it is unclear if the flaring rate varies, although some recent works suggest it has reached 

unprecedented variability in recent years. Using o v er a decade of regular X-ray monitoring of Neil Gehrels Swift Observatory, 
we studied the variations in count rate of Sgr A 

∗ on time-scales of years. We decomposed the X-ray emission into quiescent 
and flaring emission, modelled as a constant and power-law process, respectively. We found that the complete, multiyear data 
set cannot be described by a stationary distribution of flare fluxes, while individual years follow this model better. In three of 
the ten studied years, the data is consistent with a purely Poissonian quiescent distribution, while for 5 yr, only an upper limit 
of the flare flux distribution parameter could be determined. We find that these possible changes cannot be explained fully by 

the different number of observations per year. Combined, these results are instead consistent with a changing flaring rate of 
Sgr A 

∗, appearing more active between 2006–2007 and 2017–2019, than between 2008–2012. Finally, we discuss this result in 

the context of flare models and the passing of gaseous objects, and discuss the extra statistical steps taken, for instance, to deal 
with the background in the Swift observations. 

Key words: black hole physics – Galaxy: centre – X-rays: individual: (Sgr A 
∗). 
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 INTRODUCTION  

agittarius A 
∗ (Sgr A 

∗) is the electromagnetic counterpart of the 
upermassive black hole at the centre of the Milky Way galaxy. It has
n estimated mass of ∼4 × 10 6 M �, but its bolometric luminosity
s ∼9 orders of magnitude fainter than the Eddington luminosity 
or an object of this mass (Genzel, Eisenhauer & Gillessen 2010 ;

orris, Meyer & Ghez 2012 ). It is the most nearby galactic nucleus,
 E-mail: bandres@astro.unam.mx (AA); jakob.vandeneijnden@physics 
ox.ac.uk (JVDE) 
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ocated at a distance of ∼8 kpc from Earth (Reid & Brunthaler 2004 ;
hez et al. 2008 ), this makes Sgr A 

∗ the prime laboratory to study
he accretion processes on to supermassive black holes at such low
ccretion rates. 

The X-ray emission from Sgr A 
∗ is observed to be composed

f a quiescent component, corresponding to a luminosity of L X �
 × 10 33 erg s −1 in the 2–10 keV energy range, which is interrupted
lmost daily by flares (e.g. Baganoff et al. 2001 ; Goldwurm et al.
003 ; Genzel et al. 2010 ; Markoff 2010 ; Degenaar et al. 2013 ;
eilsen et al. 2013 ). These flares are ∼1 −2 orders of magnitude
ore luminous than its quiescent emission, with the brightest ones 

eaching values of L X � (1 −5) × 10 35 erg s −1 (e.g. Nowak et al. 2012 ;
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1 https:// www.swift.ac.uk/ user objects/ 
2 The indicator function, 1 , is defined to be 1 when the condition is true, and 
0 elsewhere. 
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aggard et al. 2019 ). Sgr A 
∗ is also flaring in other wavebands, most

rominently in the near-infrared (nIR; e.g. Witzel et al. 2018 ). Both,
he emission mechanism and the physical process producing Sgr A 

∗’s
ares are not completely understood yet (Markoff et al. 2001 ; Liu &
elia 2002 ; Yuan, Quataert & Narayan 2003 ; Liu, Petrosian & Melia

004 ; Čade ̌z, Calvani & Kosti ́c 2008 ), although Ponti et al. ( 2017 ) de-
eloped the first simultaneous multiwaveband campaign measuring
he spectral index in nIR and X-ray bands, showing that synchrotron
mission with a cooling break is a viable process for Sgr A 

∗’s flaring
mission. 

In the past decade, e xtensiv e work has been performed to simul-
aneously detect flares from Sgr A 

∗ in different wavebands in order
o gain more insight into the emission mechanism (Eckart et al.
004 ; Yusef-Zadeh et al. 2008 ; Trap et al. 2011 ). Another avenue
f study has been to characterize the brightness distribution and
ccurrence rate of flares at X-ray and nIR wavelengths. In the X-
ays, the first systematical work was developed before the passage
f the G2 object to the Galactic Centre (for re vie ws of the G2 object,
ee Gillessen et al. 2012 ; Witzel et al. 2014 ). Using 3Ms of data
rom the Chandr a X-r ay Observatory’s 2012 X-ray Visionary Project
XVP), Neilsen et al. ( 2013 ) reported 39 flares for this set of data
nd a flaring rate of ∼1.1 flares per day, which is consistent with
revious results by Genzel et al. ( 2010 ). It also has been shown
hat Sgr A 

∗ X-ray flux distribution can be decomposed into the
um of two processes: a quiescent component with constant flux,
nd a flaring component best described by a power-law distribution
f fluxes (Neilsen et al. 2015 ). Regarding the nIR band, several
orks have also been performed. For instance, by making use of the
RAVITY instrument, Abuter et al. ( 2018 ) detected orbital motions
f three NIR flares from Sgr A 

∗. Also, using data from the Keck
bservatory, Spitzer Space Telescope, and the Very Large Telescope

VLT) , Witzel et al. ( 2018 ) found that the variability of Sgr A 
∗ in this

and can be described as a red noise process with a single lognormal
istribution. 
Establishing if the flaring properties of Sgr A 

∗ change o v er time
ould provide new hints into the physical mechanism producing the
ares. For instance, Ponti et al. ( 2015 ) claimed evidence for a change

n Sgr A 
∗ flaring rate, using 6.9 Ms of Chandra and XMM–Newton

ata, co v ering 1999 September–2014 No v ember. The y reported a
ignificant increase in the rate of the very bright flares in late 2013
nd 2014, changing from 0.27 ± 0.04 to 2.5 ± 1.0 flares per day
t a 99.9-per cent confidence level. On the other hand, Bouffard
t al. ( 2019 ) studied a total of 4.5 Ms of Chandra observations only,
o v ering 2012–2018 data free of contamination from the magnetar
GR J1745–2900 (see Section 2.1), but did not find evidence of
hange in Sgr A 

∗ flaring properties between the XVP and post-XVP
ata. Similarly, based on 4.5Ms of Chandra observations from 1999
o 2012, Yuan & Wang ( 2015 ) and Yuan et al. ( 2017 ) did not find
vidence of changes in the quiescent nor flaring rate of Sgr A 

∗, even
round the pericentre passage of the S2 star in 2002. Another recent
ork suggests the emission of Sgr A 

∗ in the nIR band has been consis-
ent during ∼20 yr of observations (Chen et al. 2019 ), but apparently,
he emission has reached unprecedented flux levels in 2019, with flux
eaks that are twice the values from previous measurements (Do et al.
019 ). 
In this work, we study the Cumulative Distribution Function (CDF)

f count rates of Sgr A 
∗ using data accumulated between 2006 and

019 with the Neil Gehrels Swift observatory ( Swift ; Gehrels et al.
004 ). The long-term monitoring and high observing cadence of the
wift programme uniquely allow us to test whether the properties
f Sgr A 

∗’s X-ray flaring behaviour show evidence of changes on a
ime-scale of years. 
NRAS 510, 2851–2863 (2022) 
 OBSERVATIONS  AND  METHODS  

.1 Swift /XRT long-term light cur v e 

n 2006 February, Swift started to monitor the Galactic Centre (GC)
ith the on-board X-Ray Telescope (XRT) with the aim of studying
gr A 

∗ as well as numerous transient X-ray binaries located in this
egion (Kennea et al. 2006 ). Apart from a handful of interruptions
nd Sun constraints, Swift /XRT has pointed at the GC every ∼1–3 d
ince 2006, with an average exposure time of 1 ks per observation
see Degenaar et al. 2015 for a re vie w of the program). 

In this work, we used all available Swift /XRT data that co v ered
gr A 

∗ and was obtained in photon-counting (PC) mode. The data
pans the period between 2006 February 24 and 2019 August 6. The
ight curve of Sgr A 

∗ was extracted with the software implemented
n the online XRT data analysis tool (Evans et al. 2007 , 2009 ), 1 with
he only exception that a fixed source and background region were
sed. To e xtract ev ents from Sgr A 

∗, we employed a circular re gion
ith a 10-arcsec radius centred at RA = 266.41682 and Dec. =
29.007797 (J2000). To account for the background, we used three

ircular regions of 10 arcsec that were free of X-ray point sources but
id contain diffuse X-ray emission (as seen at the position of Sgr A 

∗).
The long-term light curve was created with a bin size of 500 s and

t is shown in Fig. 1 . It clearly shows two bright, extended periods
f activity that do not belong to Sgr A 

∗, but to transient sources
ocated within 10 arcsec of the supermassive black hole. The first is
he transient magnetar SGR J1745–29, which exhibited an outburst
etween 2013 and 2015 (Kennea et al. 2013 ; Coti Zelati et al. 2017 ),
nd the second is the transient X-ray binary Swift J174540.7–290015
hat was active in 2016 (Ponti et al. 2016 ; Reynolds et al. 2016 ). Given
he brightness of these objects and the small angular separation of
hese from Sgr A 

∗, compared to the point spread function of Swift ,
t is impossible to extract reliable information on the brightness of
gr A 

∗ during the time that these transients were active. Therefore,
e excluded all data obtained between 2013 March 31 and 2016 July
8 from our analysis of Sgr A 

∗. 
Apart from the obvious outbursts of the two transients abo v e,

he Swift light curve of Sgr A 
∗ shows some instances of ele v ated

mission that have been ascribed to flares from Sgr A 
∗. Based on the

ignificance of these high points compared to the long-term average
RT count rate at the position of Sgr A 

∗, several bright X-ray flares
ave been reported previously (Degenaar et al. 2013 , 2015 , 2019 ;
eynolds et al. 2018 ). 

.2 Modelling the count rate distribution 

n this work, we focus on the count rate distribution, instead
f individual flares. We followed a similar approach to the one
escribed in Neilsen et al. ( 2015 ) to analyse the CDF of Sgr A 

∗’s
ight curve, shown in the bottom panel of Fig. 3 . The empirical CDF
s the fraction of rates greater than or equal to a given rate, and is
efined by the equation 

 ( r) = 

1 

N 

N ∑ 

i= 1 

1 { r i ≥r} , (1) 

here N is the number of time bins, 1 is the indicator function 2 ,
nd r i are the count rates. With this definition, f ( r ) runs from one to

https://www.swift.ac.uk/user_objects/


Swift study of X-ray flaring in Sgr A 

∗ 2853 

Figure 1. Long-term Swift /XRT-PC light curve of Sgr A 
∗ at 500-s binning (0.3–10 keV). The data marked in grey in top panel were excluded from our analysis 

due to the activity of nearby transient X-ray sources (see Section 2.1). The bottom panel shows the Sgr A 
∗ data that we used for the analysis. 
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ero, allowing for an easier visualization of changes at the high rate
nd on a logarithmic scale: f (0) = 1 per definition, as count rates are
on-ne gativ e. f ( r h ) = 1/ N , where r h is the highest observed count
ate in our data, while f ( r ) ≡ 0 for any r > r h . 

Following the results from Neilsen et al. ( 2015 ), we assumed that
he emission from Sgr A 

∗ is composed of a quiescent and a flaring
mission component. We model these components as a constant and a 
ower -law distrib ution in flux, respectively. We opted for the power-
aw distribution for the flux of the flaring component because Neilsen 
t al. ( 2015 ) found such a distribution provides the best description
f 2012 Chandra XVP data – since the Chandra observations have a 
igher sensitivity then Swift , we do not expect to see deviations from
his power-law model in the CDF of a similar-length light curve 
i.e. ∼1 yr). To generate the flaring component, one can define a
ower-law probability distribution of fluxes straightforwardly as 

 ( F ) = 

{
kF 

−α, F min < F < F max 

0 , elsewhere , 
(2) 

here F represents the flux, α the power-law index, and k = ( α −
) / ( F 

1 −α
min − F 

1 −α
max ) is a constant of normalization. 3 

This definition, introduced by Neilsen et al. ( 2015 ), carries a
ignificant do wnside, ho we ver, for data where flaring is either
ot present or faint in comparison to the quiescent rate and its
ncertainties: the parameter characterizing the flaring rate, α, is 
nbounded. Lo w v alues of α, approaching zero, imply an average
are flux that is relatively high within the considered range F min to
 max . On the other hand, if no flaring is present, α will asymptotically

end to infinity as the flare flux tends to a constant value of F min 

combined, the quiescent and flaring components then form the 
qui v alent of a single quiescent component. In reality, our analysis
hows that this effect shows up already when α ≈ 3–4, which means 
hat any α ≥ 3 will yield the same model fit and quality. As a result,
 This definition of k corrects a small typo in the original model from Neilsen 
t al. ( 2015 ). 

4

t
l
d

or a light curve without (detectable) flaring, α will be unconstrained 
t high values. 

To counteract this issue, we instead introduce a re-parametrization 
o our analysis, defined as 

≡ 1 

α
. (3) 

his new flaring parameter ζ is mathematically better constrained, 
ith the lower bound 0 corresponding to the case of no flaring

nd its upper bound set by the distribution of flares in the data
arbitrarily high values of ζ are therefore not possible, as those 

orrespond to ever-increasing flare flux es. Moreo v er, ζ is more
ntuitively interpreted, with low values corresponding to low flare 
uxes. We stress that this approach does not fundamentally differ 
rom e.g. Neilsen et al. ( 2015 ); instead, it simply allows us to calculate
 proper upper limit on the flaring parameter when no flares are
bserved, which is not possible with the unbounded α-parameter. 4 

Furthermore, we note that the simulated fluxes do not depend 
trictly on k , but only on F min , F max , and ζ . We fixed the values (in
nits of 10 −12 erg cm 

−2 s −1 ) to be F min = 0.1 and F max = 16.0 for the
inimum and maximum flux, respectively. This F min is higher than 

hat from Neilsen et al. ( 2015 ), to account for the lower sensitivity
f Swift and corresponds to its limiting sensitivity in 500 s. For the
aximum, we took the brightest flare measured with Swift as reported 

y Degenaar et al. ( 2013 ). 
In the case that no significant background emission is present 

as can be done for, e.g. the Chandra XVP data), the flaring
ux can simply be converted into a count rate assuming a certain
ux-to-counts conversion and Poisson statistics. Ho we ver, gi ven 

he relatively high background in the Swift Galactic Centre data, 
 Also, our Swift analysis shows that α does not follow a Gaussian distribution, 
hat would be distorted through this conversion. As such, our analysis does not 
ose any advantages that would come from assuming Gaussian distributions, 
ue to this change of parameters. 

MNRAS 510, 2851–2863 (2022) 
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Figure 2. The CDF shape for one Poisson and three Skellam-distributed data 
sets with the same mean μsrc , assuming different relative background levels 
μbkg . 
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oisson statistics do not hold. In the source region, we measure the
um of source counts and background counts, both of which are
oisson distributed. The former is then corrected by subtracting the
ackground counts as measured in a separate region, after which the
emaining source counts as modelled are the sum of quiescent and
aring emission. Assuming the background is spatially constant, this

wo-component model correctly describes the mean of the source
ounts, since the mean of two subtracted Poisson variables equals
he subtraction of their respecti ve means. Ho we ver, the resulting
istribution of source counts does not follow a Poisson but a Skellam
istribution, defined by the total counts in the source region and those
n the background region. 

To highlight the difference between the Poisson and Skellam
istributions, we plot four examples of the CDF f ( r ) in Fig. 2 . The
hree examples for Skellam distributions, with background rates at
0, 50, and 10 per cent of the mean count rate, show the significant
istortion to the CDF shape. In the case of our Swift data, we find that
he ratio b / μ ≈ 0.1, and hence we need to account for this distortion
y explicitly modelling the data using the Skellam distribution.
therwise, the CDF shape would be incorrectly reproduced and,
ossibly, the flaring flux would be o v erestimated. 
Therefore, we model the distribution of source count rates,

ssuming a value of ζ and the quiescent count rate Q , using the
quation 

( F , Q ) = 

1 

�t 
skellam 

[(
F ×

(
r max 

F max 

)
+ Q + b 

)
�t, b�t 

]
, 

(4) 

here � t = 500 s is the bin size we used, Skellam is a Skellam
andom number generator, b is the measured background region
ount rate, F is the simulated flux taken from equation (2), and
 max = 10.2 × 10 −2 count s –1 is the mean observed count rate of the
rightest flare (Degenaar et al. 2013 ). The Skellam random number
enerator takes the total source and background region counts as its
wo inputs, and returns a random draw of the former corrected by the
atter. We applied a constant-rate conversion because no significant
ariations in the spectrum of Sgr A 

∗ flares have been observed (e.g.
egenaar et al. 2015 ). Furthermore, we are not applying a pile-up

orrection, because the count rates seen by Swift , even in flares, from
gr A 

∗ are all below 0.2 count s –1 , i.e. well below the rates where this
ffect becomes important (see Fig. 1 ). 

To fit the observed X-ray distribution of Sgr A 
∗, we generated sets

f synthetic data consisting of a combination of: a quiescent count
ate distribution, with mean Q , and a power-law flux distribution of
ndex ζ ≡ 1/ α. To find the values of the parameters that best match
he observations, we considered the two methods explained below. 
NRAS 510, 2851–2863 (2022) 
.2.1 Two-dimensional method 

ollowing the same approach as Neilsen et al. ( 2015 ), in the two-
imensional (2D) method, we create a grid for values of ζ between
 and 1, and values of Q between 14 and 26 count ks –1 , with 100
teps in both. Fits on larger grids show that outside these ranges, the
robability of a match between the real data and synthetic data is
ull and/or unchanging. 
F or ev ery pair ( ζ , Q ), we generated 1000 sets of synthetic

istributions and applied the Anderson–Darling test (hereinafter
alled AD-test; Anderson & Darling 1954 ) to each combination of
he real and a synthetic light curve to compare their distributions.
t each parameter pair, we stored the average test-statistics (TS)

rom the AD-tests and then we converted it to p -values to assess
he probability of both distributions to be drawn from the same
nderlying distribution. We then computed the median value and the
 σ confidence interval of ζ and Q from the marginalized probability
ontours generated in the ζ−Q plane; alternatively, if the distribution
id not converge to zero at low ζ , we instead calculated the 90-
er cent upper limit of ζ . We note that the measured values of ζ
nd Q depend on F min , since for larger values of F min , the calculated
alue of ζ decreases, while Q decreases (see Discussion). However,
s we use a single value of F min in the entire analysis, this does not
ffect any differences seen between subsets of the data. We used the
YTHON / SCIPY function SCIPY.STATS.ANDERSON KSAMP to compute
he AD-test; as this function is only designed to convert the AD
S to p -values between p = 0.001 and 0.25, we supplemented this
onversion with Monte Carlo simulations as detailed in Appendix A.

In the AD-test comparison between the synthetic and observed
ount rates, the time-dependence of these quantities is ignored.
o we ver, gi ven that flares may last longer than the choosen time
in size (500 s), the count rates in consecutive time bins are not
ecessarily independent (Li et al. 2015 ). In our analysis, we will
herefore observe a steeper flare flux distribution (i.e. a relatively
igher number of faint flares), as the total flare fluence is divided o v er
ultiple time bins. This paper is mainly focused on the comparison

etween sub-sets of the Swift campaign, where the same steepening
f the distribution is expected. Therefore, we argue that sub-sets of
he data can accurately be compared with this method. 

Before moving to the 1D method below, we make a brief note
e garding the abo v e method to calculate confidence intervals. In
ddition to the method described abo v e, Neilsen et al. ( 2015 ) also
pplied an MCMC fitting routine to directly calculate and maximize
he likelihood from the Chandra light curve. Comparing these two

ethods, one finds that both approaches return consistent results
or the best-fitting parameters. Ho we ver, the AD-test method returns
lightly more conserv ati ve estimates of the confidence levels. Due
o its computational speed, allowing us to perform a variety of tests
n the long-term Swift data, we opted to use the AD-test method.
o we ver, aiming to remain conserv ati ve in our comparison between
ifferent sub-sets of the Swift data (see Section 3), we did not correct
or a possible o v er-estimation of confidence levels. 

.2.2 One-dimensional method 

he abo v e method assumes that Q and ζ are independent, while not
ll combinations will be able to represent the real light curve: for
nstance, a high Q will require a small ζ to prevent systematically
 v erpredicting the light-curve rates. Therefore, as a comple-
entary 1D method, we again assumed each point in our

ight curve consists of the sum of a quiescent and a flar-
ng component, both with Poisson noise. Therefore, for each

art/stab3407_f2.eps
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Figure 3. Empirical CDF of count rates of Sgr A 
∗ for the entire 2006–2019 

Swift data set (as described in Section 2.1) is shown in black. The grey lines 
are 1000 sets of simulated data following a Skellam distribution. We note 
that in this figure, model components should be added vertically; likewise, 
the CDF uncertainties are vertical, as the fractions are set by the number of 
data points in the light curve. 
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ata point, we can state that the rate r i is given by r i =
1 /�t ) [ prand ( Q�t ) + prand ( F × ( r max /F max ) �t) ] . Since the 
um of two Poisson random variables with mean λ1 and λ2 is 
gain a Poisson random variable with mean λ1 + λ2 and the fact 
hat � t is a constant, then the mean of all the observations in
ur data set will be the sum of the mean of both components:
 = Q + F × ( r max /F max ). 5 Computing F from equation (2), we can
xpress the mean count rate for our light curve as 

 = Q + 

r max 

F max 

(
1 − 1 /ζ

2 − 1 /ζ

)
F 

2 −1 /ζ
max − F 

2 −1 /ζ
min 

F 

1 −1 /ζ
max − F 

1 −1 /ζ
min 

, (5) 

here the second term of the right-hand side of equation (5)
orresponds to mean value of fluxes, F . 

Therefore, we calculated the mean count rate of our data, r , and
e assumed fixed values of F max , F min , and r max . For a given ζ , we

omputed F and then we used equation (5) to calculate Q . With 
hose ζ and Q , we generate 1000 sets of synthetic data, and stored
he average TS from the AD-test. We repeated this process on a non-
inear grid of ζ between 0 and 1 (focusing on values between 0.4 and
.8 with higher resolution after inspection of the final PDF shapes 
or low-resolution grids). We then converted the average TS at each 

into p -values and again we calculated the median value of ζ with
ts 1 σ confidence interval. 

This method has the advantage to be ∼100 times quicker than the
D method, so it allowed us to run more simulations and re-draw
ata in order to find significance of changes in our analysis (see
ection 3). The downside is that it assumes the mean count rate,
 , does not have an uncertainty; therefore, we also applied the 2D
ethod to compare their results for the analysis of individual years. 

 RESULTS  

he empirical CDF of Sgr A 
∗ obtained for the entire 2006–2019 

ight curve is shown in black in Fig. 3 . We found that the quiescent
omponent of Sgr A 

∗ emission is best represented by a pure 
oisson distribution with mean count rate of Q = 22 . 3 + 1 . 6 

−1 . 4 count ks –1 ,
 Here, we ignore the background region count rate as we assume that the 
ackground is spatially constant. The introduction of the Skellam statistics 
s therefore only necessary when considering the distribution of subtracted 
ata, not the mean. 

∼  

A  

A  

W  

m  

h  
nd a power-law process with ζ = 0 . 57 + 0 . 18 
−0 . 12 ; for both parameters,

hroughout this paper, we will report the mode, with uncertainties 
orresponding to the 1 σ level. These values of ζ and Q were
alculated with the 1D method, while the 2D method returns 
onsistent values. The grey lines in Fig. 3 are 1000 different synthetic
ets, being the combination of both distributions as established in 
quation (4). We can notice there is a clear model excess towards the
ail of the distribution, especially between ∼0.05 and 0.1 count s –1 ,
orresponding to the flaring component in the synthetic data. This 
iscrepancy cannot be improved by changing the value of ζ nor Q
n the simulations. It also implies that the full 2006–2019 Swift data
annot be described by a stationary Poisson + power-law model as
ell as the Chandra 2012 data in Neilsen et al. ( 2015 ), despite the
igher sensitivity of Chandra . 
Since Neilsen et al. ( 2015 ) showed that this model can reproduce

he 2012 Chandra count rate distribution of Sgr A 
∗, while it does not

ppear to work similarly well for all Swift data, time-variability in the
DF might play a role. To study whether this might be the case, we
rst divided the data into two sets and reanalysed the CDFs: Set A ,
ontaining the 5 yr with the highest maximum count rates measured
y Swift (i.e, 2006–2007 and 2017–2019), and Set B , containing the
 yr with the lowest maximum count rates (2008–2012). We only
pplied the 1D method for this, as testing the significance of any
ifferences between the two sets required simulations that were too 
omputationally e xpensiv e in the 2D method (see below). 

The distinction between these sets can be seen in the top panel of
ig. 4 , where we plot the ratio of the CDF for Sets A and B , both with
espect to the CDF of Set A . The clear difference visible between
he CDFs from Sets A and B indeed hints towards changes in flaring
ate o v er time: the CDFs of the two sets start to diverge around
0.02 count s –1 , much lower than the flare rates used to select Sets
 and B. Therefore, we first tested, using the AD-test, whether Sets
 and B are consistent with being drawn from the same distribution.
e find TS = 3.30, corresponding to a p -value of 0.015. The CDF
odelling for these two sets is shown in the top left- and top right-

and panels of Fig. 5 : We can notice a visual impro v ement in these
MNRAS 510, 2851–2863 (2022) 
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Figure 5. Results of the fits for: Top left-hand panel: Set A , consisting of the years with the highest count rates of Sgr A 
∗; Top right-hand panel: Set B , consisting 

of the years with the lowest count rates of Sgr A 
∗; Bottom left-hand panel 2017 data of Sgr A 

∗; Bottom right-hand panel: 2012 data of Sgr A 
∗. All these fits 

correspond to the values of ζ and Q calculated with the 1D method. 

Table 1. Measured values for the quiescent ( Q ) and flaring ( ζ ) parameters 
found for different data sets of Sgr A 

∗ data. As the best-fitting value, we 
report the mode of the distribution, while uncertainties are quoted at 1 σ
sigma and upper limits at 90 per cent. Set A consists of 2006, 2007, 2017, 
2018, 2019, while the rest of the years comprise Set B. 

Year ζ (2D) Q (2D) ζ (1D) Q (1D) N 

( count ks –1 ) ( count ks –1 ) 

Set A 0 . 59 + 0 . 04 
−0 . 08 22 . 1 + 2 . 0 −1 . 7 1406 

Set B 0 . 52 + 0 . 03 
−0 . 09 22 . 1 + 1 . 5 −1 . 2 603 

2006 0 . 65 + 0 . 08 
−0 . 09 21 . 4 + 1 . 6 −1 . 7 0 . 59 + 0 . 03 

−0 . 08 23 . 2 + 1 . 9 −1 . 6 323 

2007 < 0.71 19 . 5 + 2 . 6 −1 . 4 0 . 58 + 0 . 03 
−0 . 12 24 . 9 + 2 . 4 −1 . 9 215 

2008 0 . 64 + 0 . 07 
−0 . 21 22 . 4 + 1 . 6 −3 . 0 < 0.57 23 . 7 + 1 . 6 −2 . 3 242 

2009 < 0.85 22 . 4 + 4 . 5 −2 . 5 < 0.70 22 . 0 + 3 . 8 −4 . 4 49 

2010 < 0.70 20 . 6 + 3 . 5 −1 . 1 < 0.54 23 . 0 + 1 . 8 −2 . 2 102 

2011 < 0.73 21 . 8 + 4 . 0 −1 . 0 < 0.58 21 . 8 + 2 . 0 −2 . 6 104 

2012 < 0.68 19 . 8 + 3 . 3 −1 . 0 < 0.53 23 . 9 + 1 . 5 −2 . 2 106 

2017 0 . 69 + 0 . 06 
−0 . 09 23 . 1 + 1 . 5 −1 . 7 0 . 62 + 0 . 04 

−0 . 05 21 . 5 + 1 . 7 −1 . 7 335 

2018 0 . 65 + 0 . 06 
−0 . 09 24 . 2 + 1 . 3 −1 . 7 0 . 58 + 0 . 03 

−0 . 06 20 . 7 + 1 . 8 −1 . 6 323 

2019 0 . 67 + 0 . 08 
−0 . 11 24 . 5 . 5 + 1 . 6 −2 . 1 0 . 61 + 0 . 03 

−0 . 07 20 . 3 + 2 . 0 −1 . 8 210 
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Figure 6. Top panel: probability distribution as function of ζ for Sets A and 
B. The maximum in the graphs gives the best ζ for each set. Bottom panel: 
histogram of occurrences of �ζ in randomized data of Sets A and B using a 
fix value of F min = 0.10. The measured value of �ζ is shown in red. Most of 
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ts compared with the full set, particularly for Set A ; In Set B , the
aring rate appears to be o v erestimated still in a majority of plotted
ynthetic light curves. The values of ζ and Q that we measured for
hese sets are summarized in Table 1 . 

The possible presence of a difference in the flaring component
etween Sets A and B , translates into a difference in fitted power-law
ndex, although both values are consistent within their 1 σ intervals

see also their probability density functions of ζ in the top panel
f Fig. 6 . We measured the difference in power-law index with the
arameter �ζ = ζ A − ζ B = 0.07. Ho we ver, this dif ference and the
the simulations have a �ζ ∼ 0.0, while only three simulations show | �ζ | > 

0.07. 

NRAS 510, 2851–2863 (2022) 
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pparently better fits for the two sets compared to the complete light
urve, might simply be due to the smaller number of data points.
herefore, we tested the hypothesis that such a change could arise
t random when splitting the data in two, in the following way: we
reated two sets with the same number of data points of Sets A
nd B , but the count rates were taken randomly from the entire set
f data. We then fitted those sets and calculated the value of �ζ

nd repeated the process 1000 times. This test was performed by 
pplying the 1D method, taking advantage of its faster performance. 
he histogram of occurrences for �ζ is shown in the bottom panel 
f Fig. 6 . We can observe that | �ζ | ≥ 0.07 occurs merely three times
n the randomized data. Therefore, the probability that a change in 
aring distribution of this magnitude arises by chance, only due to 

he decrease in data points, is ∼ 0 . 3 per cent . We have repeated this
est for different values of F min ( F min = { 0.05, 0.1, 0.2 } ), redoing
oth, the fit of the real data and creating 1000 synthetic data sets; the
ame conclusion can be drawn in those cases. 

With these results, we decided to further investigate the possible 
ariability by dividing the data into individual years. First, we used a
-sample AD-test, to test whether the data for the individual years is
nconsistent with a pure Poisson process. We find that for the years
010, 2011, and 2012, we cannot reject the hypothesis that a pure
oisson process underlies their light curve at p < 0.01: their p -values
re 0.03, 0.01, and 0.05, respectiv ely. F or the other years, we do find
 < 0.01, indicating the significant presence of a flaring component. 
Then, we turned to analysing the CDFs of the individual years. 

he results are summarized in Table 1 , and the corresponding contour
lots, probability distributions and CDFs fits are presented in Fig. 
1 . We find that for several years, only an upper limit on the flaring
arameter ζ can be measured. In those cases, the (marginalized) 
robability density function of ζ does not tend to zero as ζ → 0, and
e list the 90 per cent upper limit on the ζ instead of the mode. We
bserve this effect in 2009–2012 for both methods and 2008 in the 1D
ethod only. In the 2007 data, an upper limit is obtained from the 2D
ethod, while for the 1D method, the probability as ζ → 0 is close

o, but not e xactly, zero. F or this borderline case, we therefore list the
ode with uncertainties in Table 1 , but note that its 90 per cent upper

imit would be ζ < 0.63. We can see this comparison of individual
ears graphically in Fig. 7 : The top panel shows how the ζ - Q contour
lots from the 2D method do not close for the 2012 data, while they
o for the 2017 data. While o v erlapping, the probability contour of
012 data is systematically shifted to the left compared with the one
or 2017 data. In the bottom panel of Fig. 7 , we show the probability
ensity, p ( ζ ) from the 1D method as function of ζ . A clear maximum
s again observed for 2017 data, but not for 2012 data, where after
eaching the maximum, p ( ζ ) remains almost constant, indicating that 
or lower ζ , fits of similar quality are obtained. It is for those years that
how similar behaviour, that we calculate a 90 per cent upper limit on
(in no cases do we find that the resulting probability interval of Q is

nclosed). 
Splitting up the data, one can wonder whether the inability to 

onstrain ζ in several years is simply due to a lower observing 
adence: from 2009–2012, the Swift cadence was only one obser- 
ation per 3 d, and in 2009, there were no observations between
ebruary and April (Degenaar et al. 2013 ). To test the effect of a

ower cadence, we simulated synthetic data sets with a ζ and Q 

imilar to those found in 2006–2007 or 2017–2019, but with the low
adence of the years between 2009–2012. When we reapplied the 
D method to these synthetic low-cadence years, we do find closed 
ontour plots for ζ between 0.01 and 1.00 with the 2D method. 
 second test is to look more closely at Table 1 : notably, in 2019

ontained a smaller number of data points (210) than 2007 (215)
nd 2008 (242); ho we ver, in 2019, ζ can clearly be measured, while
nly an upper limit could be measured for 2008 (1D-method) and
007 (2D-method), and 2007 is also a borderline case in the 1D
ethod. 
Therefore, we conclude that a lower cadence can contribute to 

oorer constraints on ζ , for instance, in 2009 (with only 49 points),
ut cannot account for all differences between years. This behaviour, 
ogether with the inability of a single flare distribution to reproduce all
006–2019 observations, and the unconstrained ζ parameter between 
009 and 2012, can be interpreted as additional evidence for a change
n the X-ray flaring emission properties from Sgr A 

∗. We show all
ther contour maps, CDF fits, and probability density functions of ζ
or individual years in Appendix B. 

 DISCUSSION  

he fits presented in this work of the CDF of Sgr A 
∗ count rates mea-

ured with Swift , show that it is not possible to adequately describe
he complete set of X-ray observations using the model of a single
ower-law process combined with a pure Poisson process, as shown 
n Fig. 3 . The excess in the tail of the distribution is not due to the
ower-la w inde x only, but also due to the high Poisson mean rate used
n the quiescent component. Creating synthetic data sets with less 
aring acti vity (i.e. lo wer ζ ) would require a higher value of Q in the
uiescent component, and then the lower count rates will be o v eres-
MNRAS 510, 2851–2863 (2022) 
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Figure 8. Top panel: Probability density as function of ζ using multiple 
values of F min with 2017 data of Sgr A 

∗. For a given F min , the best ζ
corresponds to the maximum in the graph. Bottom panel: Distribution of TS 
values for the best-fitting ζ and Q for 2017 data (blue) and for 100 randomized 
data sets with the same number of data points. 
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imated. Nevertheless, the emission can be described with this model
etter once we divide the data in different sets, as shown in Fig. 4 . 
Looking at the values from the 1D method in Table 1 , we notice

hat the flaring properties of the years forming Set A appear similar:
he difference in the best-fitting ζ is small in those years, ranging
rom 0.62 to 0.58. On the other hand, for the years forming Set B , the
D-approach returns similar upper limits on ζ , with the exception of
009; these upper limits are typically below the best-fitting flaring
arameters for the years in Set A , but do o v erlap with their uncertainty
ntervals. This result may suggest that the issues in fitting the full
et of Swift data are not necessarily due to an incorrect model – as
 xpected giv en the adequate description of the Chandr a XVP data
ith this model (Neilsen et al. 2015 ). Instead, it could also fit with

he idea that the flaring rate of Sgr A 
∗ has changed on the time-scales

f years, while the first model fit assumes it remains constant o v er
he considered time range. 

A change in flaring properties on years time-scales is further
upported by other lines of reasoning: the consistency of the light
urves in 2010, 2011, and 2012 with a pure Poisson process; the
on-zero probabilities for low ζ in the individual years making up
et B, which cannot be fully explained by their low cadence alone
e.g. comparing 2019 with 2007 and 2008); and the shift in the
robability density function of ζ between Sets A and B . We note that
he best-fitted ζ values for those two sets do not change beyond the 1 σ
onfidence le vel. Ho we ver, combined, the lines of evidence above are
onsistent with a decrease in flaring activity between 2008 and 2012.

Before discussing such variations in the physical picture of Sgr
 
∗, we briefly turn to the assumptions of the method. First, the value
f F min also affects the fits and measured parameters in the data.
egarding the 1D method, in the top panel of Fig. 8, we show again
 ( ζ ) for the 2017 data, assuming multiple values of F min . The ζ that
est match the observations gives the maximum in each graph. It is
oticeable that a higher F min returns a lower ζ . From equation (5),
e see that as the value of ζ decreases, it reduces the value of Q ,

nd in fact, the 1D method breaks for any F min > 0.30, as this would
equire ne gativ e v alues of Q from equation (5). The same ef fect,
lbeit at different exact values of ζ is observed in the analysis of
ny of the other years. Moreover, this also can be observed when the
D method is applied. Since our study compares subsets of the Swift
onitoring using the same F min , the dependence of ζ on F min does

ot affect our qualitative conclusions. However, Fig. 8 does show
hat the absolute value of ζ found in the analysis of a single data set
annot be taken as a unique description of the underlying flare flux
istribution. The best-fitting values in Table 1 should therefore only
e interpreted in relation to each other, preferably comparing the full
istributions shown in Appendix B. 
Not only F min affects the measured values of Q and ζ ; comparing

he columns in Table 1 shows that the 1D and 2D approaches
lso find slightly different best-fitting parameters. The best-fitting
arameters are, ho we ver, consistent within their 1 σ uncertainties.
mportantly, we find that the 1D method is better able to constrain
he ζ -parameter. A possible reason for the difference in the
xact best-fitting value might be that the 1D method ignores the
ncertainty on the measured count rate: this uncertainty turns the
ine probed by the 1D method in the ζ–Q plane, into a band, which
s automatically fully explored in the 2D method. 

We also notice that dividing the data into different sets, i.e. having
maller number of data points in each, makes the fits statistically
etter (i.e. reaching lo wer TS v alues). This happens also when we
andomized the data for individual years, as described in Section 3
testing the differences between Sets A and B). We show this more
xplicitly in Fig. 8 (bottom): in blue, we plot the histogram of TS
NRAS 510, 2851–2863 (2022) 
alues for the comparisons between the 2017 data and the 1000
ynthetic light curves generated using the best-fitting values of ζ
nd Q (see Table 1 ). In the same figure, in grey, we plot the same
istograms, for 100 light curves of the 2017 length, randomly picked
rom the full data set; we also plot a small number these in black,
o highlight their shape. The similarity in the distributions indicates
hat the statistical quality of the best fits are similar, confirming that
maller light curves are easier to fit satisfactorily. 

Ho we ver, we stress that the above analysis only compares the
S values for the best-fitting parameters: whether changes between
ubsets of the data are found, depends also on whether a satisfactory
t is only found for a limited range of parameters. This comparison

herefore does not imply that the fits are only better due to the smaller
umber of data points, as discussed in Section 3 as well: even at
ow-cadence, synthetic light curves created using the best-fitting
arameters of 2006–2007 and 2017–2019 do not return ζ upper
imits, and the comparison between 2008, 2009, and 2019, yields a
imilar suggestion. Ho we v er, we cannot e xclude the possibility that
he lower cadence contributes to the better fits. 

Turning to the interpretation of the possibly variable flaring rate,
e can first compare our work with the results from Ponti et al.

 2015 ), which reports an increase in Sgr A 
∗ emission at the end of

013 and 2014. Our work shows evidence that Sgr A 
∗’s emission

n the X-ray band presents different properties between years, and
lthough we are ignoring 2013–2016 data, the activity of Sgr A 

∗ in
he last years of observation of Swift shows higher count rates than
he rest of the years. On the other hand, work performed by Yuan &

ang ( 2015 ) and Bouffard et al. ( 2019 ) reported no sign of changes
n Sgr A 

∗’s activity using Chandra observations during different
pochs. Possibly the flaring rate of Sgr A 

∗ doesnot show measurable
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hanges on time-scales shorter than a year, as shown by the work
rom Neilsen et al. ( 2015 ). This would explain why such short-time-
cale changes are not seen by either Swift or Chandr a , while the y may
ccur on few-years time-scales. Hence, we need multiyear, recurring 
onitoring to further test and confirm any of these results. 
The nIR emission from Sgr A 

∗ also shows strong flaring variability, 
ith fluxes that have been modelled as either a power-law or lognor-
al distribution (Witzel et al. 2012 , 2018 ) with an additional high-
ux tail (Dodds-Eden et al. 2011 ), or a log-lognormal distribution
Meyer et al. 2014 ). Investigating the emission mechanism of the 
IR and X-ray flares, Neilsen et al. ( 2015 ) assume that the X-ray
nd nIR fluxes both follow power -law distrib utions and that these
uxes are coupled. These simple assumptions imply a direct relation 
etween the power-law indices in nIR and X-rays. In that scenario, 
he observed variability in X-ray flaring rate would be accompanied 
ith similar changes in the nIR flaring rate. Ho we ver, if such changes

n the nIR are not present, the nIR–X-ray coupling either changes 
 v er time, or the X-ray and nIR flares are not (al w ays) related.
f the X-ray and nIR flares are indeed manifestations of the same
nderlying emission process, we deem it unlikely that the coupling 
etween wavelengths varies over years time-scales and instead expect 
 similar increase in nIR flaring rate as the X-ray activity increases. 

The nIR flux distribution of Sgr A 
∗ indeed varies on time-scales 

f years; for instance, Dodds-Eden et al. ( 2011 ) and Witzel
t al. ( 2012 ) both analyse o v erlapping, but not identical, sets of
LT/NACO observations and report different flare flux distributions 

both in shape and parameters). More recently, analysing Keck nIR 

bservations obtained in 2019 April and May, Do et al. ( 2019 )
eported an increase in flaring rate compared to Keck observations 
etween 2005 and 2013. The increased 2019 flaring rate coincides 
ith the increased flaring rate seen in our Swift monitoring, while 
uring the 2005–2013 interval, the Swift monitoring is dominated by 
ow flaring rate years (2008–2012, compared to 2006–2007 with a 
igher flaring rate). These comparisons are suggestive of a coupled 
hange in flaring rate between nIR and X-rays, which could be 
onfirmed by a time-resolved analysis of the nIR and X-ray fluxes 
n year time-scales in future data. 
Semi-analytical studies generally fa v our synchrotron emission 

rom a non-thermal population of electrons as the source of simul-
aneous nIR/X-ray flaring (e.g. Dibi et al. 2016 ). The cooling of
ynchrotron electrons in these models results in the steepening of 
he spectral slope from the nIR to the X-rays and therefore, provides
 crucial link between the two flare populations (e.g. Dodds-Eden 
t al. 2010 ; Dibi et al. 2014 ; Ponti et al. 2017 ). Magnetized blobs
f plasma that naturally form in the turbulent accretion flow (e.g. 
ironi, Petropoulou & Giannios 2015 ; Ripperda et al. 2021 ) are
aid to be a viable source of rapid flaring activity in Sgr A 

∗ (e.g.
all et al. 2016 ; Chatterjee et al. 2021 ; Scepi, Dexter & Begelman
021 ). Indeed, Guti ́errez, Nemmen & Cafardo ( 2020 ) suggests that a
arge enough magnetized blob could produce the high levels of non- 
hermal synchrotron emission that would be required to explain the 
o et al. ( 2019 ) nIR flare. 6 Furthermore, an increase in the accretion

ate could result in a strongly magnetized accretion disc as more and
ore magnetic fields are advected in. Such a disc is able to produce
agnetized blobs with relativistic temperatures (Ripperda, Bacchini 
 Philippov 2020 ; Ripperda et al. 2021 ) that leads to stronger flares.

ndeed, an increase in the X-ray flare rate in the period of 2017–2019
oes seem to support this possibility. Current numerical models of 
ccreting black holes are only able to address a few 10 s of hours
 We note that the flare visible in May 2019 in Swift monitoring (Fig. 1 ) did 
ot occur simultaneously with the Do et al. ( 2019 ) nIR flare. 

i
ζ  

c
d

f Sgr A 
∗ activity (e.g. Chan et al. 2015 ; Ball et al. 2016 ; Chael

t al. 2018 ; Chatterjee et al. 2020 ), and much longer simulations are
ecessary to predict whether a small change in the amount of accreted
aterial on the time-scale of years could trigger a large non-thermal

vent close to the black hole. 
Do et al. ( 2019 ) also suggest an alternativ e e xplanation for the

bserved increase in nIR activity: they suggest it could be related
o the periastron passage in 2018 May of the windy star S0-2.
o we ver, if the increase in nIR and X-ray activity are indeed coupled,

his explanation is inconsistent with the increased X-ray activity 
lready observed in 2017 (see also Ressler, Quataert & Stone 2018 ).
lternatively, the increase in activity might result from the periastron 
assage of the gaseous object G2 in 2014 (Gillessen et al. 2012 ,
013a , b ; Madigan & McCourt 2016 ). Simulations of the response of
gr A 

∗ to this periastron passage predicts a delay in increased activity
f a few to ∼10 yr (Schartmann et al. 2012 ; Kawashima, Matsumoto
 Matsumoto 2017 ). Without information from Swift between 2012 

nd 2017, we can infer an upper limit on the possible X-ray response
o the G2 passage of ∼3 yr, lasting for 2 yr at the time of writing,
hus fitting with those model predictions. 

Swift monitoring also suggests a higher flaring rate before 2008, 
ollowed by a low-activity period between 2008 and 2012. Therefore, 
f the G2 object is responsible for the current high levels of activity,
 similar object could have passed close by Sgr A 

∗ during the late
990s or early 2000s to explain earlier enhanced activity. Indeed, a
aseous object similar to G2 (Cl ́enet et al. 2004a , b , 2005 ; Ghez et al.
005 ), named G1 by Pfuhl et al. ( 2015 ), passed similarly close to Sgr
 
∗ in 2001 (Witzel et al. 2017 ). We stress that these considerations

re highly speculative; for instance, the Swift monitoring is only 
onsistent with an increased flaring rate, but not with a change
n the steady accretion activity of Sgr A 

∗, although this might be
idden in the diffuse X-ray emission unassociated with Sgr A 

∗ due
o Swift ’s point spread function. Also, Yuan & Wang ( 2015 ) did
ot find evidence for changes in X-ray activity observed by Chandra
fter the passage of G2. Ho we ver, if the enhanced activity is related to
assages of objects such as G1 and G2, the decrease of flaring activity
n 2008 – roughly 7 yr after G1’s periastron passage – would predict
n end to the current high level of flaring activity around ∼2021. 

With continued monitoring in X-rays (by Swift ) and nIR, the
bo v e prediction could be tested, although we note the importance
f a regular and high cadence of these observations, similar to the
017–2019 data, in order to eliminate any possible effects of sample
ize. Alternati vely, ne w Chandra observations could similarly help to
ssess the variability on years time-scales, allowing for a comparison 
ith the 2012 campaign. Finally, we remind the reader how this work

ocused on the broad statistical properties of the data set, and did not
nalyse individual flares; detailed statistical flare searches in the 
ong-term Swift data, such as performed by Ponti et al. ( 2015 ), could
e an alternative route to explore this Sgr A 

∗ data set. 

 CONCLUSIONS  

e have analysed the empirical CDF of the X-ray emission from
gr A 

∗ using Swift data for 2006–2012 and 2017–2019. By assuming
he X-ray emission of Sgr A 

∗ is composed of a quiescent and a
aring component, we modelled it as the sum of a constant flux and
 power-law flux distribution, respectively. We adopted two different 
ethods to fit the CDF, yielding consistent results: a 2D method

llowing the flare parameter ζ and the quiescent parameter Q to vary
ndependently, and a 1D method establishing a dependence between 

and Q as shown in equation (5). We found that the full data set
annot be correctly described with this model, while individual years 
o follow it better. 
MNRAS 510, 2851–2863 (2022) 
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More concretely, we found that the data can be divided in two
ifferent groups: (1) a set of data with high flaring rate (2006–2007
nd 2017–2019), which we called Set A , and (2) a set of data with
ow flaring rate (2008–2012), labelled as Set B . The main difference
etween these two sets can be summarized as: 

(i) All years forming Set A have a well-constrained value of ζ ,
s shown in the bottom panel of Fig. 7 . Therefore, the model of
onstant + power-law distribution can describe the data of these
ears. Ho we ver, the years of Set B present larger errors on ζ or it
annot be constrained and only an upper limit can be established. In
ome cases in Set B , the emission can be well described by a pure
onstant model with no flaring at all. 

(ii) The values of ζ for Set B may be systematically shifted to
o wer v alues than the ones obtained for Set A . Such lower values of

would indicate a lower flaring rate for Set B . While we highlight
hat these changes are within the 1 σ confidence lev el, the y may hint
owards a change in the flaring rate between different years. 

Finally, we tested explicitly the effect of dividing the data into two
r more sets and we found that the probability of the impro v ement
n the fits is due by chance when reducing the number of data points
s just ∼ 0 . 3 per cent . Similarly, the poorly constrained parameters
or some of the years in Set B cannot be explained by only the lower
umber of data points of those sets. Therefore, we interpret these
esults as evidence for a change in the flaring rate of Sgr A 

∗, being
ore active during 2006–2007 and 2017–2019, compared with the

ears of 2008–2012. 
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Figure A1. Top panel: Null hypothesis probability as function of AD-test 
statistic, using both SCIPY.STATS.ANDERSON KSAMP v1.1.0 (red) and a Monte 
Carlo method (black). The dashed lines indicate the limiting p -values in SCIPY 

v.1.5.3. Bottom panel: the ratio between the probabilities calculated via the 
two methods plotted in the upper panel. 
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PPENDIX  A:  ANDERSON-DARLING  TEST  

TATISTICS  AND  SIGNIFICANCE  LEVELS  

n order to test whether the generated synthetic light curve for
 given parameter pair ( ζ , Q ) and the observed Swift /XRT light
urve are consistent with the same underlying flux distribution, 
e employ the AD-test (Anderson & Darling 1954 ). As noted by
eilsen et al. ( 2015 ) in their work on the Chandra XVP data, and in

arlier work by Scholz & Stephens ( 1987 ), this test is more sensitive
or deviations in the tails of the distributions than for instance the
olmogoro v–Smirno v test, making it more suitable for comparing 
aring behaviour on top of a second, quiescent component. Ho we ver,
 downside to the use of the AD-test is the lack of a single analytic
xpression relating the observed test statistic, referred to as TS in the
ain paper and A 

2 in statistical literature, to a p -value: the probability
hat the two populations arise from the same underlying distribution. 

Instead, early studies of the AD-test and its k -sample extensions 
alculated critical values for different sizes of the compared samples. 
n the two-sample case, these critical values are defined as the test
tatistic A 

2 
crit , where p( A 

2 
nm 

≥ A 
2 
crit ) < αcrit , where α is the confidence

evel (we use the typical notation in statistical literature, not to be
onfused with the flaring parameter from Neilsen et al. 2015 ), and n
nd m are the sizes of the two compared samples. The critical values
hange as a function of the sample sizes and are often calculated
or αcrit = 0.01, 0.05, 0.10 (Pettitt 1976 ; Scholz & Stephens 1987 ).
nalytic extrapolations of these critical values can then be used 

o either find critical values for larger sample sizes n and m , or
onvert test statistics to probabilities for non-critical values. The 
YTHON SCIPY function SCIPY.STATS.ANDERSON KSAMP , which we 
sed to calculate the AD-test statistic throughout this work, uses 
uch extrapolations to return probabilities as well. Ho we ver, these 
robabilities are capped at p = 0.001 and 0.25, limiting the use of
his function in calculating AD probabilities. 

An alternative route to convert the test statistics to probabilities 
s via Monte Carlo calculations. For two samples of sizes n and m ,
ne can explicitly calculate the distribution of A 

2 
nm 

by calculating 
 
2 
nm 

for all ( n + m )!/( n ! m !) possible orders of all ( n + m ) values.
he probability associated with the measured test statistic A 

2 
measured , 

.e. p( A 
2 
nm 

≥ A 
2 
measured ), can then be calculated from the distribution.

his approach has a significant limitation: the number of orderings ( n
 m )!/( n ! m !) quickly increases, yielding unfeasible computational

imes for our data sets: our sample sizes exceed 100 for all years
xcept 2009, implying both n and m exceed 100, while n = m =
00 yields ∼10 59 orderings. Ho we ver, as Scholz & Stephens ( 1987 )
ote, one can instead generate a large number of randomly picked 
rderings, and use their A 

2 
nm 

-values as an approximation of the full
nderlying distribution – the probabilities calculated from this Monte 
arlo approach are an unbiased estimator of the real probability. 
We therefore applied this Monte Carlo approach to convert 
easured test statistics to p -values. As the AD-test is a rank test,
 
2 
nm 

only depends on the order of the values of the two samples, and
ot on the values themselves. The null hypothesis in our analysis is
hat both samples are drawn from the same underlying distribution. 
herefore, since A 

2 
nm 

does not depend on the values, we can define
 list of integers ranging from 1 to n + m as the underlying sample.
n our analysis, n and m are equal, as we are comparing an observed
ight curve (for 1 y, set A/B, or the full data set) with a synthetic one
f equal length. For each Monte Carlo iteration, we then create two
amples, each of size n ( = m = half the full integer list), by randomly
hoosing integers from the list. We then calculate and save their A 

2 
nm 

sing SCIPY.STATS.ANDERSON KSAMP and repeat M times, where M 

s set by the intended accuracy in p -values. 
To show the importance of using Monte Carlo calculations, we 

how a comparison between the test statistic to p -value conversion
sing SCIPY.STATS.ANDERSON KSAMP and our approach in Fig. A1 . 
e show the results for M = 10 6 iterations using n = m = 2143,
hich corresponds to the complete data set. The dashed lines indicate

he minimum and maximum returned p -value using the most recent
CIPY (v1.5.3), while we used an older version (v1.1.0) without this
estriction for comparison to show the effects at smaller and larger test
tatistics. Between the two limits, both approaches agree reasonably 
ell, although the effect of applying an analytic interpolation is 
isible in the variable ratio in the lower panel. The discrepancy
rows especially abo v e test statistics of ∼5. As our method requires
n accurate measurement of the p -values even for poorly fitting
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arameters, in order to sample the entire parameter space, applying
he Monte Carlo simulations is essential. 
igure B1. The contour plots in the ζ−Q plane for the 2D method and probability
orresponding CDF. Figures for years 2012 and 2017 are shown in the main body. 
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Figure B1 – continued 

This paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 

MNRAS 510, 2851–2863 (2022) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2851/6458361 by U
niversity of Arizona user on 16 August 2022

art/stab3407_fB1b.eps

	1 INTRODUCTION
	2 OBSERVATIONS AND METHODS
	3 RESULTS
	4 DISCUSSION
	5 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: ANDERSON-DARLING TEST STATISTICS AND SIGNIFICANCE LEVELS
	APPENDIX B: PARAMETERS ESTIMATION AND CDFS FOR INDIVIDUAL YEARS

