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Article

Limits on the rate conversion of potential to kinetic energy in
quasigeostrophic turbulence

Ian Grooms

Department of Applied Mathematics, University of Colorado, Boulder, Colorado, 80309, USA

Abstract: Flow configurations that maximize the instantaneous rate of conversion from potential to 1

kinetic energy are sought using a combination of analytical and numerical methods. A hydrostatic 2

model is briefly investigated, but the presence of unrealistic ageostrophic flow configurations renders 3

the results unrealistic. In the quasigeostrophic (QG) model, flow configurations that locally optimize 4

the conversion rate are found, but it remains unclear if these flow configurations produce the global 5

maximum conversion rate. The difficulty is associated with the fact that in the QG model, the vertical 6

velocity is a quadratic function of the QG streamfunction, which renders the conversion rate a cubic 7

function of the QG streamfunction. For these locally maximal conversion rates, the rate of conversion 8

depends on the horizontal length scale of the flow: For scales larger than the deformation radius the 9

maximal rates are small and decrease as the horizontal scale increases; for scales smaller than the 10

deformation radius the maximal conversion rate rises until it becomes comparable to the maximal 11

rate at which potential energy can be extracted from the mean flow. 12

Keywords: Ocean dynamics; energy cycle; baroclinic instability; turbulence 13

1. Introduction 14

The transfer of large-scale available potential energy to mesoscale eddy energy by 15

baroclinic instability is one of the most important energy pathways in the dynamics of the 16

global oceans [1]. In the Lorenz energy cycle [2] nonlinear baroclinic instability processes 17

transfer large-scale potential energy to eddy potential energy (EPE); EPE is then converted 18

to eddy kinetic energy (EKE); and EKE is either returned to the large scale flow or dissipated 19

through a wide range of mechanisms. Theories of geophysical macro-turbulence concern 20

themselves, inter alia, with predicting the length scales at which the EPE production and 21

conversion to EKE occur. An early theory proposed by Salmon [3] has become a touchstone 22

of the modern understanding [4], having been revised and expanded by a wide range of 23

authors. This early theory, and many successors, is formulated in the context of a highly- 24

idealized two-layer quasigeostrophic model whose vertical structure can be formulated in 25

terms of two ‘modes’: a barotropic mode that is depth-independent, and a baroclinic mode 26

that is antisymmetric in the vertical. (The term ‘mode’ here simply means elements of a 27

basis, not the normal modes of a mechanical system, cf. [5,6].) These modes diagonalize 28

the energy, and Salmon’s theory was framed in terms of energy in the modes rather than 29

in terms of kinetic and potential energy. The barotropic mode has no potential energy, 30

while the baroclinic mode has both potential and kinetic energy, so the connection of the 31

modal energy perspective to the perspective based on kinetic and potential energy is murky. 32

Nevertheless, the modern theory of geophysical turbulence (cf. [4] section 9.3) inherits 33

the following picture from Salmon’s theory: EPE is generated at scales larger than the 34

deformation radius (defined below) and then cascades downscale; conversion from EPE to 35

EKE occurs primarily at scales near the deformation radius; EKE is then dissipated by a 36

range of processes, especially by frictional interaction with the bottom boundary at scales 37

somewhat larger than the deformation radius. 38

The goal of the present investigation is to study the process of conversion from EPE 39

to EKE from a mathematical rather than a physical perspective. Rather than studying the 40
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dynamical processes responsible for conversion, the goal is to investigate the mathematical 41

limits on the rate of conversion per unit energy. The approach is based on considering all 42

possible flow configurations at a fixed energy level and then seeking a configuration that 43

will maximize the rate of potential to kinetic energy conversion. These flow configurations 44

need not be steady solutions of the governing equations, or even states that might realisti- 45

cally be produced by the dynamics, so the rates obtained in this way should be understood 46

as a limit on what a realistic flow can achieve, rather than as a prediction of what a realistic 47

flow will achieve. The method is closely related to methods used to provide upper bounds 48

on the heat flux in Rayleigh-Bénard convection, e.g. [7–9]. 49

Barham & Grooms studied the mathematical limits on the rate by which eddies 50

can extract potential energy from the mean flow in a fluid model incorporating only the 51

hydrostatic approximation [10], and in a quasigeostrophic model [11]. They found that the 52

eddies are able to extract potential energy from the mean flow at a rate that is independent 53

of the length scale of the eddies. This was something of a null result, in the sense that the 54

bounds on what the flow can do are not closely related to what the flow actually does: A 55

wide range of investigations have found that the EPE is primarily generated at scales larger 56

than the deformation radius [12–20]. The results of the present investigation make a closer 57

connection to the phenomenology of geostrophic turbulence than the results of [10,11]: It 58

is shown that conversion from EPE to EKE is much less efficient than the generation of 59

EPE at scales large compared to the deformation radius. While the results do not provide a 60

rigorous mathematical explanation for why EPE is typically generated at scales larger than 61

the deformation radius (there are many dynamical theories to predict this, e.g. [3,14,15]), it 62

does connect to the downscale cascade of EPE and to the fact that conversion from potential 63

to kinetic energy is observed to be weak at scales larger than the deformation radius. 64

A limitation of the current results is that the maximal rates of conversion obtained 65

through the analysis are not proven here to be truly maximal. The conversion rate is a 66

function of the flow configuration, and there are an infinite number of flow configurations 67

that are stationary points of the function, i.e. these flow configurations correspond to local 68

extrema or saddle points of the function. The analysis here identifies an infinite set of 69

these stationary points that can be analyzed using Fourier methods and linear eigenvalue 70

theory. Whether there are other flow configurations that could result in higher conversion 71

rates remains an open question. The difficulty is related to the fact that conversion, in a 72

quasigeostrophic approximation, is a cubic function of the flow state, which is more difficult 73

to analyze than the production of EPE (cf. [10,11]), which is a quadratic function of the flow 74

state. 75

The paper is organized as follows. In section 2 conversion is studied in the context of 76

the hydrostatic Eady problem, similar to the development in [10]. As in [10], the results 77

are complicated by the presence of unrealistic ageostrophic flow configurations, so as in 78

[11] the quasigeostrophic (QG) version of the problem is studied next. The QG problem is 79

studied analytically in section 3 and numerically in section 4. Conclusions are offered in 80

section 5. 81

2. The hydrostatic Eady problem 82

The linear perturbation equations in the nondimensional Eady problem with hydro- 83

static and Boussinesq approximations are [10,21] 84

(∂t + z∂x)u
′ + εw′

x̂ + ε−1(ẑ × u
′)h = −ε−1∇h p′ (1)

∂z p′ = b′ (2)

(∂t + z∂x)b
′ − v′ + w′ = 0 (3)

∇h · u
′ + ε∂zw′ = 0 (4)

where z is the coordinate along the axis of rotation and gravity and x is the coordinate 85

along the direction of mean flow. The domain is periodic in the x and y directions and 86

z ∈ [0, 1]. The subscript h denotes the horizontal component of a vector, e.g. ∇h = (∂x, ∂y). 87
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The buoyancy frequency is N and the dimensional background velocity is ū = Λz. 88

The Richardson number is ε−2 where ε = Λ/N. The time scale for nondimensionalization 89

is N/( f Λ), where f is the Coriolis parameter; the vertical length scale is H; the horizontal 90

length scale is the deformation radius NH/ f . The horizontal velocity scale is HΛ; the 91

vertical velocity scale is H f ε2; the buoyancy scale is HNΛ. 92

The perturbation kinetic energy equation is obtained by taking the dot product of (1) 93

with u′ = (u′, v′) and integrating over the domain (with several integrations by parts) 94

1

2

d

dt

∫

V
(u′)2 + (v′)2dV =

∫

V
w′b′ − εw′u′dV (5)

where
∫

V denotes an integral over the physical domain V. The perturbation available 95

potential energy equation is obtained by multiplying (3) by b′ and integrating over the 96

domain 97

1

2

d

dt

∫

V
(b′)2dV =

∫

V
v′b′ − w′b′dV. (6)

The term of interest here is the conversion from potential to kinetic energy 98

C =
∫

V
w′b′dV. (7)

Because this is a hydrostatic model, the vertical velocity w′ is obtained from the horizontal 99

velocity using 100

w′ = −ε−1
∫ z

0
∂xu′ + ∂yv′ds (8)

where the variable s is a stand-in for the vertical coordinate. 101

The goal is to obtain a configuration of (u′, v′, b′) that maximizes the conversion C at a 102

fixed energy level E0. We therefore define the Lagrangian 103

I[u′, v′, b′, λ] = C − λ(E − E0) (9)

where λ is the Lagrange multiplier and the total energy is 104

E =
1

2

∫

V
(u′)2 + (v′)2 + (b′)2dV. (10)

The Lagrangian is a quadratic function of the buoyancy and velocity and the energy level 105

E0 can be scaled out of the problem, so without loss of generality let E0 = 1. As usual, the 106

Euler-Lagrange equations are derived by finding conditions that describe stationary points 107

of the Lagrangian. 108

The Euler-Lagrange equations for this constrained optimization problem are obtained 109

as follows. We first consider the Fréchet derivative of the energy, which is simply 110

dE =
∫

V
u′δu + v′δv + b′δbdV. (11)

To derive the Fréchet derivative of the shear production, start from the expression 111

dC =
∫

V
b′δw + w′δbdV. (12)

To proceed, we need the following simple integration by parts identity, also used in [10] 112

∫ 1

0
g(z)

∫ z

0
h(s)dsdz =

(∫ 1

0
g(z)dz

)(∫ 1

0
h(z)dz

)
−

∫ 1

0
h(z)

∫ z

0
g(s)dsdz (13)
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which is valid for integrable functions g and h. This expression enables the following 113

manipulation of the first term in (12) 114

ε
∫ 1

0
b′δwdz = −

∫ 1

0
b′

∫ z

0

(
∂xδu + ∂yδv

)
dsdz (14)

= −

(∫ 1

0
b′dz

)(∫ 1

0

(
∂xδu + ∂yδv

)
dz

)
+

∫ 1

0

(
∂xδu + ∂yδv

) ∫ z

0
b′dsdz.

The fact that δw = 0 at both the upper and lower boundaries sets
∫ 1

0 ∂xδu + ∂yδvdz = 0. 115

The Fréchet derivative of the conversion is therefore 116

dC = −ε−1
∫

V

[
δu

(∫ z

0
∂xb′

)
+ δv

(∫ z

0
∂yb′

)
+ δb

(∫ z

0
∇h · u

′

)]
dV. (15)

Configurations of (u′, v′, b′) that are stationary with respect to the conversion rate subject 117

to the condition of fixed energy satisfy 118

dI = dC − λdE = 0 (16)

for all (δu, δv, δb). The Euler-Lagrange equations are therefore 119

∫ z

0
∂xb′ds = ελu′ (17)

∫ z

0
∂yb′ds = ελv′ (18)

∫ z

0
∇h · u

′ ds = ελb′. (19)

Perturbation fields (u′, v′, b′) that satisfy these equations are associated with conversion 120

rates λ. Note that horizontally-incompressible flow with b′ = λ = 0 is a stationary point of 121

the Lagrangian, but an uninteresting one since it has no conversion. 122

A system of partial differential equations for the optimal flow configurations can be 123

obtained by taking the partial derivative of these equations with respect to z and then 124

condensing to a single equation 125

∇2
hb′ = ε2λ2∂2

zb′. (20)

Noting that (19) implies that for these optimal configurations b′ = 0 on the top and bottom 126

boundaries, we can expand solutions as 127

b′ = b̂k,neik·x sin(nπz) + c.c. (21)

where ‘c.c.’ denotes the complex conjugate and the amplitude of b̂k,n is determined by the 128

condition of unit total energy. The conversion rate λ satisfies 129

λ = ±
|k|

εnπ
. (22)

The conversion rate exhibits an ultraviolet catastrophe where the conversion rate 130

approaches infinity at small scales. Ultraviolet catastrophes can call into question the 131

well-posedness of a system of equations; in this case that is not a concern. Conversion 132

is not a component of the total energy budget, since the contributions to the kinetic and 133

potential energy budgets cancel on adding, so this ultraviolet catastrophe does not cause 134

unbounded growth of energy at small scales. Instead it means that certain small-scale flow 135

configurations will almost instantaneously convert their potential energy to kinetic energy, 136

which is of course not problematic for the dynamics. 137
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The flow configurations associated with these high conversion rates have divergent 138

horizontal velocities: (19) implies 139

∇h · u
′ = ελ∂zb′ = ±

|k|

nπ
∂zb′. (23)

As |k|→ ∞ the magnitude of the divergence grows without bound, which causes the 140

magnitude of the vertical velocity to also grow without bound per (8). These flow configu- 141

rations are mathematically permissible – vertical velocity is not included in the conserved 142

energy for this model, so infinite vertical velocity is not precluded by the constraint of 143

finite energy – but physically unrealistic for balanced ocean dynamics, which have small 144

vertical velocities. Thus, as in [11], the next section pursues the question in the context of a 145

quasigeostrophic model. An alternative approach, not taken here, would be to analyze the 146

conversion in the non-hydrostatic model; this would include the vertical velocity as part of 147

the kinetic energy, which would prevent it from growing unboundedly in the progression 148

to small scales. 149

3. Conversion in the Quasigeostrophic model 150

The nondimensional eddy vorticity and buoyancy evolution equations in an inviscid 151

quasigeostrophic (QG) approximation in the presence of a zonal mean flow are 152

∂tω + J[ψ, ω] + ū(z)∂xω + β∂xψ − ∂zw′ = 0 (24)

∂tb
′ + J[ψ, b′] + ū(z)∂xb′ − v′∂zū(z) + w′N2(z) = 0 (25)

where ω = ∇2
hψ is the eddy vorticity, b′ = ∂zψ is the eddy buoyancy, N(z) is the nondi- 153

mensional buoyancy frequency, and J[ψ, ω] = ∂xψ∂yω − ∂yψ∂xω = u′ · ∇ω. The depth H 154

is used to nondimensionalize z, and the deformation scale L = N0H/ f is used to nondi- 155

mensionalize x and y where f is the Coriolis parameter at a fixed reference latitude, and 156

N0 is the maximum value of the dimensional buoyancy frequency. The time scale is N−1
0 ; 157

the scale of ψ is N0L2; and of w′ is NL. The nondimensional planetary vorticity gradient is 158

β = β0L/N where β0 is the meridional rate of change of the Coriolis parameter at the same 159

reference latitude. 160

These two evolution equations for derivatives of ψ could, in principle, be incompatible; 161

the incompatibility is prevented by vertical velocity w′, which acts to keep the two evolution 162

equations consistent. The condition on w′ that keeps the two equations consistent is 163

obtained by applying −∂z to (24), applying ∇2
h to (25), and adding the results. This leads to 164

the Omega equation [22] for w′
165

N2(z)∇2
hw′ + ∂2

zw′ = ∂z[J[ψ, ω] + βv]−∇2
h

[
J[ψ, b′]

]
+ 2(∂zū(z))∂xω. (26)

The evolution of kinetic and available potential energy in the QG model can be 166

obtained, respectively, by multiplying (24) by −ψ and integrating over the domain, and by 167

multiplying (25) by b′/N2(z) and integrating over the domain. The results are 168

1

2

d

dt

∫

V
(u′)2 + (v′)2dV =

∫

V
w′b′dV (27)

1

2

d

dt

∫

V

(b′)2

N2(z)
dV =

∫

V

v′b′∂zū(z)

N2(z)
− w′b′dV (28)

where one integration by parts was performed to obtain the kinetic energy equation, using 169

w′ = 0 conditions on the boundaries. 170

3.1. Derivation of the Lagrangian 171

The form of the potential to kinetic conversion and of the total energy are the same 172

as in the hydrostatic Eady problem, with the important difference that in the QG problem 173



Version August 12, 2022 submitted to Fluids 6 of 14

the velocity and buoyancy are all derived from a single variable ψ. In terms of the QG 174

streamfunction we can write the total energy as 175

E =
1

2

∫

V
|∇hψ|2 +

1

N2(z)
(∂zψ)2dV. (29)

Unlike in the hydrostatic Eady problem conversion is a cubic function of ψ, although it can 176

be split into a sum of cubic and quadratic components. For notational convenience Ω is 177

defined to be the differential operator acting on w′, i.e. 178

Ω[w′] = N2(z)∇2
hw′ + ∂2

zw′. (30)

The operator Ω is self-adjoint when acting on the Sobolev space of functions with homoge- 179

neous Dirichlet boundary conditions whose weak derivatives of order ≤ 2 belong to L2(V), 180

which implies that Ω−1 is also self-adjoint (cf. [23], examples 10.1 and 10.4). Noting that Ω 181

is linear, we can split conversion as follows 182

C = C3 + C2 (31)

C3 =
∫

V
Ω−1

[
∂z

[
J[ψ,∇2ψ]

]
−∇2

h[J[ψ, ∂zψ]]
]
∂zψdV (32)

C2 =
∫

V
Ω−1

[
β∂z∂xψ + 2(∂zū(z))∂x∇

2ψ
]
∂zψdV (33)

where C3 is cubic and C2 is quadratic. The fact that Ω−1 is self-adjoint and commutes with 183

∂x implies that 184

∫

V
Ω−1[∂x∂zψ]∂zψdV =

1

2

∫

V
∂x

(
Ω−1[∂zψ]∂zψ

)
dV = 0. (34)

From this we conclude that the vertical velocity generated by the β term in the Omega 185

equation does not lead to any conversion, and thus 186

C2 = 2
∫

V
Ω−1

[
(∂zū(z))∂x∇

2ψ
]
∂zψdV. (35)

Note that β has a profound influence on the dynamics, and thus an indirect influence on 187

the rate of conversion of EPE to EKE. 188

With this notation, the problem of interest is to maximize the rate of conversion at 189

fixed energy level E0. The Lagrangian for this constrained optimization problem is 190

I[ψ] = C3 + C2 − λ(E − E0). (36)

Unlike the non-QG case, the presence of a cubic term implies that the energy level E0 cannot 191

be set to unity by a rescaling of ψ. 192

3.2. Analysis of the cubic term 193

The presence of the cubic term C3 implies that the Euler-Lagrange equations for 194

this Lagrangian constitute a quadratic eigenvalue problem, unlike the linear eigenvalue 195

problems associated with EPE production analyzed in [10] and [11]. However, the cubic 196

term has a curious property: For all flow configurations ψ for which dC2 − λdE = 0 we 197

have that C3 = dC3 = 0. This implies that any conclusions drawn from analyzing only the 198

quadratic part of the Lagrangian apply also to the full Lagrangian with the only caveat 199

being that the optimal conversion rates discovered in this way may not be globally optimal 200

for the full problem. 201

The following theorem justifies the foregoing statement about the cubic part of the 202

Lagrangian. 203
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Theorem 1 (Univariate degeneracy of C3). Any flow configuration that satisfies ψ(x, y, z) = 204

p(kxx + kyy, z) sets C3 = dC3 = 0 for any kx and ky. 205

Proof. The fact that C3 = 0 for any ψ(x, y, z) = p(kxx+ kyy, z) follows from the fact that the 206

Jacobian advection operator is zero for two univariate arguments: J[p(kxx + kyy), r(kxx + 207

kyy)] = 0. 208

To prove that dC3 = 0 for any ψ(x, y, z) = p(kxx + kyy, z), begin by using the fact that 209

Ω is self-adjoint to write 210

C3 =
∫

V

(
∂z

[
J[ψ,∇2ψ]

]
−∇2

h[J[ψ, ∂zψ]]
)

Ω−1[∂zψ]dV. (37)

Integrations by parts in the vertical and horizontal now produce the following, where 211

horizontal periodicity has been used, as well as the fact that Ω−1[·] produces a function 212

that is zero on the upper and lower boundaries 213

C3 = −
∫

V
J[ψ,∇2ψ]

(
∂zΩ−1[∂zψ]

)
+ J[ψ, ∂zψ]

(
∇2

hΩ−1[∂zψ]
)

dV. (38)

With this expression in hand, we can consider the Fréchet derivative of C3 214

dC3 = −
∫

V
J[ψ,∇2ψ]

(
∂zΩ−1[∂zδψ]

)
+ J[ψ, ∂zψ]

(
∇2

hΩ−1[∂zδψ]
)

dV

−
∫

V
J[δψ,∇2ψ]

(
∂zΩ−1[∂zψ]

)
+ J[δψ, ∂zψ]

(
∇2

hΩ−1[∂zψ]
)

dV (39)

−
∫

V
J[ψ,∇2δψ]

(
∂zΩ−1[∂zψ]

)
+ J[ψ, ∂zδψ]

(
∇2

hΩ−1[∂zψ]
)

dV.

The first line is zero whenever ψ(x, y, z) = p(kxx + kyy, z) because of the property of the 215

Jacobian noted above. The remaining terms can all be expressed in the form 216

∫

V
qJ[r, s]dV (40)

where either r or s is a perturbation. (Note that q does not refer to potential vorticity in this 217

expression.) The identity J[r, s] = −J[s, r] allows us to consider s to be the perturbation 218

without loss of generality. Integration by parts puts these terms into the form 219

∫

V
qJ[r, s] = −

∫

V
s
(
∂y(q∂xr)− ∂x(q∂yr)

)
dV. (41)

If ψ = p(kxx + kyy, z) then for all of terms on the second and third lines of (39) q and r are 220

of the form q = q(kxx + kyy, z) and r = r(kxx + kyy, z). For functions of this form 221

∂y(q∂xr)− ∂x(q∂yr) = 0 (42)

which implies that dC3 = 0. 222

223

Note that no claim is made that these are the only flow configurations for which 224

dC3 = 0. A complete, rigorous analysis of the stationary points of the full Lagrangian is 225

outside the scope of this investigation. 226

3.3. Euler-Lagrange equations for the quadratic part 227

Having established the foregoing property of C3, we next derive Euler-Lagrange 228

equations for the quadratic component of the Lagrangian 229

I2[ψ] = C2 − λ(E − E0). (43)
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As with the hydrostatic Eady problem, the fact that this Lagrangian is quadratic implies 230

that the energy level E0 can be set to unity without loss of generality. The Fréchet derivative 231

of the energy is 232

dE = −
∫

V

(
∇2

hψ + ∂z

(
1

N2(z)
∂zψ

))
δψdV. (44)

The Fréchet derivative of the quadratic component of conversion is 233

dC2 = −2
∫

V

(
∂zΩ−1

[
(∂zū(z))∂x∇

2
hψ

]
+ (∂zū(z))Ω−1

[
∂x∇

2
h∂zψ

])
δψdV. (45)

Expand both ψ and δψ as Fourier series 234

ψ(x, y, z) =
1√

LxLy
∑
k

ψ̂k(z)e
ik·x (46)

235

δψ(x, y, z) =
1√

LxLy
∑
k

δ̂ψ
k
(z)eik·x (47)

where Lx and Ly are the nondimensional length and width of the periodic domain. With 236

this expansion we have the following representations of dE and dC2 237

dE = −∑
k

∫ 1

0

(
−|k|2ψ̂k + ∂z

(
1

N2(z)
∂zψ̂k

))
δ̂ψ

∗

k
dz (48)

238

dC2 = 2i ∑
k

kx|k|
2
∫ 1

0

(
∂zΩ−1

[
(∂zū(z))ψ̂k

]
+ (∂zū(z))Ω−1

[
∂zψ̂k

])
δ̂ψ

∗

k
. (49)

where δ̂ψ
∗

k
is the complex conjugate of δ̂ψ

k
. Stationary points of the quadratic Lagrangian 239

are thus single Fourier modes that satisfy the Euler-Lagrange equations 240

2ikx|k|
2
(

∂zΩ−1
[
(∂zū(z))ψ̂k

]
+ (∂zū(z))Ω−1

[
∂zψ̂k

])
=

λ

(
−|k|2ψ̂k + ∂z

(
1

N2(z)
∂zψ̂k

))
. (50)

Because stationary points of the quadratic part of the Lagrangian are single Fourier modes, 241

they are of the form ψ(x, y, z) = p(kxx + kyy, z). Theorem 1 implies that C3 = dC3 = 0 242

for these configurations, so these flow configurations are also stationary points of the full 243

Lagrangian. 244

3.4. Asymptotic analysis 245

Exact solutions of the Euler-Lagrange equations for the quadratic part (50) remain 246

elusive due to the presence of the Ω−1 operator. Before proceeding directly to numerical 247

investigations of conversion, it is valuable to provide some asymptotic analysis to comple- 248

ment the numerics. Two limits of interest are large and small scales. To analyze these limits 249

we return to the Omega equation (26), written for a single Fourier mode and omitting the 250

passive β term 251[
−N2(z)|k|2 + ∂2

z

]
ŵk = −2ikx|k|

2(∂zū(z))ψ̂k. (51)

Clearly ŵk → 0 as kx → 0 which implies that conversion also goes to zero as kx → 0. More 252

generally, at large scales, i.e. k � 1, it is clear that ŵk ∼ kx|k|2, so conversion must go to 253

zero at scales much larger than the deformation radius. 254

For small scales, k � 1, it is evident that 255

ŵk ∼ 2ikx
∂zū(z)

N2(z)
ψ̂k. (52)
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Exponentially thin boundary layers return ŵk to zero on the boundary if necessary, but 256

these layers contribute an asymptotically subdominant amount to the total conversion. The 257

total conversion for large k thus scales as twice the real part of 258

2ikx

∫ 1

0

∂zū(z)

N2(z)
ψ̂k∂zψ̂∗

k
dz. (53)

The elementary inequalities 2|ab| ≤ (a2 + b2) and k2
x ≤ |k|2 imply that the conversion in 259

this limit is bounded by 260

2
∫ 1

0

|∂zū(z)|

N(z)

(
|k|2|ψ̂k|

2 +
|∂zψ̂k|

2

N2(z)

)
dz (54)

which further implies that the rate of conversion per unit energy is bounded by twice the 261

Richardson number 262

2

∥∥∥∥
∂zū(z)

N(z)

∥∥∥∥
∞

. (55)

This boundedness at small scales is in contrast to the behavior seen in the hydrostatic Eady 263

problem in section 2, and mirrors the behavior of EPE production rates found in [11]. 264

4. Numerical investigation into conversion rates 265

This section provides a numerical investigation of maximal conversion rates, applying 266

only to the quadratic component of conversion in the presence of a zonal mean flow. Rather 267

than discretize the Euler-Lagrange equations (50), the analysis is framed directly in terms 268

of the conversion for a single Fourier mode 269

∫

V
w′b′dV = 2Re

[∫ 1

0
ŵk b̂∗

k
dz

]
. (56)

By applying standard equispaced, second-order, centered finite differences to the Omega 270

equation for a single Fourier mode (51) and to ∂zψ̂k = b̂k one obtains an expression of the 271

form 272

C2 ≈ ψ̂∗
k

Cψ̂k (57)

where C is a Hermitian matrix and ψ̂k is a vector of values of ψ̂k at Nz equispaced points 273

on z ∈ (0, 1). The energy may similarly be numerically approximated using 274

E ≈ ψ̂∗
k

Eψ̂k (58)

where E = (|k|2I−L)/(4Nz) and L is a discrete approximation to the operator ∂z

(
N−2(z)∂z(·)

)
.275

With these discrete approximations, the generalized eigenvalues λ of 276

Cψ̂k = λEψ̂k (59)

are the conversion rates per unit energy associated with flow configurations given by the 277

generalized eigenvectors ψ̂k. The fact that C and E are both Hermitian and that E is positive 278

definite imply that there are exactly Nz real generalized eigenvalues λ for each Fourier 279

mode k. 280

For comparison, the same treatment is applied to the rate of eddy potential energy 281

production following [11]; the continuous expression is 282

P =
∫

V
v′b′

∂zū(z)

N2(z)
dV = 2Re

[
ikx

∫ 1

0
ψ̂k∂zψ̂k

∂zū(z)

N2(z)
dz

]
. (60)

The discrete approximation takes the form 283

P ≈ ψ̂∗
k

Pψ̂k (61)
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and the optimal rates of production per unit energy are found as generalized eigenvalues λ 284

of the Hermitian generalized eigenvalue problem 285

Pψ̂k = λEψ̂k. (62)

The code used to generate the C, P, and E matrices can be found in [24]. 286

Results are computed for three mean flow profiles 287

Eady ū(z) = z −
1

2
(63)

Phillips ū(z) = −
1

2
cos(πz) (64)

Ocean-Charney ū(z) =
3

2
z2 −

1

2
(65)

all with N(z) = 1 and using Nz = 200 points. These three profiles represent three different 288

ways of violating the Charney-Stern-Pedlosky criteria for baroclinic stability ([4], section 289

6.4.3; see also [25]). For each mean flow configuration and over a range of wavenumbers k 290

the optimal rates of conversion and production per unit energy are computed. 291

These conversion rates are shown as functions of kx and ky in Figure 1, and as a 292

function of kx for ky = 0 in Figure 2. As predicted by the asymptotic theory the conversion 293

rates go to zero as kx → 0, which is in contrast with the production rates. For the latter 294

there is a singularity at k = 0 such that for ky = 0 and kx → 0 the production rate remains 295

nonzero, whereas for ky 6= 0 the production rate goes to zero as kx → 0. This contrast is a 296

key finding of this investigation: QG flow is able to produce EPE at scales larger than the 297

deformation radius much more efficiently than it is able to convert EPE to EKE, at least 298

when considering only linear conversion processes. However, this mismatch only occurs 299

near the ky = 0 axis; at large scales away from that axis the maximal rates of conversion 300

and production are both weak. 301

Figure 2 compares the conversion and production rates on the same plot for ky = 0. 302

For all mean flow configurations the maximum possible rate of EPE production is larger 303

than the maximum possible rate of linear conversion at large scales. The rate of conversion 304

increases towards small scales, and the maximum possible rate of conversion exceeds that 305

of production at kx < 10 for the Eady and Phillips mean flows; for the Charney mean flow, 306

conversion exceeds production at much smaller scales (not shown). None of the computed 307

conversion rates violates the asymptotic bound derived in section 3.4. 308

Figure 3 shows the flow configurations ψ that optimize conversion and production 309

for all three mean flow configurations at kx = 1, ky = 0. At this wavenumber the maximal 310

production rate is significantly greater than the maximal conversion rate, and the flow 311

configurations that achieve these maximal rates are markedly different: The vertical tilt of 312

the horizontal flow is opposite for optimal conversion and optimal production. 313

5. Conclusions 314

The goal of this paper is to study the mathematical limits on the rate of conversion 315

from eddy potential energy (EPE) to eddy kinetic energy (EKE) with reference to the ocean’s 316

Lorenz energy cycle. The first result parallels one of the results of [10], namely that when 317

the problem is studied using only the hydrostatic approximation, the results are clouded 318

by the presence of highly unrealistic ageostrophic flow configurations that convert EPE to 319

EKE with an efficiency that is unbounded in the progression to infinitesimal horizontal 320

length scales. Thus, following [11], the quasigeostrophic version of the problem is studied 321

next so that, somewhat ironically, the more restrictive approximation might lead to more 322

realistic results. 323

In the quasigeostrophic approximation the conversion rate is a cubic function of the 324

eddy flow configuration because the vertical velocity is a quadratic function of the QG 325

streamfunction through the Omega equation (26) [22]. Nevertheless, in the presence of a 326
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Figure 1. Conversion (left) and production (right) rates per unit energy as a function of kx and ky for

the Eady (upper row), Phillips (middle row), and ocean Charney (lower row) mean flow profiles. In

each panel there are 10 contour intervals above zero up to the maximum value on the colorbar. In each

row the contour intervals in the left and right columns are matched. The horizontal wavenumbers kx

and ky are nondimensionalized using f /(NH).
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mean flow the vertical velocity can be written as the sum of two components that depend 327

linearly and quadratically on the eddy flow state; the conversion rate can thus also be 328

written as the sum of two components that depend quadratically and cubically on the eddy 329

flow state. The second result of this study is the discovery that eddy flow configurations 330

that correspond to local extrema of the quadratic part of the conversion rate also correspond 331

to local extrema of the full conversion rate including the cubic term. This enables the use 332

of methods based on Fourier analysis and linear eigenvalue problems to find eddy flow 333

configurations that correspond to local maxima of the conversion rate; whether these local 334

maxima are also global maxima remains an open question. 335

Studying the local maxima only, it is found that the rate of EPE to EKE conversion 336

goes to zero as the horizontal length scale of the eddy flow configuration grows above the 337

deformation radius, and that as the horizontal length scale decreases past the deformation 338

radius the rate of conversion appears to grow towards an upper bound. Putting these 339

results together with those of [11] on the maximal rate of EPE generation leads to the 340

following picture: At large scales the maximal rate of EPE generation is much larger 341

than the maximal rate of conversion from EPE to EKE. Thus, if EPE is generated near the 342

maximal rate at large scales it cannot be converted equally rapidly to EKE; to achieve a 343

statistically steady state the EPE must be transferred towards smaller scales where it can 344

be converted to EKE efficiently. As these results are only concerned with limits on what 345

the flow can do, they do not predict what the flow will do. Nevertheless, the results are 346

consistent with the phenomenological theory of QG turbulence. 347

This study raises some questions that remain unresolved. An obvious example is 348

whether there are eddy flow configurations that can achieve higher conversion rates than 349

the ones identified here. The question can be addressed using more advanced analytical 350

methods, or using numerical methods for partial-differential-equation-constrained opti- 351

mization. Barotropic shear could be introduced into the mean flow profiles; this would 352

prevent the problem from being partially diagonalized by a Fourier basis, and would simi- 353

larly require more advanced analytical methods, or using numerical methods for partial- 354

differential-equation-constrained optimization. Aside from the cubic problem, there still 355

remain open questions about the quadratic component of the problem. For example, one 356

might attempt to derive a rigorous bound on the quadratic conversion rate to complement 357

the asymptotic analysis provided in section 3.4. Finally, the problems in the hydrostatic 358

model could potentially be alleviated by studying conversion in the non-hydrostatic model. 359

In the non-hydrostatic model all three components of velocity are included in the kinetic 360

energy, which prevents the vertical velocity from growing unboundedly at small scales. 361
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