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ABSTRACT

The radiative counterpart of the supermassive black hole at the Galactic Centre, Sagittarius A*, displays flaring emission in the
X-ray band atop a steady, quiescent level. Flares are also observed in the near-infrared band. The physical process producing
the flares is not fully understood and it is unclear if the flaring rate varies, although some recent works suggest it has reached
unprecedented variability in recent years. Using over a decade of regular X-ray monitoring of Neil Gehrels Swift Observatory,
we studied the variations in count rate of Sgr A* on time-scales of years. We decomposed the X-ray emission into quiescent
and flaring emission, modelled as a constant and power-law process, respectively. We found that the complete, multiyear data
set cannot be described by a stationary distribution of flare fluxes, while individual years follow this model better. In three of
the ten studied years, the data is consistent with a purely Poissonian quiescent distribution, while for 5 yr, only an upper limit
of the flare flux distribution parameter could be determined. We find that these possible changes cannot be explained fully by
the different number of observations per year. Combined, these results are instead consistent with a changing flaring rate of
Sgr A*, appearing more active between 2006-2007 and 2017-2019, than between 2008-2012. Finally, we discuss this result in
the context of flare models and the passing of gaseous objects, and discuss the extra statistical steps taken, for instance, to deal
with the background in the Swift observations.

Key words: black hole physics — Galaxy: centre — X-rays: individual: (Sgr A*).

1 INTRODUCTION

Sagittarius A* (Sgr A*) is the electromagnetic counterpart of the
supermassive black hole at the centre of the Milky Way galaxy. It has
an estimated mass of ~4 x 10° Mg, but its bolometric luminosity
is ~9 orders of magnitude fainter than the Eddington luminosity
for an object of this mass (Genzel, Eisenhauer & Gillessen 2010;
Morris, Meyer & Ghez 2012). It is the most nearby galactic nucleus,
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located at a distance of ~8 kpc from Earth (Reid & Brunthaler 2004;
Ghez et al. 2008), this makes Sgr A* the prime laboratory to study
the accretion processes on to supermassive black holes at such low
accretion rates.

The X-ray emission from Sgr A* is observed to be composed
of a quiescent component, corresponding to a luminosity of Ly =~
3 x 10* ergs~! in the 2-10keV energy range, which is interrupted
almost daily by flares (e.g. Baganoff et al. 2001; Goldwurm et al.
2003; Genzel et al. 2010; Markoft 2010; Degenaar et al. 2013;
Neilsen et al. 2013). These flares are ~1—2 orders of magnitude
more luminous than its quiescent emission, with the brightest ones
reaching values of Ly >~ (1—5) x 10¥ ergs~! (e.g. Nowak et al. 2012;
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Haggard et al. 2019). Sgr A* is also flaring in other wavebands, most
prominently in the near-infrared (nIR; e.g. Witzel et al. 2018). Both,
the emission mechanism and the physical process producing Sgr A*’s
flares are not completely understood yet (Markoff et al. 2001; Liu &
Melia 2002; Yuan, Quataert & Narayan 2003; Liu, Petrosian & Melia
2004; Cade?, Calvani & Kostié 2008), although Ponti etal. (2017) de-
veloped the first simultaneous multiwaveband campaign measuring
the spectral index in nIR and X-ray bands, showing that synchrotron
emission with a cooling break is a viable process for Sgr A*’s flaring
emission.

In the past decade, extensive work has been performed to simul-
taneously detect flares from Sgr A* in different wavebands in order
to gain more insight into the emission mechanism (Eckart et al.
2004; Yusef-Zadeh et al. 2008; Trap et al. 2011). Another avenue
of study has been to characterize the brightness distribution and
occurrence rate of flares at X-ray and nIR wavelengths. In the X-
rays, the first systematical work was developed before the passage
of the G2 object to the Galactic Centre (for reviews of the G2 object,
see Gillessen et al. 2012; Witzel et al. 2014). Using 3Ms of data
from the Chandra X-ray Observatory’s 2012 X-ray Visionary Project
(XVP), Neilsen et al. (2013) reported 39 flares for this set of data
and a flaring rate of ~1.1 flares per day, which is consistent with
previous results by Genzel et al. (2010). It also has been shown
that Sgr A* X-ray flux distribution can be decomposed into the
sum of two processes: a quiescent component with constant flux,
and a flaring component best described by a power-law distribution
of fluxes (Neilsen et al. 2015). Regarding the nIR band, several
works have also been performed. For instance, by making use of the
GRAVITY instrument, Abuter et al. (2018) detected orbital motions
of three NIR flares from Sgr A*. Also, using data from the Keck
Observatory, Spitzer Space Telescope, and the Very Large Telescope
(VLT), Witzel et al. (2018) found that the variability of Sgr A* in this
band can be described as a red noise process with a single lognormal
distribution.

Establishing if the flaring properties of Sgr A* change over time
could provide new hints into the physical mechanism producing the
flares. For instance, Ponti et al. (2015) claimed evidence for a change
in Sgr A* flaring rate, using 6.9 Ms of Chandra and XMM-Newton
data, covering 1999 September—2014 November. They reported a
significant increase in the rate of the very bright flares in late 2013
and 2014, changing from 0.27 &+ 0.04 to 2.5 £ 1.0 flares per day
at a 99.9-per cent confidence level. On the other hand, Bouffard
et al. (2019) studied a total of 4.5 Ms of Chandra observations only,
covering 2012-2018 data free of contamination from the magnetar
SGR J1745-2900 (see Section 2.1), but did not find evidence of
change in Sgr A* flaring properties between the XVP and post-XVP
data. Similarly, based on 4.5Ms of Chandra observations from 1999
to 2012, Yuan & Wang (2015) and Yuan et al. (2017) did not find
evidence of changes in the quiescent nor flaring rate of Sgr A*, even
around the pericentre passage of the S2 star in 2002. Another recent
work suggests the emission of Sgr A* in the nIR band has been consis-
tent during ~20 yr of observations (Chen et al. 2019), but apparently,
the emission has reached unprecedented flux levels in 2019, with flux
peaks that are twice the values from previous measurements (Do et al.
2019).

In this work, we study the Cumulative Distribution Function (CDF)
of count rates of Sgr A* using data accumulated between 2006 and
2019 with the Neil Gehrels Swift observatory (Swift; Gehrels et al.
2004). The long-term monitoring and high observing cadence of the
Swift programme uniquely allow us to test whether the properties
of Sgr A*’s X-ray flaring behaviour show evidence of changes on a
time-scale of years.

MNRAS 510, 2851-2863 (2022)

2 OBSERVATIONS AND METHODS

2.1 Swift/XRT long-term light curve

In 2006 February, Swift started to monitor the Galactic Centre (GC)
with the on-board X-Ray Telescope (XRT) with the aim of studying
Sgr A* as well as numerous transient X-ray binaries located in this
region (Kennea et al. 2006). Apart from a handful of interruptions
and Sun constraints, Swift/XRT has pointed at the GC every ~1-3d
since 2006, with an average exposure time of 1ks per observation
(see Degenaar et al. 2015 for a review of the program).

In this work, we used all available Swift/XRT data that covered
Sgr A* and was obtained in photon-counting (PC) mode. The data
spans the period between 2006 February 24 and 2019 August 6. The
light curve of Sgr A* was extracted with the software implemented
in the online XRT data analysis tool (Evans et al. 2007, 2009),' with
the only exception that a fixed source and background region were
used. To extract events from Sgr A*, we employed a circular region
with a 10-arcsec radius centred at RA = 266.41682 and Dec. =
—29.007797 (J2000). To account for the background, we used three
circular regions of 10 arcsec that were free of X-ray point sources but
did contain diffuse X-ray emission (as seen at the position of Sgr A*).

The long-term light curve was created with a bin size of 500 s and
it is shown in Fig. 1. It clearly shows two bright, extended periods
of activity that do not belong to Sgr A*, but to transient sources
located within 10 arcsec of the supermassive black hole. The first is
the transient magnetar SGR J1745-29, which exhibited an outburst
between 2013 and 2015 (Kennea et al. 2013; Coti Zelati et al. 2017),
and the second is the transient X-ray binary Swift J174540.7-290015
that was active in 2016 (Ponti et al. 2016; Reynolds et al. 2016). Given
the brightness of these objects and the small angular separation of
these from Sgr A*, compared to the point spread function of Swift,
it is impossible to extract reliable information on the brightness of
Sgr A* during the time that these transients were active. Therefore,
we excluded all data obtained between 2013 March 31 and 2016 July
28 from our analysis of Sgr A*.

Apart from the obvious outbursts of the two transients above,
the Swift light curve of Sgr A* shows some instances of elevated
emission that have been ascribed to flares from Sgr A*. Based on the
significance of these high points compared to the long-term average
XRT count rate at the position of Sgr A*, several bright X-ray flares
have been reported previously (Degenaar et al. 2013, 2015, 2019;
Reynolds et al. 2018).

2.2 Modelling the count rate distribution

In this work, we focus on the count rate distribution, instead
of individual flares. We followed a similar approach to the one
described in Neilsen et al. (2015) to analyse the CDF of Sgr A*’s
light curve, shown in the bottom panel of Fig. 3. The empirical CDF
is the fraction of rates greater than or equal to a given rate, and is
defined by the equation

1 N
fr) = N;LW” (1

where N is the number of time bins, 1 is the indicator function?,
and r; are the count rates. With this definition, f(r) runs from one to

Uhttps://www.swift.ac.uk/user_objects/
2The indicator function, 1, is defined to be 1 when the condition is true, and
0 elsewhere.
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Figure 1. Long-term Swift/XRT-PC light curve of Sgr A* at 500-s binning (0.3—10 keV). The data marked in grey in top panel were excluded from our analysis
due to the activity of nearby transient X-ray sources (see Section 2.1). The bottom panel shows the Sgr A* data that we used for the analysis.

zero, allowing for an easier visualization of changes at the high rate
end on a logarithmic scale: f{0) = 1 per definition, as count rates are
non-negative. f(ry,) = 1/N, where ry, is the highest observed count
rate in our data, while f{(r) = 0 for any r > r;,.

Following the results from Neilsen et al. (2015), we assumed that
the emission from Sgr A* is composed of a quiescent and a flaring
emission component. We model these components as a constant and a
power-law distribution in flux, respectively. We opted for the power-
law distribution for the flux of the flaring component because Neilsen
et al. (2015) found such a distribution provides the best description
of 2012 Chandra XVP data — since the Chandra observations have a
higher sensitivity then Swift, we do not expect to see deviations from
this power-law model in the CDF of a similar-length light curve
(i.e. ~1yr). To generate the flaring component, one can define a
power-law probability distribution of fluxes straightforwardly as

P(F) = {gFﬁa’

where F represents the flux, o the power-law index, and k = (o —
1)/(Fl e — Fl-#)is a constant of normalization.?

This definition, introduced by Neilsen et al. (2015), carries a
significant downside, however, for data where flaring is either
not present or faint in comparison to the quiescent rate and its
uncertainties: the parameter characterizing the flaring rate, «, is
unbounded. Low values of «, approaching zero, imply an average
flare flux that is relatively high within the considered range Fy;, to
Fax. On the other hand, if no flaring is present, o will asymptotically
tend to infinity as the flare flux tends to a constant value of Fyy,
— combined, the quiescent and flaring components then form the
equivalent of a single quiescent component. In reality, our analysis
shows that this effect shows up already when o ~ 3—4, which means
that any o > 3 will yield the same model fit and quality. As a result,

F, min < F < Fmax
elsewhere,

(@3]

3This definition of k corrects a small typo in the original model from Neilsen
et al. (2015).

for a light curve without (detectable) flaring, & will be unconstrained
at high values.

To counteract this issue, we instead introduce a re-parametrization
to our analysis, defined as

=—. 3)

This new flaring parameter ¢ is mathematically better constrained,
with the lower bound O corresponding to the case of no flaring
and its upper bound set by the distribution of flares in the data
— arbitrarily high values of ¢ are therefore not possible, as those
correspond to ever-increasing flare fluxes. Moreover, ¢ is more
intuitively interpreted, with low values corresponding to low flare
fluxes. We stress that this approach does not fundamentally differ
frome.g. Neilsen et al. (2015); instead, it simply allows us to calculate
a proper upper limit on the flaring parameter when no flares are
observed, which is not possible with the unbounded a-parameter.*

Furthermore, we note that the simulated fluxes do not depend
strictly on k, but only on Fyyin, Fnax, and ¢. We fixed the values (in
units of 10712 ergem™2s7!) to be Fipiy = 0.1 and Fypay = 16.0 for the
minimum and maximum flux, respectively. This Fy,;, is higher than
that from Neilsen et al. (2015), to account for the lower sensitivity
of Swift and corresponds to its limiting sensitivity in 500 s. For the
maximum, we took the brightest flare measured with Swift as reported
by Degenaar et al. (2013).

In the case that no significant background emission is present
(as can be done for, e.g. the Chandra XVP data), the flaring
flux can simply be converted into a count rate assuming a certain
flux-to-counts conversion and Poisson statistics. However, given
the relatively high background in the Swift Galactic Centre data,

4Also, our Swift analysis shows that « does not follow a Gaussian distribution,
that would be distorted through this conversion. As such, our analysis does not
lose any advantages that would come from assuming Gaussian distributions,
due to this change of parameters.

MNRAS 510, 2851-2863 (2022)
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Poisson statistics do not hold. In the source region, we measure the
sum of source counts and background counts, both of which are
Poisson distributed. The former is then corrected by subtracting the
background counts as measured in a separate region, after which the
remaining source counts as modelled are the sum of quiescent and
flaring emission. Assuming the background is spatially constant, this
two-component model correctly describes the mean of the source
counts, since the mean of two subtracted Poisson variables equals
the subtraction of their respective means. However, the resulting
distribution of source counts does not follow a Poisson but a Skellam
distribution, defined by the total counts in the source region and those
in the background region.

To highlight the difference between the Poisson and Skellam
distributions, we plot four examples of the CDF f{(r) in Fig. 2. The
three examples for Skellam distributions, with background rates at
90, 50, and 10 per cent of the mean count rate, show the significant
distortion to the CDF shape. In the case of our Swift data, we find that
the ratio b/ = 0.1, and hence we need to account for this distortion
by explicitly modelling the data using the Skellam distribution.
Otherwise, the CDF shape would be incorrectly reproduced and,
possibly, the flaring flux would be overestimated.

Therefore, we model the distribution of source count rates,
assuming a value of ¢ and the quiescent count rate Q, using the
equation

r(F, Q)= iskellam [(F X (%) +Q —|—b> At,bAz} ,
4

where At = 5005 is the bin size we used, Skellam is a Skellam
random number generator, b is the measured background region
count rate, F is the simulated flux taken from equation (2), and
Fmax = 10.2 x 1072 count s~ is the mean observed count rate of the
brightest flare (Degenaar et al. 2013). The Skellam random number
generator takes the total source and background region counts as its
two inputs, and returns a random draw of the former corrected by the
latter. We applied a constant-rate conversion because no significant
variations in the spectrum of Sgr A* flares have been observed (e.g.
Degenaar et al. 2015). Furthermore, we are not applying a pile-up
correction, because the count rates seen by Swift, even in flares, from
Sgr A* are all below 0.2 count s, i.e. well below the rates where this
effect becomes important (see Fig. 1).

To fit the observed X-ray distribution of Sgr A*, we generated sets
of synthetic data consisting of a combination of: a quiescent count
rate distribution, with mean Q, and a power-law flux distribution of
index ¢ = l/a. To find the values of the parameters that best match
the observations, we considered the two methods explained below.

MNRAS 510, 2851-2863 (2022)

2.2.1 Two-dimensional method

Following the same approach as Neilsen et al. (2015), in the two-
dimensional (2D) method, we create a grid for values of ¢ between
0 and 1, and values of Q between 14 and 26 countks™', with 100
steps in both. Fits on larger grids show that outside these ranges, the
probability of a match between the real data and synthetic data is
null and/or unchanging.

For every pair (¢, Q), we generated 1000 sets of synthetic
distributions and applied the Anderson—Darling test (hereinafter
called AD-test; Anderson & Darling 1954) to each combination of
the real and a synthetic light curve to compare their distributions.
At each parameter pair, we stored the average test-statistics (TS)
from the AD-tests and then we converted it to p-values to assess
the probability of both distributions to be drawn from the same
underlying distribution. We then computed the median value and the
1o confidence interval of ¢ and Q from the marginalized probability
contours generated in the £ —Q plane; alternatively, if the distribution
did not converge to zero at low ¢, we instead calculated the 90-
per cent upper limit of {. We note that the measured values of ¢
and Q depend on Fp,, since for larger values of Fp,, the calculated
value of ¢ decreases, while Q decreases (see Discussion). However,
as we use a single value of Fy;, in the entire analysis, this does not
affect any differences seen between subsets of the data. We used the
PYTHON/SCIPY function SCIPY.STATS.ANDERSON_KSAMP to compute
the AD-test; as this function is only designed to convert the AD
TS to p-values between p = 0.001 and 0.25, we supplemented this
conversion with Monte Carlo simulations as detailed in Appendix A.

In the AD-test comparison between the synthetic and observed
count rates, the time-dependence of these quantities is ignored.
However, given that flares may last longer than the choosen time
bin size (500s), the count rates in consecutive time bins are not
necessarily independent (Li et al. 2015). In our analysis, we will
therefore observe a steeper flare flux distribution (i.e. a relatively
higher number of faint flares), as the total flare fluence is divided over
multiple time bins. This paper is mainly focused on the comparison
between sub-sets of the Swift campaign, where the same steepening
of the distribution is expected. Therefore, we argue that sub-sets of
the data can accurately be compared with this method.

Before moving to the 1D method below, we make a brief note
regarding the above method to calculate confidence intervals. In
addition to the method described above, Neilsen et al. (2015) also
applied an MCMC fitting routine to directly calculate and maximize
the likelihood from the Chandra light curve. Comparing these two
methods, one finds that both approaches return consistent results
for the best-fitting parameters. However, the AD-test method returns
slightly more conservative estimates of the confidence levels. Due
to its computational speed, allowing us to perform a variety of tests
on the long-term Swift data, we opted to use the AD-test method.
However, aiming to remain conservative in our comparison between
different sub-sets of the Swift data (see Section 3), we did not correct
for a possible over-estimation of confidence levels.

2.2.2 One-dimensional method

The above method assumes that Q and ¢ are independent, while not
all combinations will be able to represent the real light curve: for
instance, a high Q will require a small ¢ to prevent systematically
overpredicting the light-curve rates. Therefore, as a comple-
mentary 1D method, we again assumed each point in our
light curve consists of the sum of a quiescent and a flar-
ing component, both with Poisson noise. Therefore, for each
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Figure 3. Empirical CDF of count rates of Sgr A* for the entire 2006-2019
Swift data set (as described in Section 2.1) is shown in black. The grey lines
are 1000 sets of simulated data following a Skellam distribution. We note
that in this figure, model components should be added vertically; likewise,
the CDF uncertainties are vertical, as the fractions are set by the number of
data points in the light curve.

data point, we can state that the rate r; is given by r;, =
(1/At) [prand(QAt) + prand(F X (rmax/Fmax)At)]. Since the
sum of two Poisson random variables with mean A; and A, is
again a Poisson random variable with mean A; + X, and the fact
that Ar is a constant, then the mean of all the observations in
our data set will be the sum of the mean of both components:
7= Q + F X (Fmax/ Fmax).> Computing F from equation (2), we can
express the mean count rate for our light curve as

?:§+ Fmax (1 _ 1/;-) Fxﬁ{xl/[ — Fégll/{’
Fmax 2— 1/; Fnlwxl/; - Fr:ﬁnl/{

where the second term of the right-hand side of equation (5)

corresponds to mean value of fluxes, F.

Therefore, we calculated the mean count rate of our data, 7, and
we assumed fixed values of Fpx, Fiin, and 7y, For a given ¢, we
computed F and then we used equation (5) to calculate Q. With
those ¢ and Q, we generate 1000 sets of synthetic data, and stored
the average TS from the AD-test. We repeated this process on a non-
linear grid of ¢ between 0 and 1 (focusing on values between 0.4 and
0.8 with higher resolution after inspection of the final PDF shapes
for low-resolution grids). We then converted the average TS at each
¢ into p-values and again we calculated the median value of ¢ with
its 1o confidence interval.

This method has the advantage to be ~100 times quicker than the
2D method, so it allowed us to run more simulations and re-draw
data in order to find significance of changes in our analysis (see
Section 3). The downside is that it assumes the mean count rate,
7, does not have an uncertainty; therefore, we also applied the 2D
method to compare their results for the analysis of individual years.

(%)

3 RESULTS

The empirical CDF of Sgr A* obtained for the entire 20062019
light curve is shown in black in Fig. 3. We found that the quiescent
component of Sgr A* emission is best represented by a pure

Poisson distribution with mean countrate of Q = 22.37]¢ countks™',

SHere, we ignore the background region count rate as we assume that the
background is spatially constant. The introduction of the Skellam statistics
is therefore only necessary when considering the distribution of subtracted
data, not the mean.
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and a power-law process with ¢ = 0.57%013; for both parameters,

throughout this paper, we will report the mode, with uncertainties
corresponding to the 1o level. These values of ¢ and Q were
calculated with the 1D method, while the 2D method returns
consistent values. The grey lines in Fig. 3 are 1000 different synthetic
sets, being the combination of both distributions as established in
equation (4). We can notice there is a clear model excess towards the
tail of the distribution, especially between ~0.05 and 0.1 counts™',
corresponding to the flaring component in the synthetic data. This
discrepancy cannot be improved by changing the value of ¢ nor Q
in the simulations. It also implies that the full 2006-2019 Swift data
cannot be described by a stationary Poisson + power-law model as
well as the Chandra 2012 data in Neilsen et al. (2015), despite the
higher sensitivity of Chandra.

Since Neilsen et al. (2015) showed that this model can reproduce
the 2012 Chandra count rate distribution of Sgr A*, while it does not
appear to work similarly well for all Swift data, time-variability in the
CDF might play a role. To study whether this might be the case, we
first divided the data into two sets and reanalysed the CDFs: Set A,
containing the 5 yr with the highest maximum count rates measured
by Swift (i.e, 20062007 and 2017-2019), and Set B, containing the
5 yr with the lowest maximum count rates (2008-2012). We only
applied the 1D method for this, as testing the significance of any
differences between the two sets required simulations that were too
computationally expensive in the 2D method (see below).

The distinction between these sets can be seen in the top panel of
Fig. 4, where we plot the ratio of the CDF for Sets A and B, both with
respect to the CDF of Set A. The clear difference visible between
the CDFs from Sets A and B indeed hints towards changes in flaring
rate over time: the CDFs of the two sets start to diverge around
~0.02 count s~!, much lower than the flare rates used to select Sets
A and B. Therefore, we first tested, using the AD-test, whether Sets
A and B are consistent with being drawn from the same distribution.
We find TS = 3.30, corresponding to a p-value of 0.015. The CDF
modelling for these two sets is shown in the top left- and top right-
hand panels of Fig. 5: We can notice a visual improvement in these
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Figure 5. Results of the fits for: Top left-hand panel: Set A, consisting of the years with the highest count rates of Sgr A*; Top right-hand panel: Set B, consisting
of the years with the lowest count rates of Sgr A*; Bottom left-hand panel 2017 data of Sgr A*; Bottom right-hand panel: 2012 data of Sgr A*. All these fits

correspond to the values of ¢ and Q calculated with the 1D method.

Table 1. Measured values for the quiescent (Q) and flaring (¢) parameters
found for different data sets of Sgr A* data. As the best-fitting value, we
report the mode of the distribution, while uncertainties are quoted at lo
sigma and upper limits at 90 per cent. Set A consists of 2006, 2007, 2017,
2018, 2019, while the rest of the years comprise Set B.

Year ¢ (2D) 0 (2D) ¢ (1D) QD) N
(countks™) (countks™)

Set A 0.597004 221720 1406
Set B 0.527003 221713 603
2006 0.657008 214715 059700 232712 323
2007 <0.71 195726 058709 24973 215
2008 0.647597 224116 <0.57 237138 242
2009 <0.85 224133 <0.70 22.0%3% 49

2010 <0.70 20.6777 <0.54 23.005 102
2011 <0.73 21.8%10 <0.58 21.8729 104
2012 <0.68 19.8770 <0.53 23.97)3 106
2017 0.697906 23173 0.62700  21.5M17 335
2018 0.657905 24273 0.587003 207718 323
2019 0.6770%  2455T% 061700 203T% 210

fits compared with the full set, particularly for Set A; In Set B, the
flaring rate appears to be overestimated still in a majority of plotted
synthetic light curves. The values of ¢ and Q that we measured for
these sets are summarized in Table 1.

The possible presence of a difference in the flaring component
between Sets A and B, translates into a difference in fitted power-law
index, although both values are consistent within their 1o intervals
— see also their probability density functions of ¢ in the top panel
of Fig. 6. We measured the difference in power-law index with the
parameter A = ¢4 — {p = 0.07. However, this difference and the
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Figure 6. Top panel: probability distribution as function of ¢ for Sets A and
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histogram of occurrences of A¢ in randomized data of Sets A and B using a
fix value of Fyyin = 0.10. The measured value of A¢ is shown in red. Most of
the simulations have a A¢ ~ 0.0, while only three simulations show |A¢| >
0.07.
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apparently better fits for the two sets compared to the complete light
curve, might simply be due to the smaller number of data points.
Therefore, we tested the hypothesis that such a change could arise
at random when splitting the data in two, in the following way: we
created two sets with the same number of data points of Sets A
and B, but the count rates were taken randomly from the entire set
of data. We then fitted those sets and calculated the value of A¢
and repeated the process 1000 times. This test was performed by
applying the 1D method, taking advantage of its faster performance.
The histogram of occurrences for A¢ is shown in the bottom panel
of Fig. 6. We can observe that |A¢| > 0.07 occurs merely three times
in the randomized data. Therefore, the probability that a change in
flaring distribution of this magnitude arises by chance, only due to
the decrease in data points, is ~ 0.3 per cent. We have repeated this
test for different values of Fy, (Fin = {0.05, 0.1, 0.2}), redoing
both, the fit of the real data and creating 1000 synthetic data sets; the
same conclusion can be drawn in those cases.

With these results, we decided to further investigate the possible
variability by dividing the data into individual years. First, we used a
1-sample AD-test, to test whether the data for the individual years is
inconsistent with a pure Poisson process. We find that for the years
2010, 2011, and 2012, we cannot reject the hypothesis that a pure
Poisson process underlies their light curve at p < 0.01: their p-values
are 0.03, 0.01, and 0.05, respectively. For the other years, we do find
p < 0.01, indicating the significant presence of a flaring component.

Then, we turned to analysing the CDFs of the individual years.
The results are summarized in Table 1, and the corresponding contour
plots, probability distributions and CDFs fits are presented in Fig.
B1. We find that for several years, only an upper limit on the flaring
parameter { can be measured. In those cases, the (marginalized)
probability density function of ¢ does not tend to zero as ¢ — 0, and
we list the 90 per cent upper limit on the ¢ instead of the mode. We
observe this effect in 20092012 for both methods and 2008 in the 1D
method only. In the 2007 data, an upper limit is obtained from the 2D
method, while for the 1D method, the probability as ¢ — 0 is close
to, but not exactly, zero. For this borderline case, we therefore list the
mode with uncertainties in Table 1, but note that its 90 per cent upper
limit would be ¢ < 0.63. We can see this comparison of individual
years graphically in Fig. 7: The top panel shows how the ¢-Q contour
plots from the 2D method do not close for the 2012 data, while they
do for the 2017 data. While overlapping, the probability contour of
2012 data is systematically shifted to the left compared with the one
for 2017 data. In the bottom panel of Fig. 7, we show the probability
density, p(¢) from the 1D method as function of ¢. A clear maximum
is again observed for 2017 data, but not for 2012 data, where after
reaching the maximum, p(¢) remains almost constant, indicating that
for lower ¢, fits of similar quality are obtained. Itis for those years that
show similar behaviour, that we calculate a 90 per cent upper limit on
¢ (inno cases do we find that the resulting probability interval of Q is
unclosed).

Splitting up the data, one can wonder whether the inability to
constrain ¢ in several years is simply due to a lower observing
cadence: from 2009-2012, the Swift cadence was only one obser-
vation per 3d, and in 2009, there were no observations between
February and April (Degenaar et al. 2013). To test the effect of a
lower cadence, we simulated synthetic data sets with a ¢ and Q
similar to those found in 2006-2007 or 2017-2019, but with the low
cadence of the years between 2009-2012. When we reapplied the
2D method to these synthetic low-cadence years, we do find closed
contour plots for ¢ between 0.01 and 1.00 with the 2D method.
A second test is to look more closely at Table 1: notably, in 2019
contained a smaller number of data points (210) than 2007 (215)
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Figure 7. Top panel: probability contour plots in the ¢ —Q plane for 2017
data (black lines), 2012 data (blue dashes). Bottom panel: probability density
from the 1D method, as function of ¢ for 2017 and 2012 data.

and 2008 (242); however, in 2019, ¢ can clearly be measured, while
only an upper limit could be measured for 2008 (1D-method) and
2007 (2D-method), and 2007 is also a borderline case in the 1D
method.

Therefore, we conclude that a lower cadence can contribute to
poorer constraints on ¢, for instance, in 2009 (with only 49 points),
but cannot account for all differences between years. This behaviour,
together with the inability of a single flare distribution to reproduce all
2006-2019 observations, and the unconstrained ¢ parameter between
2009 and 2012, can be interpreted as additional evidence for a change
in the X-ray flaring emission properties from Sgr A*. We show all
other contour maps, CDF fits, and probability density functions of ¢
for individual years in Appendix B.

4 DISCUSSION

The fits presented in this work of the CDF of Sgr A* count rates mea-
sured with Swift, show that it is not possible to adequately describe
the complete set of X-ray observations using the model of a single
power-law process combined with a pure Poisson process, as shown
in Fig. 3. The excess in the tail of the distribution is not due to the
power-law index only, but also due to the high Poisson mean rate used
in the quiescent component. Creating synthetic data sets with less
flaring activity (i.e. lower ¢) would require a higher value of Q in the
quiescent component, and then the lower count rates will be overes-
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timated. Nevertheless, the emission can be described with this model
better once we divide the data in different sets, as shown in Fig. 4.

Looking at the values from the 1D method in Table 1, we notice
that the flaring properties of the years forming Set A appear similar:
the difference in the best-fitting ¢ is small in those years, ranging
from 0.62 to 0.58. On the other hand, for the years forming Set B, the
1D-approach returns similar upper limits on ¢, with the exception of
2009; these upper limits are typically below the best-fitting flaring
parameters for the years in Set A, but do overlap with their uncertainty
intervals. This result may suggest that the issues in fitting the full
set of Swift data are not necessarily due to an incorrect model — as
expected given the adequate description of the Chandra XVP data
with this model (Neilsen et al. 2015). Instead, it could also fit with
the idea that the flaring rate of Sgr A* has changed on the time-scales
of years, while the first model fit assumes it remains constant over
the considered time range.

A change in flaring properties on years time-scales is further
supported by other lines of reasoning: the consistency of the light
curves in 2010, 2011, and 2012 with a pure Poisson process; the
non-zero probabilities for low ¢ in the individual years making up
Set B, which cannot be fully explained by their low cadence alone
(e.g. comparing 2019 with 2007 and 2008); and the shift in the
probability density function of ¢ between Sets A and B. We note that
the best-fitted ¢ values for those two sets do not change beyond the 1o
confidence level. However, combined, the lines of evidence above are
consistent with a decrease in flaring activity between 2008 and 2012.

Before discussing such variations in the physical picture of Sgr
A*, we briefly turn to the assumptions of the method. First, the value
of Fp, also affects the fits and measured parameters in the data.
Regarding the 1D method, in the top panel of Fig. 8, we show again
p(¢) for the 2017 data, assuming multiple values of Fi,,. The ¢ that
best match the observations gives the maximum in each graph. It is
noticeable that a higher Fyy;, returns a lower ¢. From equation (5),
we see that as the value of ¢ decreases, it reduces the value of Q,
and in fact, the 1D method breaks for any Fi;, > 0.30, as this would
require negative values of Q from equation (5). The same effect,
albeit at different exact values of ¢ is observed in the analysis of
any of the other years. Moreover, this also can be observed when the
2D method is applied. Since our study compares subsets of the Swift
monitoring using the same Fy,;,, the dependence of ¢ on Fyy;, does
not affect our qualitative conclusions. However, Fig. 8 does show
that the absolute value of ¢ found in the analysis of a single data set
cannot be taken as a unique description of the underlying flare flux
distribution. The best-fitting values in Table 1 should therefore only
be interpreted in relation to each other, preferably comparing the full
distributions shown in Appendix B.

Not only Fy,, affects the measured values of Q and ¢; comparing
the columns in Table 1 shows that the 1D and 2D approaches
also find slightly different best-fitting parameters. The best-fitting
parameters are, however, consistent within their 1o uncertainties.
Importantly, we find that the 1D method is better able to constrain
the ¢-parameter. A possible reason for the difference in the
exact best-fitting value might be that the 1D method ignores the
uncertainty on the measured count rate: this uncertainty turns the
line probed by the 1D method in the {—Q plane, into a band, which
is automatically fully explored in the 2D method.

We also notice that dividing the data into different sets, i.e. having
smaller number of data points in each, makes the fits statistically
better (i.e. reaching lower TS values). This happens also when we
randomized the data for individual years, as described in Section 3
(testing the differences between Sets A and B). We show this more
explicitly in Fig. 8 (bottom): in blue, we plot the histogram of TS
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corresponds to the maximum in the graph. Bottom panel: Distribution of TS
values for the best-fitting ¢ and Q for 2017 data (blue) and for 100 randomized
data sets with the same number of data points.

values for the comparisons between the 2017 data and the 1000
synthetic light curves generated using the best-fitting values of ¢
and Q (see Table 1). In the same figure, in grey, we plot the same
histograms, for 100 light curves of the 2017 length, randomly picked
from the full data set; we also plot a small number these in black,
to highlight their shape. The similarity in the distributions indicates
that the statistical quality of the best fits are similar, confirming that
smaller light curves are easier to fit satisfactorily.

However, we stress that the above analysis only compares the
TS values for the best-fitting parameters: whether changes between
subsets of the data are found, depends also on whether a satisfactory
fit is only found for a limited range of parameters. This comparison
therefore does not imply that the fits are only better due to the smaller
number of data points, as discussed in Section 3 as well: even at
low-cadence, synthetic light curves created using the best-fitting
parameters of 2006-2007 and 2017-2019 do not return ¢ upper
limits, and the comparison between 2008, 2009, and 2019, yields a
similar suggestion. However, we cannot exclude the possibility that
the lower cadence contributes to the better fits.

Turning to the interpretation of the possibly variable flaring rate,
we can first compare our work with the results from Ponti et al.
(2015), which reports an increase in Sgr A* emission at the end of
2013 and 2014. Our work shows evidence that Sgr A*’s emission
in the X-ray band presents different properties between years, and
although we are ignoring 2013-2016 data, the activity of Sgr A* in
the last years of observation of Swift shows higher count rates than
the rest of the years. On the other hand, work performed by Yuan &
Wang (2015) and Bouffard et al. (2019) reported no sign of changes
in Sgr A*’s activity using Chandra observations during different
epochs. Possibly the flaring rate of Sgr A* doesnot show measurable
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changes on time-scales shorter than a year, as shown by the work
from Neilsen et al. (2015). This would explain why such short-time-
scale changes are not seen by either Swift or Chandra, while they may
occur on few-years time-scales. Hence, we need multiyear, recurring
monitoring to further test and confirm any of these results.

The nIR emission from Sgr A* also shows strong flaring variability,
with fluxes that have been modelled as either a power-law or lognor-
mal distribution (Witzel et al. 2012, 2018) with an additional high-
flux tail (Dodds-Eden et al. 2011), or a log-lognormal distribution
(Meyer et al. 2014). Investigating the emission mechanism of the
nlR and X-ray flares, Neilsen et al. (2015) assume that the X-ray
and nlIR fluxes both follow power-law distributions and that these
fluxes are coupled. These simple assumptions imply a direct relation
between the power-law indices in nIR and X-rays. In that scenario,
the observed variability in X-ray flaring rate would be accompanied
with similar changes in the nIR flaring rate. However, if such changes
in the nIR are not present, the nIR—X-ray coupling either changes
over time, or the X-ray and nIR flares are not (always) related.
If the X-ray and nIR flares are indeed manifestations of the same
underlying emission process, we deem it unlikely that the coupling
between wavelengths varies over years time-scales and instead expect
a similar increase in nIR flaring rate as the X-ray activity increases.

The nIR flux distribution of Sgr A* indeed varies on time-scales
of years; for instance, Dodds-Eden et al. (2011) and Witzel
et al. (2012) both analyse overlapping, but not identical, sets of
VLT/NACO observations and report different flare flux distributions
(both in shape and parameters). More recently, analysing Keck nIR
observations obtained in 2019 April and May, Do et al. (2019)
reported an increase in flaring rate compared to Keck observations
between 2005 and 2013. The increased 2019 flaring rate coincides
with the increased flaring rate seen in our Swiff monitoring, while
during the 2005-2013 interval, the Swift monitoring is dominated by
low flaring rate years (2008-2012, compared to 2006-2007 with a
higher flaring rate). These comparisons are suggestive of a coupled
change in flaring rate between nIR and X-rays, which could be
confirmed by a time-resolved analysis of the nIR and X-ray fluxes
on year time-scales in future data.

Semi-analytical studies generally favour synchrotron emission
from a non-thermal population of electrons as the source of simul-
taneous nIR/X-ray flaring (e.g. Dibi et al. 2016). The cooling of
synchrotron electrons in these models results in the steepening of
the spectral slope from the nIR to the X-rays and therefore, provides
a crucial link between the two flare populations (e.g. Dodds-Eden
et al. 2010; Dibi et al. 2014; Ponti et al. 2017). Magnetized blobs
of plasma that naturally form in the turbulent accretion flow (e.g.
Sironi, Petropoulou & Giannios 2015; Ripperda et al. 2021) are
said to be a viable source of rapid flaring activity in Sgr A* (e.g.
Ball et al. 2016; Chatterjee et al. 2021; Scepi, Dexter & Begelman
2021). Indeed, Gutiérrez, Nemmen & Cafardo (2020) suggests that a
large enough magnetized blob could produce the high levels of non-
thermal synchrotron emission that would be required to explain the
Do et al. (2019) nIR flare.® Furthermore, an increase in the accretion
rate could result in a strongly magnetized accretion disc as more and
more magnetic fields are advected in. Such a disc is able to produce
magnetized blobs with relativistic temperatures (Ripperda, Bacchini
& Philippov 2020; Ripperda et al. 2021) that leads to stronger flares.
Indeed, an increase in the X-ray flare rate in the period of 2017-2019
does seem to support this possibility. Current numerical models of
accreting black holes are only able to address a few 10s of hours

©We note that the flare visible in May 2019 in Swift monitoring (Fig. 1) did
not occur simultaneously with the Do et al. (2019) nIR flare.
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of Sgr A* activity (e.g. Chan et al. 2015; Ball et al. 2016; Chael
et al. 2018; Chatterjee et al. 2020), and much longer simulations are
necessary to predict whether a small change in the amount of accreted
material on the time-scale of years could trigger a large non-thermal
event close to the black hole.

Do et al. (2019) also suggest an alternative explanation for the
observed increase in nIR activity: they suggest it could be related
to the periastron passage in 2018 May of the windy star SO-2.
However, if the increase in nIR and X-ray activity are indeed coupled,
this explanation is inconsistent with the increased X-ray activity
already observed in 2017 (see also Ressler, Quataert & Stone 2018).
Alternatively, the increase in activity might result from the periastron
passage of the gaseous object G2 in 2014 (Gillessen et al. 2012,
2013a,b; Madigan & McCourt 2016). Simulations of the response of
Sgr A* to this periastron passage predicts a delay in increased activity
of a few to ~10 yr (Schartmann et al. 2012; Kawashima, Matsumoto
& Matsumoto 2017). Without information from Swift between 2012
and 2017, we can infer an upper limit on the possible X-ray response
to the G2 passage of ~3yr, lasting for 2 yr at the time of writing,
thus fitting with those model predictions.

Swift monitoring also suggests a higher flaring rate before 2008,
followed by a low-activity period between 2008 and 2012. Therefore,
if the G2 object is responsible for the current high levels of activity,
a similar object could have passed close by Sgr A* during the late
1990s or early 2000s to explain earlier enhanced activity. Indeed, a
gaseous object similar to G2 (Clénet et al. 2004a,b, 2005; Ghez et al.
2005), named G1 by Pfuhl et al. (2015), passed similarly close to Sgr
A* in 2001 (Witzel et al. 2017). We stress that these considerations
are highly speculative; for instance, the Swift monitoring is only
consistent with an increased flaring rate, but not with a change
in the steady accretion activity of Sgr A*, although this might be
hidden in the diffuse X-ray emission unassociated with Sgr A* due
to Swift’s point spread function. Also, Yuan & Wang (2015) did
not find evidence for changes in X-ray activity observed by Chandra
after the passage of G2. However, if the enhanced activity is related to
passages of objects such as G1 and G2, the decrease of flaring activity
in 2008 — roughly 7 yr after G1’s periastron passage — would predict
an end to the current high level of flaring activity around ~2021.

With continued monitoring in X-rays (by Swift) and nlIR, the
above prediction could be tested, although we note the importance
of a regular and high cadence of these observations, similar to the
2017-2019 data, in order to eliminate any possible effects of sample
size. Alternatively, new Chandra observations could similarly help to
assess the variability on years time-scales, allowing for a comparison
with the 2012 campaign. Finally, we remind the reader how this work
focused on the broad statistical properties of the data set, and did not
analyse individual flares; detailed statistical flare searches in the
long-term Swift data, such as performed by Ponti et al. (2015), could
be an alternative route to explore this Sgr A* data set.

5 CONCLUSIONS

We have analysed the empirical CDF of the X-ray emission from
Sgr A* using Swift data for 20062012 and 2017-2019. By assuming
the X-ray emission of Sgr A* is composed of a quiescent and a
flaring component, we modelled it as the sum of a constant flux and
a power-law flux distribution, respectively. We adopted two different
methods to fit the CDF, yielding consistent results: a 2D method
allowing the flare parameter ¢ and the quiescent parameter Q to vary
independently, and a 1D method establishing a dependence between
¢ and Q as shown in equation (5). We found that the full data set
cannot be correctly described with this model, while individual years
do follow it better.
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More concretely, we found that the data can be divided in two
different groups: (1) a set of data with high flaring rate (2006-2007
and 2017-2019), which we called Set A, and (2) a set of data with
low flaring rate (2008-2012), labelled as Set B. The main difference
between these two sets can be summarized as:

(1) All years forming Set A have a well-constrained value of ¢,
as shown in the bottom panel of Fig. 7. Therefore, the model of
constant + power-law distribution can describe the data of these
years. However, the years of Set B present larger errors on ¢ or it
cannot be constrained and only an upper limit can be established. In
some cases in Set B, the emission can be well described by a pure
constant model with no flaring at all.

(i1) The values of ¢ for Set B may be systematically shifted to
lower values than the ones obtained for Set A. Such lower values of
¢ would indicate a lower flaring rate for Set B. While we highlight
that these changes are within the 1o confidence level, they may hint
towards a change in the flaring rate between different years.

Finally, we tested explicitly the effect of dividing the data into two
or more sets and we found that the probability of the improvement
in the fits is due by chance when reducing the number of data points
is just ~ 0.3 per cent. Similarly, the poorly constrained parameters
for some of the years in Set B cannot be explained by only the lower
number of data points of those sets. Therefore, we interpret these
results as evidence for a change in the flaring rate of Sgr A*, being
more active during 2006-2007 and 2017-2019, compared with the
years of 2008-2012.
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APPENDIX A: ANDERSON-DARLING TEST
STATISTICS AND SIGNIFICANCE LEVELS

In order to test whether the generated synthetic light curve for
a given parameter pair (¢, Q) and the observed Swift/XRT light
curve are consistent with the same underlying flux distribution,
we employ the AD-test (Anderson & Darling 1954). As noted by
Neilsen et al. (2015) in their work on the Chandra XVP data, and in
earlier work by Scholz & Stephens (1987), this test is more sensitive
for deviations in the tails of the distributions than for instance the
Kolmogorov—Smirnov test, making it more suitable for comparing
flaring behaviour on top of a second, quiescent component. However,
a downside to the use of the AD-test is the lack of a single analytic
expression relating the observed test statistic, referred to as TS in the
main paper and A in statistical literature, to a p-value: the probability
that the two populations arise from the same underlying distribution.

Instead, early studies of the AD-test and its k-sample extensions
calculated critical values for different sizes of the compared samples.
In the two-sample case, these critical values are defined as the test
statistic A2, where p(A2, > A%.) < drir, Where « is the confidence
level (we use the typical notation in statistical literature, not to be
confused with the flaring parameter from Neilsen et al. 2015), and n
and m are the sizes of the two compared samples. The critical values
change as a function of the sample sizes and are often calculated
for aqq = 0.01, 0.05, 0.10 (Pettitt 1976; Scholz & Stephens 1987).
Analytic extrapolations of these critical values can then be used
to either find critical values for larger sample sizes n and m, or
convert test statistics to probabilities for non-critical values. The
PYTHON SCIPY function SCIPY.STATS.ANDERSON_KSAMP, which we
used to calculate the AD-test statistic throughout this work, uses
such extrapolations to return probabilities as well. However, these
probabilities are capped at p = 0.001 and 0.25, limiting the use of
this function in calculating AD probabilities.

An alternative route to convert the test statistics to probabilities
is via Monte Carlo calculations. For two samples of sizes n and m,
one can explicitly calculate the distribution of A2, by calculating
A2 for all (n + m)!/(n!m!) possible orders of all (n + m) values.
The probability associated with the measured test statistic A2, 4>
ie. p(A2 > A2 ...) can then be calculated from the distribution.
This approach has a significant limitation: the number of orderings (n
+ m)!/(n!m!) quickly increases, yielding unfeasible computational
times for our data sets: our sample sizes exceed 100 for all years
except 2009, implying both n and m exceed 100, while n = m =
100 yields ~10°° orderings. However, as Scholz & Stephens (1987)
note, one can instead generate a large number of randomly picked
orderings, and use their A2, -values as an approximation of the full
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Figure Al. Top panel: Null hypothesis probability as function of AD-test
statistic, using both SCIPY.STATS.ANDERSON_KSAMP v1.1.0 (red) and a Monte
Carlo method (black). The dashed lines indicate the limiting p-values in SCIPY
v.1.5.3. Bottom panel: the ratio between the probabilities calculated via the
two methods plotted in the upper panel.

underlying distribution — the probabilities calculated from this Monte
Carlo approach are an unbiased estimator of the real probability.

We therefore applied this Monte Carlo approach to convert
measured test statistics to p-values. As the AD-test is a rank test,
A2, only depends on the order of the values of the two samples, and
not on the values themselves. The null hypothesis in our analysis is
that both samples are drawn from the same underlying distribution.
Therefore, since A2, does not depend on the values, we can define
a list of integers ranging from 1 to n + m as the underlying sample.
In our analysis, n and m are equal, as we are comparing an observed
light curve (for 1y, set A/B, or the full data set) with a synthetic one
of equal length. For each Monte Carlo iteration, we then create two
samples, each of size n (= m = half the full integer list), by randomly
choosing integers from the list. We then calculate and save their A2,
using SCIPY.STATS.ANDERSON_KSAMP and repeat M times, where M
is set by the intended accuracy in p-values.

To show the importance of using Monte Carlo calculations, we
show a comparison between the test statistic to p-value conversion
using SCIPY.STATS.ANDERSON_KSAMP and our approach in Fig. Al.
We show the results for M = 10° iterations using n = m = 2143,
which corresponds to the complete data set. The dashed lines indicate
the minimum and maximum returned p-value using the most recent
SCIPY (v1.5.3), while we used an older version (v1.1.0) without this
restriction for comparison to show the effects at smaller and larger test
statistics. Between the two limits, both approaches agree reasonably
well, although the effect of applying an analytic interpolation is
visible in the variable ratio in the lower panel. The discrepancy
grows especially above test statistics of ~5. As our method requires
an accurate measurement of the p-values even for poorly fitting
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parameters, in order to sample the entire parameter space, applying APPENDIX B: PARAMETERS ESTIMATION
the Monte Carlo simulations is essential. AND CDFS FOR INDIVIDUAL YEARS
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Figure B1. The contour plots in the ¢ —Q plane for the 2D method and probability density function of ¢ for the 1D method, for individual years, and fit of the
corresponding CDF. Figures for years 2012 and 2017 are shown in the main body.
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