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Abstract

Structured non-convex learning problems, for which critical points have favorable statistical
properties, arise frequently in statistical machine learning. Algorithmic convergence and statisti-
cal estimation rates are well-understood for such problems. However, quantifying the uncertainty
associated with the underlying training algorithm is not well-studied in the non-convex setting.
In order to address this short-coming, in this work, we establish an asymptotic normality result
for the constant step size stochastic gradient descent (SGD) algorithm—a widely used algorithm
in practice. Specifically, based on the relationship between SGD and Markov Chains [DDB19],
we show that the average of SGD iterates is asymptotically normally distributed around the
expected value of their unique invariant distribution, as long as the non-convex and non-smooth
objective function satisfies a dissipativity property. We also characterize the bias between this
expected value and the critical points of the objective function under various local regularity
conditions. Together, the above two results could be leveraged to construct confidence intervals
for non-convex problems that are trained using the SGD algorithm.

1 Introduction

Non-convex learning problems are prevalent in modern statistical machine learning applications
such as matrix and tensor completion [GHJY15, GLM16, XYZ19, CLC19, CLPC19], deep neu-
ral networks [GBC16, JK17, MIG+19], and robust empirical risk minimization [Loh17, LLM18,
MBM18]. Developing theoretically principled approaches for tackling such non-convex problems
depends critically on the interplay between two aspects. From a computational perspective, vari-
ants of stochastic gradient descent (SGD) converge to first-order critical points [GL13, FLLZ18]
or local minimizers [NP06, GHJY15, JGN+17, TSJ+18] of the objective function. From a statis-
tical perspective, oftentimes these critical points or local minimizers have nice statistical proper-
ties [Kaw16, GLM16, Loh17, MMMO17, EvdG18, CLC19]; see also [FD82] for a counterexample.
For the purpose of uncertainty quantification in such non-convex learning paradigms, studying the
fluctuations of iterative algorithms used for training becomes extremely important. In this work, we
focus on the widely used constant step size SGD, and develop results for quantifying the uncertainty
associated with this algorithm for a class of non-convex problems.
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Specifically, we consider minimizing a non-smooth and non-convex objective function f : Rd→ R,

min
θ∈Rd

f(θ). (1.1)

The iterations of SGD with a constant step size η > 0, initialized at θ
(η)
0 ≡ θ0 ∈ Rd, are given by

θ
(η)
k+1 = θ

(η)
k − η

(
∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )
)
, k ≥ 0 , (1.2)

where {ξk}k≥1 is a sequence of random functions from Rd to Rd corresponding to the stochasticity in
the gradient estimate. Several problems in machine learning and statistics are naturally formulated
as the optimization problem is (1.1), where the function f(θ) is given by

f(θ) := EZ [F (θ, Z)] =

∫
F (θ, Z) dP (Z), (1.3)

where the function F (θ, Z) is typically the loss function composed with functions from hypothesis
class parametrized by θ ∈ Rd, and depends on the random variable Z ∈ Rp. The distribution P (Z)
is typically unknown. Then the iterations of online SGD with a constant step size η > 0, and

batch-size bk, initialized at θ
(η)
0 ≡ θ0 ∈ Rd, are given by

θ
(η)
k+1 = θ

(η)
k −

η

bk

bk∑
j=1

∇F (θ
(η)
k , Zj), k ≥ 0 , (1.4)

where independent samples Zj ∼ P (Z), is used to estimate the true gradient in each iteration k.
Furthermore, the samples Zj used across all iterates k are also independent. Typically, we also have
∇F (θ, Z) to be unbiased estimates of the true gradient ∇f(θ), for all θ ∈ Rd. The above iterates

are indeed a special case of the iterates in (1.2), with the noise sequence {ξk(θ
(η)
k )}k≥1 given by

ξk(θ
(η)
k ) :=

1

bk

bk∑
j=1

[
∇F (θ

(η)
k , Zj)−∇f(θ

(η)
k )
]
.

Although proposed in the 1950s by [RM51], SGD has been the algorithm of choice for training
statistical models due to its simplicity, and superior performance in large-scale settings [FP99,
DDB19, WRS+17, BH18]. However, the fluctuations of this algorithm is well-understood only
when the objective function f is strongly convex and smooth, and the step size η satisfies a specific
decreasing schedule so that the iterates asymptotically converge to the unique minimizer [PJ92,
DR18, ABE19]. On the other hand, it is well-known that the SGD iterates in (1.2) can be viewed
as a Markov chain which allows them to converge to a random vector rather than a single critical
point [DDB19]. Building on this analogy between SGD and Markov chains, the aforementioned
shortcomings can be alleviated by simply relaxing the global smoothness as well as the strong
convexity assumptions to the tails of the objective function f , which allows for non-convex structure
around the region of interest. Similar kinds of tail relaxations have been successfully employed in
the diffusion theory when the target potential is non-convex [RRT17, CCAY+18, EMS18], but they
are not studied in the context of non-convex optimization with the SGD algorithm. In this work,
we study the fluctuations and the bias of the averaged SGD iterates in (1.2), around the first-order
critical points of the minimization problem (1.1). Our contributions can be summarized as follows.
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• For a non-convex and non-smooth objective function f with tails growing at least quadrat-
ically, we establish the uniqueness of the stationary distribution of the constant step size
SGD iterates in Proposition 2.1, and the asymptotic normality of Polyak-Ruppert averaging
in Theorem 2.1. To the best of our knowledge, these are the first uniqueness and normality
results for the SGD algorithm when the objective function is non-convex (even not strongly
convex) and non-smooth.

• We further show in Proposition 3.1 that, under the assumptions leading to the CLT, the
asymptotic bias between the expectation of the Lipschitz test function φ under the stationary
distribution of the SGD iterates and the value of φ at any first-order critical point is bounded
by a constant depending on the tail growth properties of f .

• Finally, we show in Theorems 3.1 and 3.2 that with additional local smoothness assumptions
on the function f that allow non-convexity, we can establish a control over the bias in terms
of step size. We further characterize the bias when the objective is (not strongly) convex in
Theorem 3.3, providing a thorough bias analysis for the constant step size SGD under various
settings that are frequently encountered in statistics.

Our results provide algorithm-dependent guarantees for uncertainty quantification, and they
could be potentially leveraged to obtain confidence intervals for non-convex and non-smooth learn-
ing problems. This is contrary to the majority of the existing results in statistics, which only
establish normality results for the true stationary point of the non-convex objective function; see
for example [Loh17, QCLP19]. While being useful, such results completely ignore the computa-
tional hardships associated with non-convex optimization; hence, their practical implications are
limited. On the other hand, in the optimization and learning theory literature, a majority of the
existing results establish the rate of convergence of an algorithm to a critical point, and do not
quantify the fluctuations associated with that algorithm. Our work bridges these separate lines
of thought by providing asymptotic normality results directly for the SGD algorithm used for
minimizing non-convex and non-smooth functions.

More Related Works. Establishing asymptotic normality results for the SGD algorithm
began with the works of [Chu54, Sac58, Fab68, Rup88, Sha89], with [PJ92] providing a definitive
result for strongly convex objectives. In particular, [PJ92] and [Rup88] established that the averaged
SGD iterates with an appropriately chosen decreasing step size is asymptotically normal with
the variance achieving the Cramer-Rao lower bound for parameter estimation. Recent works,
for example [TFBJ18, SZ18, DR18, TA17, FXY18], leverage the asymptotic normality analysis
of [PJ92], and compute confidence intervals for SGD. The benefits of constant step size SGD for
faster convergence under overparametrization has also be demonstrated in the works of [SR13,
NWS14, MBB18, VBS19]. The use of Markov chain theory to study constant step size stochastic
approximation algorithms has been considered in several works [Kif88, Ben96, PV98, FP99, AMP00,
TV19]. Recently, [DDB19, CT18] investigated the asymptotic variance of constant step size SGD.
We emphasize here that most of the above works assume strongly convex and smooth objective
functions. Finally, there exists a vast literature on analyzing Markov chain Monte Carlo sampling
algorithms based on discretizing diffusions. We refer the interested reader to [DK17, BDMP17,
CCAY+18, DM17, Dal17, CCBJ17, BEL18, DCWY18, DRD18, LWME19, SL19, EH20] and the
references therein, for details.

Notation. For a, b ∈ R, denote by a ∨ b and a ∧ b the maximum and the minimum of a and b,
respectively. We use ‖ · ‖ to denote the Euclidean norm in Rd. We denote the largest eigenvalue of
the matrix A as λmax(A), and the smallest one as λmin(A). Let (Ω,F ,P) represent a probability
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space, and denote by B(Rd), the Borel σ-field of Rd. Let Pk(Rd) := {ν :
∫
Rd ‖θ‖

kν(dθ) <∞} denote
the set of probability measures with finite k-th moments. For a probability distribution π and a
function g on X , we define π(g) :=

∫
X g(x)dπ(x), and L2(π) := {g : X → R : π(g2) <∞}.

2 Central Limit Theorem for The Constant Step Size SGD

In this section, we establish an asymptotic central limit theorem (CLT) for the Polyak-Ruppert
averaging of the constant step size SGD iterates given in (1.2) when the objective function is
potentially non-convex, non-smooth, and has quadratically growing tails. More specifically, we
first prove that there exists a unique stationary distribution πη ∈ P2(Rd) for the Markov chain
defined by the SGD algorithm when the objective function is dissipative (see Assumption 2.2) with
gradient exhibiting at most linear growth (see Assumption 2.1). Furthermore, under the same
conditions, we prove that a CLT holds for the Polyak-Ruppert averaging, and it is independent of
the initialization. In what follows, we list and discuss the main assumptions required to establish
a CLT for the SGD iterates, and compare them to those existing in the literature.

Assumption 2.1 (Linear growth). The gradient of the objective function f has at most linear
growth. That is, for some L ≥ 0, we have

‖∇f(θ)‖ ≤ L
(
1 + ‖θ‖

)
for all θ ∈ Rd.

Majority of the results on SGD focus on smooth functions with gradients satisfying ‖∇f(θ) −
∇f(θ′)‖ ≤ ‖θ − θ′‖ for all θ, θ′ ∈ Rd; see e.g. [PJ92, DDB19]. The above condition allows for
non-smooth objectives, and is a significant relaxation of the standard Lipschitz gradient condition.

Assumption 2.2 (Dissipativity). The objective function f is (α, β)-dissipative. That is, there
exists positive constants α, β such that

〈θ, ∇f(θ)〉 ≥ α ‖θ‖2 − β for all θ ∈ Rd.

The dissipativity assumption has its origins in the analysis of dynamical systems, and is used
widely in the analysis of optimization and learning algorithms [MSH02, RRT17, EMS18, XCZG18].
It could be viewed as a relaxation of strong convexity since it restricts the quadratic growth as-
sumption to the tails of the function f , enforcing no local growth around the first-order critical
points. A canonical example for this condition is the sum of a quadratic and any non-convex func-
tion with bounded gradient. For example, consider the function x→ x2 + 10 sin(x) which is clearly
non-convex and (1, 25)-dissipative. It is worth mentioning that many statistical learning problems
such as phase retrieval [TV19] satisfy Assumption 2.2.

Assumption 2.3 (Noise sequence). Gradient noise sequence {ξk}k≥1 is a collection of i.i.d. random
fields satisfying

E[ξ1(θ)] = 0 and E1/2[‖ξ1(θ)‖2] ≤ Lξ(1 + ‖θ‖) ,

for any θ ∈ Rd and a positive constant Lξ. Moreover, for each θ ∈ Rd the distribution of the random
variable ξ1(θ) can be decomposed as µ1,θ + µ2,θ where µ1,θ has a density, say pθ, with respect to
Lebesgue measure which satisfies infθ∈C pθ(t) > 0 for any bounded set C and any t ∈ Rp.

Assumption 2.3 as formulated above is stronger than what is used in the proofs. It can easily
be seen that the lower bound on the density pθ is only required to hold for a specific set whose form
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depends on η and various constants from Assumptions 2.1–2.3. The form of this set is complicated,
and an exact expression is given in the Appendix – see equation (A.3). We also emphasize that
Assumption 2.3 also does not specify any explicit parametric form for the distribution of the noise
sequence contrary to recent works in non-convex settings where dissipitavity condition has been
heavily utilized [RRT17, XCZG18, EMS18].

We now establish the existence and uniqueness of the stationary distribution of the SGD iter-
ates (1.2).

Proposition 2.1 (Ergodicity of SGD). Let the Assumptions 2.1-2.3 hold. For a step size satisfying

η <
α−

√(
α2 − (3L2 + Lξ)

)
∨ 0

3L2 + Lξ
,

the following statements hold for the SGD (1.2).

(a) SGD iterates admit a unique stationary distribution πη ∈ P2(Rd), depending on the choice of
step size η.

(b) For a test function φ : Rd → R satisfying |φ(θ)| ≤ Lφ(1 + ‖θ‖) ∀θ ∈ Rd and some Lφ > 0,

and for any initialization θ
(η)
0 = θ0 ∈ Rd of the SGD algorithm, there exists ρ ∈ (0, 1) and κ

(both depending on η) such that we have∣∣E[φ(θ(η)
k

)]
− πη(φ)

∣∣ ≤ κ ρk(1 + ‖θ0‖2),

where πη(φ) :=
∫
φ(x)dπη(x).

The uniqueness of the stationary distribution of the constant step size SGD has been established
in [DDB19] for strongly convex and smooth objectives. In Proposition 2.1, we relax both of these
assumptions allowing for non-convex and non-smooth objectives. Our proof relies on V -uniform
ergodicity [MT12], which is fundamentally different from the ergodicity analysis in [DDB19]. Under
the dissipativity condition (quadratic growth of f), geometric ergodicity in Proposition 2.1 is not
surprising; yet, it is worth highlighting that the function f as well as the noise sequence require
significantly less structure than what was assumed in the literature. The above step size assumption
is almost standard and it is required to obtain a uniform bound on the moments of SGD iterates.
We highlight that similar to the gradient descent algorithm, the step size depends on a quantity
that serves as a surrogate condition number in our setting, namely, L/α. For the purposes of
establishing a CLT, it is sufficient to consider moments of order 4 (in fact any order larger than
2 suffices), but it is also worth noting that any order moments of SGD can be controlled under
Assumption 2.2 as long as the noise has the same order finite moment.

Next, we state our first principal contribution, a central limit theorem for the averaged SGD
iterates starting from any initial distribution for a non-convex objective. For a test function φ :
Rd → R, we denote the centered partial sums of φ evaluated at the SGD iterates with Sn(φ), i.e.,
we define

Sn(φ) :=

n−1∑
k=0

[
φ
(
θ

(η)
k

)
− πη(φ)

]
where πη(φ) :=

∫
φ(x)dπη(x).

Theorem 2.1 (CLT). Let the Assumptions 2.1-2.3 hold. For a step size η and a test function φ
satisfying the conditions in Proposition 2.1, we define σ2

πη(φ) := limn→∞
1
nEπη

[
S2
n(φ)

]
. Then,

n−1/2Sn(φ)
d−→ N

(
0, σ2

πη(φ)
)
.
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The above result characterizes the fluctuations of a test function φ averaged across SGD iterates,
even when the objective function is both non-convex and non-smooth. The asymptotic variance in
the above CLT can be equivalently stated in another compact form. If we define the centered test
function as h(θ) = φ(θ)− πη(φ), the asymptotic variance can be written as

σ2
πη(φ) = 2πη(hĥ)− πη(h2) where ĥ =

∞∑
k=0

E
[
h
(
θ

(η)
k

)]
.

Indeed, this is the variance we compute at the end of our proof in Section A. However, the expression
in Theorem 2.1 is obtained by simply applying [DMPS18, Thm 21.2.6]. For the case of strongly
convex functions with decreasing step size schedule, it is well-known from the works of [PJ92, Rup88]
that the limiting variance of the averaged SGD iterates achieves the Cramer-Rao lower bound for
parameter estimation; see also [MB11, ABE19] for non-asymptotic rates in various metrics. The
question of providing lower bounds for the limiting variance of the critical points in the non-convex
setting is extremely subtle, and is often handled on a case-by-case basis. We refer the interested
reader to [Gey94, Sha00, Loh17].

There are several important implications of the above CLT result for constructing confidence
intervals in practice. First note that, following the standard construction in inference, one can
write the distribution of the sample mean approximately as n−1Sn(φ) ≈ N

(
0, n−1σ2

πη(φ)
)
. Here,

one needs to estimate the population quantity, the asymptotic variance σ2
πη(φ), for the purpose of

obtaining confidence intervals. In Section 5, we discuss three strategies for estimating this quantity,
which could be eventually used for inference in practice. A theoretical analysis of the proposed
approaches in Section 5 is beyond the scope of this work.

3 Bias of the Constant Step Size SGD

In this section, we present a thorough analysis of the bias of constant step size SGD algorithm.
We first show in Section 3.1 that, in the non-convex and non-smooth case for which we established
the CLT, the SGD algorithm converges to a ball that contains all the first-order critical points
exponentially fast; nevertheless, the bias is not controllable with the step size. Motivated by this,
we provide three types of bias analyses in Section 3.2 under different local growth assumptions on
the objective f , characterizing the bias behavior in various non-convex and convex settings. For
this, we strength the assumption of the noise sequence as follows.

Assumption 3.1 (Noise sequence). Gradient noise sequence {ξk}k≥1 satisfies Assumption 2.3, and
it holds for any θ ∈ Rd that

E
[
‖ξ1(θ)‖4

]
≤ Lξ(1 + ‖θ‖4) ,

where Lξ is the same as in Assumption 2.3.

3.1 Bias without Local Regularity

Bias behavior of an algorithm is intimately related to the local properties of the objective at critical
points. Therefore, under the mild assumptions that yield the CLT, one cannot expect a tight control
over the bias. However, the tail growth condition is sufficient for a rough characterization, which is
still important because even the points that are close to the local minimizers generally have favorable
computational [BVB16, MMMO17, CLC19], and statistical properties [Loh17, EvdG18, QCLP19].
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If Assumption 2.2 holds for an objective function f , all first-order critical points of f must
lie inside a ball of radius

√
β/α. Based on this, we show that the SGD iterates (1.2) will move

towards this ball exponentially fast, which ultimately establishes a bound on the non-asymptotic
bias, and in the limit case yields a bound on the asymptotic bias. The following result formalizes
this statement.

Proposition 3.1. Let Assumptions 2.1,2.2, and 3.1 hold. For θ∗ denoting an arbitrary critical
point of the objective function f , define the constants L̄ := L(1 + ‖θ∗‖), and

cL,α :=
[
α−

√(
α2 − (3L2 + Lξ)

)
∨ 0
]/

[3L2 + Lξ]

c†L,α :=
[
α−

√
(α2 − 16L†) ∨ 0

]/
(64L†)

(3.1)

with L† := L̄2 + 16
(
L

3/4
ξ

(
1 + (β/α)3

)
∨ L1/2

ξ

(
1 + (β/α)2

)
∨ Lξ

(
1 + (β/α)4

))
. Then, for SGD iter-

ates initialized at a fixed point θ0 ∈ Rd and a step size satisfying η < 1∧ 1
10L̄
∧ cL,α ∧ c†L,α , we

have

E
[
‖θ(η)
k − θ

∗‖4
]1/2 ≤ ρ k ‖θ0 − θ∗‖2 +D , (3.2)

where constants are

D :=
64

α

(
L̄4 + Lξ

(
1 + (β/α)4

)
+ 512L̄6 + 23L

3/2
ξ

(
1 + (β/α)6

))1/2

∨ 8

α

(
β + (

√
α+ 2L/

√
α)2‖θ∗‖+ L‖θ∗‖+ 6L̄2 + 9L

1/2
ξ

(
1 + (β/α)2

)
+ 16

)
,

ρ :=
√

1− 2αη + 32L†η2 ∈ (0, 1).

Consequently, for any test function φ that is Lφ-Lipschitz continuous, we have∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ√D .

The above theorem establishes that the SGD algorithm initialized far away from any critical
point will converge (in the 4-th expectation) to the ball that contains all the first-order critical
points exponentially fast. The first term in the upper bound (3.2) depends on the initialization,
but decays to zero exponentially fast with the number of iterations, for a fixed step size. The second
term in the bound (3.2) is a constant independent of the iteration number as well as the step size,
which serves as the squared radius of the ball that contains all the critical points plus an additional
offset to account for the randomness in the SGD iterates. In other words, SGD algorithm initialized
at any point and with any sufficiently small step size will find this ball of interest exponentially
fast.

3.2 Bias with Local Regularity

In this part, we present algorithmically controllable bounds on the bias under local regularity

conditions. Section 3.2.1 provides a direct control on E[‖θ(η)
k − θ

∗‖] under the assumption that the
unique minimizer θ∗ exists. In Sections 3.2.2 and 3.2.3, we characterize the degree of sub-optimality

E[f(θ
(η)
k )]− f∗ where f∗ is the global minimum which is not necessarily attained at a unique point.
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3.2.1 Localized dissipativity condition

We now introduce the generalized dissipativity condition which, in addition to the tail growth
enforced in Assumption 2.2, imposes a local growth around the unique critical point θ∗.

Assumption 3.2 (Localized dissipativity). The objective function f satisfies

〈∇f(θ), θ − θ∗〉 ≥

{
α‖θ − θ∗‖2 − β ‖θ − θ∗‖ ≥ R
g
(
‖θ − θ∗‖

)
‖θ − θ∗‖ < R ,

where θ∗ ∈ Rd is the unique minimizer of f , R := δ
α +

√
β
α with δ ∈ (0,∞), g : [0,∞) → [0,∞) is

a convex function with g(0) = 0 whose inverse exists.

If g(x) = x2, the objective function is locally strongly convex. However, the above assumption
covers a wide range of objectives with different local growth rates depending on the function g. Next,
we show that the above assumption along with the assumptions leading to the CLT is sufficient to
establish an algorithmic control over the bias with a sufficiently small step size.

Theorem 3.1. Let the Assumptions 2.1, 3.1, and 3.2 hold. Then SGD iterates with step size
satisfying η < cL,α for cL,α in (3.1) admit the stationary distribution θ(η) ∼ πη which satisfies

E
[
‖θ(η) − θ∗‖

]
≤ C

δ
η + g−1(Cη),

where

C := 2
(

3L2 + 3L
1/2
ξ (1 + (β/α)2)

)(∫
‖θ‖2πη(dθ) + ‖θ∗‖2

)
+ 3L2‖θ∗‖2 + 5L2 + 2L

1/2
ξ

(
1 + (β/α)2

)
.

Further, for a test function φ : Rd → R that is Lφ-Lipschitz, the bias satisfies∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ(Cη/δ + g−1(Cη)

)
.

If the local growth is linear, i.e. g(x) = x, we obtain the bias |πη(φ) − φ(θ∗)| ≤ O(η). If local
growth is quadratic, i.e. g(x) = x2, the growth is locally slower than the linear case; thus, we get
bias control |πη(φ) − φ(θ∗)| ≤ O(η1/2), which is worse in step size dependency, it reduces to the
bound derived in [DDB19, Lemma 10].

We highlight that [DCLZ19] prove the following lower bound: lim infk→∞ E[‖θ(η)
k − θ

∗‖2]1/2 ≥
cη1/2 for some c > 0 under the assumption of Lipschitz gradients. This is in line with our findings
since Lipschits gradients imply g(x) ≤ x2 for small x.

3.2.2 Generalized  Lojasiewicz condition

In this section we work with a generalization of the  Lojasiewicz condition.

Assumption 3.3 (Generalized  Lojasiewicz condition). The objective function f has a critical point
θ∗ and it satisfies

‖∇f(θ)‖2 ≥

{
γ
{
f(θ)− f(θ∗)

}
‖θ − θ∗‖ ≥ R,

g
(
f(θ)− f(θ∗)

)
‖θ − θ∗‖ < R,

where γ and R are positive constants, and g : [0,∞) → [0,∞) is a convex function with g(0) = 0
whose inverse exists.
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In the case g(x) = xκ with κ ∈ [1, 2), for example, the above condition is termed as the
 Lojasiewicz inequality [GLCY16], and for κ = 1, it reduces to the well-known Polyak- Lojasiewicz
(PL) inequality [KNS16]. Note that this inequality implies that every critical point is a global
minimizer; yet, it does not imply the existence of a unique critical point.

The following result establishes an algorithmically controllable bias bound in terms of the step
size.

Theorem 3.2. Let the Assumptions 2.1,2.2, 3.1, and 3.3 hold, and the Hessian satisfies ‖∇2f(θ)‖ ≤
L̃(1 + ‖θ‖), ∀θ ∈ Rd and some L̃. Then, the SGD iterates with a step size satisfying η <
2
L̃
∧ cL,α ∧ c†L,α ∧ 1 for cL,α, c

†
L,α in (3.1) have the stationary distribution πη,

πη(f)− f(θ∗) ≤ g−1
( 2Mη

2− L̃η

)
+

2Mη

2− L̃η
,

where

M :=12L̃
(
L+ L

1/2
ξ + L

1/4
ξ

)2(
1 +m+m3/4 +

∫
‖θ‖2πη(dθ)

)
with

m :=
8

7α

[(
β + 6L2 + 3L

1/2
ξ + 16

) ∫
‖θ‖2πη(dθ) + 16L4 + 2Lξ + 128L6 + 8L

3/2
ξ

]
.

Additionally, if the test function is given as φ = φ̃◦f for a function φ̃ that is Lφ̃-Lipschitz, it holds
that ∣∣πη(φ)− φ(θ∗)

∣∣ ≤ Lφ̃
{
g−1
( 2Mη

2− L̃η

)
+

2Mη

2− L̃η

}
.

For smooth objectives with Lipschitz gradient, [KNS16] provide a linear rate under the PL-
inequality (see also [DYJG17, Lemma 2]), which yields the asymptotic bias |πη(φ)−φ(θ∗)| ≤ O(η).
The above result recovers their findings as a special case, and provides a considerable generalization.

3.2.3 Convexity

To make the analysis of constant step size SGD complete, we digress from the main theme of this
paper and consider the constant step size SGD in the non-strongly convex regime, for which there
is no bias characterization known to authors. We show that, under the convexity assumption, one
can achieve the same bias control as in the case of PL-inequality.

Theorem 3.3. Let the Assumptions 2.1,2.2, and 3.1 hold for a convex function f . Then, the SGD
iterates with a step size satisfying η < cL,α for cL,α in (3.1) admit the stationary distribution πη,
which satisfies

πη(f)− f∗≤ Cη ,

where

C := 2
(

3L2 + 3L
1/2
ξ (1 + (β/α)2)

)(∫
‖θ‖2πη(dθ) + ‖θ∗‖2

)
+ 3L2‖θ∗‖2 + 5L2 + 2L

1/2
ξ

(
1 + (β/α)2

)
.

Additionally, if the test function is given as φ = φ̃ ◦ f for a function φ̃ that is Lφ̃-Lipschitz, then,∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ̃Cη.

9



Convexity implies that any critical point θ∗ is a global minimizer, which is similar to the PL-
inequality; yet, it does not imply a unique minimizer unlike strong convexity. The resulting step
size dependency of the bias is the same as in the case of PL-inequality, which is because both of
these conditions assert a similar gradient-based domination criterion on the sub-optimality. That
is, we have in the convex case 〈∇f(θ), θ − θ∗〉 ≥ f(θ) − f(θ∗), and in the case of PL-inequality
γ−1‖f(θ)‖2 ≥ f(θ)− f(θ∗).

4 Examples and Numerical Studies

We now demonstrate the asymptotic normality and bias in non-convex optimization with two
examples arising in robust statistics for which our assumptions can be verified. We consider the
online SGD setting with the update rule (1.4) and also the semi-stochastic setting, where the noise
sequence {ξk(θ)}k≥1 is independent of θ and is simply a sequence of i.i.d. random vectors – such a
setting helps to demonstrate how to verify our assumptions explicitly.

4.1 Regularized MLE for heavy-tailed linear regression

While the least-squares loss function is common in the context of linear regression, it is well-
documented that it suffers from robustness issues when the error distribution of the model is
heavy-tailed [Hub04]. Indeed in fields like finance, oftentimes the Student’s t-distribution is used
to model the heavy-tailed error [FY17]. In this case, defining the random vector Z := (X,Y ), the
stochastic optimization problem in (1.3) is given by the expectation of the function

F (Z, θ) := log
(
1 + (Y − 〈X, θ〉)2

)
+
λ

2
‖θ‖2,

which is non-convex (as a function of θ) for small penalty levels λ. Correspondingly, given n
independent and identically distributed samples (xi, yi), the finite-sum version of the optimization
problem corresponds to minimizing the following objective function

f(θ) :=
1

2m

m∑
i=1

log
(
1 + (yi − 〈xi, θ〉)2

)
+
λ

2
‖θ‖2. (4.1)

We consider the finite-sum setup as we would be able to verify our assumptions and empirically
demonstrate the bias result in a clean manner in this setup, as we demonstrate next.

4.1.1 Semi-stochastic Gradient Descent

In the experiments, X := (x1, . . . ,xm)> ∈ Rm×d represents a fixed design matrix generated from
Xij ∼ Bernoulli(±1)/

√
d, and y := (y1, . . . , ym)> ∈ Rm represents the response vector generated

according to the linear model yi = 〈xi, θtrue〉 + ε with (θtrue)i
iid∼ Unif(0, 1), and ε is Student-t

(df = 10) noise. We choose m = 5000, d = 10, and the Lipshitz test function φ(θ) = ‖θ‖ unless
stated otherwise.

Asymptotic normality: Fig. 1-(a,b,c,d) demonstrates the normality and the bias of SGD with
heavy-tailed gradient noise distributed as Student-t (df = 5). Each plot has two density curves
where red and blue curves in Fig. 1-(a,b) respectively correspond to initializations with θ0 =
(1, . . . , 1) and θ′0 = (1.5, . . . , 1.5) with step size η = 0.3; green and orange curves in Fig. 1-c
correspond to step sizes η = 0.2 and η′ = 0.3 with initialization θ0. All experiments are based on
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Figure 1: First and second rows correspond to non-convex examples in Sections 4.1.1 and 4.2.1,

respectively. Figures (a,b), (e,f) show the density of n−1/2Sn(φ) = n−1/2
∑n

k=1 φ(θ
(η)
k ) with different

initializations (red, blue) for different number of iterations. Figures (c,g) show the same density
with different step sizes. Figures (d,h) show the evolution of bias against the number of iterations.

4000 Monte Carlo runs. We observe in Fig. 1-a that different initializations have an early impact
on the normality when the number of iterations is moderate. However, when SGD is run for a
longer time, this effect is removed as in Fig. 1-b. Lastly, Fig.1-c demonstrates the effect of step
size on the normality, where the means are different for different step sizes as they depend on the
stationary distribution πη. Indeed, the above results are not surprising. One can verify that the
objective function (4.1) satisfies Assumptions 2.1 and 2.2. The above objective has the following
gradient

∇f(θ) =
1

m

m∑
i=1

xi(〈xi, θ〉 − yi)
1 + (yi − 〈xi, θ〉)2

+ λθ.

Because ‖∇f(θ)‖ ≤
(
λmax( 1

mX>X) + λ
)
‖θ‖ + 1

m‖X
>y‖ by the triangle inequality and the fact

that the denominator is lower bounded by 1, Assumption 2.1 holds. For Assumption 2.2, we write

〈∇f(θ), θ〉 =
1

m

m∑
i=1

(〈xi, θ〉)2 − yi〈xi, θ〉
1 + (yi − 〈xi, θ〉)2

+ λ‖θ‖2 ≥ −
∥∥ 1

m
X>y

∥∥‖θ‖+ λ‖θ‖2,

by Cauchy-Schwartz inequality. Next, using Young’s inequality −
∥∥ 1
mX>y

∥∥‖θ‖ ≥− 1
λ

∥∥ 1
mX>y

∥∥2−
λ
4‖θ‖

2 , Assumption 2.2 holds for α=λ/4 and β= 1
λ

∥∥ 1
mX>y

∥∥2
. Finally, the gradient noise has finite

4-th moment with support on Rd; thus, Assumption 2.3 is satisfied, and Theorem 2.1 is applicable.

Bias: In order to demonstrate the bias behavior without speculation, one needs the global minimum
θ∗ of the non-convex problem. Therefore, we simplify the problem (4.1) to another non-convex
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Figure 2: First and second rows correspond to non-convex examples in Sections 4.1.2 and 4.2.2,

respectively. Figures (a,b), (e,f) show the density of n−1/2Sn(φ) = n−1/2
∑n

k=1 φ(θ
(η)
k ) with different

initializations (red, blue) for different number of iterations. Figures (c,g) show the same density
with different step sizes.

problem

f(θ) :=
1

2
log
(
1 + ‖θ‖2

)
+
λ

2
‖θ‖2 .

Notice that the general structure is the same, with no data, and θ∗ is known, i.e. θ∗ = 0.
We choose the test function φ(θ) = φ̃ ◦ f(θ), where φ̃(x) = 1/(1 + e−x) is Lipschitz. Fig. 1-(d)

demonstrates how the bias πη(φ)−φ(θ∗) changes over iterations, where different curves correspond
to different step sizes. We notice that larger step size provides fast initial decrease; yet the resulting
asymptotic bias is larger which aligns with our theory. To verify assumptions, we compute the
gradient and the Hessian respectively as

∇f(θ) =
θ

1 + ‖θ‖2
+ λθ, and ∇2f(θ) =

I

1 + ‖θ‖2
− 2θθ>

(1 + ‖θ‖2)2
+ Iλ,

with I denoting the identity matrix. For small λ the above function is clearly non-convex. To see
this, choose λ = 0.1, u = θ/‖θ‖ and note that 〈u, ∇2f(θ)u〉 < 0 whenever 1.5 ≤ ‖θ‖ ≤ 2. Also,
note that

‖∇f(θ)‖2 = ‖θ‖2
(
λ+ 1/(1 + ‖θ‖2)

)2
≥ 2λ2

1 + λ

{
f(θ)− f(θ∗)

}
.

Thus, Assumption 3.3 is satisfied for γ = 2λ2

1+λ and g(x) = γx2. Following the same steps in the
regression setting, one can also verify Assumptions 2.1-2.3; hence, Theorem 3.2 can be applied.
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4.1.2 Online Stochastic Gradient Descent

For our online SGD experiments, we use bk = 2, for all iterations k to obtain the stochastic gra-
dient. We also experimented with mk = 10, 50 and observed similar behavior. The distribution of
the random vector Z = (X,Y ) ∈ Rd+1, is as follows: Each coordinate of the vector X ∈ Rd, is gen-
erated as Bernoulli(±1)/

√
d and given vector X, the response Y ∈ R is generated according to the

linear model Y = 〈X, θtrue〉 + ε with each coordinate of θtrue ∈ Rd generated from Unif(0, 1), and
fixed, and ε ∈ R is Student-t (df = 10) noise. We choose d = 10, and set a burn-in period of size 100.

Asymptotic normality: Fig. 2-(a,b,c) demonstrates the normality of online SGD. Each plot has
two density curves where red and blue curves in Fig. 2-(a,b) respectively correspond to initializations
with θ0 = (1, . . . , 1) and θ

′
0 = (2.5, . . . , 2.5) with step size η = 0.3; green and orange curves in Fig. 2-

c correspond to step sizes η = 0.2 and η′ = 0.3 with initialization θ0. All experiments are based on
4000 Monte Carlo runs. We observe in Fig. 2-a that different initializations have an early impact
on the normality when the number of iterations is moderate. However, when SGD is run for a
longer time, this effect is removed as in Fig. 2-b. Lastly, Fig.2-c demonstrates the effect of step
size on the normality, where the means are different for different step sizes as they depend on the
stationary distribution πη.

4.2 Regularized Blake-Zisserman MLE for corrupted linear regression

While the above example was based on linear-regression with heavy-tailed noise, we now consider
the case of heavy-tailed regression with corrupted noise. In this setup, the noise model in linear
regression is assumed to be Gaussian, but a fraction of the noise vectors are assumed to be corrupted
in the sense that they are drawn from a uniform distribution. Such a scenario arises in visual
reconstruction problems; see for example [BZ87] for details. In this case, defining the random
vector Z := (X,Y ), the stochastic optimization problem in (1.3) is given by the expectation of the
function

F (Z, θ) := log
(
ν + e−(Y−〈X, θ〉)2

)
+
λ

2
‖θ‖2, ν > 0.

Similar the previous case, we also consider the finite-sum version: Given n independent and iden-
tically distributed samples (xi, yi), it corresponds to minimizing the following objective function

f(θ) = − 1

2m

m∑
i=1

log
(
ν + e−(yi−〈xi, θ〉)2

)
+
λ

2
‖θ‖2, ν > 0 .

4.2.1 Semi-stochastic Gradient Descent

In the experiments, we use the same setup and parameters as in Section 4.1.1.

Asymptotic normality: Fig 1-(e,f,g) demonstrates the asymptotic normality of the SGD with
heavy-tailed gradient noise Student-t(df = 6). The experimental setup is the same as the previous
example with the same values for θ0, θ

′
0, η, η

′. We observe the early impact of initialization in Fig 1-
a, the clear normality in Fig. 1-b, and the effect of step size on CLT in Fig.1-c. These observations
also align with our theory since this objective also satisfies our assumptions. Indeed, it has the
gradient

∇f(θ) = − 1

m

m∑
i=1

xi
(
yi − 〈xi, θ〉

)
e−(yi−〈xi, θ〉)2

ν + e−(yi−〈xi, θ〉)2
+ λθ .
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The triangle inequality yields

‖∇f(θ)‖ ≤ 1

1 + ν

∥∥ 1
mX>y

∥∥+
( 1

1 + ν
λmax( 1

mX>X) + λ
)
‖θ‖,

which verifies Assumption 2.1. To verify the dissipativity assumption, we can write

〈∇f(θ), θ〉 = 〈− 1

m

m∑
i=1

xi
(
yi − 〈xi, θ〉

)
e−(yi−〈xi, θ〉)2

ν + e−(yi−〈xi, θ〉)2
+ λθ, θ〉 ≥ − 1

1 + ν

∥∥ 1
mX>y

∥∥‖θ‖+ λ‖θ‖2 .

The inequality follows from the triangle and Cauchy-Schwartz inequalities. Using Young’s inequal-
ity, we obtain

− 1

1 + ν

∥∥ 1
mX>y

∥∥‖θ‖ ≥ − 1

λ(1 + ν)

∥∥ 1
mX>y

∥∥2 − λ

4(1 + ν)
‖θ‖2,

which shows that the above function is dissipative for α = λ/2 and β = 1
2λ(1+ν)2

∥∥ 1
mX>y

∥∥2
; thus,

Assumption 2.2 holds.

Bias: Similar to the previous example, we simplify the problem so that we can compute the bias
πη(φ)− φ(θ∗). We consider the function

f(θ) := −1

2
log
(
ν + e−‖θ‖

2)
+
λ

2
‖θ‖2, ν > 0 .

We observe in Fig.1-h that smaller step sizes lead to smaller asymptotic bias. To verify that this
can be predicted from our theory, we write the gradient and the Hessian respectively, as

∇f(θ) =
θ

1 + νe‖θ‖2
+ λθ and ∇2f(θ) =

I

1 + νe‖θ‖2
− 2νe‖θ‖

2

(1 + νe‖θ‖2)2
θθ> + λI.

First, note that the Hessian can have negative eigenvalues for small values of λ. For example, for
ν = 1, λ = 0.1, and the unit direction u = θ/‖θ‖, we have 〈u, ∇2f(θ)u〉 < 0 for 1 ≤ ‖θ‖2 ≤ 2; thus
the function is non-convex. But we also have

〈∇f(θ), θ〉 = ‖θ‖2
(
λ+ 1/

(
1 + νe‖θ‖

2)) ≥ (λ+ 1/
(
1 + νeR

2))‖θ‖2
for ‖θ‖ ≤ R and 〈∇f(θ), θ〉 ≥ λ‖θ‖2 for ‖θ‖2 > R; thus, Assumption 3.2 is satisfied for α = λ, and

any β ≥ 0 and g(x) =
(
λ + 1/

(
1 + νeR

2))
x2. Following the same steps in the previous example,

one can also verify Assumptions 2.1-2.3; therefore, Theorem 3.1 follows.

4.2.2 Online Stochastic Gradient Descent

In the experiments, we use the same setup as in Section 4.1.2.

Asymptotic normality: Fig. 2-(d,e,f) demonstrates the normality of online SGD. Each plot has
two density curves where red and blue curves in Fig. 2-(d,e) respectively correspond to initializations
with θ0 = (1, . . . , 1) and θ

′′
0 = (1.5, . . . , 1.5) with step size η = 0.3; green and orange curves in Fig. 2-

c correspond to step sizes η = 0.2 and η′ = 0.3 with initialization θ0. All experiments are based on
4000 Monte Carlo runs. We observe in Fig. 2-d that different initializations have an early impact
on the normality when the number of iterations are moderate. However, when SGD is run for a
longer time, this effect is removed as in Fig. 2-e. Lastly, Fig.2-f demonstrates the effect of step
size on the normality, where the means are different for different step sizes as they depend on the
stationary distribution πη.
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5 Discussions

By leveraging the connection between constant step size SGD and Markov chains [DDB19], we
provided theoretical results characterizing the bias and the fluctuations of constant step size SGD
for non-convex and non-smooth optimization which arises frequently in modern statistical learning.

Estimating the Asymptotic Variance: As discussed in Section 2, in order for using the es-
tablished CLT to compute confidence intervals in practice, the population expectation πη(φ) and
asymptotic variance σ2

πη(φ) have to be estimated. We suggest the following three ways to do so:

• Estimate them based on sample average of a single trajectory of SGD iterates, i.e., the

mean πη(φ) is estimated as n−1
∑n−1

k=0 φ
(
θ

(η)
k

)
and the variance σ2

πη(φ) by adopting the online
approach of [ZCW20] to the constant step size setting.

• First run N parallel SGD trajectories and compute the average of each trajectory, to obtain N
independent observations from the stationary distribution πη. Next, use the N observations
to compute the sample mean and the sample variance estimators for πη(φ) and σ2

πη(φ).

• Leverage the online bootstrap and variance estimation approaches proposed in [FXY18, SZ18,
CLT+20] for the constant step size SGD setting in order to obtain estimates for πη(φ) and
σ2
πη(φ).

A theoretical investigation on the relative merits of the above approaches is left as future work.
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A Proofs for Sections 2 and 3

A.1 Preliminaries and Additional Notations

Note that the sequence of iterates {θ(η)
k }k≥0 is a homogeneous Markov chain [DDB19]. We denote

the (sub-)σ-algebra (of F) of events up to and including the k-th iteration as Fk. By definition, the
discrete-time stochastic process defined in (1.2) is adapted to its natural filtration {Fk}k≥0. We
denote the Markov kernel on (Rd,B(Rd)) associated with SGD iterates (1.2) by P with

P (θ
(η)
k , A) = P(θ

(η)
k+1 ∈ A|θ

(η)
k ) P− a.s., ∀A ∈ B(Rd), k ≥ 0 .

Define the k-th power of this kernel iteratively: define P 1 := P, and for k ≥ 1, for all θ̃ ∈ Rd and
A ∈ B(Rd), define

P k+1(θ̃, A) :=

∫
Rd
P (θ̃, dθ)P k(θ,A) .

For any function φ : Rd → R and k ≥ 0, define the measurable function P kφ(θ) : Rd → R for all
θ ∈ Rd via

P kφ(θ) =

∫
φ(θ̃)P k(θ, dθ̃) .

Given the Lφ-Lipschitz function φ : Rd → R and the expectation of φ under the stationary measure
πη, define the function h as

h : Rd → R
θ 7→ φ(θ)− πη(φ) .

Note that πη(h) = 0 and h is Lφ-Lipschitz. Define the partial sum Sn(φ) :=
∑n−1

k=0 h(θ
(η)
k ). Moreover,

we define

θ̄η :=

∫
Rd
θdπη(θ) .

A.2 Proofs of Proposition 2.1 and Theorem 2.1

We start with some preliminary results required to prove the CLT.

Lemma A.1. Under Assumptions 2.1-2.3, it holds for any η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
and any

fixed initial point θ
(η)
0 = θ0 ∈ Rd that

E[ ‖θ(η)
k+1‖

2 + 1|Fk] ≤ α†( ‖θ
(η)
k ‖

2 + 1) + β† .

Here, α† ∈ (0, 1) and β† ∈ (0,∞) are constants depending on η. The explicit formulas of α†, β† are
given in the proof.

Proof of Lemma A.1. Define Uη :=
α−
√

max{α2−(3L2+Lξ),0}
3L2+Lξ

. Given η ∈ (0, Uη), define

α† = 1 + η2(3L2 + Lξ)− 2ηα

and note that with this definition α† ∈ (0, 1) whenever η ∈ (0, Uη). Then, with η, α†, and the fixed

initial point θ
(η)
0 = θ0 ∈ Rd, we set

β† := κ(α
1/2
† − α†) ,
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where

κ :=
4η(α+ β) + 12η2L2

α
1/2
† − α†

∨
1 .

It follows that β† > 0. Note that

E[1 + ‖θ(η)
k+1‖

2|Fk]

=E[1 + ‖θ(η)
k − η

(
∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )
)
‖2|Fk]

=1 + E
[
‖θ(η)
k ‖

2 + η2 ‖∇f(θ
(η)
k )‖2 + η2 ‖ξk+1(θ

(η)
k )‖2 − 2η〈θ(η)

k , ∇f(θ
(η)
k )〉|Fk

]
.

The last step follows from the Assumption 2.3. By Assumption 2.1, we have

‖∇f(θ
(η)
k )‖2 ≤ L2(1 + ‖θ(η)

k ‖)
2 .

Squaring both sides and using the fact that (1 + ‖θ(η)
k ‖)

2 ≤ 3( ‖θ(η)
k ‖

2 + 3) gives

‖∇f(θ
(η)
k )‖2 ≤ 3L2( ‖θ(η)

k ‖
2 + 3) .

By Assumption 2.2, we obtain

〈θ(η)
k , ∇f(θ

(η)
k )〉 ≥ α ‖θ(η)

k ‖
2 − β .

By Assumption 2.3, it holds that

E[ ‖ξk+1(θ
(η)
k )‖2|Fk] ≤ Lξ(1 + ‖θ(η)

k ‖
2) .

Plugging the previous three inequalities into the first display provides us with

E[1 + ‖θ(η)
k+1‖

2|Fk] ≤ 1 + 9η2L2 + η2Lξ + 2ηβ + (1 + 3η2L2 + η2Lξ − 2ηα) ‖θ(η)
k ‖

2 . (A.1)

Recall that α† = 1 + η2(3L2 + Lξ)− 2ηα. Plugging α† back into the previous display yields

E[ ‖θ(η)
k+1‖

2 + 1|Fk] ≤ α†( ‖θ
(η)
k ‖

2 + 1) + 2η(α+ β) + 6η2L2 .

Note that β† = κ(α
1/2
† − α†), where

κ ≥ 4η(α+ β) + 12η2L2

α
1/2
† − α†

.

It then follows that E[ ‖θ(η)
k+1‖

2 + 1|Fk] ≤ α†( ‖θ
(η)
k ‖

2 + 1) + β† as desired.

Corollary A.1 (Bounded second moment). Under the assumptions stated in Lemma A.1, with the

constant step size η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
the stationary distribution πη satisfies

µ2,η :=

∫
‖θ‖2πη(dθ) ≤ 3 +

2β

α
.
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Proof of Corollary A.1. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

By display (A.1), it holds that

E[‖θ(η)
k+1‖

2] ≤ 9η2L2 + η2Lξ + 2ηβ + (1 + 3η2L2 + η2Lξ − 2ηα) ‖θ(η)
k ‖

2 .

Using the fact that by stationarity E[‖θ(η)
k+1‖

2] = E[‖θ(η)
k ‖

2] and rearranging the previous display
gives

E[‖θ(η)
k ‖

2] ≤
9ηL2 + ηLξ + 2β

2α− η(3L2 + Lξ)
≤ 3 +

2β

α
.

Corollary A.2 (Lyapunov condition). Under the assumptions stated in Lemma A.1, given the step
size specified in Lemma A.1, it holds that

E[V (θ
(η)
k+1)|Fk] ≤ α†V (θ

(η)
k ) + β† ,

where the Lyapunov function V (θ) is defined via

V (θ) := ‖θ‖2 + 1 . (A.2)

Observe that by the proof of Lemma 15.2.8 in [MT12] this also implies that the drift condition (V4)
in [MT12] holds with V defined above, b = β†, β = (1− α†)/2 and the following set C

C :=
{
θ ∈ Rd : V (θ) ≤

2β†
γ − α†

}
, (A.3)

for an arbitrary but fixed γ ∈ (α
1/2
† , 1).

Corollary A.3 (Minorization condition). Under Assumptions 2.1-2.3, given the step size specified
in Lemma A.1, there exists a constant ζ > 0, and a probability measure ν† (depending on η which
is suppressed in the notation) with ν†(C) = 1 and ν†(Cc) = 0, such that

P (θ,A) ≥ ζν†(A)

holds for any A ∈ B(Rd) and θ ∈ C for the set C defined in (A.3).

Proof of Corollary A.3. Recall the definition of the markov chain (1.2), we have

ξk+1(θ
(η)
k ) =

θ
(η)
k − θ

(η)
k+1

η
−∇f(θ

(η)
k ) .

Recall that the distribution of ξ1(θ) can be decomposed as µ1,θ +µ2,θ where µ1,θ has density pθ. It
then holds for any θ ∈ Rd that

P (θ, C) = P(θ
(η)
k+1 ∈ C|θ

(η)
k = θ) ≥

∫
t∈C

1

ηd
pθ

(θ − t
η
−∇f(θ)

)
dt > 0 . (A.4)

This implies every state in the state space is within reach of any other state over the set C. Define
the probability measure ν† with density

pν†(t) := I{θ ∈ C} infθ∈C p(t|θ)∫
t∈C infθ∈C p(t|θ)dt

,
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and set the constant ζ :=
∫
t∈C infθ∈C p(t|θ)dt. By Assumption 2.3 and the display (A.4), it holds

that ζ > 0, ν†(C) = 1 and ν†(Cc) = 0. Moreover, it holds that any A ∈ B(Rd) and θ ∈ C that

P (θ,A) ≥ ζν†(A) .

This implies the minorization condition is met for all choices of η given by Lemma A.1.

Lemma A.2. Under Assumptions 2.1-2.3, the chain {θ(η)
k }k≥0 is an aperiodic, ψ-irreducible, and

Harris recurrent chain, with an invariant measure πη.

Remark A.1. This lemma implies the chain {θ(η)
k }k≥0 is positive.

Proof of Lemma A.2. Step 1: We show that the chain {θ(η)
k }k≥0 is aperiodic. By Assumption 2.3,

there does not exist d ≥ 2 and a partition of size d + 1 such that B(Rd) = (∪̇di=1Di)∪̇N, where ∪̇
denotes the disjoint union, and N is a ψ-null (transient) set, such that P (θ,Di+1) = 1 holds for
ψ-a.e. θ ∈ Di. Thus, the largest period of the chain defined in (1.2) is 1, which implies the chain is
aperiodic.

Step 2: We show that the chain {θ(η)
k }k≥0 is ψ-irreducible, and recurrent with an invariant prob-

ability measure. We note that by Assumption 2.3, there exists some non-zero σ-finite measure ψ
on (Rd,B(Rd)) such that for any θ ∈ Rd and any A ∈ B(Rd) with ψ(A) > 0, it holds that

P(θ
(η)
k+1 ∈ A|θ

(η)
k = θ) ≥

∫
θ̃∈A

1

ηd
pθ

(θ − θ̃
η
−∇f(θ)

)
dθ̃ > 0 ,

where pθ was defined in Assumption 2.3. This implies the Markov chain defined in (1.2) is ψ-
irreducible. By the Lyapunov condition established in Corollary A.2, part (iii) of Theorem 15.0.1

in [MT12] holds. It then follows by condition (i) of this theorem that the chain {θ(η)
k }k≥0 is recurrent

with an invariant probability measure πη.
Step 3: We show that the chain is Harris recurrent. Define the hitting time τC := inf{n > 0 :

θ
(η)
n ∈ C}, where the set C is defined in (A.3). By Corollary A.4 in [MSH02], it holds for any fixed

θ
(η)
0 = θ0 ∈ Rd that

P(τC <∞) = 1 .

By Proposition 10.2.4 in [DMPS18], the chain is Harris recurrent.

Now, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. (a) By Lemma A.2, the chain {θ(η)
k }k≥0 is an aperiodic Harris recurrent

chain, with an invariant measure πη. Note that the chain is also positive. Thus condition (i) of
Theorem 13.0.1 in [MT12] is satisfied and this implies the existence of a unique invariant mea-
sure πη. The fact that this stationary distribution has a finite second moment was established in
Corollary A.1.

(b) By Lemma A.2, the iterates {θ(η)
k }k≥0 are realiztions from a ψ-irreducible and aperiodic chain.

Note that

|φ(θ)| ≤κφ(1 + ‖θ‖)

≤2κφ
√

1 + ‖θ‖2

≤2κφV (θ) .
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By Corollary A.2, the condition (iv) of Theorem 16.0.1 in [MT12] with V (θ) = 2κφ(1 + ‖θ‖2) is

fulfilled. By part (ii) in that theorem, it holds that for fixed θ
(η)
0 = θ0 ∈ Rd

|P kφ(θ0)− πη(φ)| ≤κρkV (θ0) ,

where ρ ∈ (0, 1), κ > 0 are constants depending on φ.

We now prove Theorem 2.1. In order to do so, we first derive the central limit theorem for the
function h when the Markov chain starting from its stationary distribution πη.

Lemma A.3 (CLT with stationary initial distribution). Assume Assumptions 2.1-2.3 hold. For

any step size η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
, it holds that

n−1/2Sn(φ) −→
Pπη
N (0, σ2

πη(φ)) ,

where σ2
πη(φ) = 2πη(hĥ)− πη(h2) with ĥ =

∑∞
k=0 P

kh.

Proof of Lemma A.3. We prove the claim by appealing to Theorem 17.0.1 in [MT12]. In order to

do so, we first show that the chain {θ(η)
k }k≥0 is V -uniformly ergodic, where the function V is defined

in (A.2). Then, we establish the CLT by employing Theorem 17.0.1 in [MT12].

Step 1: We show that the chain {θ(η)
k }k≥0 is V -uniformly ergodic. By Lemma A.2 and Proposi-

tion 2.1, the chain {θ(η)
k }k≥0 is positive Harris recurrent with a unique stationary distribution πη.

Note that the chain {θ(η)
k }k≥0 is also ψ-irreducible and aperiodic. By Corollary A.2, condition (iv)

of Theorem 16.0.1 in [MT12] is satisfied. Then, it follows from part (i) of this theorem that the

iterates {θ(η)
k }k≥0 is V -uniformly ergodic.

Step 2: We now establish the CLT for the averaged SGD iterates starting from the stationary
distribution πη. Note that for the test function φ(θ), it holds for any θ ∈ Rd that

|φ(θ)| ≤ κφ(1 + ‖θ‖) ≤ 2κφ
√

1 + ‖θ‖2 ,

which implies
|φ(θ)|2 ≤ 4κ2

φV (θ) .

Thus the conditions required to leverage Theorem 17.0.1 (ii), (iv) with g(θ) = φ(θ) in [MT12] are
satisfied. Hence, by Theorem 17.0.1 in [MT12], we obtain

1√
n

n−1∑
k=0

h(θ
(η)
k ) −→

Pπη
N (0, σ2

πη(φ)) ,

where σ2
πη(φ) = 2πη(hĥ)− πη(h2) > 0.

Proof of Theorem 2.1. By Lemma A.2 and Lemma A.3, the desired result follows readily from
Proposition 17.1.6 in [MT12].
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A.3 Proofs of Proposition 3.1, Theorems 3.1, 3.2, and 3.3

We need the following auxiliary lemma.

Lemma A.4. Assumptions 2.1 and 2.2 implies

〈∇f(θ), θ − θ∗〉 ≥ α′‖θ − θ∗‖2 − β′ ,

where θ∗ ∈ Rd is any critical point of function f , and α′, β′ are positive constants.

Proof of Lemma A.4. When θ∗ = 0, the result follows trivially from Assumption 2.2. Assume
‖θ∗‖ > 0. Note that

〈∇f(θ), θ − θ∗〉 = 〈∇f(θ), θ〉 − 〈∇f(θ), θ∗〉 .

By Assumption 2.2, it holds that

〈∇f(θ), θ〉 ≥ α‖θ‖2 − β
≥ α(‖θ − θ∗‖2 + ‖θ∗‖2 − 2‖θ∗‖‖θ − θ∗‖)− β .

By Assumption 2.1, Cauchy-Schwarz inequality and triangular inequality, it holds that

〈∇f(θ), θ∗〉 ≤ ‖∇f(θ)‖‖θ∗‖ ≤ L‖θ∗‖(1 + ‖θ − θ∗‖+ ‖θ∗‖) .

Combing the previous two displays yields

〈∇f(θ), θ − θ∗〉
≥α(‖θ − θ∗‖2 + ‖θ∗‖2 − 2‖θ∗‖‖θ − θ∗‖)− β − L‖θ∗‖(1 + ‖θ − θ∗‖+ ‖θ∗‖)

≥α
2
‖θ − θ∗‖2 − β − L‖θ∗‖2 − L‖θ∗‖ .

The desired result follows by setting α′ := α
2 and β′ := β +

(√
α+ 2L√

α

)2‖θ∗‖2 + L‖θ∗‖.

Lemma A.5. Under Assumptions 2.2 and 3.1, it holds for any k ≥ 1 and θ ∈ Rd that

E[‖ξk+1(θ)‖r] ≤ L′ξ
r/4

(1 + ‖θ − θ∗‖r) , for r ∈ {2, 3, 4},

where θ∗ ∈ Rd is any critical point of function f , and L′ξ := 8Lξ(1 + (β/α)4).

Proof of Lemma A.5. By Assumptions 2.2 and 3.1, it holds that

E[‖ξk+1(θ)‖4] ≤ Lξ(1 + ‖θ‖4)

≤ Lξ(1 + 8‖θ − θ∗‖4 + 8‖θ∗‖4)

≤ Lξ(1 + 8‖θ − θ∗‖4 + 8(β/α)4)

≤ L′ξ(1 + ‖θ − θ∗‖4) ,

where L′ξ := 8Lξ(1 + (β/α)4). Similarly, for r ∈ {2, 3} we have

E[‖ξk+1(θ)‖r] ≤ E[‖ξk+1(θ)‖4]r/4

≤ Lr/4ξ (1 + ‖θ‖4)r/4

≤ Lr/4ξ (1 + ‖θ‖r)

≤ Lr/4ξ (1 + 2r−1‖θ − θ∗‖r + 2r−1‖θ∗‖r)

≤ Lr/4ξ (1 + 2r−1‖θ − θ∗‖r + 2r−1(β/α)r)

≤ L′ξ
r/4

(1 + ‖θ − θ∗‖r) ,

where L′ξ is defined above.
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Lemma A.6. Under Assumptions 2.1, 2.2, and 3.1, with step size η < 1 ∧ 1
10L̄

, it holds for any
k ≥ 0 that

E[‖θ(η)
k+1 − θ

∗‖4|Fk]

≤(1− 4ηα′ + 32L†η
2)‖θ(η)

k − θ
∗‖4 + η(4β′ + 24L̄2 + 12L′ξ

1/2
+ 64)‖θ(η)

k − θ
∗‖2

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32(L′ξ)
3/2) . (A.5)

where L† := L̄2 + 16
(
L

3/4
ξ (1 + (β/α)3)∨L1/2

ξ (1 + (β/α)2)∨Lξ(1 + (β/α)4)
)

with L̄ := L(1 + ‖θ∗‖),
L′ξ is from Lemma A.5, and θ∗ is any critical points of fuction f.

Proof of Lemma A.6. Define ∆k := ‖θ(η)
k − θ

∗‖. It holds by Assumption 2.1 that

‖∇f(θ
(η)
k )‖ ≤ L̄∆k + L̄ ,

where L̄ = L(‖θ∗‖+ 1). Note that

∆4
k+1 =(∆2

k + η2 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2 − 2η〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉)2

=∆4
k + η4 ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖4 + 4η2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2

+ 2η2∆2
k ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2 − 4η∆2

k〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉

− 4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉
=∆4

k + I + II + III + IV + V ,

where

I := η4 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖4

II := 4η2〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2

III := 2η2∆2
k ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2

IV := −4η∆2
k〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉

V := −4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉 .

To obtain the expectation E[∆4
k+1], we first calculate the conditional expectation E[∆4

k+1|Fk]. For
this, we proceed the conditional expectation of the above five terms separately. Note that

E[I|Fk] =η4E[ ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖4|Fk]

≤η4E[8 ‖∇f(θ
(η)
k )‖4 + 8 ‖ξk+1(θ

(η)
k )‖4|Fk]

≤8η4(8L̄4∆4
k + 8L̄4 + L′ξ∆

4
k + L′ξ) .

The first inequality follows from the fact that (x+ y)4 ≤ 8(x4 + y4), ∀x, y > 0. The last inequality
follows from Assumptions 2.1 and Lemma A.5. Using the same trick and invoking Cauchy-Schwarz
inequality gives

E[II|Fk] =4η2E[〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2|Fk]

≤4η2∆2
kE[ ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2|Fk]

≤8η2∆2
k(2L̄

2∆2
k + 2L̄2 + L′ξ

1/2
∆2
k + L′ξ

1/2
) .
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Similarly, we have

E[III|Fk] =2η2∆2
kE[ ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2|Fk]

≤4η2∆2
k(2L̄

2∆2
k + 2L̄2 + L′ξ

1/2
∆2
k + L′ξ

1/2
) .

Using Cauchy-Schwarz inequality again, we obtain

E[V|Fk] =E[−4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉|Fk]

≤4η3E[‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖3‖θ(η)

k − θ
∗‖|Fk]

=4η3∆kE
[
‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖3|Fk

]
≤4η3∆kE

[
4‖∇f(θ

(η)
k )‖3 + 4‖ξk+1(θ

(η)
k )‖3|Fk

]
.

Note that by Lemma A.5, it holds for any k ≥ 1 and θ ∈ Rd that

E[‖ξk(θ)‖3] ≤ L′ξ
3/4

(1 + ‖θ − θ∗‖3) .

Combining this with the previous display yields

E[V|Fk] ≤16η3∆k(4L̄
3∆3

k + 4L̄3 + L′ξ
3/4

+ L′ξ
3/4

∆3
k)

=64L̄3η3∆4
k + 16η3L′ξ

3/4
∆4
k + 16η2(∆kη4L̄3 + ∆kηL

′
ξ
3/4

) .

Collecting pieces gives

E[∆4
k+1|Fk] ≤∆4

k(1 + 64η4L̄4 + 64η3L̄3 + 24η2L̄2 + 8η2L′ξ + 12η2L′ξ
1/2

+ 16η2L′ξ
3/4

)

− 4η∆2
k〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉

+ η2
(
64η2L̄4 + 8η2L′ξ + 24L̄2∆2

k + 12L′ξ∆
2
k + 64∆2

k + 32(η4L̄3)2 + 32(ηL′ξ
3/4

)2
)

≤∆4
k[1 + 32η2(L̄2 + L′ξ + L′ξ

1/2
+ L′ξ

3/4
)]− 4η∆2

k〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉

+ η
(
64L̄4η + 8L′ξη + 24L̄2∆2

k + 12L′ξ
1/2

∆2
k + 64∆2

k + 32(4L̄3)2η + 32(L′ξ)
3/2η

)
.

The above inequalities are based on the fact that η < 1
10L̄
∧ 1 and xy ≤ 2x2 + 2y2, ∀x, y > 0. By

Lemma A.4, we handle the term IV as following

E[∆4
k+1|Fk] ≤∆4

k

(
1− 4ηα′ + 32η2(L̄2 + L′ξ + L′ξ

1/2
+ L′ξ

3/4
)
)

+ η
(
4β′∆2

k + 64L̄4η + 8L′ξη + 24L̄2∆2
k + 12L′ξ

1/2
∆2
k + 64∆2

k + 32(4L̄3)2η + 32L′ξ
3/2
η
)
.

Define L† := L̄2 + 16
(
L

3/4
ξ (1 + (β/α)3) ∨ L1/2

ξ (1 + (β/α)2) ∨ Lξ(1 + (β/α)4)
)

. Note that L† >

L̄2 + L′ξ + L′ξ
1/2 + L′ξ

3/4. Combing this with the previous display gives

E[∆4
k+1|Fk]

≤∆4
k(1− 4ηα′ + 32η2L†)

+ η
(
4β′∆2

k + 64L̄4η + 8L′ξη + 24L̄2∆2
k + 12L′ξ

1/2
∆2
k + 64∆2

k + 32(4L̄3)2η + 32L′ξ
3/2
η
)

≤(1− 4ηα′ + 32L†η
2)∆4

k + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)∆2
k + η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ

3/2
) .
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Lemma A.7. Assume Assumptions 2.1-2.3 holds. With the step size

η ≤
α−

√
(α2 − (3L2 + Lξ)) ∨ 0

3L2 + Lξ
∧ α

64L†
∧ 1 ,

the chain (1.2) has the stationary distribution πη, and the chain has finite 4-th moment:

E[‖θ(η)
k+1‖

4] ≤ µ4,η ,

where

µ4,η :=
8

7α

(
(β + 6L2 + 3L

1/2
ξ + 16)µ2,η + 16L4 + 2Lξ + 128L6 + 8L

3/2
ξ

)
with µ2,η defined in Corollary A.1, and L† defined in Lemma A.6.

Proof of Lemma A.7. Similar to display (A.5), we can derive

E[‖θ(η)
k+1‖

4|Fk] ≤(1− 4ηα+ 32L†0η
2)‖θ(η)

k ‖
4

+ η
[
(4β + 24L2 + 12L

1/2
ξ + 64)‖θ(η)

k ‖
2 + η(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
,

where L†0 := L2 +Lξ+L
1/2
ξ +L

3/4
ξ . Recall the definition of L† in Lemma A.6, it holds that L† ≥ L†0,

which implies

E[‖θ(η)
k+1‖

4|Fk] ≤(1− 4ηα+ 32L†η
2)‖θ(η)

k ‖
4

+ η
[
(4β + 24L2 + 12L

1/2
ξ + 64)‖θ(η)

k ‖
2 + η(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
,

Note that the chain starts from the stationary distribution πη, taking the expectation on both
sides gives

(4ηα− 32L†η
2)E[‖θ(η)

k ‖
4]

≤η(4β + 24L2 + 12L
1/2
ξ + 64)E[‖θ(η)

k ‖
2] + η2(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ ) .

We also note that E[‖θ(η)
k ‖

2] = µ2,η for µ2,η from Corollary A.1. Plugging this into the previous
display and rearranging the inequality gives

E[‖θ(η)
k+1‖

4]

≤ η

4ηα− 32L†η2
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η +

η2

4ηα− 32L†η2
(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

≤ η

4ηα− 32L†η2
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η +

η

4ηα− 32L†η2
(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

≤ 2

7α

[
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η + (64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
as desired.

We are now ready to prove Proposition 3.1.

29



Proof of Proposition 3.1. Define ∆k := ‖θ(η)
k − θ

∗‖. By Lemma A.6, we have

E[∆4
k+1|Fk]

≤(1− 4ηα′ + 32L†η
2)∆4

k + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)∆2
k

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

) .

Taking expectation on both sides then gives

E[∆4
k+1]

≤(1− 4ηα′ + 32L†η
2)E[∆4

k] + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)E[∆2
k]

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

) .

Set

% := 1− 4ηα′ + 32L†η
2

A1 := 64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

A2 := 4β′ + 24L̄2 + 12L′ξ
1/2

+ 64 .

By Cauchy-Schwatz inequality, we then have

E[∆4
k+1] ≤ %E[∆4

k] +A1η
2 +A2E1/2[∆4

k]η .

Note that when 0 < η <
α′−
√

(α′2−4L†)

16L†
1l(α′2 > 8L†) + α′

32L†
1l(α′2 ≤ 8L†), it follows that

% >
1

2
1l(α′2 ≥ 8L†) + (1− 3α′2

32L2
†
)1l(α′2 < 8L†) ≥

1

4
.

Set D :=
√
A1 ∨A2. We then find

E1/2[∆4
k+1] ≤ √%E1/2[∆4

k] +Dη .

By a straightforward induction, we have

E1/2[∆4
k] ≤ %k/2E1/2[∆4

0] +
Dη

1−√%
.

Notice that η ≤ α′

16L†
, it then follows that

% = 1− 4ηα′ + 32L†η
2 ≤ 1− 2ηα′ ,

which implies

1

1−√%
≤ 1

1−
√

1− 2ηα′
≤ 1

ηα′
.

Combining this with previous display gives

E1/2[∆4
k] ≤ %k/2E1/2[∆4

0] +
D

α′
.
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By Proposition 2.1, there exists a unique stationary distribution πη.

Consider the chain starting from the stationary distribution πη. Note that E[∆4
0] ≤ 8(E[‖θ(η)

0 ‖4]+
‖θ∗‖4). By Lemma A.7, it follows that

E[∆4
0] ≤ 8µ4,η + 8‖θ∗‖4 ,

where the constant µ4,η is defined in Lemma A.7. Plugging this into previous display provides us
with (∫

‖θ − θ∗‖4πη(dθ)
)1/4

= O(1) .

Note that it holds for the Lφ-Lipschitz continuous test function φ that

|πη(φ)− φ(θ∗)| ≤ Lφ
∫
‖θ − θ∗‖πη(dθ)

≤ Lφ
[∫
‖θ − θ∗‖4πη(dθ)

]1/4
,

Thus, we obtain

|πη(φ)− φ(θ∗)| = O(1)

as desired.

Lemma A.8. For any a, b, δ > 0, it holds for any x ≥ δ
a +

√
b
a that

ax2 − b ≥ δx .

Proof of Lemma A.8. Define the function h(x) := ax2− b− δx. When x ≥ δ+
√
δ2+4ab
2a , it holds that

h(x) ≥ 0. Note that
√
δ2 + 4ab ≤ δ +

√
4ab, it follows that when

x ≥ δ + δ +
√

4ab

2a
,

it holds that h(x) ≥ 0. The desired result then follows readily.

Proof of Theorem 3.1. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

Define ∆k := ‖θ(η)
k − θ

∗‖. Note that under Assumptions 3.2 and 3.1, Lemma A.5 still holds. By
Assumptions 2.1, 3.1, and Lemma A.5 , we have

E
[
∆2
k+1|Fk

]
=E
[
∆2
k + η2 ‖∇f(θ

(η)
k )‖2 + η2 ‖ξk+1(θ

(η)
k )‖2 − 2η〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉|Fk
]

≤∆2
k + η2

(
3L2(2∆2

k + 2‖θ∗‖2 + 3) + L′ξ
1/2

(1 + ∆2
k)
)
− 2η〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉

=∆2
k + 6L2η2∆2

k + L′ξ
1/2
η2∆2

k + η2C1 − 2η〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉

where C1 := 6‖θ∗‖2L2 +9L2 +L′ξ
1/2. Note that the chain starts from the stationary distribution πη,

which implies E[∆2
k+1] = E[∆2

k] for all k ≥ 0. Taking the expectation on both sides and rearranging
the inequality yields

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≤ η(3L2 + L′ξ
1/2

)E[∆2
k] +

η

2
C1 .
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By Corollary A.1, it follows that

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≤ C2η , (A.6)

where C2 := 2(3L2 + L′ξ
1/2)(µ2,η + ‖θ∗‖2) + C1/2 and µ2,η is defined in Corollary A.1. Moreover,

by Assumption 3.2, Lemma A.8, and Jensen’s inequality, we have

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≥ δE[∆k1l(∆k ≥ R)] + g(E[∆k1l(∆k < R)]) .

Combining this with previous display provides us with

E[∆k1l(∆k ≥ R)] ≤ C2

δ
η ,

and

E[∆k1l(∆k < R)] ≤ g−1(C2η) .

Collecting pieces then gives

E
[
∆k

]
=E
[
∆k1l(‖θ

(η)
k − θ

∗‖ < R)
]

+ E
[
∆k1l(‖θ

(η)
k − θ

∗‖ ≥ R)
]

≤C2

δ
η + g−1(C2η) .

Thus, it holds for the Lφ-Lipschitz continuous test function φ that

|πη(φ)− φ(θ∗)| ≤ Lφ
∫
‖θ − θ∗‖πη(dθ) ≤ Lφ

(C2

δ
η + g−1(C2η)

)
.

Proof of Theorem 3.2. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

Note that by the assumption that ‖∇2f(θ)‖ ≤ L̃(1 + ‖θ‖) and Taylor expansion, we have

f(θ
(η)
k+1) =f(θ

(η)
k ) + 〈∇f(θ

(η)
k ), θ

(η)
k+1 − θ

(η)
k 〉+

1

2
(θ

(η)
k+1 − θ

(η)
k )>∇2f(θ̃)(θ

(η)
k+1 − θ

(η)
k )

≤f(θ
(η)
k ) + 〈∇f(θ

(η)
k ), θ

(η)
k+1 − θ

(η)
k 〉+

1

2
L̃‖θ(η)

k+1 − θ
(η)
k ‖

2(1 + ‖θ̃‖) ,

where θ̃ ∈ Rd is a convex combination between θ
(η)
k+1 and θ

(η)
k . By definition of SGD iterates in (1.2),

it follows that

f(θ
(η)
k+1) ≤f(θ

(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉+

L̃

2
η2‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2(1 + ‖θ̃‖)

=f(θ
(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(1 + ‖θ̃‖)

≤f(θ
(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(1 + max{‖θ(η)

k ‖, ‖θ
(η)
k+1‖})

≤f(θ
(η)
k )− η‖∇f(θ

(η)
k )‖2 − η〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖) .
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Taking the conditional expectation on both sides, using Cauchy-Schwarz inequality, Assumption 3.1
and the fact that (1 + x4)1/2 ≤ 1 + x2, ∀x > 0 gives

E[f(θ
(η)
k+1)|Fk]

≤f(θ
(η)
k ) + (

L̃

2
η2 − η)‖∇f(θ

(η)
k )‖2 +

L̃

2
Lξη

2(1 + ‖θ(η)
k ‖

2) + 0

+
L̃

2
η2E

[
‖∇f(θ

(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)|Fk

]
+
L̃

2
η2E1/2

[
‖ξk+1(θ

(η)
k )‖4|Fk

]
E1/2

[
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk
]

+ 0 + L̃η2E[‖∇f(θ
(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk]

≤f(θ
(η)
k ) + (

L̃

2
η2 − η)‖∇f(θ

(η)
k )‖2 +

L̃

2
Lξη

2(1 + ‖θ(η)
k ‖

2)

+
L̃

2
η2E

[
‖∇f(θ

(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)|Fk

]
+
L̃

2
η2L

1/2
ξ (1 + ‖θ(η)

k ‖
2)E1/2

[
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk
]

+ L̃η2E[‖∇f(θ
(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk] .

We then take expectation on both sides. For this, we bound the last three terms separately. Note
that the chain starts from the initial distribution πη. By Hölder’s inequality, we have

E[‖∇f(θ
(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)]

≤E[‖∇f(θ
(η)
k )‖2‖θ(η)

k ‖] + E[‖∇f(θ
(η)
k )‖2‖θ(η)

k+1‖]

≤E1/2[‖∇f(θ
(η)
k )‖4]E1/2[‖θ(η)

k ‖
2] + E1/2[‖∇f(θ

(η)
k )‖4]E1/2[‖θ(η)

k ‖
2] .

By Assumption 2.1 and the fact that (x+ y)4 ≤ 9(x4 + y4), ∀x, y ∈ R, we have

E1/2[‖∇f(θ
(η)
k )‖4] ≤ L2E1/2[(1 + ‖θ(η)

k ‖)
4] ≤ 3L2

√
1 + E[‖θ(η)

k ‖4] .

By Lemma A.7, it holds that E[‖θ(η)
k ‖

4] < µ4,η, where the constant µ4,η is defined in Lemma A.7.

Moreover, by Corollary A.1, we also have E[‖θ(η)
k ‖

2] ≤ µ2,η, where the constant µ2,η is defined in
Corollary A.1. Combining these with previous display gives

E[‖∇f(θ
(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)] ≤ 6L2

√
1 + µ4,η

√
µ2,η .

Using the same trick, we obtain

E
[
(1 + ‖θ(η)

k ‖
2)E1/2[(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk]
]

≤E1/2[(1 + ‖θ(η)
k ‖

2)2]E1/2
[
E[(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk]
]

≤E1/2[2 + 2‖θ(η)
k ‖

4]E1/2
[
E[2‖θ(η)

k ‖
2 + 2‖θ(η)

k+1‖
2|Fk]

]
≤4E1/2[1 + ‖θ(η)

k ‖
4]E1/2[‖θ(η)

k ‖
2]

≤4
√
µ2,η

√
1 + µ4,η .
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By Assumptions 2.1 and 3.1, we have

E
[
E[‖∇f(θ

(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk]
]

≤E
[
‖∇f(θ

(η)
k )‖E1/2[‖ξk+1(θ

(η)
k )‖2|Fk]E1/2[‖θ(η)

k+1‖
2|Fk]

]
≤L1/2

ξ LE
[
(1 + ‖θ(η)

k ‖)(1 + ‖θ(η)
k ‖

2)1/2E1/2[‖θ(η)
k+1‖

2|Fk]
]

≤LL1/2
ξ E

[
(1 + ‖θ(η)

k ‖)
2E1/2[‖θ(η)

k+1‖
2|Fk]

]
≤LL1/2

ξ E1/2[(1 + ‖θ(η)
k ‖)

4]E1/4[‖θ(η)
k ‖

4]

≤LL1/2
ξ

√
8 + 8µ4,η(µ4,η)

1/4

=3LL
1/2
ξ (µ4,η + µ

3/4
4,η ) .

Collecting pieces then gives

E[f(θ
(η)
k+1)]

≤E[f(θ
(η)
k )] + (

L̃

2
η2 − η)E[‖∇f(θ

(η)
k )‖2] + L̃Lξη

2(1 + µ2,η)

+ 3L̃L2η2µ
1/2
2,η

√
1 + µ4,η + 2L̃L

1/2
ξ η2µ

1/2
2,η

√
1 + µ4,η + 3L̃LL

1/2
ξ η2(µ4,η + µ

3/4
4,η )

≤E[f(θ
(η)
k )] + (

L̃

2
η2 − η)E[‖∇f(θ

(η)
k )‖2] + 12η2L̃(L+ L

1/2
ξ + L

1/4
ξ )2

(
1 + µ2,η + µ4,η + µ

3/4
4,η

)
.

Recall that the iterates {θ(η)
k }k≥0 starts from the stationary distribution πη and η < 2

L̃
. Rearranging

the above display gives

E[‖∇f(θ
(η)
k )‖2] ≤ 2M̃η

2− L̃η
,

where
M̃ := 12L̃(L+ L

1/2
ξ + L

1/4
ξ )2

(
1 + µ2,η + µ4,η + µ

3/4
4,η

)
.

By Assumption 3.3 and Jensen’s inequality, it holds that

E[‖∇f(θ
(η)
k )‖2] ≥E[g(f(θ

(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] + γE[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)]

≥g(E[(f(θ
(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)]) + γE[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)] .

Combing this with previous display gives

0 ≤ E[(f(θ
(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] ≤ g−1

( 2M̃η

2− L̃η

)
0 ≤ E[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)] ≤ 2M̃η

2− L̃η
.

This implies

0 ≤ πη(f)− f∗ = E[(f(θ
(η)
k )]− f∗

= E[(f(θ
(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] + E[(f(θ

(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ > R)]

≤ g−1
( 2M̃η

2− L̃η

)
+

2M̃η

2− L̃η
.
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When the test function φ satisfies φ = φ̃ ◦ f with the Lφ̃-Lipschitz function φ̃, we obtain

|πη(φ)− φ(θ∗)| ≤Lφ̃(πη(f)− f∗) ≤ Lφ̃
(
g−1
( 2M̃η

2− L̃η

)
+

2M̃η

2− L̃η

)
as desired.

Proof of Theorem 3.3. Consider the chain {θ(η)
k }k≥0 starting from the stationary distirbution πη.

By display (A.6), it holds that

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≤ C2η ,

where C2 is a positive constant defined in Theorem 3.1. Note that f is convex, this implies

0 ≤ f(θ
(η)
k )− f∗ ≤ 〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉 .

Taking the expectation on both sides and combing this with the previous display gives

0 ≤ πη(f)− f∗ ≤ C2η .

The desired result readily follows for the test function φ satisfies φ = φ̃ ◦ f with the Lφ̃-Lipschitz

function φ̃.
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