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Abstract

We analyze stochastic conditional gradient methods for constrained optimization problems
arising in over-parametrized machine learning. We show that one could leverage the interpolation-
like conditions satisfied by such models to obtain improved oracle complexities. Specifically,
when the objective function is convex, we show that the conditional gradient method requires
O(e™?) calls to the stochastic gradient oracle to find an e-optimal solution. Furthermore, by
including a gradient sliding step, we show that the number of calls reduces to O(e~1).

Keywords: Stochastic Conditional Gradient, Oracle Complexity, Overparametrization, Zeroth-
order Optimization.

1 Introduction

Consider the following constrained stochastic optimization problem:

min - {f(x) := B¢ [F(z, )]}, (1)
€
where f:R? — R and Q C R? is a closed and convex set and ¢ is a random vector characterizing
the stochasticity in the problem. In a machine learning setup, the function F' could be interpreted
as the loss function associated with a sample £ and the function f could represent the risk, which is
defined as the expected loss. Such constrained stochastic optimization problems arise frequently
in statistical machine learning applications. The conditional gradient algorithm, also called as the
Frank-Wolfe algorithm, is an efficient method for solving constrained optimization problems of the
form in (1) due to their projection-free nature [25, 19, 14, 27, 5, 35]. In each step of the conditional
gradient method, it is only required to minimize a linear objective over the set ). This operation
could be implemented efficiently for a variety of sets arising in statistical machine learning, compared
to the operation of projecting onto the set 2, which is required for example by the projected gradient
method. Hence, the conditional gradient method has regained popularity in the last decade in the
optimization and machine learning community.
There has been extensive work in the past decade on analyzing the stochastic conditional
gradient algorithm for optimization problems of the form in (1); see for example [15, 22, 28, 36, 16].
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However, existing works do not take into account certain favorable structures that are naturally
available in modern over-parametrized machine learning problems. Specifically, it has been noted
that modern machine learning models predict well on unseen data, despite fitting the training data
perfectly [44, 24, 29, 30, 32, 21]. Examples include logistic regression or support vector machine
with squared-hinge loss that are trained with linearly separable data [41, 42, 31] and deep neural
networks [41, 3]. From an optimization point of view, for the problem in (1) with Q = R?, the above
interpolation condition means that at the optimal point, the gradient is not only zero (or close to
zero) with respect to the risk function f but is also almost surely equal to zero for the random loss
function F'. Such a scenario helps to reduce the stochasticity in the gradient estimation process
which in turn results in improved complexity results for several stochastic optimization procedures.
Indeed in the recent past, several works have provided improved rates for algorithms like stochastic
gradient descent [33, 30, 3, 18, 41, 42] and sub-sampled Newton’s method [31]. In particular, for
several settings, the above works demonstrate that the stochastic algorithm may perform as well
as the corresponding deterministic counterpart. However, such works only study unconstrained
optimization problems and do not have any consequences for constrained stochastic optimization
problems of the form in (1).

Hence, in this work we consider the following question: Can we obtain improvements in the
oracle complexity of algorithms used for projection-free constrained stochastic optimization problems
arising in the context of over-parametrized machine learning models, that are capable of perfectly
interpolating the training data? We give a positive answer to the above question by demonstrating
that the stochastic conditional gradient method, a projection-free technique for solving constrained
stochastic optimization problems, also enjoy improved oracle complexities when they are used to
solve constrained stochastic optimization problems of the form in (1) under certain interpolation-like
conditions. We elaborate on the specific form of improvement observed below. For stochastic
conditional gradient algorithms, the oracle complexity is measured in terms of number of calls to
the Stochastic First-order Oracle (SFO) and the Linear Minimization Oracle (LMO) used to the
solve the subproblems (that are of the form of minimizing a linear function over the convex feasible
set) arising in the algorithm. In this work, we make the following contribution to the literature
on conditional gradient methods under interpolation-like assumptions (see Section 2 for the exact
definitions) on the stochastic gradient:

1. For the case of convex f in (1), we show that the number of calls to the SFO for the vanilla
stochastic conditional gradient method and stochastic conditional gradient sliding methods are
given respectively by O(e=2) and O(¢~'®). For comparison, without such assumptions, the
corresponding complexities are O(e~3) and O(e~2) respectively. The number of calls to the
linear minimization oracle (LMO) is of the order O(e~!), in both cases.

2. We also demonstrate similar improvements in the context of zeroth-order conditional gradient
methods, where one only observes noisy evaluations of the function being optimized. Specifically,
the number of calls to the stochastic zeroth-order oracle for the vanilla stochastic conditional
gradient method and stochastic conditional gradient sliding methods are given respectively by
O(de2) and O(de~'?), with the same LMO complexity as the first-order setting.

We emphasize that, notably the above improvements are achieved without incorporating any double-
loop based existing variance reduction techniques, for example SVRF [36] or SPIDER-FW [43]. It is
also worth noting that [9, 39] argue that variance reduction techniques (at the least existing ones) are
ineffective in the context of modern deep learning models which are invariably over-parametrized. We
also remark that, in contrast to stochastic gradient methods for unconstrained optimization [41, 3],
the above improved results still do not match the corresponding deterministic rates highlighting the
subtlety with projection-free optimization.



2 Preliminaries and Assumptions

We now list and discuss the set of assumptions made in our work. We first list some regularity
assumptions on the function f and the set €.

Assumption 1. The function f has L-Lipschitz gradient V f, i.e., for any pair of points x,y € ), we
have |V f(z) — Vf(y)| < Lz —yl|, and the feasible set Q C R? is bounded, z'.e.,maué |l —y|| < D.
T,yc

The above set of assumptions are standard in the analysis of stochastic conditional gradient methods
and has been used in prior works in the literature; see for example [17]. We make the above
assumptions for both the first-order setting. We also require the following smoothness assumption
in the zeroth-order setting.

Assumption 2. The function F has Lipschitz continuous gradient with constant L, almost surely
for any &, i.e., for any x,y € R?, i.e., almost surely we have ||VF(x,€) — VF(y,&)|| < Lz — y|.

Note that the above assumption is stronger than the first statement of Assumption 1 and implies
it. However, we only use Assumption 2 for the analysis of zeroth-order algorithms.

2.1 Growth Conditions in the Convex Constrained Setting

We now state the main interpolation-like assumptions that we make in our work when f is convex
and provide the main intuition behind such an assumption.

Assumption 3 (Moment-based Weak Growth Condition). Let z* be the minimum point of f. We
say that f satisfies the Moment-based Weak Growth Condition (WGC) with constant p, if for any
point x € ), we have

Ee |VF(z,6)|* < 2oL [f(2) — f(z")]- (2)

Assumption 4 (Variance-based Weak Growth Condition). Let x* be the minimum point of f. We
say that the function f satisfies the Variance-based Weak Growth Condition (WGC) with constant
p, if for any point x € Q, we have

E¢ |VF(z,€) = Vf(@)||* < 2pL[f(x) — f(z")]. (3)

The above conditions are motivated by the so-called strong growth condition: E|VF(x,¢)||? <
pllVf(2)]|?, used in [41] for obtaining faster rates of convergence for stochastic gradient method
in the unconstrained setting. Notice that in the interpolation setting, when V f(z*) = 0, we have
VF(xz*,£) =0, almost surely. Thus, the strong growth condition is defined exactly to take advantage
of this situation. Furthermore, in the smooth convex setting, [41] showed that the strong-growth
condition is equivalent to the moment-based weak growth condition in Assumption 3. However, the
moment-based weak growth condition as proposed in [41] is not directly suited for the constrained
stochastic setting that we consider in this work. It is easy to construct examples for which there
exists stationary point at the boundary of { with non-zero (stochastic) gradient, i.e., E[|VF(z,¢)|?
could remain positive while the right hand side goes to 0 and hence the assumption is not satisfied. In
order to resolve this issue, for the constrained setting, we relax the moment-based growth conditions
to the variance-based versions. Note that we have

E|VF(z,§) = Vf(2)|* =E|VF(z, )] - [Vf(2)|* < E[VF(z,)]*

Thus variance-based growth conditions naturally become the substitute for the moment-based version
in constrained problems and could hold even the moment-based conditions do not hold. As they are



also motivated by the interpolation assumption, we refer to these conditions as interpolation-like
conditions. Formally, under the variance-based growth conditions for a convex f, if we attain an
optimal point z* € €2, the variance of the stochastic first-order oracle will be almost surely zero, i.e.,

F(z*,£) = Vf(x*) almost surely. This property eventually leads to the improvements in the query
complexity that we demonstrate. We emphasize that it is natural to construct counter-examples
that violate Assumption 4. In those cases, the improved query complexities that we demonstrate
are simply not applicable. Finally, we also have the following natural relationships between the two
conditions.

Proposition 1. The Weak Growth Conditions defined above have the following relations:

(a) If f satisfies the Moment-based WGC' (3) with p, then f satisfies the Variance-based WGC (4)
with p and there exists x* € Q such that V f(x*) = 0.

(b) If f satisfies the Variance-based WGC' (4) with p and there ezists x* € Q such that V f(z*) =0,
then f satisfies the Moment-based WGC' (3) with p + 1.

2.2 Growth Conditions in the Zeroth-Order Constrained Setting

In the zeroth-order setting, we only assume availability of the noisy function evaluations. This
oracle setting is motivated by several applications where only noisy function queries of problem (1)
is available, such as reinforcement learning [38, 7, 8], hyperparameter tuning [40], and black-box
attacks to deep networks [6, 37]. Hence, we use the Gaussian Stein’s identity based random gradient
estimator, a standard gradient estimator in the zeroth-order optimization literature [17, 12, 34, 2]

1 b F(x + vu;, z,&;
EZ +vu; 5]) ( 7£J)uj’
where uq, ..., up are i.i.d. samples from N(0,I;). The above gradient estimator is a biased estimator
of the true gradient V f(x), and was also used in [2], to develop zeroth-order conditional gradient
descent algorithms.

While for the first-order setting, we use the relatively weaker variance-based conditions to obtain
the improved bounds, in the zeroth-order setting, it turns out the stronger moment-based conditions
are required. The reason is that the mean square error of the biased zeroth-order gradient estimator
is bounded above by E|VF(z,&)||?. Hence, to obtain improved rates, it makes it necessary to
make assumptions on the moments of the stochastic gradient directly. We emphasize that this is
required only for the constrained problems, since the moment-based conditions are equivalent to
the variance-based conditions when there exists one zero-gradient point in the constraint set (see
Proposition 1). In particular, we show in Appendix C that a zeroth-order version of Theorem 3
from [41], for stochastic gradient descent, to bound the gradient size in the nonconvex setting could
be proved just under the variance-based growth conditions.

2.3 Motivating Examples

Before we present our main results in the next section, we briefly discuss some motivating examples
of constrained stochastic optimization problems that arise in modern machine learning. In the
convex setting, it is easy to see that kernel regression [29], squared-Hinge loss based linear SVM
classifier or logistic regression on linearly separable data could be considered as operating in the
over-parametrized regime and hence satisfy interpolation-like conditions [41, 31].

However, without any constraints, such predictors might be biased against certain sensitive
features like race or gender. One way to build fair predictors is to explicitly encode fairness



constraints with respect to certain pre-defined sensitive features [11, 1]. Specifically, it was shown
in [1] that several standard and well-accepted notions of fairness in classification setting, including
equalized odds [20], demographic parity [13], balance for the negative class [26], treatment equality [4]
could be formulated as empirical risk minimization problems subjected linear inequality constraints.
In this case, the problem is exactly of the form in (1) with © being a polytope. Furthermore, [11]
also proposed a general approach for fair empirical risk minimization. Similar to [1], the fundamental
idea is to enforce constraints such that the conditional risk of a predictor is not varying much with
respect to the sensitive features associated with the problem. Such formulations of fair empirical
risk minimization in the interpolation regime also fall under the class of problems in (1).

Squared hinge loss with linearly separable data. As a concrete example, we extend the
unconstrained examples presented in [41] to the constrained setting we consider. Assuming a finite
support of features and the linearly separable data, it has been shown that the squared-hinge loss
satisfies SGC with p = ¢/72 where c is the cardinality of the support and 7 is the margin (Lemma 1
in [41]). In the above regime, the optimal classifier that minimizes the loss and achieves a stationary
point with zero gradient is not always unique. In practice, to construct a fair classifier, enforcing
constraints is a natural approach. Note that if there exists an x* € €2, by the convexity and the
L-smoothness of f, we have

IV f (@) < 2L(f(x) = f(z*)). (4)
That is to say, for linearly separable data with margin 7 and a finite support of size ¢, if there exists
one x* € (), the squared-hinge loss satisfies Assumption 3 with p = ¢/72.

3 Improved Complexities for Stochastic Conditional Gradient Meth-
ods

We now provide improved complexities for stochastic conditional gradient methods under the
interpolation-like assumption in Section 2. For convenience, we first introduce the following mini-
batch stochastic gradients with first-order and zeroth-order oracle access: at t-th iteration, we
uniformly pick i.i.d. samples {&;1,...,&p, } and estimate the gradient by

Ut,j

by by
\V/ 1 E ~ 1 F(zi_1 +vugj,&5) — Foi1,6 )
= VEF(xs_ i Gt - E : 3 St.J ) Gt,j

t by i=1 e, &), v bt v

J=1

where g1, ..., upp, are i.i.d. samples from N(0,I,).

3.1 Stochastic Frank-Wolfe

In this section, we studied the oracle complexity of the vanilla stochastic Frank-Wolfe algorithm
under the weak interpolation-like conditions in Assumption 4 and 3.

Theorem 2. Consider solving problem (1), by Algorithm 1, under Assumption 1 with f being
CONVEL.
(a) Assuming access to stochastic first-order oracle, under Assumption 4, setting

= b= (4 3)/2],

t+3
we have the following convergence rate:
2(f(x0) — f(«*)) +8(p + 1)LD?

B[/ () — ()] < AL




Algorithm 1 Stochastic Frank-Wolfe
Input: z¢ € Q, number of iterations T', v € [0, 1], minibatch size b;
fort=1,2,...,T do
Compute the gradient g; as follows:
Set g; = @t (for the first-order setting).
Set g; = GY, (for the zeroth-order setting).
Compute d¢ = argmingcq (d, g¢)
T = 21 + Ye(de — T4-1)
end for
Output: zp

Hence, the total number of calls to the stochastic first-order oracle and linear minimization oracle
required to be solved to find an e-optimal point of problem (1) are, respectively, bounded by

O (6_2) , O (6_1) .
(b) Assuming access to stochastic zeroth-order oracle, under Assumptions 3 and 2, setting

4 D

= b: t 3 d 4 -
W=y (t+3)(d+4), v (T +3)(d + 6)3/2

we have
z - IE* —1 2
E[f(z) — f(z*)] < 2(f(wo) — f( ))t—:8§p+p +1)LD*

Hence, the total number of calls to the stochastic zeroth-order oracle and linear minimization oracle
required to be solved to find an e-optimal point of problem (1) are, respectively, bounded by

O(de?), O(eh).

The above oracle complexities in the first-order setting, match the results obtained by [43, 45].
However, the above works require double-loop based variance reduction techniques which in turn
require the stronger mean-square gradient-Lipschitz assumption. Furthermore, the use of the
variance reduction technique results in the increased wall-clock running time of the algorithm. Our
result here is applicable to the vanilla version of the stochastic conditional gradient method, as
long as the problem satisfies the interpolation-like conditions observed in modern machine learning
problems.

3.2 Stochastic Conditional Gradient Sliding

In this section, we analyze the complexity of the stochastic gradient sliding (SCGS) algorithm under
the weak growth condition. The SCGS was first proposed and thoroughly analyzed in [28]. It is
a fundamental modification of the conditional gradient algorithm that achieved improved oracle
complexities without relying on any variance reduction techniques. Below, we show that under the
interpolation-like assumptions in Section 2, the oracle complexity of the SCGS could be further
improved compared in both the first-order and zeroth-order methods.



Algorithm 2 SCGS: Algorithm 3 ICG:
Stochastic Conditional Gradient Sliding Inexact Conditional Gradient Method

Input: 20 € Q, T, Bt € Ry, 3 € [0, 1], by, Input: g,u,8,n,u1 =u, k=1
1. Let vg be an optimal solution for the sub-

Yo = Zo
fort=1,2,...,T do problem
Set 2zt = (1 — Ye)we—1 + Wye—1
Compute the gradient g; as follows: %leag))({hk@) = {9+ Bu —u),ur —v)}. (5)
Set g = V (first-order).
Set g: = G, (zeroth-order). 2. If hi(vk) <, terminate and output ug.
Solve 3. upt1 = (1 — ag)ug + v, with
yt = 1CG(gt, y1—1, Bt ) p
by Algorithm 3 = min{l, (B(u — ug) 9.0 ut) }
Set x; = (1 — ’Yt)xt—l + VY B Hvk - Uk”
end for
Output: zp 4. Set k <+ k+ 1 and go to step 1.

Theorem 3. Consider solving problem (1), by Algorithm 2, under Assumption 1 with f being
CONVEL.
(a) Assuming access to stochastic first-order oracle, under Assumption 4, setting

4L 3 LD?
- = = by = t(t+1
Bt tL 9 Vi t1 9 Ui t(t 1)7 t ’73/) ( )—‘

we have

6LD?  15LD? + 3|V f(z*)||D
Elf(z;) — f(z")] < :

e = I )]_(t+2)2 t+1)(t+2)
Hence, the total number of calls to the stochastic first-order oracle and linear minimization oracle
required to be solved to find an e-optimal point of problem (1) are, respectively, bounded by

O (671'5) , O (671) .
(b) Assuming access to stochastic zeroth-order oracle, in addition, with Assumption 3, 2, setting
4L 3 LD? D

= —, = —, = s b = 6 d + 4 t t + 1 3 — 9

t+2 "Tir2 M iev1y [6p(d + 42+ D], v (T + 2)2(d + 6)3/2

we have

B

. SLD?2 32LD?
Elf ) =f@0 < oo Y ai e+ )

Hence, the total number of calls to the stochastic zeroth-order oracle and linear minimization oracle
required to be solved to find an e-optimal point of problem (1) are, respectively, bounded by

O (deil":’) , O (671) .

To the best of our knowledge, the above complexity of O(¢~1%) is not achieved for any variance
reduced versions of stochastic Frank-Wolfe methods. This improvement is solely obtained by the
SCGS algorithm of [28] under the interpolation-like assumptions which are natural in modern
machine learning problems, without any variance reduction methods. We also highlight that, in
the unconstrained setting, the stochastic gradient method performs as well as its deterministic
counterpart. However, the above result still falls short of the corresponding deterministic complexity
of conditional gradient sliding, which is of the order O(e=?-%) [28]. This highlights the intrinsic
difficulty associated with projection-free methods for constrained stochastic optimization problems.
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Figure 1: The convergence behaviors of SFW for linearly (in)-separable data. The right panel
visualizes the first 2 dimensions of the synthetic data used for numerical analyses.

4 Experiments

We generate synthetic binary classification datasets with two isotropic Gaussian blobs symmetric
with respect to the origin, with the sample size n = 100,000 and the dimension d = 500. We
ensure that two blobs are linearly separable with a positive margin for one dataset while the
other has an overlap. We seek to find a hyperplane w 'z that minimizes the squared-hinge loss
flw) =23 fi(w) =137 max(0,1—y;-w';)? satisfying the constraint [|w[|; < 1. Note that
f(w) satisfies the weak growth condition for linearly separable data in view of sampling only a
mini-batch of gradient (with replacement) in each iteration, and the parameter p = Lyax/L; see
Proposition 2 in [41], and Lpax is the largest Lipschitz constant for V f;(w). In Figure 1, we plot
the suboptimality f(w) — f* versus the number of iterations and the number of calls to the SFO.
The results are obtained by averaging over 100 runs with random initialization wg. We observe that
SFW converges essentially faster for linearly separable data than the inseparable case.

5 Discussions

We briefly discuss extensions of our results to the nonconvex setting. Our proposed assumption is
motivated by the notion of Frank-Wolfe gap [10, 23], which is defined as Gf(x) = maxye(V f(x),z —
y). With this, a nonconvex function f satisfies Constrained Growth Condition with constant p,
if for any point « € Q, E¢||VF(z,§) — Vi)|? < 2pLG¢(x). Note that if f is convex, then
Gf(x) > f(x) — f(«*). Hence, this generalizes Assumption 4 defined for the convex setting. Under
this assumption in the nonconvex setting, it could be shown that the vanilla stochastic Frank-Wolfe
algorithm can find an e-stationary point of the problem within at most O (1 / 63) and O (1 / 62)
number of calls to the SFO linear subproblem solver, respectively. However, although existence of
functions satisfying the above asssumption could be shown, it is not clear if practical nonconvex
functions appearing in machine learning context satisfy it. It would be extremely interesting to
examine this as future work.
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SUPPLEMENTARY DOCUMENT

A  Proof for Theorem 2

In order to prove Theorem 2, we require the following result from [34] for the zeroth-order case.

Lemma 4. [34] Let the function f has lipschitz continuous gradient with constant L. Consider the
smoothed function f,(x) = E,[f(z + vu)] where u ~ N(0,14). Then for any x € R?,

g, | A TD, | gy (6
IV£,(@) = Vi) < FL(d+3)? (7)

1/2
B ) F@)P Nl < D I2d+ 6 + 2(d + 4) [V F()] ®)

We now present the lemma below to bound the mean squared error for the zeroth-order gradient

estimator.
Lemma 5. Under Assumption 1, 2, 8, we have

4pL{d +4)(f(@i-1) = f(=7)) v2L*(d+6)°

E||GL - Vo (z1)| < b T 9)
E Héi _ vf(l'tfl)HZ < 4:0L(d + 4)(f§)$t—1) — f(x*)) + I/2L2(d + 6)3. (10)

Proof. First note that by (6), we have

fz—1 +vu) — fxe—1)

EulGy] = EuglGry) = Eu ul =V fy(e),

Then by using (8) for F' instead of f, under Assumption 2, 3, we can obtain

Eug ||GL — Vi (@m1)||? = —Eug |1Grj — V()|

1
be
1
by

IN

2
Ey e |Gl

C2d+4) V2L (d + 6)3

= b 2b

< ApL{d+4)(f(2i1) — f(27)) v?L?(d + 6)°
+

- b 2b

Ee |V F (-1, &5)|% +

where the first inequality comes from the fact that the variance is less than the seocond moment.
To prove (10), we decompose the mean squared error into the bias and the variance by utilizing

the results (9) and (7), i.e.,

E||G — V()| = E||GL = Vi (z)|? + IV fowia1) = Vf (z-1)|>
< dpL(d+4)(f(ze—1) — f(z¥)) N v2L%(d + 6)3 n v L2 (d + 3)3

bt 2bt 4
< 4,0L(d + 4)(]‘6?’1&1) - f(ﬂj‘*)) + V2L2(d + 6)3
t
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We also need the following simple result in our proof.

Lemma 6. Assume that sequences {¢:}i>0 > 0, {B}i>1, {0:}e>1 € [0, 1] are given such that

¢t < (1= 01)¢r—1 + By (11)
Then, we have
T B,
<0 -
¢r < Or | Po + ; o,
where, for any t > 2,
t
©; =01 [[(1—0k), where O =1-0; if 1 <1, ©1=1 if 61 =1 (12)

Proof. Dividing both sides of (11) by ©;, summing them up from ¢ = 1 to ¢t = T', noting non-
negativity of ¢; and (12), we obtain the result. O

Proof. [Proof for Theorem 2| For convenience, let g; be the gradient estimator at ¢ step. Thus,
= V, for the first order method while in the zeroth order setting g; = Gt

flay) < flae—r) +(Vf(@—1), 20 — 24-1) + g ||y — $t71||2

_ _ Lo
= f(zt—1) + (V[ (2t-1),dt — 21-1) + 5 |t — 1]
LD}
< flae—1) +velge, de — x—1) + %V f(xe—1) — g1, dp — x4—1) + 5
) LD*~}
< floe—1) +velge, 2" — 1) + e (Vf(@i—1) — g, de — x4—1) + 5
2.9
= f(@e-1) + (VI (xt-1), 2" — 2t-1) + W(Vf(0t-1) — gt de — ") + LDQ .
LDQ"}/Z
< f@e-1) + % (f (@) = f(zi-1)) + % (Vf(2t-1) — g1, dp — %) + 5 L
D?~,(L
< f) + @) = Son)) + 2|9 o) - g+ 22BN,

The last inequality comes from the Young’s inequality: for any 5 > 0,

(Vf(@t-1) = gi,de — 27) < 215 IV £ (2e-1) = gell” + é Ide — ||

D2[3

< 55 IV @) = ol + 257

Denote ¢y = f(xy) — f(x*). Substracting f(z*) from both sides of the inequality and taking the
conditional expectation E[-|F;_1], we have

D%y (L + B)

Elp¢|Fi—1] < (1 —ve)di—1 + E[va(SCt 1) = gel? | Fia] + 5

(13)
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For the first-order gradient estimator g; = V;, we have the following bound for its variance under
Assumption 4:

2pLpt—

E[|V £ (1) = 9| 1Fia) = BV A @) = VF(mio )| 1Fia) < 2

Then by (13), we can obtain

L D2, (Ly; +
Elg|Fe—1] < (1 —v)e—1 + e ¢r-1 + M
Bby 2
Let Yt = %aﬁ :PL% = % > O,bt = Rt+3)/2-|’ then
2 8(p+ 1)LD?
E 4L 1-— _ _ 14
[pe| Fe 1]_< t+3)¢t 1+ i13)? (14)
Now, letting 6; = t%’ it is easy to check that ©; = m due to (12). Hence, in the view of

Lemma 6, we have

60 8(p+1)LD? < 2¢o +4lp+ 1)LD?]

E[¢t]§(t+2)(t+3) t+3 - t+3

The above inequality implies that to attain an e-optimal point, the total number of interations T
can be bounded by O(1/¢). Hence, the number of the gradient calls Zthl by can be bounded by
W = O(T?), and the number of calls to the linear minimization oracle immediately follows from
this observation.

We now prove part (b). For the zeroth-order version, by (10) in Lemma 5 and (13), we can obtain

2
Blgr| i) < (L= 7)1+ 5 gB 9 ) = G 1Fia] + Dot P)

2v¢pL(d + 4) Y2 L2 (d + 6)3 n D%y, (Ly; + B)
Bby 2B 2

Let v = 45,8 = wpL,by = (t+3)(d+4),v = D(T +3)"1(d + 6)"32 < D(t + 3)"1(d + 6)73/2,
then we have

< (I —v)pr—1 + Gr—1 +

2 8(p+pt+1)
g )t e e
t+3 (t +3)2LD

Similarly, in the view of Lemma 6, we obtain

E[ge|Foy] < (1

2[f(wo) = f(@)] +8(p+p~ ' +1)LD*

E[f(x¢) — f(z¥)] < t+3

The above inequality implies that to attain an e-optimal point, the total number of interations T
can be bounded by O(1/¢). Hence, the number of calls to the zeroth-order oracles 2 2?:1 b can be
bounded by (d + 4)(T? + 7T) = O(dT?), and the number of calls to the linear minimization oracle
immediately follows from this observation. O
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B Proof of Theorem 3

Proo~f. [Proof of Theorem 3] For convenience, let g; be the gradient estimator at ¢ step. Thus,
gt = V for the first order method while in the zeroth order setting g; = G%,. First note that by the
updates in Algorithm 2, the convexity and the smoothness of f, we have

F(a) ST+ (VS G) 0 = ) + 5 g = )
2
=1 =[S (z0) + (V[ (z0), w11 = 20] + 0l (z0) + (V[ (20), 90 — 20)] + L% lye =y |I”

L’Yt2 2
S =) f@e—1) + %l f(ze) + (Vf(2)sye — 20)] + = llye — ye1ll

=1 =) f(me—1) + el f(z) + (VF(20), ye — 20)] + 5 %

~ (B — L)
2

And by (5), we have

Hyt yt71||2

e — ye—1 - (15)

(9t + Be(yt — ye—1), 9t — ) <m, Vo € Q.
Let x = z* in the above inequality. Then we have
1 2 1 2 1 2
) lyt — yeall” = 5 ||yt71 =27 = (Y1 — Yty — ") — ) |yr — =™
S|m1—xn+g@,-wa—;m—fW+g. (16)
Denoting 6; = g: — V f(2¢) and combining (15) and (16), we obtain

f(oe) <(T =) f(me—1) + v f (@) + 7e(0e, ° — yt)

Bt Yt
+ 9 (lye—1 — w*Hz — ||y — x*Hz) + e — *(@f — L) lye — yt—1H2
_ * Bt%
=(1 =) (1) + 9 f (@) + =55 (lye-r — 2117 = llge — 2% 1) + mve

+ v (0, " — ye—1) + ’7t<5tvytfl —Yi) — 5(@ — L) llye — g1 |?

(=) f (1) + wf @) + = t(Hyt 1= 27 = llye — 2 %) + e
. ol ||5t||
5 o LA | N
+/Yt< t, L Yt 1>+2(Bt—L7t)’
where the last inequality comes from the fact that
- L
Vel0t, Yr—1 — Yr) < m 151 + w lye — vl

Substracting f(z*) from both sides of the above inequality, denoting ¢¢ = f(x) — f(x*), 0; = ¥,
and in the view of Lemma 6, we obtain

oy < Oy

t
$o + Z@*k
k=
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where

8 . &I
B = P lyeer = 1P = = 1) et e = )+ 5
Choosing v = 9t ; +2, we can easily check that ©, = m due to (12). Moreover, letting
2
Br = t4+L2v77t (t—',—l)’ we have Zizl % < % and
t
Br.
P @7 (lye—r = 2I* = g — 2*[?)
k=1
5171 <5k’7k 5k1’¥k1> 2
+ Yt—1 — T
o P Z S g — ']
< Pim e Z B Pr—1e-1\ p2 _ BinD? _ 2LDt(t + 1)’
0O; Oy Or_1 Ch t+2
where the last inequality comes from the fact 2 (E)Z’“ > B kéii’“l’l.

We now prove part (a). Let g = V,. Taking expectation for both sides of (17), and noting that
E[(6¢, 2* — ys—1)] = 0 and

H|5t|| |Fie1] < —(f(z) — f(z*)) > by Assumption 4

| /\

2

LD
(1 =) b1 + (| Vf(a™) || D+ 2)) > by the smoothness

KLD? Vf(z*
<1_’Yt¢t 1+% 5 )7 >K2w+1

| /\

2pL
by
QZL ( (1 —y)pe—1 + v (f(ye—1) — f(af*))> > 2t = (1= 7)Te-1 + neye
P(

b

2

LD

we can obtain

ph(k+ 1) ((k DE[ée] + W)

6LD? 3LD? Z
b

- +
(t+2)2 " (t+1)(t+2) t+1 (t+2) ¢

E[¢¢] <

=1

We now prove

6LD? N (12 + 3K)LD?
(t+2)2  (t+1)(t+2)
by induction. Set by = [3pk(k + 1)]. It is easy to check E[¢g] < %DQ by the smoothness of f
which satisfies (18). If (18) holds for all £ <t — 1, then with the above inequality we can obtain

Efg] < (18)

6LD> (3 + 3 Lp? 1 !
Elg:] < (t+2)2 (t + 1)(t +2) T+ ;(k ~ DE[¢x1]
6LD%  (3+ 3)LD? 1 L /6LD%(k—1) (124 3K)LD2(k—1)
= +r22? " (t+1 )(t+2)+t(t+1)(t+2) ( CESE k(k+ 1) )

k=1
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6LD? (34 3K)LD? (18 + 3K)LD? zt:
k+ 1

_(t—|—2)2 (t+1)(t+2) tt+1)(t+2)
6L D? N (12 + 3K)LD?
T (42?2 (t+1)(E+2)7
i.e., (18) holds for k = t. Therefore, to achieve an e-optimal point, the number of outer iterations T

can be bounded by O(1/1/€). Hence, the number of calls to the first order oracles can be bounded
by

th < 3pz t+1) = pT(T + 1)(T +2) = O(T?).
t=1
Due to the fact that the inner iterations indeed solves a convex constrained optimization problem
by the classical Frank-Wolfe method with the exact line search, one can show that the number of
inner iterations NV; performed at the ¢-th out iteration can be bounded by

60, D?
N, < { B
Mt

Thus, the number of calls to the linear minimization oracle can be bounded by

| =ou.

T
Y N <O(T?).

t=1

We now prove part (b). Let g, = GL. Notice that G?, is a biased estimator of Vf(z). We can
obtain the following results by (7):

E[<5t, rt— yt—1>] = E[<Vfu(2’t) - Vf(Zt)a rt— yt—1>] + EK@t - Vfu(Zt) rt - yt—lﬂ

y 3/2
= E[(Vful) - V()0 )] < FATEIT

Besides, we can obtain a similar bound for E[||d;|*] by Lemma, 5.
< ApL(d+4)(f(z) — f(«"))
by
< ApL(d+ 4)((1 =)
< by
where the last inequality is slightly different from the one for the first-order setting due to ||V f(z*)|| =

0 for convex cases under the moment-based WGC.
By (17), we have the following simplified inequality:

E[]|6:]% | Fi— + V2 L% (d +6)°

t
)y VL2 (d + 6)°.

LD? LD? LD 2321 ’
Ejg] <O, 3 y ADUAYT SO
t+2)2 " (t+1D(t+2) 2 2
¢ pld+4)k(k+1) ((k — DE[¢r-1] + 3’L2D2>
t(t+1) t+2 b b,
k:l
Set by, = [6pk(k+1)(d+4)],v = (T+2)? (Dd 6)3/2 = (t+2)2(Dd+6)3/2' Then we have
8L D? 12LD? :
<
E[¢t]_(t+2)2+(t+1)(t+2)+t(t+1 t+2) ; Eldr-al
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Similar to the proof for part (a), we can finish the proof by induction and obtain the bounds for
complexity. O

C Zeroth-order SGD under Growth Conditions

In this section, we highlight that one can extend the results in [41] only assuming access to stochastic
zeroth-order oracle with corresponding variance-based growth conditions. Notice that both SGC
and WGC are defined in the format of the relative shrinkage of E||VF(z,&)||?. However, in the
unconstrained setting, the corresponding variance-based versions are equivalent to the moment-
based growth conditions (see Proposition 1 for WGC; for SGC, note that E|VF(x,&) — Vf(2)|? =
E[[VF(z, )| = IV f()]* = (p = DIV (@)

We present the following result for the zeroth-order setting which directly follows the proofs in
[41]. We highlight that it is the zeroth-order version of Theorem 3 in [41]. Similar results for other
setups considered in [41] can also be obtained for the zeroth-order setting.

Algorithm 4 Non-convex Zeroth-order SGD (ZO-SGD)
Input: x¢ € 2, number of iterations T', n
fort=1,2,...,7 do
Randomly pick & and compute
F(xi—1 +vu, &) — F(@e-1, &)

Tt = Tg—1 — 1N v up = 41 — NGy

where u; is generated from N(0,Iy).
end for
Output: i where R is uniformly distributed over 0,...,7T — 1

Theorem 7. Consider solving the non-convex unconstrained L-smooth problem by Algorithm 4 with
some appropriate constant step size n, if f satistifies SGC with constant p, then

BVl <0 ()

Proof Idea The zeroth-order SGD update is given by

F(zs— — F(x—
Tt =Tt—1 — 1N o1t Vuné,;t) a 17&)7% = z41 — Gy

By the smoothness of f, we have
L 2
f(@e) = f(@e—1) <V (@1, 20 — 201) + 5”%: — x|
L 2
= —n{V (w11, Gi) + S5 1|Ga?

Consider the term (V f(z;-1), G¢). Taking expectation with respect to &, u;, we have

E[(Vf(zi-1), G)] = (Vf(21-1), V fu(21-1))
(Vf(xi—1),Vf(xi—1) + Vi(ri—1) — Vf(xe-1))
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||2 _ VL(d + 3)3/2

> |V f (i) .

IV f (-]

Consider the term ||G¢||?. Taking expectation with respect to &, u¢, we have

2
14
E||Gy|? < ?LZ(d +6)° +2(d+ DE||VF(21-1, &)

2
< TLAA+6)° + 20(d + 4| VF (i) P

Then, by the above inequalities, we can obtain
E[f(z¢) — f(z1-1)]

vL(d+ 3)3/2
< IV f(@e)|? + AT

2
< |V f (@) |? + 0 L(d + 3)|IV f(ze—)|I* +

2
IV (el + n*Lp(d + D[V f(@e1)|]® +1° L3 (d + 6)°

4
viL(d + 3)?
16

2
14
+n*Lp(d + 4)||V f(z—1)[|* + UZZLg(d +6)?

v2L(d + 3)*

2
1%
< |V f (@) |? + 0 Lp + 1)(d + )|V fze-1)l* + 772ZL3(d +6)* + 16

Ifn then we have

_ 1
= 2L(pF1)(d+4)°

v2L(d + 3)?
16
v2L(d + 3)?
81

2
E[f(a0) — f(@r-)] < =5 [VF(@i)|? + 0?7 L (d+6)° +

1/2
> IV )| < ZE{f (@) = fan)] +0'5 L+ 6)* +

Setting v = O(1/V/dT) and taking a telescoping sum of the above inequality, we can get the same
O(1/T) rate for the non-convex setting. O

In the above proof, we did not pay careful attention to the exact constants of the tuning parameter,

as our main point is to simply highlight it is possible to obtain a zeroth-order version of the results
in [41] under variance-based growth conditions and the logic of the proof is the same as [41].
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