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Abstract. In this paper, we study the L;/L, minimization on the gradient for
imaging applications. Several recent works have demonstrated that L;/Ly is better
than the L1 norm when approximating the Ly norm to promote sparsity. Consequently,
we postulate that applying L;i/Lo on the gradient is better than the classic total
variation (the L; norm on the gradient) to enforce the sparsity of the image
gradient. To verify our hypothesis, we consider a constrained formulation to reveal
empirical evidence on the superiority of L;/Ls over L; when recovering piecewise
constant signals from low-frequency measurements. Numerically, we design a specific
splitting scheme, under which we can prove subsequential and global convergence for
the alternating direction method of multipliers (ADMM) under certain conditions.
Experimentally, we demonstrate visible improvements of L;/Ls over Ly and other
nonconvex regularizations for image recovery from low-frequency measurements and
two medical applications of MRI and CT reconstruction. All the numerical results
show the efficiency of our proposed approach.
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1. Introduction

Regularization methods play an important role in inverse problems to refine the solution
space by prior knowledge and/or special structures. For example, the celebrated total
variation (TV) [1] prefers piecewise constant images, while total generalized variation
(TGV) [2] and fractional-order TV [3, 4] tend to preserve piecewise smoothness of an
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image. TV can be defined either isotropically or anisotropically. The anisotropic TV
[5] in the discrete setting is equivalent to applying the L; norm on the image gradient.
As the L; norm is often used to enforce a signal being sparse, one can interpret the TV
regularization as to promote the sparsity of gradient vectors.

To find the sparsest signal, it is straightforward to minimize the Ly norm (counting
the number of nonzero elements), which is unfortunately NP-hard [6]. A popular
approach involves the convex relaxation of using the L; norm to replace the ill-
posed Ly norm, with the equivalence between L; and Ly for sparse signal recovery
given in terms of restricted isometry property (RIP) [7]. However, Fan and Li [§]
pointed out that the L; approach is biased towards large coefficients, and proposed
to minimize a nonconvex regularization, called smoothly clipped absolute deviation
(SCAD). Subsequently, various nonconvex functionals emerged such as minimax concave
penalty (MCP) [9], capped L, [10, 11, 12], and transformed L, [13, 14, 15]. Following the
literature on sparse signal recovery, there is a trend to apply a nonconvex regularization
on the gradient to deal with images. For instance, Chartrand [16] discussed both the L,
norm with 0 < p < 1 for sparse signals and L, on the gradient for magnetic resonance
imaging (MRI), while MCP on the gradient was proposed in [17].

Recently, a scale-invariant functional L;/L, was examined, which gives promising
results in recovering sparse signals [18, 19, 20] and sparse gradients [21]. In this paper,
we rely on a constrained formulation to characterize some scenarios, under which the
quotient of the L; and Ly norms on the gradient performs well. In particular, we borrow
the analysis of a super-resolution problem, which refers to recovering a sparse signal from
its low-frequency measurements. Candés and Fernandez-Granda [22] proved that if a
signal has spikes (locations of nonzero elements) that are sufficiently separated, then the
Ly minimization yields an exact recovery for super-resolution. We innovatively design a
certain type of piecewise constant signals that lead to well-separated spikes after taking
the gradient. Using such signals, we empirically demonstrate that the TV minimization
can find the desired solution under a similar separation condition as in [22]. We also
illustrate that L;/Ls can deal with less separated spikes in gradient, and is better at
preserving image contrast than L;. These empirical evidences show L;/Ls holds great
potentials in promoting sparse gradients and preserving image contrasts. To the best of
our knowledge, it is the first time to relate the exact recovery of gradient-based methods
to minimum separation and image contrast in a super-resolution problem.

Numerically, we consider the same splitting scheme used in an unconstrained
formulation [21] to minimize the L;/Ly; on the gradient, followed by the alternating
direction method of multipliers (ADMM) [23]. We formulate the linear constraint using
an indicator function, which is not strongly convex. As a result, the convergence analysis
in the unconstrained model [21] is not directly applicable to this problem. We utilize
the property of indicator function as well as the optimality conditions for constrained
optimization problems to prove that the sequence generated by the proposed algorithm
has a subsequence converging to a stationary point. Under a stronger assumption, we
can establish the convergence of the entire sequence, referred to as global convergence.
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We present some algorithmic insights on computational efficiency of our proposed
algorithm for nonconvex optimization. In particular, we show an additional box
constraint not only prevents the solution from being stuck at local minima, but also
stabilizes the algorithm. Furthermore, we discuss algorithmic behaviors on two types
of applications: MRI and computed tomography (CT). For the MRI reconstruction, a
subproblem in ADMM has a closed-form solution, while an iterative solver is required
for CT. As the accuracy of the subproblem varies between MRI and CT, we shall
alter internal settings of our algorithm accordingly. In summary, this paper relies on a
constrained formulation to discuss theoretical and computational aspects of a nonconvex
regularization for imaging problems. The major contributions are three-fold:

(i) We reveal empirical evidences towards exact recovery of piecewise constant signals
and demonstrate the superiority of L;/Ls on the gradient over TV.

(ii) We establish the subsequential convergence of the proposed algorithm and explore
the global convergence under the certain assumptions.

(iii) We conduct extensive experiments to characterize computational efficiency of
our algorithm and discuss how internal settings can be customized to cater to
specific imaging applications, such as MRI and limited-angle CT reconstruction.
Numerical results highlight the superior performance of our approach over other
gradient-based regularizations.

The rest of the paper is organized as follows. Section 2 defines the notations that will
be used through the paper, and gives a brief review on the related works. The empirical
evidences for TV’s exact recovery and advantages of the proposed model are given in
Section 3. The numerical scheme is detailed in Section 4, followed by convergence
analysis in Section 5. Section 6 presents three types of imaging applications: super-
resolution, MRI and CT reconstruction problems. Finally, conclusions and future works
are given in Section 7.

2. Preliminaries

We use a bold letter to denote a vector, a capital letter to denote a matrix or linear
operator, and a calligraphic letter for a functional space. We use ® to denote the
component-wise multiplication of two vectors. When a function (e.g., sign, max, min)
applies to a vector, it returns a vector with corresponding component-wise operation.
We adopt a discrete setting to describe the related models. Suppose a two-
dimensional (2D) image is defined on an m xn Cartesian grid. By using a standard linear
index, we can represent a 2D image as a vector, i.e., the ((i — 1)m + j)-th component
denotes the intensity value at pixel (i, j). We define a discrete gradient operator,

D,
Du e [ D ] " 1)
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where D,, D, are the finite forward difference operator with periodic boundary condition
in the horizontal and vertical directions, respectively. We denote N := mn and the
Euclidean spaces by X := RV, Y := R?, then u € X and Du € ). We can apply the
standard norms, e.g., Ly, Ly, on vectors u and Du. For example, the L; norm on the
gradient, i.e., [[Dull;, is the anisotropic TV regularization [5]. Throughout the paper,
we use TV and “L; on the gradient” interchangeably. Note that the isotropic TV [1]
is the Ly; norm, i.e., |[(Dyu, Dyu)’||21, although Lou et al. [24] claimed to consider
a weighted difference of anisotropic and isotropic TV based on the L;-Ls functional
25, 26, 27, 28] (isotropic TV is not the Ly norm on the gradient.)
We examine the L;/Ly penalty on the gradient in a constrained formulation,

in | Dul|y
u [[Dul

s.t. Au=bh. (2)
One way to solve for (2) involves the following equivalent form

min M st. Au=Db, d = Du, h = Du, (3)
udh || hl,
with two auxiliary variables d and h. For more details, please refer to [18] that presented
a proof-of-concept example for MRI reconstruction. Since the splitting scheme (3)
involves two block variables of u and (d,h), the existing ADMM convergence results
[29, 30, 31] are not applicable. An alternative approach was discussed in our preliminary
work [21] for an unconstrained minimization problem,

_|Dull
wn' al,

+%||Au—b||§ st. h=Du, (4)

where A > 0 is a weighting parameter. By only introducing one variable h, the
new splitting scheme (4) can guarantee the ADMM framework with subsequential
convergence.

In this paper, we incorporate the splitting scheme (4) to solve the constrained
problem (2), which is crucial to reveal theoretical properties of the gradient-based
regularizations for image reconstruction, as elaborated in Section 3.  Another
contribution of this work lies in the convergence analysis, specifically for different
optimality conditions of the constrained problem, as opposed to unconstrained
formulation presented in [21]. It is true that the constrained formulation limits our
experimental design in a noise-free fashion, but it helps us to draw conclusions solely on
the model, ruling out the influence from other nuisances such as noises and tuning
parameters. Our model (2) is parameter-free, while there is a parameter A in the
unconstrained problem (4).

3. Empirical studies

We aim to demonstrate the superiority of L;/Ls on the gradient over TV for a super-
resolution problem [32], in which a sparse vector can be exactly recovered via the L,
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minimization. A mathematical model for super-resolution is expressed as
| Nl
bk = —= Z uje_i27rkj/N7 |k| < Jer (5)
VN =

where i is the imaginary unit, u € RY is a vector to be recovered, and b € C" consists
of the given low frequency measurements with n = 2f. + 1 < N. Recovering u from b
is referred to as super-resolution in the sense that the underlying signal u is defined on
a fine grid with spacing 1/N, while a direct inversion of n frequency data yields a signal
defined on a coarser grid with spacing 1/n. For simplicity, we use matrix notation to
rewrite (5) as b = S, Fu, where S, is a sampling matrix that collects the required low
frequencies and F' is the Fourier transform matrix. A sparse signal can be represented
by u = ZjGT cje;, where e; is the j-th canonical basis in RY, T' is the support set of
u, and {¢;} are coefficients. Following the work of [32], the sparse spikes are required
to be sufficiently separated to guarantee the exact recovery of the L; minimization.
To make the paper self-contained, we provide the definition of minimum separation in
Definition 1 and an exact recovery condition in Theorem 1.

Definition 1. (Minimum Separation [32]) For an index set T C {1,---,N}, the
minimum separation (MS) of T is defined as the closest wrap-around distance between
any two elements from T,

A(T):= min min{|t—7|, N—|t—7|}. (6)

(t,m)ET t#T

Theorem 1. [32, Corollary 1.4] Let T be the support of u. If the minimum separation
of T obeys

A(T) > 1'8f7N,

then u € RY is the unique solution to the constrained L, minimization problem,

(7)

min||ul; s.t. S,Fu=b. (8)

We empirically extend the analysis from sparse signals to sparse gradients. For
this purpose, we construct a one-bar step function of length 100 with the first and the
last s elements taking value 0, and the remaining elements equal to 1, as illustrated
in Figure 1. The gradient of such signal is 2-sparse with MS to be min(2s, 100 — 2s)
due to wrap-around distance. By setting f. = 2, we only take n = 5 low frequency
measurements, and reconstruct the signal by minimizing either L; or L;/Ls on the
gradient. For simplicity, we adopt the CVX MATLAB toolbox [33] for solving the TV
model,

min |Dul; s.t. Au=b, 9)

where we use A = S, F' to be consistent with our setting (2). Note that the TV model
(9) is parameter free, while we need to tune an algorithmic parameter for L, /L,. Please
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Figure 1. A general setting of a one-bar step function (left) and reconstruction errors
with respect to s (right) by minimizing L; or Li/Ls on the gradient. The exact
recovery interval by L; is s € [13,37], which is smaller than [12,38] by L;/Ls.
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Figure 2. A particular one-bar example (left) where both Ly and L;/Ls models fail
to find the solution. The different plot (right) highlights that L; results in larger
oscillations compared to Lq/Ls.

refer to Section 4 for more details on the L; /Ly minimization, in which one subproblem
can be solved by CVX, and Section 6.1 for sensitivity analysis on this parameter.

By varying the value of s that changes MS of the spikes in gradient, we compute
the relative errors between the reconstructed solutions and the ground-truth signals.
If we define an exact recovery for its relative error smaller than 107%, we observe in
Figure 1 that the exact recovery by L; occurs at s € [13,37], which implies that MS
is larger than or equal to 26. This phenomenon suggests that Theorem 1 might hold
for sparse gradients by replacing the L; norm with the total variation. Figure 1 also
shows the exact recovery by Li/Ly at s € [12,38], meaning that L;/L, can deal with
less separated spikes than L. Moreover, we further study the reconstruction results at
s = 39, where both models fail to find the true sparse signal. The restored solutions by
these two models as well as the different plots between restored and ground truth are
displayed in Figure 2, showing that our ratio model has smaller relative errors than L;.

Figure 2 illustrates that the TV solution can not reach the top of the bar in the
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Figure 3. A general setting of a two-bar step function (left) and reconstruction errors
with respect to ¢ (right) by minimizing L, or Li/Ls on the gradient, showing that
L1/Ls is better at preserving image contrast than Ly (controlled by ).
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Figure 4. A particular two-bar example where both Ly and L, /L2 models fail to find
the solution. The different plot is shown on the right.

ground-truth, which is referred to as loss-of-contrast. Motivated by this well-known
drawback of TV, we postulate that the signal contrast may affect the performance of
Ly and Ly/Ly. To verify, we examine a two-bar step function, in which the contrast
varies by the relative heights of the two bars. Following MATLAB’s notation, we set
u(s +1:2s) = 2,ulend — 25 + 1 : end) = 1, and the value of remaining elements
uniformly as ¢; see Figure 3 for a general setting. We fix s = 12, and vary the value
of t € (1,2) to generate signals with different intensity contrasts. Considering four
spikes in the gradient, we set f. = 4 or equivalently 9 low-frequency measurements to
reconstruct the signal. The reconstruction errors are plotted in Figure 3, which shows
that L; fails in all the cases, and Li/Ly can find the signals except for ¢ € [1.5,1.65].
We further examine a particular case of t = 1.65 in Figure 4, where both models fail
to get an exact recovery, but L;/Ls yields smaller oscillations than L; near the edges.
Figures 3 and 4 demonstrate that Ly /L, is better at preserving image contrast than L.

We verify that all the solutions of Ly and L; /Ly satisfy the linear constraint Au = b
with high accuracy thanks for CVX. We further investigate when the L; approach fails,
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and discover that it yields a solution that has a smaller L; norm compared to the L,
norm of the ground-truth, which implies that L; is not sufficient to enforce gradient
sparse. On the other hand, L;/Ls solutions often have higher objective value than the
ground-truth, which calls for a better algorithm that can potentially find the ground-
truth. We also want to point out that L;/L, solutions depend on initial conditions. In
Figure 1 and Figure 3, we present the smallest relative errors among 10 random vectors
for initial values.

The minimum separation distance in 1D (Definition 1) can be naturally extended
to 2D. In fact, there are two types of minimum separation definitions in 2D: one uses
the L norm to measure the distance [32], while another definition is called Rayleigh
reqularity (34, 35]. The exact recovery for 2D sparse vectors was characterized in [35]
with additional restriction of positive signals. Both distance definitions were empirically
examined in [12] for point-source super-resolution. When extending to 2D sparse
gradient, one can compute the gradient norm at each pixel, and separation distance
can be defined as the distance between any two locations with non-zero gradient norm.
To the best of our knowledge, there is no analysis on the exact recovery of sparse
gradients, no matter whether it is in 1D or 2D. In Section 3, we devote some empirical
evidences, showing a similar relationship between sparse gradient recovery and minimum
separation as Theorem 1, which calls for a theoretical justification in the future. Once
the extension from 1D sparse vectors to 1D sparse gradients is established, it is expected
that the analysis can be applied to sparse gradients in 2D to facilitate theoretical analysis
in imaging applications.

4. The proposed approach

Starting from (2), we incorporate an additional box constraint in the model, i.e.,
_|Dull;
u [[Dull

The notation u € [p, q]¥ means that every element of u is bounded by [p, q]. The box

st. Au=b, uc[pq”. (10)

constraint is reasonable for image processing applications [36, 37], since pixel values
are usually bounded by [0, 1] or [0,255]. On the other hand, the box constraint is
particularly helpful for the L,/L, model to prevent its divergence [19].
We use the indicator function to rewrite (10) into the following equivalent form
[ Dully

Hllﬁl W + HAu:b<U) + H[pyq}N<U) S.t. Du = h, (11)
u, 2

where IIg(t) denotes the indicator function that forces t to belong to a feasible set S,

Mg(t) {O iftesS (12)

ie.,

+o00 otherwise.
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The augmented Lagrangian function corresponding to (11) can be expressed as,

_ [[Dufl

p
+ Mg () + Ty v (w) + (pg, Du— )+ 2| Du— b, (13)

where g is a dual variable and p is a positive parameter. Then ADMM iterates as
follows,
u**+) = argmin, £(u, h®); g*))
h*+1) = arg miny, £L(u®*V h; g®) (14)
gkt — g(B) 1 Dy(k+1) _ [+

The update for h is the same as in [18], which has a closed-form solution of

hwﬂ>_{7wNDuw“”+@“)lfDu@“+g #0

rk) otherwise,

where r®) is a random vector with the Ly norm being ¢/ w and 7(F) = %%— %(é(k) +
g(k>> for

[Du®*V],
pllDulD) 4+ g®|3-

and ) =

£k — \/2777““ +2+/(27Tn®) +2)2 — 4
2

We elaborate on the u-subproblem in (14), which can be expressed by the box
constraint, i.e.,

D
u*) = arg min |‘|| ;‘!’\ +5IDu—h® +g® 3 st Au=buelp.g”. (16)

To solve for (16), we introduce two variables, v for the box constraint and d for the
gradient, thus getting

in dlh P B gk
IIIIC%VHh o, §||Du—h( ) 4 gl )||3+H[p’q]N(V) st. u=v,Du=d,Au=b. (17)

The augmented Lagrangian function corresponding to (17) becomes

Idll: , »
L0 d viw,y.z) = a5 + 510w — b+ g @ 4Ty, (v)

o4
+ (v =) + D v
v
+ {1y, Du—d) + Z|[Du— d|3

+ (A, Au —b) + )| Au — b

where w,y, z are dual variables and f3,, A are positive parameters. Here we have k in
the superscript of £ to indicate that it is the Lagrangian for the u-subproblem in (14)
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at the k-th iteration. The ADMM framework to minimize (17) leads to

( _ . k .
u,41 = argmin, L )(u,dj,vj,wj,yj,zj)

dj+1 = arg IIliIld E(k) <Uj+1, d, ViiW;,¥j, Zj)
Vi1 = argming L8 (w41, djy1, v; w5, y;, 7))
Wit1 = W; +Uj41 — Vi

Yit1 =¥+ Doy —djin

zj1 = 2z; + Aujp — b,

(19)

\

where the subscript j represents the inner loop index, as opposed to the superscript k
for outer iterations in (14). By taking derivative of £*) with respect to u, we obtain a
closed-form solution given by

-1
W = (/\ATA +(p+7)DTD + 51) (/\AT(b ~z)

20
+7D"(d; —y;) + pD" (0™ — gW) + B(v, —Wj)>a o

where [ stands for the identity matrix. When the matrix A involves frequency

measurements, e.g. in super-resolution and MRI reconstruction, the update in (20) can

be implemented efficiently by the fast Fourier transform (FFT) for periodic boundary

conditions when defining the derivative operator D in (1). For a general system matrix

A, we adopt the conjugate gradient descent iterations [38] to solve for (20).

The d-subproblem in (19) also has a closed-form solution, i.e.,

1
d;,; = shrink ( Du; G 21
741 snrin < u]+1+Y]7,y||h(k)||2> ) ( )
where shrink(x, 1) = sign(x) ©@ max {|x| — u, 0} is called soft shrinkage and ® denotes
element-wise multiplication. We update v by a projection onto the [p, ¢]-box constraint,
which is given by
Vi1 = min{max{u;1 + w;,p}, q}.

In summary, we present an ADMM-based algorithm to minimize the L;/Ls on
the gradient subject to a linear system with the box constraint in Algorithm 1. If we
only run one iteration of the u-subproblem (19), the overall ADMM iteration (14) is
equivalent to the previous approach [18].

5. Convergence analysis

We intend to establish the convergence of Algorithm 1 with the box constraint, which is
extensively tested in the experiments. Since our ADMM framework (14) share the same
structure with the unconstrained formulation, we adapt some analysis in [21] to prove
the subsequential convergence for the proposed model (10). For example, we make the
same assumptions as in [21],
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Algorithm 1 The L;/L; minimization on the gradient

1: Input: a linear operator A, observed data b, and a bound [p, ¢| for the original image
2: Parameters: p, A, v, 8, kMax, jMax, and ¢ € R
3: Initialize: h,d, g, v,w,y,z=0, and k,5 =0
4: while k < kMax or [[u® —u®*=|y/|[u® |, > € do
5. while j < jMax or ||u; — uj_1]|2/[|u;||2 > € do
6: w1 = (ANATA+ (p+~)DTD + BI) "' (ANAT (b — z;) + vDT(d; — y;)
+pDT (W™ —g®) + G(v; — w;))
7: d; 1 = shrink (DujH +Yjs m
V41 = min {max{u; + w;,p},q}
: Wil = Wj + Wjy1 — Vgl
10: Yi+1 =y; + Dujp —djp

11: Zj11 = 2Z; + AujJrl —b
12 j= 41

13:  end while

14:  return u**tY =y,

15:  Update h*+1) by (15).

16: g+ = g ¢ pyut+D) _ [+
17 k=k+1land j=0

18: end while

19: return u* = u®

Assumption 1. N (D) N(A) = {0}, where N denotes the null space and D is defined
in (1). In addition, the norm of {h™)} generated by (14) has a lower bound, i.e., there
exists a positive constant € such that [|h® |y > ¢, Vk.

Remark 1. We have ||hl||s > 0 in the L1/ Ls model as the denominator shall not be zero.
It is true that ||h||2 > 0 does not imply a uniform lower bound of € such that ||h|y > €
in Assumption 1. Here we can redefine the divergence of an algorithm by including the
case of ||h® ||y < €, which can be checked numerically with a pre-set value of e.

Unlike the unconstrained model (4), the strong convexity of £(u,h,g) with respect
to u does not hold due to the indicator function II 4,-p(u). Besides, we have additional
dual variable w which is not in the unconstrained model. To avoid redundancies to
[21], we focus on the different strategies to the unconstrained case, such as optimality
conditions and subgradient of the indicator function, when proving convergence for the
constrained problem, e.g., in Lemmas 1-2 and Theorem 2.

Lemma 1. (sufficient descent) Under Assumption 1, the sequence {u®) h® g*)}
generated by (14) satisfies

L, WD, g#) < £ h0; g®) [ty [0 RO, (22)

where ¢ and ¢y are two positive constants for a sufficiently large p.
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Proof. Denote o as the smallest eigenvalue of the matrix A7A + DTD. We show o
is strictly positive. If o = 0, there exists a nonzero vector x such that x7(ATA +
DTD)x = 0. Tt is straightforward that x’ AT Ax > 0 and xT' DT Dx > 0, so one shall
have x" ATAx = 0 and x"DTDx = 0, which contradicts N'(D)N(A) = {0} in

Assumption 1. Therefore, there exists a positive o > 0 such that
vI(ATA+ D'D)yv > o|v|3, Vv.
By letting v = u**) — u® and using Au**) = Au®) = b, we have
D@ — )2 > aful) — a2, (23)

We express the u-subproblem in (14) equivalently as

D
u(k+1) — arg mln ||||h ;|’|‘ —HDU. ( + g(k)Hg

st. Au=b,p—u<0,andu—¢<0.

The optimality conditions state that Au**Y = b and there exist three sets of vectors
w;(i =1,2,3) such that
p(k—i—l)

0= TGIN pDT(Du*t) — h® 4 g®) + ATw; — wy + ws, (24)

with p*+h) € 9||Du**+V||,. By the complementary slackness, we have wy, ws > 0 and
(p — (k+1)) Owy = (u(k+1) —q)Ows =0, (25)

which also holds for u®). Using the definition of subgradient, Au**!) = Au®) = b, and
(23)-(25), we obtain that

La®D BB, g®) _ £u® h®). gk)
(k+1)
<(B_—,

[h®) |,
= — (wy, Au) — Au®) 4 (D — u®) (a0

— p(Du*HD) — £®) Dy _ py®)y 4 g“ Du+D) — g2 gH Du® — g2

uD —q®y gHDu(kH) — 02 - gHDu(’“) — )2

=~ ZIDut — Du|p < - Zut+) — a3,

where f(®) = h®*) —g®) The bounds of £ (u(kﬂ), h(+D. g(k)) —L (u(k“), h*). g(k)) and
L (a*HD pktD); gkt — £ (k) ht+D: g(®)) exactly follow [21, Lemma 4.3] for the
unconstrained formulation, and hence we omit the rest of the proof. O
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Remark 2. Lemma 1 requires p to be sufficiently large so that two parameters ¢y and co
are positive. Following the proof of [21, Lemma 4.3/, c1 and c5 can be explicitly expressed

as
op 16N

2 pet

B ped —6M  16M>
263 peb

G = and ¢y (26)
where M = sup, |[Du®||y. Note that the assumption on p is a sufficient condition to
ensure the convergence, and we observe in practice that a relatively small p often yields

good performance.

Lemma 2. (subgradient bound) Under Assumption 1, there exists a vector n+t1) ¢
OL(uk+1) W+ ok+1)) and ¢ constant v > 0 such that

[n® V13 <y (%D = h® )3 4 |g® ) —g®3). (27)
Proof. We define
b1y pUTY T T (k+1) (k+1) (k+1)
m _W+A Wl—W2+W3+pD (Du —h +g )
2

Clearly by the subgradient definition, we can prove that A”w;, € Ol gy—p(u**) and

w3 — wy € O, v (u) which implies that Y e 9, L(utHD) nk+n) gk,

Combining the definition of n(lkH) with (24) leads to

(k+1) (k+1)

P
[+

(k+1) _ _ P
m Ih®]

To estimate an upper bound of ||77§k+1)||2, we apply the chain rule of sub-gradient,

ie., 9||Du|; = DTq, where q = {q | (q, Du) = ||Dul|1, [lq]|-c < 1}, thus leading to
Ip* Y|y < [|DT||2][q® V|| < 4V/N. Therefore, we have

(k+1) (k+1)

p

p _ ) hk)
H||h<k+1>||2 GI B

1 4N
< E—Qllh(k“) —h® [ p*]|, < THh('““

2

It further follows from (28) that

I < (4 230 [0 — B, + 25 g4 — g9, (20)

We can also define nékﬂ), n:(gkﬂ) such that

nék-ﬁ-l) c 8h£(u(k+1), h(k+1), g(k:-i-l))

Y € 9, £(ut+) hk+D, g+,
and estimate the upper bounds of HnékH)Hg and HnékH)HQ. By denoting n*+!) =
() D DY oo (uktD) htHD; gk+1) - the remaining proof is the same as
in [21, Lemma 4.4]. O
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Theorem 2. (subsequential convergence) Under Assumption 1 and a sufficiently large
p, the sequence {u™® h®) g®)V generated by (14) always has a subsequence convergent
to a stationary point (u*,h*, g*) of L, namely, 0 € IL(u*, h*, g*).

Proof. Since u®) € [p,q]V is bounded, then ||[Du®||; is bounded; i.e., there exists a
constant M > 0 such that ||[Du®||; < M. The optimality condition of the h-subproblem
in (14) leads to

k+1)

(
a
I N (.2 5 ) (k+1) _ (k+1) _ ()} —
||h(k:+1)||§h +p(h Du g) =0, (30)

where a®) := |[Du®||;. Using the dual update —g*+1) = h(#+1) — put+1) — g®) we

have (k1) kD)
a h
g(k—i-l) _ . (31>
o WO

Due to |[h®||; > € in Assumption 1, we get

NORNG
p [[h®3

M

R, — -
g% S

which implies the boundedness of {g®)}. It follows from the h-update (15) that {h*)}
is also bounded. Therefore, the Bolzano-Weierstrass Theorem guarantees that the
sequence {u® h® g*)1 has a convergent subsequence, denoted by (ut®) h*3) gki)) —
(u*,h*, g*), as k; — oco. In addition, we can estimate that

L(u® h®; g®)

[ Du® |y p p

=g+ Laun(u®) + 10, v (@) + Z|h® — Du® — g|5 — Z)lg®|3
[h()] 2 2
[Du®™], M2

— Wy 2pet]

which gives a lower bound of £ owing to the boundedness of u® and h®). It further
follows from Lemma 1 that £(u®), h®) g®) converges due to its monotonicity.
We then sum the inequality (22) from k£ = 0 to K, thus getting

ﬁ(u(KJrl)’ h(KJrl); g(K+1))
K K
< £, B0 g%) — e 37 utY —ub - e 3 B n
k=0 k=0

Let K — oo, we have both summations of > e [[u**t) —u®||2 and 777 [[h*+D) —
h®)||2 are finite, indicating that u® — u®*) — 0, h® — h®+1) — 0. Then by [21,
Lemma 4.2], we get g — g®+h) — 0. By (ut) h®) g®)) — (u* h* g*), we have
(uks D) hk+) gki+1)) 5 (u* h*, g*), Au* = b (as Au®) = b), and Du* = h* (by
the update of g). It further follows from Lemma 2 that 0 € OL(u*, h*, g*) and hence
(u*, h*, g*) is a stationary point of (13). O
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Lastly, we discuss the global convergence, i.e., the entire sequence converges, which
is stronger than the subsequential convergence as in Theorem 2, under a stronger
assumption that the augmented Lagrangian £ has the Kurdyka-Lojasiewicz (KL)
property [39]; see Definition 2. The global convergence of the proposed scheme (14)
is characterized in Theorem 3, which can be proven in a similar way as [40, Theorem
4]. Unfortunately, the KL property is an open problem for the L, /Ly functional, not to
mention L, /Ly on the gradient.

Definition 2. (KL property, [41]) We say a proper closed function h :R™ — (—o0, +00]
satisfies the KL property at a point x € domOh if there exist a constant v € (0,00], a
neighborhood U of X, and a continuous concave function ¢ : [0,v) — [0,00) with

»(0) =0 such that
(1) ¢ is continuously differentiable on (0,v) with ¢' >0 on (0,v);
(11) for every x € U with h(X) < h(x) < h(X) + v, it holds that
@' (h(x) — h(%))dist(0, Oh(x)) > 1,

where dist(x, C') denotes the distance from a point x to a closed set C' measured in || - ||2
with a convention of dist(0, () := +oo.

Theorem 3. (global convergence) Under the Assumption 1 and a sufficiently large p,
the sequence {u® h® g®l generated by (14). If the augmented Lagrangian L has the
KL property, {u® h®) g®)} converges to a stationary point of (13).

Proof. The proof is almost the same as [40, Theorem 4], thus omitted here. O

6. Experimental results

In this section, we test the proposed algorithm on three prototypical imaging appli-
cations: super-resolution, MRI reconstruction, and limited-angle CT reconstruction.
As analogous to Section 3, super-resolution refers to recovering a 2D image from low-
frequency measurements, i.e., we restrict the data within a square in the center of the
frequency domain. The data measurements for the MRI reconstruction are taken along
radial lines in the frequency domain; such a radial pattern [42] is referred to as a mask.
The sensing matrix for the CT reconstruction is the Radon transform [43], while the term
“limited-angle” means the rotating angle does not cover the entire circle [44, 45, 46].

We evaluate the performance in terms of the relative error (RE) and the peak
signal-to-noise ratio (PSNR), defined by

£ = 2
RE(u*, @) := % and PSNR(u*, ) := 10logy, ﬁ

*

where u* is the restored image, u is the ground truth, and P is the maximum peak
value of u.
To ease with parameter tuning, we scale the pixel value to [0, 1] for the original

images in each application and rescale the solution back after computation. Hence
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the box constraint is set as [0,1]. We start by discussing some algorithmic behaviors
regarding the box constraint, the maximum number of inner iterations, and sensitivity
analysis on algorithmic parameters in Section 6.1. The remaining sections are organized
by specific applications. We compare the proposed L;/Ls approach with total variation
(L, on the gradient) [1] and two nonconvex regularizations: L, for p = 0.5 and L;-
aLsy for a = 0.5 on the gradient as suggested in [24]. To solve for the L, model, we
replace the soft shrinkage (21) by the proximal operator corresponding to L, that was
derived in [47], and apply the same ADMM framework as the L; minimization. To
have a fair comparison, we incorporate the [0, 1] box constraint in Ly, L,, Li-aLs, and
Li/Ly models. We implement all these competing methods by ourselves and tune the
parameters to achieve the smallest RE to the ground-truth. Due to the constrained
formulation, no noise is added. We set the initial condition of u to be a zero vector
for all the methods. The stopping criterion for the proposed Algorithm 1 is when the
relative error between two consecutive iterates is smaller than € = 107° for both inner

and outer iterations. All the numerical experiments are carried out in a desktop with
CPU (Intel i7-9700F, 3.00 GHz) and MATLAB 9.8 (R2020a).

6.1. Algorithmic behaviors

We discuss three computational aspects of the proposed Algorithm 1. In particular,
we want to analyze the influence of the box constraint, the maximum number of inner
iterations (denoted by jMax), and the algorithmic parameters on the reconstruction
results of MRI and CT problems. We use MATLAB’s built-in function phantom, which

is called the Shepp-Logan (SL) phantom, to test on 6 radial lines for MRI and 45°
[Dul®]|
HDU““)II; d

scanning range for CT. The analysis is assessed in terms of objective values
RE(u®, @) versus the CPU time.

In Figure 5, we present algorithmic behaviors of the box constraint for both MRI
and CT problems, in which we set jMax to be 5 and 1, respectively (we will discuss the
effects of inner iteration number shortly.) In the MRI problem, the box constraint is
critical; without it, our algorithm converges to another local minimizer, as RE goes up.
With the box constraint, the objective values decrease faster than in the no-box case,
and the relative errors drop down monotonically. In the CT case, the influence of box
is minor but we can see a faster decay of RE than the no-box case after 200 seconds.
In the light of these observations, we only consider the algorithm with a box constraint
for the rest of the experiments.

We then study the effect of jMax on MRI/CT reconstruction problems in Figure 6.
We fix the maximum outer iterations as 300, and examine four possible jMax values: 1,
3, 5 and 10. In the case of MRI, jMax = 10 causes the slowest decay of both objective
value and RE. Besides, we observe that only one inner iteration, which is equivalent to
our previous approach [18], is not as efficient as more inner iterations to reduce the RE
in the MRI problem. The CT results are slightly different, as one inner iteration seems
sufficient to yield satisfactory results. The disparate behavior of CT to MRI is probably
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Figure 5. The effects of box constraint on objective values (top) and relative errors
(bottom) for MRI (left) and CT (right) reconstruction problems.

due to inexact solutions by CG iterations. In other words, more inner iterations do not
improve the accuracy. Following Figure 6, we set jMax to be 5 and 1 in MRI and CT,
respectively, for the rest of the experiments.

Lastly, we study the sensitivity of the parameters A, p, 5 in our proposed algorithm
to provide strategies for parameter selection. For simplicity, we set v = p as their
corresponding auxiliary variables represent Du. In the MRI reconstruction problem,
we examine three values of A € {100,1000,10000} and two settings of the number
of maximum outer iterations, i.e., kMax € {500,1000}. For each combination of A
and kMax, we vary parameters (p,3) € (2%,27), for i, € [—4,4], and plot the RE
in Figure 7. We observe that small values of p work well in practice, although we
need to assume a sufficiently large value for p when proving the convergence results in
Theorem 2. Besides, a larger kMax value leads to larger valley regions for the lowest RE,
which verifies that only p and g affect the convergence rate. Figure 7 suggests that our
algorithm is generally insensitive to all these parameters 3, p and A as long as p is small.
Similarly in the CT reconstruction, we set A € {0.005,0.05,0.5}, kMax € {100, 300},
and (p,B) € (2¢,27), for i,j € [—4,4], Figure 8 shows that p and 8 can be selected
in a wide range, especially for large number of outer iterations. But our algorithm is
sensitive to A for the CT problem, as A = 0.005 or 0.5 yields larger errors than A = 0.05.
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Figure 6. The effects of the maximum number in the inner loops (jMax) on objective
values (top) and relative errors (bottom) for MRI (left) and CT (right) reconstruction
problems.

In the light of this sensitivity analysis, we can tune parameters by finding the optimal
combination among a candidate set for each problem, specifically paying attention to
the value of A in the limited-angle CT reconstruction.

6.2. Super-resolution

We use an original image from [48] of size 688 x 688 to illustrate the performance of super-
resolution. As super-resolution is similar to MRI in the sense of frequency measurements,
we set up the maximum iteration number as 5 according to Section 6.1. We restrict
the data within a square in the center of the frequency domain (corresponding to low-
frequency measurements), and hence varying the sizes of the square leads to different
sampling ratios. In addition to regularized methods, we include a direct method of filling
in the unknown frequency data by zero, followed by inverse Fourier transform, which
is referred to as zero-filling (ZF). The visual results of 1% are presented in Figure 9,
showing that both L, and L,/Ly are superior over ZF, L, and L;-aLy. Specifically,
L1/ L5 can recover these thin rectangular bars, while L; and Li-aLs lead to thicker bars
with white background, which should be gray. In addition, L, and L;/Ls can recover
the most of the letter ‘a’ in the bottom of the image, compared to the other methods,
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Figure 8. The relative errors with respect to the parameters A, p, 8 in Algorithm 1
for CT reconstruction when kMax is 100 (top) or 300 (bottom).

while L;y/Ls is better than L, with more natural boundaries along the six dots in the
middle left of the image. One drawback of L;/Ls is that it produces white artifacts
near the third square from the left as well as around the letter ‘a’ in the middle. We
suspect L;1/Ls is not very stable, and the box constraint forces the black-and-white
regions near edges. We do not present quantitative measures for this example, as four
noisy squares on the right of the image lead to meaningless comparison, considering that
all the methods return smooth results.
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Figure 9. Super-resolution from 1% low frequency data.

6.3. MRI reconstruction

To generate the ground-truth MRI images, we utilize a simulated brain database [49, 50]
that has full three-dimensional data volumes obtained by an MRI simulator [51] in
different modalities such as T1 and T2 weighted images. As a proof of concept, we
extract one slice from the 3D T1 and T2 data as testing images and take frequency
data along radial lines. The visual comparisons are presented for 25 radial lines (about
13.74% measurements) in Figure 10. We include the zero-filled method as mentioned
in super-resolution, which unfortunately fails to recover the contrast for both T1 and
T2. The other regularization methods yield more blurred results than the proposed
L1/ Ly approach. Particularly worth noticing is that our proposed model can effectively
separate the gray matter and white matter in the T1 image, as highlighted in the zoom-
in regions. Furthermore, we plot the horizontal and vertical profiles in Figure 11, where
we can see clearly that the restored profiles via L /L, are closer to the ground truth than
the other approaches, especially near these peaks that can be reached by L,, Li-aLo,
and Li/Ls, but not L;. As a further comparison, we present the MRI reconstruction
results under various number of lines (20, 25, and 30) in Table 1, which demonstrates
significant improvements of L;/Ls over the other models in term of PSNR and RE.
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Figure 10. MRI reconstruction from frequency measurements along 25 radial lines of
T1 (top row) and T2 (bottom row). From left to right: ground truth, Lq, L,, L1-aLs,

and L1 /L2 .
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Figure 11. Horizontal (left) and vertical (right) profiles of MRI reconstruction results
from 25 radial lines for T1 (top) and T2 (bottom).
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Table 1. MRI reconstruction from different numbers of radial lines.
7F L1 Ly Li-alLo Li/L2

PSNR RE PSNR RE PSNR RE PSNR RE PSNR RE
20 21.26 22.13% 27.20 11.17% 27.24 11.11% 27.41 10.90% 29.94 8.15%
T1 25 23.42 17.26% 30.32 7.80% 30.06 8.04% 30.34 7.78% 33.21 5.59%
30 24.07 16.02% 31.92 6.48% 31.63 6.70% 31.70 6.65% 34.84 4.63%
20 17.89 33.91% 21.12 23.37% 21.13 23.34% 21.74 21.75% 23.50 17.76%
T2 25 18.83 30.44% 22.92 18.99% 23.23 18.33% 23.59 17.58% 25.80 13.63%
30 19.42 28.43% 24.27 16.26% 24.76 15.36% 25.10 14.78% 27.60 11.09%

Image | Line

6.4. Limited-angle C'T' reconstruction

Lastly, we examine the limited-angle CT reconstruction problem on two standard
phantoms: Shepp-Logan (SL) by Matlab’s built-in command (phantom) and FORBILD
(FB) [52]. Notice that the FB phantom has a very low image contrast and we display
it with the grayscale window of [1.0, 1.2] in order to reveal its structures; see Figure 12.
To synthesize the CT projected data, we discretize both phantoms at a resolution of
256 x 256. The forward operator A is generated as the discrete Radon transform with
a parallel beam geometry sampled at Oyay /30 over a range of Oy, resulting in a sub-
sampled data of size 362 x 31. Note that we use the same number of projections when
we vary ranges of projection angles. The simulation process is available in the IR and
AIR toolbox [53, 54]. Following the discussion in Section 6.1, we set jMax= 1 for the
subproblem. We compare the regularization models with a clinical standard approach,
called simultaneous algebraic reconstruction technique (SART) [55].

As the SL phantom has relatively simpler structures than FB, we present an
extremely limited angle of only 30° scanning range in Table 2, which shows that L; /L,
achieves significant improvements over SART, L,, L,, and L;-aL;y in terms of PSNR
and RE. Visually, we present the CT reconstruction results of 45° projection range for
SL (SL-45°) and 75° for FB (FB-75°) in Figure 12. In the first case (SL-45°), SART fails
to recover the ellipse inside of the skull with such a small range of projection angles.
All the regularization methods perform much better owing to their sparsity promoting
property. However, the L; model is unable to restore the bottom skull and preserve
details of some ellipses in the middle. The proposed L;/L; method leads an almost
exact recovery with a relative error of 0.64% and visually no difference to the ground
truth. In the second case (FB-75°), we show the reconstructed images with the window
of [1.0, 1.2], and observe some fluctuations inside of the skull. L, performs the best,
while L;/Ls restores the most details of the image among the competing methods. We
plot the horizontal and vertical profiles in Figure 13, which illustrates that L;/Ly leads
to the smallest fluctuations compared to the other methods. We also observe a well-
known artifact of the L; method, i.e., loss-of-contrast, as its profile fails to reach the
height of jump on the intervals such as [160, 180] in the left plot and [220,230] in the
right plot of Figure 13, while L;/Ls has a good recovery in these regions.
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Figure 12. CT reconstruction results of SL-45° (top) and FB-75° (bottom). From
left to right: ground truth, L1, Ly, L1-aLo, and Ly /Ly. The gray scale window is [0, 1]
for SL and [1,1.2] for FB.
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Figure 13. Horizontal and vertical profiles of CT reconstruction results of FB-75°.

Table 2. CT reconstruction with difference ranges of scanning angles.

ot SART I Ly Li-aLs L1/L2
phantom | range —seyR RE PSNR RE PSNR _ RE | PSNR RE PSNR  RE
30° 15.66  66.95% | 28.32 1557% | 40.25 3.95% | 38.15  502% | 60.77 0.37%
SL 15° 16.08  63.78% | 33.33  8.75% | 44.06 2.54% | 6334 0.28% | 7042 0.12%
60° 16.48  60.02% | 43.37 2.75% | 46.50 1.02% | 80.10 0.04% | 73.46 0.09%
60° 15.61  40.16% | 25.43 12.96% | 58.01 0.30% | 2624 11.81% | 46.97 1.09%
FB 759 16.14  37.79% | 28.84 8.76% | 59.02 027% | 29.49 8.13% | 49.30 0.83%
90° 16.64  35.68% | 69.68 0.08% | 62.05 0.19% | 7567 0.04% | 7057 0.07%
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7. Conclusions and future works

In this paper, we considered the use of L;/Ls on the gradient as an objective function
to promote sparse gradients for imaging problems. We started from a series of 1D
piecewise signal recovery and demonstrated the superiority of the ratio model over
Ly, which is widely known as the total variation. To facilitate the discussion on
the empirical evidences, we focused on a constrained model, and proposed a splitting
algorithm scheme that has provable convergence for ADMM. We conducted extensive
experiments to demonstrate that our approach outperforms the state-of-the-art gradient-
based approaches. Motivated by the empirical studies in Section 3, we will devote
ourselves to the exact recovery of the TV regularization with respect to the minimum
separation of the gradient spikes. We are also interested in extending the analysis to
the unconstrained formulation, which is widely applicable in image processing.
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