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Abstract

Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying
degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact
estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical
treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum
of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow
easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast
computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project
and the CO(1–0) line-intensity field at z∼ 3 serving as our primary case study, we expect a ∼10% attenuation of
the spherically averaged power spectrum on average at relevant scales of k≈ 0.2–0.3Mpc−1 compared to ∼25%
for the interferometric Millimetre-wave Intensity Mapping Experiment targeting shot noise from CO lines at
z∼ 1–5 at scales of k 1Mpc−1. We also consider the nature and amplitude of errors introduced by simplified
treatments of line broadening and find that while an approximation using a single effective velocity scale is
sufficient for spherically averaged power spectra, a more careful treatment is necessary when considering other
statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.

Unified Astronomy Thesaurus concepts: High-redshift galaxies (734); Radio astronomy (1338); CO line
emission (262)

1. Introduction

Line-intensity mapping (LIM) or intensity mapping (IM) is the
study of the aggregate emission in a given spectral line across
large cosmological volumes. As previous overviews of the field
by Kovetz et al. (2017) and Kovetz et al. (2019) (and references
therein) have discussed, such observations will allow cosmologi-
cal and astrophysical inferences in understudied redshift ranges
where targeted galaxy surveys are difficult to undertake over large
sky areas. In particular, LIM should enable astrophysical
inferences about the faint end of luminosity functions at high
redshift, which will be less challenging to survey through
integrated line emission than in isolated targeted observations.

Interest in surveying reionization topology and large-scale
structure through 21 cm IM (Madau et al. 1997; Chang et al.
2008) led the initial scientific work in LIM. However, the field has
since evolved to include other lines such as carbon monoxide
(CO) and ionized carbon ([C II]) and the past decade has seen a
great abundance of literature around models of the LIM signal to
be expected from such lines (Lidz et al. 2011; Pullen et al. 2013;
Mashian et al. 2015; Yue et al. 2015; Lidz & Taylor 2016; Li
et al. 2016; Breysse et al. 2017; Padmanabhan 2018; Breysse &
Alexandroff 2019; Dumitru et al. 2019; Ihle et al. 2019;

Moradinezhad Dizgah & Keating 2019; Padmanabhan 2019; Sun
et al. 2019; Chung et al. 2020). Many of these works highlight
specific aspects not necessarily heavily emphasized in previous
literature that carry implications for signal expectations, including
astrophysical or cosmological effects like photodissociation of CO
in high-redshift low-metallicity environments (Mashian et al.
2015) and scale-dependent corrections to the tracer bias of CO
emission in relation to the underlying matter density (Moradi-
nezhad Dizgah & Keating 2019).
However, we have not seen detailed, explicit models of the

effect of line broadening10—the fact that spectral line emission
from each source is not confined to a single exact frequency,
but rather extends over a finite line width—in the context of
CO or [C II] LIM. As the effect will be to reduce the amplitude
of spectral line-intensity fluctuations, interpretation of line-
intensity power-spectrum measurements should ideally account
for it to avoid biased recovery of astrophysical or cosmological
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10 We use the term “line broadening” in this work rather than describe the
effect as a finger-of-God (FoG) effect, which traditionally refers to suppression
of clustering at small scales due to the pairwise velocity dispersion of galaxies.
In this work, we deal with suppression of line-intensity shot noise as well as
clustering, and the smearing of a continuous temperature field rather than
positions of individual galaxies.
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quantities. That said, the impact of line broadening will vary
based on the line surveyed and the scales of interest.

The 21 cm IM literature does model the velocity dispersion of
neutral hydrogen separately from that of matter, with Villaescusa-
Navarro et al. (2018) computing the dispersion as a function of
halo mass and Sarkar & Bharadwaj (2019) building a careful
model of the 21 cm line profile as a function of the host dark
matter halo’s properties. However, 21 cm experiments measuring
baryon acoustic oscillations at z 2 will target larger scales
(k∼ 0.1Mpc−1) where there is minimal suppression of the power
spectrum from such small-scale corrections.

In other contexts, the effect of line broadening is not the
dominant source of the suppression of observable fluctuations at
small scales. The upcoming generation of [C II] IM experiments
observing at 200–400 GHz have a resolving power of
R∼ 100–300 (Concerto Collaboration et al. 2020; Cothard
et al. 2020; Sun et al. 2021). This would effectively correspond
to a spectral width at 300 GHz of around 1–3 GHz, or
∼103 km s−1 channels, versus the ∼102 km s−1 line widths seen
in high-redshift [C II] sources (Capak et al. 2015; Pentericci et al.
2016). Therefore, line broadening should be subdominant to the
limited frequency resolution of these experiments.

We suggest that line broadening cannot be neglected in every
LIM context, and in particular, must be considered explicitly for
CO IM. Interferometric experiments such as the CO Power
Spectrum Survey (COPSS; Keating et al. 2016) and the
Millimetre-wave Intensity Mapping Experiment (mmIME; Keat-
ing et al. 2020) specifically target small-scale CO intensity
fluctuations. Even a single-dish experiment like the CO Mapping
Array Project (COMAP; Ihle et al. 2019), which chiefly targets
large-scale fluctuations, cannot entirely ignore line broadening due
to the effect it will have on the voxel intensity distribution (VID).

Despite this, the vast majority of signal and sensitivity forecasts
essentially treat line emitters as point sources along the line of
sight, with the implicit assumption that the effect of line
broadening is subdominant. When we do see models of line
profiles of CO in previous LIM literature, it is typically as a single
number describing a width essentially expected of all line profiles
in the observation. For instance, Moradinezhad Dizgah & Keating
(2019) model a single intrinsic line width at each redshift, set to
1+ z times 0.001c≈ 300 km s−1 without justification. (The
resulting attenuation is also applied only in the context of the
clustering contribution to the line-intensity power spectrum.)
More recently, in presenting observational results from the
previously mentioned mmIME, Keating et al. (2020) estimate
attenuation for specific line widths that are reasonable expecta-
tions based on high-redshift observations and models. However,
the work does not explicitly model a line width prescription across
the distribution of CO emitters or apply a correction to the
measured power spectrum based on the estimated attenuation.

Therefore, in this work, we set out to devise a model for line
broadening suitable for IM in any spectral line, but with an
emphasis on CO IM where the effect is particularly relevant in
the short- to medium-term future. Using our model, we aim to
answer these questions:

1. What is the level of signal attenuation11 that we can
expect for experiments like COMAP and mmIME due to
line broadening?

2. Is it sufficient to describe the effect of line broadening
using a single parameter (as has been done by previous
works), such as an effective global line width?

3. If not, how does this simplification fail?

We have structured the paper as follows. In Section 2, we
outline the theoretical formalism for the anisotropic power
spectrum and multipoles with and without line broadening,
given an analytic halo model of the line luminosity and line
width. We define such a model in Section 3 for CO(1–0)
emission at z∼ 3 as targeted by COMAP, which will allow us
to quantify the effect of line broadening in this case. In
Section 4 we consider simplified treatments of line broadening
for practical use in analysis, including a prescription for a
single effective line width rather than a mass-dependent
broadening. Then in Section 5 we validate our effective line
width prescription in the context of signals targeted by
COMAP and mmIME, but using numerical calculations based
on our analytic formalism rather than using N-body simula-
tions. We do use lightcones from N-body simulations in
Section 6 where we calculate the power spectrum and VID with
and without line broadening as might be observed by COMAP.
We discuss all of our calculations and their implications for
LIM experiments in Section 7, before summarizing and
concluding in Section 8.
Where necessary, unless otherwise specified, we assume base-

10 logarithms, and a ΛCDM cosmology with parameters Ωm=
0.286, ΩΛ= 0.714, Ωb= 0.047, H0= 100h km s−1Mpc−1 with
h= 0.7, σ8= 0.82, and ns= 0.96. The cosmology of choice
matches the one assumed for the N-body simulation used in
Section 6 and is broadly consistent with nine-year WMAP
results (Hinshaw et al. 2013). Distances carry an implicit h−1

dependence throughout, which propagates through masses (all
based on virial halo masses, proportional to h−1) and volume
densities (∝h3).

2. Theoretical Formalism: Anisotropic Power Spectrum

The present work will use lightcones from an N-body
cosmological simulation to directly numerically calculate
various statistics of the line-intensity field with line broadening
taken into account. However, to understand the eventual results
better, we will first outline the theoretical calculation of the
line-intensity power spectrum using a halo model of line
emission—first as in the existing literature (e.g., Lidz et al.
2011; Lidz & Taylor 2016; Breysse & Alexandroff 2019;
Chung 2019; Moradinezhad Dizgah & Keating 2019; Bernal
et al. 2019a), without line broadening but with other leading
anisotropies, and then incorporating line broadening into both
clustering and shot-noise components.
We will not extend theoretical treatment of line broadening

to the VID as the high complexity around the calculation of the
VID (as outlined by, e.g., Breysse et al. 2017) makes it far
more straightforward to find directly in numerical simulations,
and a rigorous theoretical treatment will not add much to our
understanding of the results. The numerical simulations alone
still allow us to understand qualitative aspects of the effect of
line broadening on the VID later in this work.

2.1. Redshift-space Power Spectrum without Line Broadening

We begin with the line-intensity power spectrum in real space,
for sources at some fixed redshift, each associated with a dark
matter halo. In our halo model at this redshift z, a dark matter

11 When we refer to the “signal” and its attenuation in this work, we refer to
the power spectrum rather than the line-intensity field. Line widths do not
reduce the mean line intensity, only the fluctuations about it.
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halo with halo mass Mh is associated with line luminosity L(Mh)
and the distribution of halo masses is given by a halo mass
function dn/dMh describing number density per mass bin. Then
the clustering component of the line-intensity power spectrum,
associated with the large-scale structure formed by the underlying
halo population, is found by scaling the matter power spectrum
Pm(k) by the bias b with which the line emission traces the large-
scale structure (i.e., the proportionality between line-intensity
contrast and matter-density contrast) and then by the cosmic
average line-brightness temperature T� §:

P k T b P k . 1mclust
2 2� � §( ) ( ) ( )

We find T� § by integrating luminosity density across all Mh and
multiplying by an appropriate conversion factor CLT:
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As for the line bias b, if a halo mass bin at Mh traces the matter
density contrast with halo bias b(Mh), then we can average
b(Mh) weighted by luminosity density at each Mh:
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Meanwhile, a shot-noise component to the power spectrum
describes scale-independent fluctuations arising from the fact that
line emitters are discrete objects, which subjects a measurement
of line-intensity fluctuations to Poisson statistics. The shot noise
is described by the average squared line-luminosity density:

P C dM
dn

dM
L M . 4LT h

h
hshot

2 2¨� ( ) ( )

If we prescribe log-normal scatter of σL (in units of dex) around
the average L(Mh) relation, this modifies Pshot:

P Pexp ln 10 0 . 5L L Lshot
2 2

shotT T T� �( ) ( ) ( ) ( )
For brevity, we will consider this additional factor implicit in
most expressions below. The present work will never consider
a mass-dependent σL, so the factor will not change with
consideration of line broadening.

The shot noise variance is independent of the clustering
variance, and so the components add linearly to give the total
line-intensity power spectrum in real space:

P k P k P . 6clust shot� �( ) ( ) ( )
Using Chung (2019) as our primary reference, we can consider

two leading effects (omitting the finger-of-God effect as it was
shown to be small, and as it will likely be subdominant to line
broadening). Both effects, as well as the effect from line
broadening to be considered below, preserve the angular isotropy
in the real-space signal. Therefore, the full three-dimensional
power spectrum, while strictly speaking a function of the 3D
wavevector k, will still depend effectively only on k= |k| and

k zN � ˆ · ˆ, the latter being the cosine of the angle between k and
the line of sight described by the unit vector ẑ.

The first leading effect is the Kaiser effect due to large-scale
coherent halo migration into matter overdensities, causing
redshift-space distortions. This modifies only the clustering

component,

P k
z
b

P k, 1 . 7r m
clust

0.55
2
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The second leading effect is instrumental resolution in both
angular and line-of-sight directions. Suppose the signal is
subject to a Gaussian beam profile with standard deviation of
σ⊥ in comoving space and also to a Gaussian spectral profile
approximating the instrumental frequency resolution with a
standard deviation of σ∥ also in comoving space. Here, if the
angular beam profile has a standard deviation σbeam in units of
radians, then σ⊥ is simply σbeam times the comoving distance R
(z) to the emission redshift z.
These angular and line-of-sight Gaussian profiles modify the

line-intensity field in comoving space by convolution. We
multiply the Fourier transform of the line-intensity field, T k˜( ),
by the appropriate Fourier transforms to yield
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and the power spectrum is modified as the squared Fourier
transform would be. Putting this together with the Kaiser effect,
the overall modification of the real-space power spectrum
results in the redshift-space power spectrum,
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The spherically averaged power spectrum that a survey can
actually measure corresponds to the monopole Pℓ=0(k) from the
multipole expansion of P(k, μ) in Legendre polynomials in μ,

$P k
ℓ

d P k
2 1

2
, , 10ℓ ℓ

1

1

¨ N N N�
�

�
( ) ( ) ( ) ( )

where $ℓ denotes the Legendre polynomial of order ℓ. Thus,

$P k P k, . 11
ℓ

ℓ ℓconv �N N�( ) ( ) ( ) ( )

The quadrupole power spectrum Pℓ=2(k) then describes the
leading anisotropies as Pconv(k, μ) is even in μ and thus the
dipole Pℓ=1(k)= 0. We use the notations P0(k) and P2(k)
throughout the remainder of this work to refer to the monopole
Pℓ=0(k) and quadrupole Pℓ=2(k).
If line broadening is a subdominant effect compared to the

spectral response of the instrument, then we can simply use the
above. However, we will proceed under the assumption that the
instrument’s native frequency resolution is subdominant
compared to the line-profile size, so that we discard the above
mass-independent σ∥ and instead consider a mass-dependent
σv(M) that introduces additional complications.

2.2. Redshift-space Power Spectrum with Line Broadening

We now introduce line broadening to consider its effect on the
signal. As with the bias, line luminosity, and number density, the
line width depends on halo mass. Suppose that the line profile of

3
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emission from a halo of mass Mh is Gaussian, with full width at
half maximum (FWHM) given by v(Mh) in units of physical
velocity. Then the standard deviation of the corresponding line-
of-sight Gaussian profile in comoving space is

M
z

H z
v M1

2 2 ln 2
. 12v h

hT �
�( ) ( )
( )

( ) ( )

Line broadening is a small-scale effect and therefore by and
large it suffices to consider its effect on the shot-noise
component only. The attenuation is mass-dependent and will
thus differ for each mass bin contributing to the total shot noise.
Therefore, instead of multiplying the total Pshot by the squared
Fourier transform of the Gaussian as in the previous section, we
need to apply the attenuation with the appropriate σv(Mh) to the
integrand of Equation (4). Including the angular beam profile,
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The shot noise is scale-independent while Pm(k)∼ k−3 at
high k, so shot noise typically dominates at scales where
attenuation of the power spectrum from line broadening is non-
negligible. However, for completeness we do also consider the
effect on the clustering component.

Recall that in calculating Pclust(k), we model the scaling of
line-intensity fluctuations from matter density contrast, where
the former is around an average temperature T� § and traces the
latter with some linear bias b:

x xT T b . 14mE% � � §( ) ( ) ( )
Then the Fourier transforms are scaled the same way and since
we take fluctuations in matter to be isotropic in real space, it
suffices to describe the Fourier modes simply with k rather than
k:

T k T b k . 15mE� � §˜( ) ( ) ( )
(We simply write T̃ rather than T% ˜ as we do not consider the
Fourier transform at k= 0 that would correspond to the mean
value T� §.)

Substituting Equations (2) and (3) and simplifying, we can
express the scaling between matter-density contrast and line-
intensity contrast as

T k C k dM
dn

dM
L M b M . 16LT m h

h
h h¨E�˜( ) ( ) ( ) ( ) ( )

So while we typically scale Pm(k) to Pclust(k) by evaluating two
integrals in mass, it is only really necessary to evaluate just one
(i.e., we write T b� § but really mean Tb� §). In fact, the way each
mass bin contributes to the total signal is clearer if we move
δm(k) behind the integral:

T k C dM
dn

dM
L M b M k . 17LT h

h
h h m¨ E�˜( ) ( ) ( ) ( ) ( )

So for each halo mass bin (Mh, Mh+ dMh), we scale the matter
fluctuation by the halo bias and luminosity corresponding to
that bin, and then this is integrated and weighted by number
density to give the total line-intensity fluctuation.

Since P k km m
2Er( ) ( ) and P k T kclust

2r( ) ˜ ( ) by the same
proportionality—the comoving volume being studied,

independent of Mh—we can rewrite the above as

P k C dM
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dM
L M b M P k . 18LT h

h
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We should note at this point that this is a very casual
derivation, and in particular the way in which we treat P k( )
as equivalent to T k∣ ˜( )∣ even for contributions from individual
mass bins is not strictly acceptable in general but reasonable in
this context.12

When considering the total line-intensity fluctuation (before
shot noise, which we consider to be independent from these
large-scale fluctuations) as the integral (or sum) of contribu-
tions from different mass bins, the Fourier-space factors from
the Kaiser effect, beam profile, and line profiles should apply to
each of those contributions:
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The bias and σ∥ are mass-dependent in our model. Simplifying
this a little bit,
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We note with interest that while the Gaussian with exponent
proportional to v

2T will be weighted by L2 in the shot-noise
attenuation, here the corresponding Gaussian is weighted by L.
So fainter emitters will hold more influence than with the shot-
noise component, as is expected for the clustering component.
If σv increases withMh as is our general expectation, this means
we will see less attenuation of the clustering component at high
k than of the shot-noise component. That said, as noted above,
Pm(k)∼ k−3 at high k, so while it may be theoretically possible
that the lower attenuation would allow the observable
clustering component to become dominant again over the
observable shot-noise component at very high k, it would
require (at least in the context of star formation lines like CO)
extremely contrived circumstances for it to occur at a scale
relevant to a real-world survey.
In sum, using Equations (13) and (20), we can calculate the

total P(k, μ)—and in turn P0(k) and P2(k)—incorporating mass-
dependent line broadening. As long as we can formulate v(Mh)
and thus σv(Mh), we will be able to both examine the full
calculation outlined here and compare this to various
approximations.

12 Appendix A2 of Breysse & Alexandroff (2019) derives Pclust somewhat
more rigorously as an integral of T k L T k L dL dL, ,1 2 1 2� §˜ ( ) ˜ ( ) over source
luminosities L1 and L2. This derivation makes clear that to arrive at the familiar
form of Pclust(k), we must assume source luminosities are uncorrelated at the
scales where we calculate Pclust(k).
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Note that for our line models, we will ultimately make the
assumption that the line FWHM is rotation-dominated, which
requires accounting for random orientations of line emitters
relative to the observer’s line of sight. We outline the appropriate
corrections in Appendix A, but apart from alterations in func-
tional form, the corrections do not add significant qualitative
understanding.

3. Example Line Model: CO(1–0) Emission at Redshift 3

It is not possible to estimate the impact of the above effect on
a line-intensity signal without specifying an exact model for the
line-intensity signal. Specifically, we will lay out L(Mh) and
v(Mh) for CO(1–0) at z∼ 3, both of which we need to calculate
a line-intensity power spectrum subject to line broadening.

The CO molecule emits in a series of rotational lines,
resulting from transitions between the quantized rotational
energy states of the CO molecule. The line associated with the
transition between rotational quantum numbers J and J− 1 has
a rest frequency of approximately J× 115.27 GHz. Since
diatomic hydrogen has no dipole moment due to symmetry and
thus has no rotational transitions of its own, the CO lines are
the primary way to trace molecular gas within and outside our
galaxy. Emission in higher-J CO lines requires more energetic
environments where the molecular gas can be excited to higher
energy states in the first place, so targeting lower-J CO lines at
high redshift gives more weight to emission from the cool
molecular gas that fuels star formation.

Throughout the remainder of this work, we will make
frequent reference to the COMAP Pathfinder (often simply
written as COMAP), which targets the CO(1–0) line at z∼ 3.
The instrument is based at the Owens Valley Radio
Observatory, with the receiver operating across observing
frequencies of 26–34 GHz and the 10 m telescope providing an
angular resolution of 4.5a . The initial survey with this receiver
will span three patches of 4 deg2 each, with observations
planned for five years.

This work considers only predictions of the signal and of line
broadening and will not make claims about the sensitivity of
COMAP, such that other parameters of the survey should not
be relevant here. However, we note that the scales of interest
for COMAP correspond to k∼ 0.1–0.5Mpc−1, much lower
than the k 1Mpc−1 range probed by interferometric experi-
ments like COPSS or mmIME. As a result, COMAP chiefly
targets the clustering component whereas COPSS and mmIME
chiefly target the shot noise. We leave detailed contemplation
of COMAP sensitivities to future work (D. T. Chung et al., in
preparation).

3.1. Halo Mass-Line Luminosity Relation

For the average L(Mh) relation, we will use the double
power-law form from Chung (2019), which is similar to the
functional form of Padmanabhan (2018) but omits redshift
evolution and has a somewhat different parameterization. We
also initially model the CO luminosity in velocity-integrated
observer units:

L M C
M M M MK km s pc
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with A< B to distinguish the otherwise equivalent power-law
slope parameters. We also prescribe log-normal scatter of σL
(in units of dex) around the average relation. It is

straightforward to then convert CO(1–0) luminosity from the
above observer units into intrinsic units of Le:

:
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While Chung (2019) fixed parameter values to broadly match
the fiducial model of Li et al. (2016), we will not do the same in
this work for two reasons. First, we want to show that whatever
approach we have to calculating line broadening works not just
for a specific point in parameter space, but for a range of
parameters that one might realistically consider in analysis.
Second, we want to update the priors and assumptions behind Li
et al. (2016) to reflect high-redshift CO(1–0) observations from
the past half-decade. In particular, the CO Luminosity Density at
High-z (COLDz) survey (Pavesi et al. 2018; Riechers et al. 2019)
used the Very Large Array (VLA) to search for CO line
candidates at z= 2.0–2.9 and obtained constraints on the
CO(1–0) luminosity function at z≈ 2.4, while the previously
mentioned COPSS made a tentative detection of CO(1–0) shot
noise at z∼ 3. These are not the only recent CO observations of
note at high redshift, but other surveys like ASPECS (González-
López et al. 2019), PHIBBS2 (Freundlich et al. 2019), and the
previously mentioned mmIME observe higher-J CO lines and
translate resulting constraints to CO(1–0) constraints using
specific assumptions about CO line excitation, where a great
deal of uncertainty (and possible variance) exists at high redshift.
A forthcoming paper (D. T. Chung et al., in preparation) will

explain the derivation of our fiducial model in greater detail as
part of analysis of the first round of COMAP data. However,
briefly speaking, we combine the priors on the relation between
CO luminosity and star formation rate from Li et al. (2016)
with the best-fit values and 68% intervals for the parameters of
the star formation rate model of Behroozi et al. (2019) 13 to
derive empirical priors at z≈ 2.4:

A 1.66 2.33, 23� � o ( )
B 0.04 1.26, 24� o ( )
Clog 10.25 5.29, 25� o ( )

:M Mlog 12.41 1.77. 261 � o( ) ( )
We also set an initial prior of σL= 0.4± 0.2 (dex). The best
estimate comes from the 0.37 dex total scatter in the Li et al.
(2016) fiducial model, but we assume a somewhat broader prior
on σL compared to Li et al. (2016). As with the previous
models of Li et al. (2016) and Chung (2019), we also set a
minimum halo mass of 1010Me for line emission, and set
L(Mh< 1010Me)= 0.
We then use the luminosity function constraints from COLDz

to formulate a likelihood function and run a Markov Chain
Monte Carlo (MCMC) inference using emcee (Foreman-
Mackey et al. 2013) to obtain a posterior distribution from the
above priors and our COLDz-based likelihood. (We also ran an
MCMC simulation incorporating the COPSS result into the
likelihood, but did not find the posterior changed significantly.)
Unlike the rest of this work, this MCMC procedure uses a
snapshot from the BolshoiP simulation (Klypin et al. 2016) to

13 Note that instead of the official Data Release 1, we use the Early Data
Release best-fit model; the changes between the two versions are small enough
that the differences in all relevant best-fit parameter values for the Behroozi
et al. (2019) model at z ≈ 2.4 are subdominant to their uncertainties and to the
uncertainties in the other parts of our CO model.
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simulate CO emitters, and thus uses the cosmology from Planck
Collaboration XIII (2016), all to match Behroozi et al. (2019,
from whose data release we source the halo catalog).
(Specifically, we use the snapshot closest to the COLDz central
redshift of z≈ 2.4.)

Our MCMC output is a fiducial sample of models that we
can use to validate models of line broadening across a
reasonable range of L(Mh) parameter values. The posterior
distribution is shown in Figure 1, as are the empirically derived
MCMC priors for comparison in the marginalized posterior
plots. The COLDz data significantly constrain the characteristic
mass and luminosity scales M1 and C beyond our priors,
as well as put meaningful limits on the power-law slopes A
and B. We strongly favor a super-linear L(Mh) relation at the
faint end, with the power-law break point determined by

Clog 9.9, 11.4� ( ) and :M Mlog 11.8, 13.11 �( ) ( ) (both 90%
marginalized intervals).

We also show the 90% intervals for the CO luminosity
function and L(Mh) relation. Alongside the luminosity function
interval, we also show the COLDz results from Riechers et al.
(2019), both as direct constraints on the luminosity function
and as an approximate Bayesian computation (ABC) of

constraints on a Schechter function description of the
luminosity function (note that our MCMC likelihood function
was based on the latter). Our MCMC interval matches both
quite well, although our interval favors a steeper faint-end
luminosity function compared to the COLDz ABC constraints.
Although the inference is done at z≈ 2.4, we apply the

parameters without change to the COMAP central redshift of
z≈ 2.8 as we do not expect much evolution in cosmic star
formation activity between these redshifts. Any evolution
would be subdominant to model uncertainties, so a sample of
models that would be likely realistic for z≈ 2.4 would largely
be equally likely realistic for z≈ 2.8 given our low level of
information about high-redshift CO(1–0) emission. We will
also revert from the Planck Collaboration XIII (2016)
cosmology to the fiducial cosmology for this work without
altering our model values, as again uncertainties in cosmology
are far subdominant to model uncertainties.
For reference, when we tune our L(Mh) parameters to make

the model P(k) and luminosity function at z≈ 2.8 approxi-
mately match the median P(k) and luminosity function from
our MCMC posterior distribution (again, found originally at
z≈ 2.4), the resulting representative set of parameters is as

Figure 1. Illustrations of the fiducial model ensemble for CO(1–0) emission at z ∼ 3. Upper left: the model parameter posterior distribution from the MCMC
combining our priors (red dashed lines in marginalized posterior plots) with a likelihood based on the COLDz ABC constraints. Upper right: the luminosity function
posterior distribution calculated from the MCMC. We show 90% intervals for the MCMC (purple), the COLDz direct constraints (cyan shaded rectangles), and the
COLDz ABC constraints on a Schechter luminosity function (black dashed, solid, and dashed–dotted showing 5%, 50%, and 95% percentiles). Lower left: the 90%
interval for L(Mh) from the MCMC, with the relation given by the parameter values of Equations (27)–(31) overplotted. Lower right: predictions from the MCMC for
the CO(1–0) P(k). We compare the 68% interval from the MCMC (purple shaded area) to the fiducial model of Li et al. (2016) at z = 2.4 (blue) and to the direct
measurement from COPSS (cyan), as well as estimates based on mmIME data plus either the fiducial r31 used by Keating et al. (2020) (green) or the Riechers et al.
(2020) value based on VLASPECS follow-up (red).

6

The Astrophysical Journal, 923:188 (29pp), 2021 December 20 Chung et al.



follows:

A 2.75, 27� � ( )
B 0.05, 28� ( )

Clog 10.6, 29� ( )
:M Mlog 12.3, 301 �( ) ( )
0.42. 31LT � ( )

We show the relation based on these parameters alongside the
90% MCMC interval for L(Mh). The above parameters result in
a L(Mh) relation slightly more optimistic than the median
(reflected mostly by the relatively low value of M1), which is a
counter-reaction to the slight downward shift of the halo mass
function when moving from z≈ 2.4 to z≈ 2.8. However, the
figure shows that the resulting L(Mh) from the above parameter
values still falls well within the 90% sample interval. This
should demonstrate that any shift in our best estimate between
these two redshifts is subdominant compared to the model
uncertainties involved.

We also compare our model distribution of the real-space P
(k) to the fiducial model of Li et al. (2016) previously used for
COMAP forecasts, as well as the current extent of CO IM
measurements from COPSS and mmIME. In particular, the
mmIME z∼ 2.5 estimate is converted from an estimate of
CO(3–2) shot noise and Keating et al. (2020) use a line-
luminosity ratio r L L31 CO 3 2 CO 1 0� a a( – ) ( – ) from Daddi et al.
(2015) of 0.42± 0.07. However, this is an average based on
three near-IR-selected “normal” star-forming galaxies at
z= 1.5. Meanwhile, follow-up of CO(3–2) detections from
ASPECS (González-López et al. 2019) by the VLA-ALMA
SPECtroscopic Survey (VLASPECS) in the Hubble Ultra-Deep
Field (Riechers et al. 2020) resulted in three robust CO(1–0)
detections for which the line ratios were found to be closer to
0.8–1.1, the best overall estimate being r31= 0.84± 0.26.
Therefore, we show the mmIME result both with the fiducial
r31 from Daddi et al. (2015) used by Keating et al. (2020) and
with the higher r31 value from Riechers et al. (2020), to
illustrate the level of uncertainty around the conversion from
CO(3–2) to CO(1–0).

Our new model tends to predict higher shot noise and a
dimmer clustering signal compared to Li et al. (2016) and is also
in some tension with the COPSS result. However, our predictions
are very consistent with the mmIME results, particularly if the
applicable r31 value is higher than the value used by Keating et al.
(2020). That said, we do caution that neither of the experimental
results include corrections for line broadening, which is the very
effect we are setting out to describe.

3.2. Halo Mass-Line FWHM Relation

Various classes of galaxies demonstrate well-measured
correlations between galaxy luminosity and velocity scales—
between luminosity and rotation velocity in disk galaxies as
first identified by Tully & Fisher (1977) or between luminosity
and velocity dispersion in elliptical galaxies as first identified
by Faber & Jackson (1976). However, measuring such
correlations requires fine observations across many galaxies
of line profiles as well as morphology and inclination, which is
easier in the local universe than at z 2.

Because we have comparatively limited information about
the CO(1–0) line profiles of high-redshift galaxies, we will
define our v(Mh) model in two steps. We first examine the line

FWHM in observations to consider v(Mh) for sources around or
brighter than the knee of the luminosity function—which
broadly speaking should correspond to the characteristic mass
and luminosity scales of our double power-law L(Mh)—and
then consider how best to extrapolate to lower Mh where we
have no information.

3.2.1. Average Line FWHM at Characteristic Mass

While current constraints on the double power-law slopes are
limited, observations do sufficiently probe the knee of the z 2
CO luminosity function for information about the characteristic
mass and luminosity scales at the double power-law break
point, as we have already noted. Since observations identify
individual line candidates with associated integrated line fluxes
and line FWHM values, we can use these to get an approximate
correspondence between CO luminosity and line FWHM, and
in turn between halo mass and line FWHM, at these
characteristic mass/luminosity scales.
To be clear, this is not a correlation we expect to be

statistically very strong—the connection between halo proper-
ties and molecular gas dynamics is highly indirect, and we
expect CO line FWHM for a given host halo mass to be highly
variable. However, even an idea of the average CO line
FWHM at a characteristic halo virial mass would help us model
line broadening in a way acceptable at the P(k) and VID level,
where many emitters are sampled simultaneously and thus the
variability may not be as relevant as in the context of scanning
for individual line candidates.
As when formulating the MCMC likelihood used in our L(Mh)

model above, we only consider CO-selected observations of
CO(1–0) and no observations of higher-J CO lines. Of the surveys
mentioned in Section 3.1, the COLDz survey found four
secure line candidates at z∼ 2–3 (Pavesi et al. 2018) and Riechers
et al. (2020) reported three secure CO(1–0) line detections from
VLASPECS as previously discussed. Equation (1) lists these
seven lines and their properties.
For the sources from Pavesi et al. (2018), we convert the

integrated line flux SΔν to the observed line luminosity L′, via
this relation (as found in, e.g., Solomon et al. 1992):
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In a flat universe as described by our fiducial cosmology, the
luminosity distance is simply the comoving distance R(z)
divided by the scale factor; since νobs= νrest/(1+ z) is the rest-
frame line frequency multiplied by the scale factor,
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With νrest= 115.26 GHz for CO(1-0), this equation becomes
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finds δ0= 2.395± 0.208 and δ1= 0.193± 0.302. We show the
fit graphically in Figure 2. While the correlation is not statistically
significant, it is broadly consistent with the “spherical” and “disk”
model L′–FWHM relations of Aravena et al. (2019), which are
examples given for comparison with estimated CO(1–0)
luminosities based on higher J CO lines observed by ASPECS,
and correspond to δ0= 2.14 or 2.56 (for “spherical” and“disk,”
respectively) and δ1= 0.5 (for both). Our fit is also consistent
with correlations found from targeted observations of submilli-
meter galaxies. Harris et al. (2012), for instance, find a fit
equivalent to δ0= 2.33 and δ1= 0.59 based on CO(1–0)
observations only, and Goto & Toft (2015) find a fit equivalent to
δ0= 2.52 and δ1= 0.24 also incorporating higher J observations.

Note that both Harris et al. (2012) and Goto & Toft (2015) find
an intrinsic luminosity by dividing L′ by the magnification μ in
the presence of a gravitational lens where known, but such
information is not available for the line candidates from Pavesi
et al. (2018) or Riechers et al. (2020). Our assumption in
formulating the L(Mh) model has been that μ= 1, and if we did
not believe this then we would replace L′ with L Na in the right-
hand side of Equation (22). We will assume that μ≈ 1 for the
sources in Table 1, although we caution that three of the seven
sources do show at least marginally resolved spatial extension.

Note also the lack of information on the inclination angle i of
the CO emitter’s axis of rotation (with respect to the observer’s
line of sight), which would scale the line profile by isin . The
assumption that sources are randomly oriented corresponds to a
uniform distribution of icos , such that the observed line FWHM
is scaled down from the intrinsic rotation-dominated line FWHM
by a median multiplier of 3 2 0.866x , and by no less than a
multiplier of 1/2 in≈86.6% of cases. Therefore, we will not
consider any explicit corrections to the average v(Mh) based on i,
given the lack of information in high-redshift observations.

We will in fact incorporate random i in the detailed simulations
presented in Section 6, as shown in Figure 2, but reflecting the
absence of any corrections for i in the above work, we will use a
correction of i isin 0.866 sin sin 3Q� ( ) rather than isin by
itself, so that the correction is relative to the median adjustment
for inclination. The implicit assumption here is that all of our
emitters are disk-like or at least primarily rotationally supported;
we will address this issue further in Section 3.2.3.

We also note that there are more unconfirmed line candidates
from both Pavesi et al. (2018) and Riechers et al. (2020), which
we partially show in gray in Figure 2. Given that the z∼ 3
CO(1–0) identification presumed for all of the unconfirmed line
candidates is not definitive and other potential biases exist in

flux or luminosity recovery, we will not present a fit using both
secure and unconfirmed line candidates. Designing a procedure
to infer an L′–FWHM relation while accounting for source
fidelity (as COLDz or ASPECS would in inferring the
luminosity function) is beyond the scope of this paper.
In any event, our own fit suggests that on average, assuming

negligible magnification for our secure line candidates, CO
emitters with Mh=M1 and thus Llog a in a fiducial 90%
confidence interval14 of Clog 2 9.6, 11.1�( ) ( ) should have

Table 1
Properties of Compiled Secure CO(1–0) Line Detections at z ∼ 2–3

ID Redshift Line FWHM LCO 1 0a �( ) Reference
(km s−1) (1010 K km s−1 pc2)

COLDz.COS.1 2.6675 430 ± 80 3.68 ± 0.10 Pavesi et al. (2018)
COLDz.COS.2 2.4771 830 ± 130 3.83 ± 0.09 Pavesi et al. (2018)
COLDz.COS.3 1.9692 240 ± 50 7.27 ± 1.97 Pavesi et al. (2018)
COLDz.GN.3 2.4877 580 ± 120 10.08 ± 3.56 Pavesi et al. (2018)
ASPECS-LP.9mm.1 2.5437 447 ± 110 3.22 ± 0.68 Riechers et al. (2020)
ASPECS-LP.9mm.2 2.6976 201 ± 47 1.32 ± 0.19 Riechers et al. (2020)
ASPECS-LP.9mm.3 2.6956 560 ± 230 3.14 ± 0.75 Riechers et al. (2020)

Note. Pavesi et al. (2018) provide S Δν rather than L ;CO 1 0a �( ) the main text explains how we calculate the latter from the former. Riechers et al. (2020) provide the
LCO 1 0a �( ) values shown above and use a fiducial cosmology sufficiently similar to ours that we do not re-calculate luminosities.

Figure 2. Plot of line luminosity L′ against line FWHM for the seven sources
(black points with error bars) described in Table 1, along with the power-law fit
(black solid line) described in the main text. We also show unconfirmed line
candidates (gray points with error bars) from Pavesi et al. (2018) and Riechers
et al. (2020), with no attempt made to correct for any magnification. We show
the inclination-adjusted FWHM estimated from vvir (cyan) and vmax (magenta)
for a random subset (to avoid overcrowding the plot) of the halo catalog of a
sample lightcone from simulations detailed in Section 6, with L′ calculated based
on the fiducial model with representative values from Equations (27)–(31), again
assuming no magnification. Simulated FWHM for a given L′ varies due to
random inclinations and scatter in L(Mh), but average L(Mh) and v(Mh) relations
are fixed. We also show 90% intervals for both velocities (cyan and magenta
dashed lines) at each L′, to more clearly show the difference in the scaling of
velocity with L′ versus our naïvely extrapolated power-law fit (black dashed).

14 This interval does not account for log-normal scatter in L(Mh), but that
scatter tends to be modest with typical values of σL ≈ 0.3–0.4 dex in model
space. The upper left part of Figure 1 suggests that values of σL above 0.5 dex
would be considered unusual. Note also that when we apply log-normal scatter
in this work, we do so while preserving the linear mean L(Mh).
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line FWHM values in the range of 210–400 km s−1, with the
log-space midpoint at around 290 km s−1.

How does this compare to the virial velocity expected from a
halo with virial mass in our 90% confidence interval of Mlog �
11.8, 13.1( )? This mass range corresponds to a virial velocity
range of approximately 200–540 km s−1, with the log-space
midpoint at 330 km s−1. Therefore, at the double power-law
break point, we find that the FWHM of a CO line profile
approximately lines up with the virial velocity of its host dark
matter halo.

The virial velocity vvir and maximum circular velocity vmax of a
halo are typically within a factor of order unity of each other. We
suppose that the maximum circular velocity calculated by the
halo finder, given that it reflects halo dynamics, may best reflect
dynamics associated with the hosted molecular gas. If both
velocities are available, vmax takes precedence as the FWHM for
our simulated CO line profiles.

That the maximum circular velocity of the overall mass
profile should be equal to the full width of the CO line profile,
as opposed to the velocity dispersion (smaller than the FWHM
by a factor of 2 2 ln 2 2.355x ), is not unreasonable. While
the velocity dispersion of atomic hydrogen is usually similar to
that of matter (chiefly dark matter) for the Mh> 1010Me halo
population that we consider (see, e.g., Figure 13 of Villaescusa-
Navarro et al. 2018), the distribution of molecular gas in a
galaxy is considerably more compact even than that of atomic
gas, let alone matter in general. As a result of this compactness,
CO profiles take on a shape closer to a Gaussian15 than the
double-horned profile typical of emission in the 21 cm line, and
are also likely to trace velocity widths at∼2.5× smaller radii
than 21 cm profiles, resulting in line FWHM values smaller by
up to a similar factor (de Blok & Walter 2014).

Before we move to prescribe the line FWHM for all halo
masses, note that our model of the galaxy–halo connection does
not specify a non-trivial halo occupation distribution (HOD).
While we make the very simple assumption of one CO emitter per
halo in this work, explicitly assigning multiple CO emitters to a
high-mass halo would somewhat push down the simulated values
of L′ for each emitter, allowing us to better explain some of the
higher-FWHM line candidates from COLDz and VLASPECS
shown in Figure 2. While we consider an HOD model for CO
emitters to be beyond the scope of this paper, it could be an
important consideration for future work due to these sorts of
effects on the contribution of high-mass halos to the simulated CO
signal.

3.2.2. Average Line FWHM at All Halo Masses

The above work makes a case—if a highly tentative one—
that at the double power-law break point specifically, the
FWHM of the CO emitter line profile is approximately equal to
the host halo maximum circular velocity (or virial velocity,
largely similarly). However, this still raises the question of how
the CO line FWHM scales on average away from this
characteristic scale.

If we were to extrapolate the fit between FWHM and L′ to
lower L′, it would suggest that the line FWHM scales
approximately as L 1 5a . Our priors are consistent with fairly
sharp L(Mh) scalings at the faint end like L Mvir

2.5a _ , which
suggests that the line FWHM would scale almost as the square

root of the host halo mass. By contrast, the circular velocity
approximately scales as Mvir

1 3 on average, which is a fairly
weak scaling. Figure 2 illustrates how circular velocity (virial
or maximum) scales more weakly with L′ than the extrapolated
FWHM fit.
However, we will adopt the more conservative prescription

that even at lower halo mass, the CO line profile FWHM is equal
(again, on average, specifically for the median inclination angle
of π/3) to the halo maximum circular velocity. This reflects not
necessarily high confidence in this prescription per se, but rather
the low amount of information we have about high-redshift CO.
Our simulations include emitters with luminosities several orders
of magnitude below the double power-law break point; therefore,
strictly in principle, extrapolation of a fit across points that barely
span one order of magnitude in L′ is unsafe in comparison to the
assumption that rotation of molecular gas in a galaxy will scale
with host halo mass in roughly the same way as the host halo’s
rotation.
Furthermore, for a sufficiently faint CO emitter (or light host

halo), the velocity dispersion of the CO gas itself will begin to
dominate over rotational dynamics, weakening any scaling of
FWHM with host halo mass. Our assumed minimum luminous
host halo mass is Mvir= 1010Me, corresponding to a virial
velocity of approximately 50 km s−1—roughly equal to the
expected gas velocity dispersion for high-redshift galaxies (de
Blok & Walter 2014).

3.2.3. Additional Notes on Inclination and Scatter

We noted above that we will assume CO emitters are
randomly oriented and that this reduces the observed line
FWHM by the sine of the inclination angle relative to the FWHM
for an edge-on emitter. Introducing this random inclination angle
for all emitters raises the question of whether we ought to assume
CO emitters at z∼ 3 are rotation-dominated, as such corrections
for inclination should not apply to dispersion-dominated galaxies
where random motions of molecular gas rather than galactic
rotation contribute to most of the observed line profile.
So far we have made use of data from direct observations of

CO(1–0) lines, but it is challenging to study kinematics across
large numbers of such sources given the spatial resolution
required and the long wavelength. Even looking to slightly higher
J lines, blind line searches like ASPECS—which perhaps provide
some of the larger samples of CO-selected galaxies in the
literature—are not well suited for kinematic studies as sources are
spatially only marginally resolved. (That said, some CO-selected
ASPECS sources do show clear rotation-dominated velocity
gradients—see Appendix D of Aravena et al. 2019).
As this cosmic epoch shows much greater star formation

activity compared to z∼ 0, with a much more dominant
interstellar gas component for fuel, there is a good reason to
suspect that the fraction of rotation-dominated galaxies is much
smaller than in the local universe. Targeted studies of ionized
gas kinematics across large numbers of star-forming galaxies at
z 1 suggest that indeed at high redshift, rotation-dominated
galaxies are far from an overwhelming majority. For example,
Wisnioski et al. (2019) find a steadily declining fraction of
rotation-dominated galaxies from 91% at z∼ 1 to 70% at z∼ 2,
and Turner et al. (2017) find an even lower fraction of
34%± 8% at z∼ 3.5.
It is safe to assume that similar physical considerations apply

for molecular gas, so a naïve prescription would be to model a
rotation-dominated inclination-adjusted line profile for half of

15 Both Pavesi et al. (2018) and Riechers et al. (2020) use Gaussian fits to
obtain the line FWHM values that inform our v(Mh) model.
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our CO emitters, and model a dispersion-dominated inclina-
tion-independent line profile for the other half. However, it is
not immediately clear that this is the correct tack to take.
Depending on the exact criteria for deciding that a galaxy is
“rotation-dominated,” the circular rotation may still be a
significant even if not dominant source of support for its
dynamical mass, and thus a significant contributor to the line-
profile width.

Furthermore, while the works discussed above find a less-than-
overwhelming majority of galaxies to be rotation-dominated,
ground-based, near-infrared observations of ionized gas are often
susceptible to spatial resolution effects that mask lower rotation
velocities, leading to smaller rotation-dominated systems being
classified as dispersion-dominated. The work of Newman et al.
(2013) provides a striking illustration of the effect with a sample
of z∼ 2.2 galaxies, where of 34 galaxies observed with adaptive
optics, seeing-limited data would lead to 41% being classified as
dispersion-dominated, but using higher-resolution adaptive optics
data would drop this fraction to 6%–9%. Although kinematics
studies like Turner et al. (2017) and Wisnioski et al. (2019) will
always attempt to correct for beam smearing, observational
classification of galaxies as rotation- or dispersion-dominated is
still far richer with complexities than the apparent simple binary
would suggest at first glance.

Overall, there are not enough observational data—certainly
not directly in CO lines—to advise against the assumption that
a majority of CO emitters at z∼ 3 are rotationally supported, at
least somewhat disk-like systems. So for the remainder of this
work, when we apply inclination corrections, we will apply
them to all simulated emitters.

Note that the random inclination angles assigned to each
emitter will be the only source of random scatter in v(Mh). While
for L(Mh) we introduce random log-normal scatter on top of the
average relation described by σL, we will not take similar steps
for v(Mh), or at least not explicitly through a parameter analogous
to σL. The already-specified scatter in L(Mh) actually accounts for
much of the observed variation in FWHM given L′ for high-
redshift CO emitters. Variations due to random inclination are
smaller and skewed, but sufficient to account for any remaining
variation (as possibly seen when including unconfirmed line
candidates in Figure 2). Beyond these two sources of scatter, we
find insufficient information to support any empirically motivated
non-specific scatter (log-normal or otherwise) in FWHM for fixed
halo mass and redshift in the way we do for L(Mh).

4. Possible Simplifications

Taking all of the above into account, with infinite computing
time and space available to us, we would simulate line
broadening in lightcones from cosmological N-body simula-
tions by simulating a Gaussian line profile for each individual
halo, taking the halo vmax as the line width. Given the typical
halo count (∼106) in a simulated COMAP survey volume, this
is infeasible. A more efficient approach would be binning in
halo mass and applying Gaussian filters based on an average
vmax to the CO map generated from each mass bin. However,
for a meaningful number of mass bins (∼100), even this is too
computationally expensive to be incorporated into an MCMC
step that would complete within a reasonable amount of time.
Furthermore, if we were to follow Ihle et al. (2019) and use
approximate N-body simulations provided by the peak-patch
method (Stein et al. 2019), which do not in their current state

provide halo properties like vmax, we would have to rely on
calculations based on halo mass.
Therefore, we will consider some approaches that will use

vvir(Mh) and make further simplifications. One approach is to use
a single Gaussian filter with an effective velocity scale veff to
describe the broadening of the total CO line-intensity cube. This
comes at the cost of some accuracy, but would bring significantly
improved computational speed in any contexts where the app-
roximation is applicable. The goal of Section 4.1 is to obtain a
prescription for veff that results in the same P(k) attenuation as a
simulation with halo mass bins broadened by vmax, to within
∼10% up to k= 0.7Mpc−1 (beyond which attenuation of P(k)
due to the COMAP angular beam will exceed 50%, even without
any line-of-sight smearing). We then consider an alternate
approach in Section 4.2 that still uses multiple bins in vvir but
designs these bins more carefully to reduce the number of bins
required and thus reduce computational burden.

4.1. Use of a Single Effective Line Width

A description of line broadening using a single effective line
width is extremely desirable as long as it achieves a reasonable
accuracy. If we can design such a veff, we could treat the
corresponding σ∥,eff the same way as the mass-independent σ∥
in Equation (9). This would in turn drastically simplify the
computational work involved compared to the full calculation
described in Equations (13) and (20). In a simulation using dark
matter halo catalogs, the only necessary step to incorporate line
broadening would be to apply a single Gaussian filter along the
line of sight with its profile given by veff, as opposed to creating
dozens of mass or velocity bins with individual profile widths.
To design veff, we focus on the shot-noise component of the

power spectrum. Not only is attenuation stronger at higher
wavenumbers—where the shot noise dominates P(k)—but also,
the emitters that contribute most to shot noise will tend to see
greater line broadening.
Concentrating on shot noise attenuation allows us to state the

problem in mathematical terms. A Gaussian line profile with
FWHM of vFWHM in velocity units can be translated into a
Gaussian profile in comoving space, with the standard
deviation given by the same relation as Equation (12),
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H z
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The virial velocity vvir is quite close to vmax—a visual
inspection of Figure 2 suggests they fall within 20% of each
other. But unlike vmax, vvir is explicitly a function of the halo
virial mass Mh and redshift z:
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where Δc is the spherical overdensity relative to the critical
density ρcrit and thus relates the virial mass and radius:
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We use the definition of Δc and thus virial mass from Bryan &
Norman (1998), which yields Δc≈ 180 for our cosmology and
redshift. For reference, H(z) at the central COMAP redshift is
approximately 290 km s−1 Mpc−1.

We can convert vvir(Mh) into the comoving σv(Mh) expected
for a CO emitter with host halo massMh using Equation (12). We
would then feed this into Equation (13) and integrate in μ to carry
out a full calculation of the shot noise with line broadening.

Compare this to using a single mass-independent velocity scale
veff, with corresponding σ∥,eff= σ∥(veff). Based on Equation (22)
of Chung (2019), considering only the line-of-sight attenuation,
the observed shot noise is the true Pshot multiplied by
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We intentionally ignore the angular resolution of the survey so
as to devise veff as a well-defined function of the L(Mh) and
v(Mh) models alone. We will see that this affects the fidelity of
this approximation when σ⊥ is non-negligible.

We can clearly solve Equation (41) exactly for σ∥,eff at each
k, at least numerically. However, we want to find a single
velocity scale verf that approximately satisfies Equation (41)
across all k. In other words, for all k, & & v,erf erfT T� ( ) satisfies
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where x dM dn dM xh h¨� § w ( ) . So for any given set of model
parameters fully determining L(Mh), we can calculate the shot
noise transfer function across k on the right-hand side and solve
numerically for the &,erfT corresponding to that parameter set.

Rather than repeatedly solving for verf (which comes with
issues of reliability and computational cost), we want a closed-
form quantity that we can calculate from the analytic halo
model. Since the shot noise is the second moment of the lumin-
osity function, a reasonable starting point for a representative
velocity scale is the L2-weighted average vvir. Again using
x dM dn dM xh h¨� § w ( ) , we might write

v
L v
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However, note that xerf 1l as x→∞ , such that for very
high k we actually expect a more reasonable estimate to be the

inverse of the L2-weighted average v−1(M),

v
L

L v
. 44eff

? 2

2
vir

1
�

� §
� §� ( )

Ultimately, however, we will find that the best estimate for verf

is the average of these two estimates,
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We can then use Equation (36) to convert this to a σ∥ value,
with which we can then use Equation (9) to calculate the power
spectrum analytically or numerically or set the appropriate
scale for the Gaussian filter to apply to a mock CO cube.
We give a very loose theoretical justification for our choice

in the context of a simplified model in Appendix B, but our
main justification will be based on explicit numerical cal-
culations comparing verf , veff, and our other ansatze across a
broad range of model parameters in our fiducial distribution.
Note that the above calculation of veff does not account for

the effect of randomly distributed inclination angles. The effect
can be expressed using special functions but the functions
involved are more complex without necessarily yielding an
improved qualitative understanding. Therefore, while we
discuss explicit analytic derivations in Appendix A, here we
will simply show the required adjustment, which is a slight
decrease in the high k ansatz:
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4.2. Careful Design of Mass or Velocity Bins

Not all brute-force simulations are equally brute. While
binning CO emitters according to mass or velocity and then
applying Gaussian filters to each bin is the most straightforward
and brute method of simulating line broadening that is still
computationally feasible, carefully choosing the binning
scheme should result in being able to maintain accuracy while
saving computational cost.
In the case of our fiducial model, note that low-mass emitters

(and thus narrow CO line profiles) will typically neither be
resolvable in frequency space nor contribute significantly to
the power spectrum at small scales where the effect of line
broadening becomes marked. For instance, with CO(1–0)
at z∼ 3, the dominant contribution to shot noise will be
from Mh∼ 1012 emitters with vvir∼ 230 km s−1. The COMAP
science channelization of 15.6MHz quoted in Ihle et al. (2019)
(156 km s−1 in velocity space) can resolve these profiles but not
the profiles corresponding to emitters with Mh 1011Me (for
which vvir 100 km s−1).
The native instrumental frequency resolutions of COMAP

(∼2MHz) and mmIME (4–8MHz) are signficantly finer than
the>10MHz binning applied during data analyses and in
principle, the spectrometers used are capable of resolving
widths of 100 km s−1. However, in practice, such line profiles
would not likely be detectable due to the associated low line
intensity. Even in aggregate, the contribution of these low-mass
(narrow-width) emitters to the power spectrum—particularly
the shot-noise component of the power spectrum—would
remain subdominant.
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Then consider a CO simulation at z∼ 3 with halo masses
ranging from 1010Me to 3× 1013Me. This corresponds to
vvir ä (50,700) km s−1, so a brute binning scheme might define
equally spaced bins across this range. But one-sixth of these
bins—not a majority of the bins, but not exactly a negligible
fraction—will correspond to Mhä (1010, 1011)Me. This
population is about 100 times more numerous than the
Mh 1011Me population, yet negligible for the purpose of
simulating the line-broadening effect for the reasons that we
have described above.

Therefore, a less brute two-tier scheme will bisect the halo
population in our simulation around Mh= 1011Me, applying
no line broadening to the low-mass subset but binning and
applying line broadening to the high-mass subset. This reduces
the need to iterate repeatedly through the low-mass but far
more numerous halo subset, and also reduces the number of
bins used without significantly lowering accuracy, which we
will demonstrate in Section 6.

5. Preliminary Validation of Effective Line Width

While we will eventually simulate z∼ 3 CO(1–0) based on
lightcones from dark matter simulations, we undertake a sanity
check in this section with numerical calculations based on the
above analytic halo model in order to set expectations for the
accuracy of using veff relative to the full calculation of line
broadening, both before and after inclination corrections. In the
first two subsections we will check veff across a subset of our
fiducial model distribution. Then in the final subsection, we
will actually make a diversion outside of z∼ 3 CO(1–0) and
examine line broadening of the CO lines at z∼ 1–5 observed
by mmIME to show that our effective line width is a reasonable
description of the effect on the monopole P0(k) consistent with
the calculations in Appendix A of Keating et al. (2020).

5.1. Fiducial Model Ensemble

To check whether veff from Equation (45) is a good
description of the ideal verf of Equation (42) (both before
correcting for inclination effects), we take 1764 samples from
the MCMC of Section 3.1 and fit for verf (minimizing the
summed squared difference between the two sides of
Equation (42) across all k) as well as calculate veff and the
other ansatze of L v L2

vir
2� § � § and L L v2 2

vir
1� § � §� . We use the

lim package16 as our basis for all calculations.
We show the results in Figure 3. First it is useful to note the

range of verf , which falls predominantly in the 200–500 km s−1

range corresponding to the predominant range of :M Mlog 1( ).
However, while there is a very strong correlation indeed
between verf andM1, it is not perfect in our data. This appears to
be in part due to outliers where M1 is so low—below our
minimum emitter Mh= 1010Me, in fact—that we have
effectively ended up with a single power-law description of
L(Mh). There is, however, some additional scatter around the
average correlation even at M1 1012Me, part of which seems
to be from a weak anti-correlation between B and verf . We can
explain this based on the fact that if B< 0, the double power-
law L(Mh) relation breaks into a shallower but still positive
slope for Mh>M1, and therefore the CO shot noise becomes
dominated by very rare but very bright CO emitters.

Moving on to our ansatz, we find that veff is extremely close
to verf—the relative difference between the two is below 0.5%
in the vast majority of cases. Meanwhile our other ansatze
differ by larger fractions from verf , but somewhat astonishingly
in opposite directions by almost exactly opposite amounts. Our
best qualitative explanation for this is that L v L2 2� § � § better
describes attenuation at intermediate scales (k∼ 1Mpc−1)
while L L v2 2 1� § � §� describes attenuation at small scales
(k 1Mpc−1) almost exactly. The midpoint veff is a compro-
mise between the two and will thus match up with the fit
verf , which has to make a similar compromise.

The difference increases with lower values of B, where
compared to verf we find that L v L2 2� § � § is too high and
L L v2 2 1� § � §� too low by several percent. This is likely due to
the larger range of mass scales that contribute to the shot noise
as L(Mh) monotonically increases rather than plateauing or
declining. In these situations, L L v2 2 1� § � §� actually probably
still describes the attenuation at high k more accurately, but the
deviation at intermediate k is likely greater and the relative
difference from the fit verf thus greater as well. We also find
some correlation between relative differences and M1 or A,
although much of this may be driven by underlying weak
correlations between the model parameters themselves.
In summary, we find that our veff prescription is just as good

as fitting & &k kerf T T( ) ( ) to the shot noise attenuation across
k ä (10−2, 101)Mpc−1 and solving for σ∥. However, do note
that our “failed” ansatze are actually still reasonable descrip-
tions within a few percent in most cases, and in particular we
still wholly expect L L v2 2 1� § � §� to be the better effective line
width to use at very high k.
Note that two key caveats apply to these last couple of

points. One is that these facts only hold as long as angular
resolution effects are comparatively negligible since these were
not included in devising that ansatz. The other caveat is that the
relative errors across the ansatze will be much greater once we
include corrections for inclination, as shown in Figure 4. That
said, the qualitative points about the different ansatze still
hold. This includes the point that L L v2 2 1� § � §� , or rather

L L v4 3 2 2 1Q � § � §�( ) · , should be the best ansatz at very high
k in the absence of a sizeable angular beam. However,
differences in functional form mean that the attenuation will
asymptote less quickly to this description with inclination

Figure 3. Comparison of effective line FWHM and ansatze before accounting
for inclination. Upper panels: scatter plot of verf for 1764 draws from our
fiducial model posterior, against model parameters A (left), B (middle), and M1
(right), illustrating correlations or lack thereof as described in the main text.
Lower panels: scatter plot of the relative differences between our ansatze
against the same three model parameters as in the upper panels, once again
showing correlations or lack thereof.

16 https://github.com/pcbreysse/lim/tree/pcbreysse
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corrections than without them, meaning that errors may be so
large for any scales relevant to actual power spectrum analysis
that we may as well use the midpoint veff instead. We will
see this in Section 5.3 in our consideration of power spectra
observed by mmIME.

5.2. A Closer Look at Attenuation for Specific Parameter
Values

So far, we have looked at the shot-noise attenuation in isolation,
but it will be most instructive to examine the total P0(k) and P2(k),
incorporating both clustering and shot-noise components and
accounting for all redshift-space observational effects that we have
discussed so far, including the effect of angular resolution in the
context of a single-dish experiment like COMAP. This will come
at somewhat increased computational cost, and we will be making
equivalent calculations from N-body simulations later in this
work. However, we will examine numerical realizations of our
analytic model for two sets of parameter values, accounting for
inclination throughout.

We first examine the effect of line broadening given the
model parameter values given toward the end of Section 3.1 in
Equations (27) through (31), which broadly represent the
median expected P(k) and luminosity function. This will give a
sense of what our average expectation should be for attenuation
of the total P0(k) and P2(k).

We show the effect on P0(k) in Figure 5, first ignoring angular
resolution and then accounting for the COMAP beam FWHM of
4.5a at 30GHz, which corresponds to σ⊥≈ 3.5Mpc. The overall
conclusion is that using a single veff results in a very good
approximation of the attenuation of P0(k) for scales relevant to
COMAP, but it is worth noting that when incorporating a non-zero
σ⊥—which our definition of verf in Equation (42) does not—our
approximation breaks down as we approach the comoving scales
corresponding to the COMAP beam size (π/σ⊥∼ 0.9 Mpc−1).
Indeed the high-k ansatz of Equation (44) also fails because it too
does not account for the presence of an angular beam.

The actual amount of P0(k) attenuation is also worth discussing
briefly. While we defined verf while ignoring angular resolution,
the P0(k) attenuation from line broadening clearly must depend on
beam smearing. Quantitatively, Equations (20) and (13) show that
the two effects are not separable into independent multipliers in
front of the unattenuated power spectrum components. Qualita-
tively, the fact that beam smearing effectively discards angular
modes means the spherical averaging of P(k, μ) into P0(k) must
depend more heavily on line-of-sight modes, thus increasing the
relative weight of line broadening in attenuation.

Nonetheless, these divergences between the cases of σ⊥= 0
and σ⊥≈ 3.5 Mpc are somewhat esoteric in the context of the
actual COMAP observation, where the very beam smearing
that results in the breakdown of our approximation already
introduces its own power loss in the same regime where this
breakdown occurs. Given the transfer functions from both
beam smearing and loss of large-scale modes due to filtering in
the data pipeline prior to map-making—see M. K. Foss et al.
(2021, in preparation) for specific details—the COMAP P0(k)
measurement will be most sensitive to k∼ 0.2–0.3 Mpc−1.
Therefore, in this case, line broadening should only introduce
7%–8% attenuation of P0(k) at scales relevant to COMAP.
We also show the effect of line broadening on the

quadrupole P2(k) in Figure 6. Here, we only show the case
where we set σ⊥≈ 3.5 Mpc, as this is required (along with
σ⊥> σ∥, which is the case here) for a positive shot-noise
contribution to the quadrupole. The overall conclusions are
similar to those for P0(k) in that the approximation breaks down
near the COMAP beam scale but is otherwise acceptable. We
do note, however, that the attenuation of the shot-noise
component of the quadrupole due to line broadening is far
more severe for even intermediate scales than it was for the
monopole, at around 20%–30% for k∼ 0.2–0.3 Mpc−1.

Figure 4. Same as Figure 3 but after accounting for inclination.

Figure 5. Illustration of the expected effect of line broadening on the z ∼ 3
CO(1–0) P0(k) predicted by the model parameter values of Equations (27)–
(31), both ignoring angular resolution (left panels) and assuming smearing with
a Gaussian beam of FWHM 4.5a or σ⊥ = 3.5 Mpc (right panels). Upper panels:
P0(k) calculated with the full formalism of Section 2 (inclination-inclusive;
magenta dashed–dotted) and with just veff (orange). For the full calculation we
also show the clustering (indigo dashed) and shot-noise (indigo dotted)
contributions separately, and also show the unattenuated shot noise (black
dashed) as a guide. Middle panels: attenuation due to the introduction of line
broadening, calculated using the full formalism, both without inclination
corrections (magenta solid) and with them (cyan dotted). Lower panels: error
relative to the full calculation (with inclination corrections) from using each of
our three ansatze for effective line width— L v L2 2� § � § (blue dashed),
L L v 4 32 2 1 Q� § � §� · ( ) (green dashed–dotted), and the midpoint veff (orange
solid)—all inclination-inclusive.
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We might naturally ask whether these conclusions still hold
for a more extreme draw from our fiducial distribution with
unusual values of A or B. So we also show the same plots given
the following parameter values:

A 0.97, 47� � ( )
B 0.35, 48� � ( )

Clog 11.1, 49� ( )
:M Mlog 12.8, 501 �( ) ( )
0.5. 51LT � ( )

We show P0(k) in Figure 7 and P2(k) in Figure 8 for these
parameter values. Importantly, the clustering component is
much higher relative to the shot-noise component than in our
more pedestrian parameter set, which is not necessarily
surprising given the high value of A and thus the shallow
faint-end L(Mh) relation. This has a series of implications for
the accuracy of our veff prescription because, as we noted when
discussing Equation (20), the attenuation of the clustering
component is weighted by L(Mh) at eachMh and thus should be
less than the attenuation of the shot-noise component (weighted
by L2) for a monotonically increasing v(Mh). Therefore, our
error in estimating attenuation is greater than in Figure 5 and
Figure 6 and we will always expect too much attenuation in
these situations because our approximation is based on the
shot-noise component.

Still, in scales relevant to COMAP analysis (k 0.5Mpc−1),
the relative error is typically within a few percent for the
monopole (although greater for the quadrupole) and the amount
of attenuation in the monopole is only around 3%. This is much
smaller than the amount of attenuation given our previous
parameter set, precisely because the clustering component is so
much more dominant. So our approximation behaves worse but
the attenuation being approximated is smaller, both for the
same reason.
Importantly, however, the fact that our approximation breaks

down at small scales with the introduction of a non-negligible
σ⊥ does not bode well for its performance with respect to the
VID. We will examine the VID explicitly in further simulations
to follow in this work.
Note that while we have not discussed the effect of

accounting for inclination in these cases, we do show it
graphically in Appendix C. The effect on the attenuation is
quite small for scales relevant to COMAP, although less
negligible for P2(k). Furthermore, the accuracy of using veff to
describe the attenuation is largely the same after accounting
for inclination.

5.3. Beyond the Fiducial: Models for mmIME CO Observations
at 100 GHz

We have now mentioned the Millimetre-wave Intensity
Mapping Experiment, or mmIME (Keating et al. 2020), on
several occasions. While mmIME will be using data from
several community interferometers across a wide frequency
range, the first analysis work of Keating et al. (2020) looks at
data from the Atacama Large Millimetre-wave Array (ALMA)
in compact configurations observing at 100 GHz. Being aware
of the line-broadening effect but not having a detailed model of

Figure 6. Similar to the right panels of Figure 5 (assuming smearing with a
Gaussian beam of FWHM 4.5a or σ⊥ = 3.5 Mpc), but showing attenuation of
P2(k). The unattenuated shot-noise contribution to the quadrupole (black
dashed) shown in the top panel is calculated after beam smearing is taken into
account but before line broadening is applied.

Figure 7. Same as Figure 5 but using the model parameter values of
Equations (47)–(51), representing a more extreme draw from our distribution
with a high value of A.
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it, the key step taken is avoidance by excluding modes above
a certain k∥ from the analysis. Specifically, using the lag
coordinate η (written implicitly in inverse frequency units of

obs
1O� ), the excluded modes correspond to η> 500, and since η

and k∥ are related by

&k
H z
c z

2
1

, 52obsQI
O

�
�

· ( )
( )

( )

the threshold of η= 500 is equivalent to k∥≈ 0.75Mpc−1 for
z= 2.5, corresponding to the frame for CO(3–2) observations
at 100 GHz. The cut is designed to exclude all modes of
redshift-space comoving wavelength 8.4 Mpc and below,
which corresponds to 600 km s−1 and below in velocity space.
Since observations discussed in Section 3.2 have found line
widths below this are typical, the cut is fairly conservative. At
the same time, as Keating et al. (2020) note, the cut will not
entirely eliminate suppression of power from line broadening.
Line profiles are finite in extent and are not perfect periodic
modes, so line profiles that are ∼300 km s−1 wide will still lead
to some attenuation of η< 500 modes.

Keating et al. (2020) do not explicitly correct for this
attenuation, but do note that if the shot noise is dominated by
CO emitters with line widths of ∼300 km s−1, the measurement
is likely attenuated by∼25% and the necessary correction thus
an upward shift by one-third. Here we will examine whether we
are able to derive similar corrections with our own (inclination-
inclusive) model.

First, we review the emission models for the CO lines
observed by mmIME. In essence, the models use the basic flow
of Li et al. (2016), relating halo mass to star formation rate via

Behroozi et al. (2013a, 2013b), star formation rate to IR
luminosity via a simple scaling of : :L M1010 1� yr, and then IR
luminosity to CO luminosity. Since Li et al. (2016) model only
CO(1–0) emission at z∼ 3, the models of Keating et al. (2020)
link IR and CO luminosities via fits found in Kamenetzky et al.
(2016) from a broad sample of z< 1 galaxies observed with
Herschel. These models inform how much each line should
contribute to the total measurement and are scaled up uniformly
in luminosity to match the mmIME data. We will consider the
models without this final scaling as it should not affect any
results concerning attenuation from line broadening.
For this section only we will change our cosmological

parameters to match those of Keating et al. (2020), namely
Ωm= 0.27 instead of 0.286. However, as Keating et al. (2020)
do not note all parameters that may affect predictions (the
baryonic matter density fraction, for instance), we do not
expect to perfectly reproduce the predictions of Keating et al.
(2020) for line intensity. Nonetheless, we are able to recreate
the L(Mh) for the various CO lines at 100 GHz, and are able to
reproduce the Pshot values for each line to within 10% (except
for CO(5–4) at z∼ 4.8, where we fall within 20%).
For v(Mh), we will actually use the exact same prescription

as for CO(1–0) at z∼ 3, which is to set the line FWHM equal to
the virial velocity. Partly, this is because devising v(Mh) for
each line at each redshift is well beyond the scope of this paper,
but partly, we also expect the same prescription to be a
reasonable one for other high-redshift CO lines, at least in the
absence of high information. Looking at the three sources in
Riechers et al. (2020) robustly detected in CO(1–0), we find
that their CO(1–0) line widths are consistent with their
CO(3–2) line widths from González-López et al. (2019).
Although we broadly expect higher J CO lines to have steeper
gas-density profiles due to the higher gas temperatures required
for excitation of these lines, we do not expect this to be an
overwhelmingly large effect for the lines observed by mmIME.
Thus, using essentially the same v(Mh) as in Section 3.2

(albeit with appropriate modifications for redshift and cosmol-
ogy) but swapping out the L(Mh) models to match Keating
et al. (2020), we can find veff for each line. We show these
values in Table 2 alongside our reproduced Pshot values. Note
that veff tends to be lower at lower redshift—despite the
continued growth of halo masses, the decline in star formation
activity after z∼ 3 means that the halo mass scales that
dominate the CO shot noise are smaller for lower redshift.
While our veff values are somewhat lower than the 300 km s−1

expectation of Keating et al. (2020), the comparison is not exactly
even because of our choice of profile shape. In Appendix A,
Keating et al. (2020) consider a simple Gaussian profile, a
double-Gaussian profile, and a top-hat profile, and find that the
simple Gaussian profile results in the most attenuation. The
difference in attenuation is at a ∼20% level, but so is our
difference in line widths. So our prediction of attenuation really
should be broadly consistent with the ≈25% expectation of
Keating et al. (2020).
We calculate the expected effect of line broadening for

each of the lines individually and show this in Figure 9. Note
that we set σ⊥= 0, since angular resolution does not have the
same relevance in (visibility-space) interferometric power
spectrum measurements that it does in (image-space) single-
dish measurements like COMAP.
First, as we have previously discussed, L L v2 2 1� § � §� is

actually a better approximation than veff in situations where k is

Figure 8. Same as Figure 6 but using the model parameter values of
Equations (47)–(51).

15

The Astrophysical Journal, 923:188 (29pp), 2021 December 20 Chung et al.



high and P0(k) is predominantly shot noise. However, the issue
is that the approximation only converges for k 10Mpc−1, by
which point the attenuation of the raw P0(k) is extremely large
(having already exceeded 30% by k∼ 1Mpc−1). That said,
although we do not show the approximate P0(k) using any of
these ansatze in the topmost panels of Figure 9, the lowermost
panels show that the approximate calculation using veff is still
within a few percent of the full calculation up to k∼ 1Mpc−1.

Second, we simulate not only restricting η< 500 in the power
spectrum analysis, but also a more stringent η< 250 cut as briefly
discussed in both Section 4.1 and Appendix A of Keating et al.
(2020). Recalling that for z∼ 2.5 these correspond to roughly
k∥< 0.75Mpc−1 and k∥< 0.38Mpc−1, it should not be terribly
surprising that for all lines, the cuts arrest attenuation of the shot-
noise component of the signal at the corresponding k. The level of
attenuation differs slightly between each line, and in particular the
CO(2–1) line at z∼ 1.3 in our model shows the least attenuation,
which makes sense for the same reasons we discussed for veff
being markedly lower at this redshift. However, they are broadly
consistent with the ∼25% and ∼10% predictions from Keating
et al. (2020) for η< 500 and η< 250 given dominant line widths
of ∼300 km s−1 (again keeping in mind the minor differences that
arise from the choice of profile shape even for the same line
width).

For the approximate attenuations calculated using our different
ansatze, we could consider taking the value at k≈ k∥(η= 500) and
comparing this to the full calculation of attenuation with the
η< 500 cut. The results are shown in the lowermost panels of
Figure 9, and suggest that using the approximate calculation from
veff at the relevant k value is accurate to within a few percent. The
other ansatze do not yield calculations nearly as accurate—note, in
particular, that while L L v4 3 2 2 1Q � § � §�( ) · ultimately con-
verges to the full calculation, the fact that it is significantly deviant
at k∼ 1Mpc−1 results in∼10% errors in estimated high-k
attenuation for η< 500.

We note incidentally that the slightly greater attenuation of
the total P0(k) with η cuts at k 1Mpc−1 is perhaps
counterintuitive but not necessarily an unexpected effect of
these cuts. At these scales the clustering component is non-
negligible, and the redshift-space enhancement in Pclust
increases with μ, albeit polynomially and not exponentially.
So for values of k low enough for this enhancement to grow
faster with μ than the line-broadening suppression, restricting
calculations to lower values of η and thus k∥= kμ would mildly
suppress this enhancement, thus suppressing clustering and (to
a somewhat lesser extent) the total P0(k). The consideration is
largely immaterial for mmIME, which measures P0(k) well
above the k-range where this suppression would be relevant. It
is also likely to be esoteric in general, as surveys specifically

looking to measure P0(k) at these intermediate scales would
probably simply access these modes with the intrinsic
attenuation rather than apply any data cuts—recall that mmIME
applies these cuts in η to arrest attenuation at a level one would
otherwise only expect at much lower k than the values central
to mmIME.
Finally, we can project all of these to the comoving frame used

for CO(3–2) at z∼ 2.5—see Appendix D for a discussion of how
this is done—and consider the attenuation of the total P0(k) as
shown in Figure 10. Again we see the attenuation arrested at
k∥≈ 0.75Mpc−1 with η< 500 and k∥≈ 0.38Mpc−1 with
η< 250. At k ∼ 101Mpc−1, corresponding to the typical scales
relevant for the new observations presented by Keating et al.
(2020), the total attenuation is 23% for η< 500 (or 8% for
η< 250), within a couple of percentage points of the predictions
given by Keating et al. (2020).
We therefore suggest that an upward correction of the total

spectral shot power by roughly one-third—31% if we believe
the above calculation of 23% attenuation—is entirely justified.
However, this should not necessarily translate to an identical
upward correction of the estimated shot-noise levels for
individual CO lines. Taking our models at face value, we
would apply somewhat smaller corrections closer to 23% for
CO(2–1) at z∼ 1.3 and somewhat larger upward corrections
closer to 35% for CO(3–2) at z∼ 2.5 and 37% for CO(4–3) at
z∼ 3.6. In the case of CO(3–2) at z∼ 2.5, using the fiducial
conversion from Keating et al. (2020) of r31= 0.42 to convert
the mmIME result into an estimate of CO(1–0) shot noise,
applying this correction would change the best estimate
from h1140 K Mpc 3.3 10 K Mpc500

870 3 2 3
1.5
2.5 3 2 3N N� q�

� �
�
�( ) ( ) to

h1540 K Mpc 4.5 10 K Mpc680
1170 3 2 3

2.0
3.4 3 2 3N N� q�

� �
�
�( ) ( ) .

Note that this upward correction would appear to reduce tension
against the COPSS result from Keating et al. (2016) of (3.0±
1.3)h−3μK2Mpc3= (8.7± 3.8)× 103μK2Mpc3. The difference
between the two measurements would change from 1.5–2σ to just
over 1σ, without the need to allow for T2b2? 10μK2 as in the re-
analysis of the COPSS result in Section 5.3 of Keating et al.
(2020). However, the COPSS result itself may require its own
upward correction, potentially by a similar fraction, depending
on the relative contribution of the clustering and shot-noise
components to that measurement. Furthermore, the conversion
from CO(3–2) intensity to CO(1–0) intensity is highly uncertain at
these redshifts, meaning that the tension may be overestimated in
the first place from omitting this uncertainty.

6. Detailed Simulations

Returning to the context of COMAP and our fiducial model
of CO(1–0) at z∼ 3, we find there is a need for explicit
simulations of the CO intensity map across our fiducial
distribution. The use of lightcones from a N-body cosmological
simulation to generate these intensity maps mirrors the actual
analysis expected for COMAP, and will also allow us to
simulate the VID (with and without line broadening) without
making the simplifying assumption of a log-normal galaxy
count distribution as in Breysse et al. (2017).

6.1. Methods

The cosmological simulation used is the c400-2048 box
from the Chinchilla suite. Li et al. (2016) used the same
simulation and provide implementation details of the simula-
tion and subsequent halo identification. The simulation spans

Table 2
CO Lines Observed by Keating et al. (2020) at 100 GHz as Part of mmIME,

with Redshifts, Predictions for Shot-noise Power, and Our Calculated
(Inclination-inclusive) veff for Each Line

Line z Pshot from Pshot from veff
Keating et al. (2020) this work

(μK2 Mpc3) (μK2 Mpc3) (km s−1)

CO(2–1) 1.3 100h−3 = 292 315 168
CO(3–2) 2.5 160h−3 = 466 519 213
CO(4–3) 3.6 80h−3 = 233 209 220
CO(5–4) 4.8 20h−3 = 58 46 199
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400h−1 Mpc on each side, and has a dark matter particle mass
of 5.9× 108h−1Me. Since we only include the dark matter
halo population with Mh� 1010Me in our analysis, and
although the box size is not quite large enough to encompass
the full comoving line-of-sight span of the COMAP observa-
tion, we are mainly concerned with k 0.1 Mpc−1 in this work.
All in all, the size and resolution of this simulation should be
sufficient for the purposes of this work.

We generate 100 lightcones spanning z= 1.5–3.5 and a flat-
sky area of 100 100a q a, each with its associated dark matter
halo catalog. As information relevant to the spatial orientation
of the halo was not included at time of catalog generation, we
assign a random inclination angle i to each halo. We then use
limlam_mocker17 to assign a line luminosity to each halo
according to the model outlined in Section 3.1. We generate
1280 CO(1–0) realizations, iterating through a random draw of
1280 samples of parameter values from our fiducial distribu-
tion, each assigned to one lightcone.

With the line luminosities fixed for each halo in each
realization, we simulate a (noiseless) line-intensity cube
spanning the full solid angle of the lightcone and 26–34 GHz

in observing frequency (or z= 2.4–3.4), with each voxel
spanning 0.4 0.4 15.625 MHza q a q . For each realization, we
generate cubes both with and without the COMAP beam of 4.5a
applied, and with the following five variations on simulating
line broadening.

1. No line widths are specified—i.e., v(Mh)= 0 and thus
σ∥(Mh)= 0 for all Mh.

2. vmax64: Each halo has a calculated vmax, so we calculate
the CO FWHM for each halo as v isin 0.866max and then
bin the halo population by this FWHM in 64 linearly
spaced bins. We generate a CO cube for each velocity bin
separately, and apply a Gaussian filter to each cube along
the line of sight, with the width of the Gaussian given by
the median FWHM in each bin. We then sum the cubes
across all bins to give the total CO temperature field. The
maps generated using this approach serve as our ground
truth for line broadening.

3. vvir64: We take the same approach as in vmax64 but
using vvir(Mh) instead of vmax, which (as previously
discussed) peak-patch or other approximate N-body
simulations may not provide.

4. veff: We apply a single Gaussian filter to the total CO
temperature field along the line of sight, with the width of

Figure 9. Illustration of the expected effect of line broadening on the individual lines observed by mmIME at 100 GHz (indicated above each column of panels), using
the L(Mh) model reproduced from Keating et al. (2020) and our v(Mh) model. Upper panels: P0(k) calculated with the full formalism of Section 2 (magenta solid),
including the effect of random inclinations. For the full calculation we also show the clustering (magenta dashed) and shot-noise (magenta dotted) contributions
separately. We also show the unattenuated shot-noise contribution to the quadrupole (black dashed), as well as the expected P0(k) when restricting calculations to
modes with η < 500 (gray dashed) or η < 250 (cyan dashed–dotted). Middle panels: attenuation due to the introduction of line broadening, calculated using the full
formalism (magenta solid). We again show the altered attenuation when restricting calculations to modes with η < 500 (gray dashed) or η < 250 (cyan dashed–
dotted). Lower panels: error relative to the full calculation from using each of our three ansatze for effective line width— L v L2 2� § � § (blue dashed),

L L v4 3 2 2 1Q � § � §�( ) · (green dashed–dotted), and the midpoint veff (orange solid). We also show what the error would be against the η < 500 calculation if we froze
the attenuation calculation at the corresponding k value for each ansatz (respective line styles, in gray).

17 https://github.com/georgestein/limlam_mocker
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the Gaussian determined by veff from Equation (46),
calculated from the analytical halo model.

5. 2tier: This is the two-tier approach described in
Section 4.2. We generate a CO cube from the Mh<
1011Me halo population with no line broadening, and bin
the Mh> 1011Me population in 16 linearly spaced bins
of v isin 0.866vir . The appropriate Gaussian filter is
applied along the line of sight to the CO cube for each
FWHM bin, and we sum the CO cubes for all FWHM
bins plus the Mh< 1011Me halo subset to give the total
CO temperature field.

Whenever line broadening is applied, the CO cubes are initially
generated with voxels that are four times finer in frequency
space than the final voxels so as to accurately model how the
line intensity from each source is distributed across frequency
channels. This combined with the Gaussian filter does increase
the time required to compute the CO cube by almost a factor of
8, but as the calculation of various statistics of the cube takes
significantly more time, there is not nearly as much impact on
the time required to complete all calculations around each
realization. Simulating line broadening across 16 bins (as in
2tier) or 64 bins (as in vmax64), this total time does
increase approximately by factors of 3 to 10, but such overhead
would be acceptable for COMAP analysis.

We calculate P0(k) for all cases. We also calculate P2(k) and
the VID for all line broadening variations, but only when the
COMAP beam is applied. For the VID, the CO cube is first
coarsened to voxels of 4 4 15.625 MHza q a q to match the

beam size, and then we calculate voxel counts Bi across 75 log-
spaced bins of Ti ä (100, 103)μ K. (Note that the mean
temperature has been subtracted from the cube at this point).

6.2. Results

We show P0(k) from our simulations in Figure 11, both with
and without beam smearing, and with all variations on line
broadening. Note that the stalling of attenuation above
k∼ 1Mpc−1 is an artifact of the limited line-of-sight resolution
(we expect &k 0.9 Mpc,max

1x � , corresponding to the
15.625MHz voxel width).
Overall the results are not very surprising. Without beam

smearing, all our approximations of line broadening perform very
well, landing within several percent of ground truth (vmax64).
While there is some breakdown with beam smearing introduced,
it is confined to k 0.5Mpc−1 where P0(k) is already sign-
ificantly attenuated. The overall expected effect on a COMAP
P0(k) detection is≈7% attenuation —consistent with the
preliminary calculations from Section 5.2 using the representative
parameters of Equations (27) through (31)—with the 90%
interval spanning 3% to 14% if we take possible variations in the
L(Mh) model into account. This range neglects possible variation
due to other factors like source inclinations or the v(Mh) model
(which, if allowed to vary, may contribute almost equally to
uncertainty in expected attenuation); we estimate the impact of
these factors in Appendix E.
We also show P2(k) from our simulations (only in the

presence of beam smearing) in Figure 12, although plotting
only over a k-range of (0.05, 1)Mpc−1 to redact both effects of
finite box size and effects of limited spectral resolution in the
simulated CO cube (although some numerical effects remain,
leading to some visible ringing in the simulated P2(k) values).
The attenuation is much greater across k than in P0(k),
exceeding 30% by k∼ 0.2 Mpc−1 in a majority of model
draws. We also see that while the median relative error from
ground truth (in the lowermost panel of Figure 12) is within
10% up to k∼ 0.6Mpc−1, the 90% interval in relative error
from our allowed variations in L(Mh) can be much greater. The
2tier approach actually still results in acceptable accuracy
here, even with the relatively low number of velocity bins. The
distribution of relative error at higher k values shows a negative
skew, particularly for veff. This makes sense if we recall the
discussion from Section 5.2. If the shot noise is much lower
than the clustering component, using veff will tend to over-
attenuate, whereas the approximation will not tend to under-
attenuate if the shot noise is dominant.
Finally, in Figure 13 we consider the VID for the first time.

Broadly, all line-broadening simulation variations result in the
same effect, shifting voxel counts from high Ti to low Ti. But
while the resulting Bi are indistinguishable on a log–log plot,
the deficiencies of the veff approach become clear when
looking at a linear plot of the absolute error ΔBi relative to
ground truth. While using veff at least resulted in a
reasonable estimate of P2(k) on average, here we see a clear
systematic error at low Ti. When we consider B Bi i

1 2% —that
is, the ratio of this error to the Poisson error expected from the
“true” Bi—we find that veff is the only approach where the
relative error from the approximation is clearly in excess of
Poisson error.

Figure 10. Illustration of the expected effect of line broadening on the total
signal observed by mmIME at 100 GHz (indicated above each column of
panels), with power spectra for all lines projected to the CO(3–2) frame at
z ∼ 2.5 and summed together. Upper panel: P0(k) calculated with the full
formalism of Section 2 (magenta solid). For the full calculation we also show
the clustering (magenta dashed) and shot-noise (magenta dotted) contributions
separately. We also show the unattenuated total shot noise (black dashed), as
well as the expected P0(k) when restricting calculations to modes with η < 500
(gray dashed) or η < 250 (cyan dashed–dotted). Lower panel: attenuation due
to the introduction of line broadening, calculated using the full formalism
(magenta solid). We again show the altered attenuation when restricting
calculations to modes with η < 500 (gray dashed) or η < 250 (cyan dashed–
dotted).
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7. Discussion

7.1. The Inevitable Limitations of a Description of Line
Broadening Using a Single Parameter

In the present state of LIM, the primary observable for
autocorrelation experiments similar to COMAP and mmIME
remains the spherically averaged monopole power spectrum
P0(k), for which we have shown that the above veff
approximation works very well as a replacement for a
numerically calculated transfer function for the shot-noise
component. The results of the following subsection will also
demonstrate that most of the time, this approximation allows us
to match ground truth to within 10%–20% at scales relevant to
COMAP, a significant improvement over the systematic errors
that would arise from neglecting line broadening. Therefore,
for forecasting or analysis of the line-intensity P0(k), using a
single veff is adequate.

However, clear shortcomings to this approach exist. One
shortcoming, which is perhaps not overly relevant in application to
analysis, is that the approximation breaks down at sufficiently high
k in the presence of an angular beam of sufficiently large comoving
size. In the case of COMAP, an angular size of 4.5 arcminutes on
sky corresponds to σ⊥≈ 3.5Mpc at the central COMAP redshift,
compared to typical values of σ∥,eff∼ 1.5–2Mpc that we would

expect from veff≈ 250–350 km s−1. Yet we have not accounted for
the angular beam in our approximation above.
We might contemplate accounting for σ⊥ explicitly, via

appropriately tweaking Equation (42). However, calcula-
tions in Appendix F show that doing so does not actually
improve relative error in any appreciable fashion. The
fundamental truth is that we fully expect these kinds of
approximations to fail at sufficiently high k . We note that,
looking at the lower right panel of Figure 11 for the median
relative error in P0(k) versus ground truth when using veff,
this relative error only exceeds 10% for k
0.9 Mpc−1 ≈ π/σ⊥ for our COMAP CO(1–0) simulations.
So in practice, this concern at least should not be too
relevant to analysis, where the P0(k) loss around this k-range
is already sufficiently high (80%) that data here are likely
to be discarded.
However, our approximation remains wanting in analysis

due to concerns that are extremely relevant in the context of
analyses like Ihle et al. (2019) that deal with the VID rather
than just P(k). The central motivation behind using the VID
jointly with P(k), as explained in previous works like
Breysse et al. (2017), is that the CO intensity field observed
by COMAP is highly non-Gaussian, so that the VID
contains substantial information beyond P(k). Just as P(k)
therefore does not fully determine the VID, the P0(k)
transfer function does not fully determine the VID
transfer function. Therefore, a single parameter describing
the P0(k) transfer function from line broadening—which
summarizes our approach with a single veff—would never

Figure 11. Summary of simulated z ∼ 3 CO(1–0) P0(k) across 1280 draws
from our model posterior, using c400-2048 lightcones. We show medians
and 90% intervals for each calculation, both ignoring angular resolution (left
panels) and assuming smearing with a Gaussian beam of FWHM 4.5a or
σ⊥ = 3.5 Mpc (right panels). Upper panels: P0(k) calculated without line
broadening (yellow), using vmax64 (black) to calculate ground truth with line
broadening, and three other variations: vvir64 (red), 2tier (cyan), and
veff (magenta). Middle panels: attenuation due to the introduction of line
broadening, for each of the four variations prescribing non-zero line widths.
Lower panels: error from using vvir64, 2tier, or veff, relative to the
ground truth (vmax64 ).

Figure 12. Similar to the right panels of Figure 11 (assuming smearing with a
Gaussian beam of FWHM 4.5a or σ⊥ = 3.5 Mpc), but summarizing P2(k).
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be able to fully describe the effect of line broadening on
the VID.

Even without thinking about non-Gaussianities explicitly,
we can consider an extreme scenario. Suppose we have 1000
emitters with 999 of them at L∼ 104 Le and negligible line
broadening, and only one at L∼ 106 Le but line width of
v∼ 300 km s−1, so that

: :
dn
dL

L L L L999 10 10 , 53D D
4 6E Er � � �( ) ( ) ( )

where we use δD to denote the (one-dimensional) Dirac
delta function. Given this dn/dL, clearly the fainter but
more numerous emitters dominate the clustering component
and occupy the overwhelming majority of voxels, but the
single bright emitter will dominate any L2-weighted
statistics by itself, including shot noise and our effective
line width:
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So if we use a single Gaussian filter across the entire CO cube
as in the previous subsection’s treatment, then we will broaden
all line profiles by almost the full line width of the single bright
emitter. This may not affect P0(k) too much—the full 3D P(k)
may be somewhat affected but the effect on the averaged P0(k)
will be small at smaller scales (where the bright emitter
dominates the shot noise power spectrum anyway) and even
less at larger scales. However, this veff prescription will distort
the VID significantly, as we see in Figure 13. Voxels around
the locations of fainter emitters, which should be in low-
temperature bins of Ti∼ 100–101 μK in a proper simulation,
instead end up with overly low temperatures of100 μK due to
excessive line broadening. No procedure can avoid this effect if
it will apply the same line width to a halo subset spanning
orders of magnitude in various properties, which is to say that a
very coarse binning of the halo catalog in a simulation into two
or three subsets is unlikely to substantially correct for VID
distortion.18

In summary, for any analyses that involve P0(k) detection by
itself, our veff prescription is valid. But we need a more
thorough line broadening simulation procedure for anything
more advanced—not just the VID, but other statistics like
higher-order moments of the full 3D power spectrum that we
could consider as part of future COMAP science. What
distinguishes LIM from line candidate scans or targeted galaxy
surveys is the measurement of aggregate line emission from
both bright and faint galaxies. We therefore neglect faint line
emitters at our own peril, not only in models of the signal but
also in models of systematic effects.

7.2. Challenges for Interpretation of Single-dish and
Interferometric LIM Surveys

Qualitatively, line broadening poses the same challenges for
single-dish surveys like COMAP as for interferometric surveys
like COPSS and mmIME. The primary challenge is the
attenuation of the power spectrum to begin with, which
somewhat raises sensitivity requirements to achieve a given
signal-to-noise ratio for P(k). The secondary challenge—just as
important—is in interpretation of a detection, which requires
accurate correction for the attenuation.
The work here lets us gauge the former, but not necessarily

the latter. We have seen above that, in the context of an initial
detection with a signal-to-noise ratio of 3–5, the attenuation of
the power spectrum due to line broadening would be small or
can be reduced with appropriate redaction of the data to a level
that is subdominant to uncertainties from noise. However, once
LIM surveys reach higher detection significance, we will no
longer be able to ignore either this correction or the
uncertainties around the various assumptions around line
profile width and shape that underlie the correction.

Figure 13. Summary of the simulated z ∼ 3 CO(1–0) VID across 1280 draws
from our model posterior, using c400-2048 lightcones. We show medians
and 90% intervals for each calculation, both ignoring angular resolution (left
panels) and assuming smearing with a Gaussian beam of FWHM 4.5a or
σ⊥ = 3.5 Mpc (right panels). Upper panels: bin counts Bi calculated without
line broadening (yellow), using vmax64 (black) to calculate ground truth with
line broadening, and three other variations: vvir64 (red), 2tier (cyan), and
veff (magenta). Middle panels: absolute difference from ground truth (using
vmax64) in Bi for each of vvir64, 2tier, and veff. Lower panels:
difference from ground truth divided by the square root of the ground truth Bi,
representing the relative difference in units of expected Poisson error. Black
dashed lines at B B 1.645i i% � o represent the 90% interval expected with
perfect Poisson errors across all bins.

18 This does not exclude the possible devising of a method to correct the VID,
but we consider this to be beyond the scope of the present work.
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Quantitatively, speaking very specifically about the problem
of line broadening as it relates to detection of P0(k), single-dish
surveys are at an advantage over interferometric surveys. The
attenuation expected for COMAP at k∼ 0.2–0.3 Mpc−1 is
around 10%, whereas for mmIME the attenuation expected at
k∼ 10Mpc−1 is around 25% even with the calculations
restricted to η< 500 (which discards modes above a certain
k∥ and thus is part of a sensitivity trade-off between number of
Fourier modes and signal recovery). This means COMAP
requires only a 11% correction, versus 33% for mmIME. If
model uncertainties add relative error to this correction,
interferometric surveys have the larger correction to begin
with and thus will bear more of a challenge.

This, however, is only part of the story. If COMAP analyses
make use of statistics that put more weight on small-scale data,
such as the quadrupole P2(k) (with its shot-noise component
from anisotropic smearing) or the VID, these analyses will rely
heavily on models of line broadening. Even without under-
taking rigorous simulations, we can consider a more extreme
scenario where the true line profile is described by either a top-
hat profile or a Gaussian profile. These two shapes are clearly
going to result in very different kernels for the VID, and if the
two are equally likely then we will need to split the difference
and indicate appropriate uncertainties.

In the case of high-redshift CO, we think the Gaussian
assumption is well-justified as it has served well in the context
of untargeted high-redshift CO line searches like ASPECS,
where the Gaussian shape is a reasonable fit for most (although
not all) of the detections by González-López et al. (2019).
However, if we did want to seriously consider other possible
line shapes like double-Gaussian or double-horned profiles, we
must account in inferences for the uncertainty from such
variations. We leave this problem to future work.

8. Conclusions

The scope of this work, simply put, was to answer three
questions posited in the 1. As we conclude, we find an answer
to each question (partly reproduced):

1. What is the level of signal attenuation that we can expect
for experiments like COMAP and mmIME due to line
broadening? Our median expectation for COMAP is
a10% attenuation of the line-intensity P0(k) at relevant
scales, with the 90% interval from our fiducial model
ensemble being 3%–14%. Our prediction of the effect for
mmIME is larger, broadly agreeing with the expectation
of Keating et al. (2020) of 25% attenuation after
data cuts.

2. Is it sufficient to describe the effect of line broadening
using a single parameter, such as an effective global line
width? We have described a way to calculate an effective
global line width that does, in fact, allow for a reasonable
approximation of the effect of line broadening on the
monopole P0(k).

3. How does this simplification fail? The approximation has
greater errors for the quadrupole P2(k), and results in
significant systematic error in the context of the VID.
These results demonstrate the overdetermined nature of
attempting to define a single effective global line width to
describe non-Gaussian statistics.

The effect of line broadening is thus less critical for initial
upper limits or detections (where uncertainties from noise will
likely dominate over any uncertainty in corrections for line
broadening), but has serious implications for more advanced
analyses, especially those hoping to make use of other statistics
like P2(k) or the VID. The strong attenuation of P2(k) may have
non-negligible effects on the signal-to-noise required for
cosmological analyses of the kind proposed by Bernal et al.
(2019a, 2019b) and work is already underway to quantify
impacts on such analyses. While LIM cosmology may be
somewhat insulated from line broadening due to the focus on
larger scales, we expect the effects will be more severe for
astrophysical analyses of the kind discussed by Schaan &
White (2021). Their proposal to disentangle any one-halo
clustering contribution from shot noise at intermediate to small
scales requires measurements of Pℓ(k) at the kinds of scales
where we predict significant attenuation of Pℓ(k). Although the
challenge is not insurmountable in theory, it will necessitate
building more sensitive instruments or operating longer surveys
than we may have previously thought.
We make no claim that our v(Mh) model for CO(1–0) at

z∼ 3 is entirely accurate, but it is consistent with the
information we have at the time of writing. It is, however,
somewhat tenuous as tying the line width directly to the halo
circular velocity carries assumptions about gas-density profiles
and dynamics that we discussed briefly in Section 3.2. Any
future work that directly contradicts these assumptions would
automatically demand revisions of our model.
It will be important going forward to study in great detail the

line profile shape and width of both faint and bright high-
redshift galaxies in various lines, and how these correlate with
properties that we may be able to connect to halo properties in
dark matter simulations, or at least properties of galaxies in
semi-analytic models or baryon-inclusive cosmological simula-
tions. This will be particularly important in studying the
luminosity function and non-Gaussianities via the VID, where
the line shape may perhaps be even more important than the
width.
Paradoxically it may be LIM that may be best suited to study

some of these properties in certain regimes. If we find, for
instance, that LIM observables like Pℓ(k) and the VID are not
well described using models of line broadening devised with
data from untargeted line searches like ASPECS, then it may
indicate something about the line profiles of faint emitters that
differs from the line profiles of bright emitters as studied by
line searches (or at least the extrapolation from bright emitters
to faint emitters that would have been used).
Overall, line broadening is a systematic obstacle to detection

and interpretation of LIM signals, but by no means a
catastrophic one. We trust that future work—not only in
simulation but also in observation—will continue to shed light
on the problem and offer fresh approaches.
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Appendix A
Explicit Analytic Corrections for Inclination

Under the specific but reasonable assumption of randomly
oriented, rotation-dominated emitters, we may introduce an
analytic correction to the expressions of Section 2. Instead of
σv(Mh), the applicable width is σv times a random isin —or
rather isin 0.866, if we assume that the mean σv value
corresponds to the median value of isin 3 2� . For random
orientation, the distribution of icos is uniform such that the
average attenuation of the shot noise at fixed k and μ may be
calculated as follows (partly via Mathematica19):
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where F(x) is Dawson’s integral. (For our purposes, we consider
F(x)/x to evaluate to 1 at x= 0). With similar replacements, we

19 Wolfram Research, Inc.; Version 12.1, 2020.
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can calculate the clustering component as follows:
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We have inadvertently assumed that perfectly face-on
galaxies will have an observed line FWHM of zero, which
cannot possibly be true for several reasons. The foremost
astrophysical reason is that the CO gas will have its own
velocity dispersion independent of the overall rotation. For
instance, de Blok & Walter (2014) consider dispersions of 10
or 50 km s−1 for low- and high-redshift galaxies. Furthermore,
finite frequency resolution means we would never observe even
point sources as point sources. Gas dispersions of
10–50 km s−1 are certainly subdominant to the≈ 16MHz
channelization used both in this work in Section 6 and in
Keating et al. (2020) for mmIME data. On a more pragmatic
level, the randomly drawn inclinations will rarely hit very close
to face-on and certainly never exactly face-on—less than 0.5%
of simulated emitters would have isin 0.1� —so we believe
this oversight may be overlooked.

We can get an approximate idea of the level of correction
this introduces for the shot noise by calculating the ratio of the
integrands in Equations (13) and (A1). For kσvμ∼ 0.1 the ratio
is within a few percent of unity, but for kσvμ 1 the relative
difference begins to exceed 10%. Therefore, as the effect is
greater at smaller scales, it will clearly affect simulations of
the VID.

We turn to implications for our effective line widths. The
main task is to adjust our high-k ansatz, as the smaller scales
are most affected. The integral of Equation (A1) in μ ä (0, 1)
(setting σ⊥= 0) is unfortunately somewhat less pleasant than
before:
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where 2F2 denotes the generalized hypergeometric function.
Looking at kσv→∞ , the leading-order behavior is such that
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Compare to Equations (40) and (41), where the prefactor for
k k kerf 1T T T_ �( ) ( ) ( ) is π1/2/2. Thus we should multiply the

high-k ansatz by the ratio of the two prefactors, which is
4 3 0.735Q x( ) . (Note that if we were assuming σv(Mh)
were the value for face-on galaxies as opposed to icos 0.5� ,
the correction would be greater, requiring multiplication by 2/
π≈ 0.637). Thus we derive the inclination-corrected veff of
Equation (46) as the midpoint between the inclination-
corrected high-k ansatz and L v L2 2� § � § as is, as the latter
approximates the line broadening effect at values of k where
incorporating inclination does not yield appreciable changes.

Appendix B
Approximate Analytic Validation of Effective Line Width

Ansatz

An exact analytic validation of our ansatz for the effective
line width is challenging on multiple levels. The error function
is a decidedly non-elementary function, and dn/dMh also takes
a somewhat complex form, specified for instance by Murray
et al. (2018) by a generalized Schechter function (i.e., a power
law with exponential cutoff of variable sharpness). We can,
however, show for a highly simplified model that it really is a
reasonable ansatz through a basic polynomial approximation to
the error function.
As the model of Murray et al. (2018) suggests,

dn dM Mh h
2_ � up to the exponential cutoff, although some

variation in this power-law slope exists. Here we simplify the
picture drastically so that dn/dMh is such a power law up to
some maximum M and equal to zero above it. If we suppose
L(Mh) follows a power law up to that cutoff, we broadly expect
that power-law slope to be at least positive if not super-linear.
We could leave v(M) as a generic power law leaving the slope
unspecified, but for illustrative purposes and given physical
expectations, we will fix v(M)∼M1/3.
Up to various constants and coefficients that we will omit,

our ansatz is
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Now we consider solving for σ∥ in Equation (42) using
different approximations in different regimes. We will,
however, replace kσ∥,eff with Meff

1 3 and kσ∥(Mh) with Mh
1 3 to

simplify our calculations. It will not affect our conclusions
around the relative error of different approximations in
different regimes.
We can broadly think of three different regimes: kσ= 1,

kσ 1, and kσ? 1. In the first regime of very large scales
and/or very small masses or velocities, attenuation is minimal
and Equation (42) is almost tautological. In the last regime of
very small scales and/or very large masses or velocities,

x x xerf 1x( ) and so we actually approach the second
component of our ansatz, L L v2 2 1� § � §� .
In the middle regime, we use a second-order Taylor series

approximation: x x xerf 2 1 31 2 2Qx ��( ) ( ) (within 5% up
to x= 0.8). Since the prefactor will cancel anyway when
calculating Meff, we consider the L2-weighted average
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which is to say that
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So now we can compare the coefficients in front of M1/3 for
each approximation—the L v L2 2� § � § ansatz; the L L v2 2 1� § � §�

ansatz which the truth will approach as kσ→∞ ; the kσ 1
approximation; and the midpoint ansatz:
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If dn dM Mh h
2_ � , then a= 0 would correspond to a roughly

linear L(Mh), and values above this to models with super-linear
L(Mh) like our fiducial model ultimately is at low mass.
Therefore we can heuristically consider how our different
approximations compare for different faint-end L(Mh) slopes.

It is clear by inspection that C Cv v 1� � and that for high
a (i.e., for a sufficiently steep L(Mh) power law) these
approximations become more similar. The latter point is not
necessarily worth much thought when we return to more
realistic models, as the approximations may still diverge
depending on the model behavior at high mass (where we have
not specified the exponential cutoff and bright-end power law
at all). Even with the former point, we do note that for values of
a around 2 or 3 (which we might expect for dn dM Mh

2_ �

and a faint-end L M Mh
2_( ) or Mh

2.5), the difference is not too

great at around 10%. So while Cv clearly differs from Cv 1� it is
still surprisingly close for a blind guess.
Perhaps even more surprising is the closeness between Cv

and Ckσ1, the latter being the best we can do analytically
within reason at intermediate scales. It is perhaps clearer if we
explicitly express the ratio between the two,
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We note first that the ratio is quite close to unity—Cv is within
5% of Ckσ1 for values of a around 2 or 3. But we also note
that this ratio is one between an arithmetic mean and a
geometric mean. Since the arithmetic mean of two non-
negative real numbers is always greater than their geometric
mean, it is always true that Cv< Ckσ1 (as long as a real value
of Ckσ1 exists for comparison).
We thus have 1C C Cv v k 11 � � T� , with Cv being close to

truth at intermediate scales and Cv 1� being close to truth at
kσ? 1 but necessarily further away from truth at intermediate
scales compared to Cv. The midpoint ansatz represented by Ceff
is a clear compromise—not the optimal choice in any single
regime but able to reduce the maximum error across all
regimes.

Appendix C
A Closer Look at Attenuation for Specific Parameter

Values, But without Analytic Corrections for Inclination

In Figure 14 we show the same plots as in Section 5.2, but
without any accounting of random source inclinations. We also
show the results with inclination for reference, but the high-k
ansatz does not include the correction for inclination previously
described. We note that the effect is relatively subtle for most k,
and that the expected accuracy of the appropriate veff is quite
similar with or without inclination accounting.
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Figure 14. Same as Figure 5 (upper left subfigure), Figure 6 (lower left subfigure), Figure 7 (upper right subfigure), and Figure 8 (lower right subfigure), but the
calculations neglect the corrections for inclination described in Appendix A. The exceptions are the cyan dotted lines in the upper two rows of each subfigure, which
show Pℓ(k) or relative attenuation with inclination, and the orange dotted line in the lowermost row of each subfigure, which shows the relative error of the inclination-
inclusive veff of Equation (46) compared to the inclination-inclusive full calculation. Note also that the clustering/shot-noise breakdown for the full calculation is
shown in magenta instead of indigo.
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Appendix D
Projection of mmIME Power Spectra

We refer to Lidz & Taylor (2016) for the calculations
required to project each of the power spectra in Figure 9 to a
common frame—namely the z∼ 2.5 frame applicable for
CO(3–2)—and sum these together for the result shown in
Figure 10.

To map the wavevector kJ for the CO(J→ J− 1) line at
redshift zJ to the apparent wavevector k in the CO(3–2) frame
at redshift z= zJ=3, we need only consider how the parallel and
perpendicular components k⊥,J and k∥,J map to k⊥ and k∥ in the
CO(3–2) frame. Equations (5) and 6 of Lidz & Taylor (2016)
give these mappings (notation altered to match our own):
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Here we have used our assumption of a flat universe to replace
the comoving angular diameter distance used in Equation (6) of
Lidz & Taylor (2016) with simply the comoving distance R(z).

Then Equation (7) of Lidz & Taylor (2016) gives the
anisotropic power spectrum as a function of k∥ and k⊥, so that
we can describe the sum of the anisotropic power spectra in the
common CO(3–2) frame,
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In this work, we have always dealt with power spectra as
functions of k and μ. Recall that μ is the dot product between k̂
and the line-of-sight unit vector, so that
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Then we can map the apparent k and μ in the CO(3–2) frame to
the true kJ and μJ corresponding to the arguments to PJ in

Equation (D2):
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So given the above relations, we can write
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We use this rewritten expression to sum the anisotropic power
spectra for J= 2 through J= 5 in the main text and thus
evaluate the total P0(k) in the CO(3–2) frame as shown in
Figure 10.

Appendix E
Bracketing Additional Variations Possible in Line

Broadening-Induced Attenuation of the COMAP Monopole
Power Spectrum Measurement

In Section 6 we discussed the fact that given the possible
range of L(Mh) parameters, our expectation for attenuation of
P0(k) as observed by COMAP also spans a certain range. The
90% interval from the possible variation in L(Mh) can be
expressed as 7 %4

7
�
� . However, the discussion of our line model

in Section 3 shows that this is far from the only possible aspect
of our model with room for uncertainty. In particular we will
discuss two potential additional aspects of our model that can
be varied: the v(Mh) relation and its scaling with source
inclinations.

E.1. Varying the Halo Mass–Line FWHM Relation

We can consider two ways to vary our v(Mh) model—the
shape or functional form of the model, and the amplitude or
general range of velocities predicted overall by the model. We
propose that in bracketing uncertainties in P0(k) attenuation, the
shape is less important than the amplitude. We will
demonstrate this in Appendix E.1.1 before moving to consider
the impact of varying the amplitude in Appendix E.1.2.

Figure 15. Illustration of possible variations in the v(Mh) relation. Left subfigure: model line FWHM as a function of halo mass (left panel) and LCOa (right panel). The
models shown are vvir(Mh) (black thick curves; our fiducial expectation for preliminary calculations in Appendix B) and the variations on the power-law v La( ) model
described in the main text that mimic the same attenuation. We also show confirmed COLDz and VLASPECS sources as we did before in Figure 2. Right subfigure:
attenuated P0(k) (upper panels) and the attenuation relative to P0(k) calculated without line broadening (lower panels), both without transverse smoothing (left panels)
and with transverse smoothing corresponding to the COMAP angular beam size (right panels). The“steep” and“flat” models show very similar results to the vvir model,
bracketed by the ± 2σ variations on the“flat” model.
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E.1.1. The Relative Unimportance of Shape

The shape of the v(Mh) relation is highly degenerate with
respect to the level of P0(k) attenuation, at least for scales
relevant to COMAP. This should be quite clear based on the
demonstration of the adequacy of our veff prescription for P0(k).
If setting v(Mh) to a constant is almost as good as using
vvir(Mh), clearly the shape cannot be so important.

In fact, we will consider yet another form that yields similar
attenuation for the representative median-like L(Mh) given by
the parameters of Equations (27) through (31). In this
alternative functional form, we will simply use the power-law
fit between line luminosity and line FWHM described in
Equation (35), such that
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It is incredibly easy to devise values of δ0 and δ1 to mimic the
attenuation expected from setting v(Mh)= vvir(Mh), as we show
in Figure 15. A “flat” v(Mh) model setting δ0= 2.50 and δ1= 0
matches the attenuation within a few percent, which we expect
since the resulting v(Mh) is itself within 10 percent of the veff
value of 283 km s−1 predicted for this particular L(Mh) model.
However, a “steep” v(Mh) model setting δ0= 2.35 and δ1= 0.5
works just as well. Note incidentally that this “steep” model
also happens to predict v(Mh) exactly at the (log-)midpoint
between the “spherical” and “disk” models from Aravena et al.
(2019) discussed briefly in Section 3.2.1.

E.1.2. Varying the Amplitude

We previously discussed that a fit to confirmed CO-selected
CO(1–0) line emitters suggested δ0= 2.395± 0.208 and
δ1= 0.193± 0.302. These parameters have significant covar-
iance, and fixing δ1= 0 (noting that the data do not indicate any
statistically significant L′–FWHM correlation), the same fitting
procedure finds δ0= 2.50± 0.09. The central value matches
our “flat” mimic model considered above. Assuming the δ0
likelihood is described by a t-distribution with 6 degrees of
freedom (one parameter fit to seven confirmed line candidates),
a range of± 2σ around the central value, or 2.50± 0.18, gives
the 90% confidence interval for v(Mh) variation.

Compared to the 7% overall attenuation of the COMAP
measurement expected from either the v(Mh)= vvir(Mh) model
or its mimic counterparts, the edges of our 90% interval of
δ0= 2.50± 0.18 (for fixed δ1= 0) yield estimates of 3% and
13% attenuation (lower and upper edges, respectively). This
interval is similar to the 3%–14% interval spanned by 90% of
simulated L(Mh) variations for fixed v(Mh). Therefore, we can
say that the uncertainties associated with the line width model
are similar to those associated with the line-luminosity model.

E.2. Turning Source Inclination Multipliers On or Off

We showed in Appendix A the impact of going from
assuming v(Mh) describes all line widths to assuming that v(Mh)
describes the line widths for the median value of the sine of a
randomly determined inclination angle, effectively switching
from assuming no sources are rotation-dominated to assuming
all sources are rotation-dominated. The upshot was that the

high-k ansatz for veff was adjusted down by a little over 26%,
so we should expect a similar order-of-magnitude effect to be
present in P0(k) attenuation.
Indeed, when running the simulations of Section 6 without

accounting for inclination, we find the expected attenuation is
10 %6

8
�
� (90% interval), instead of 7 %4

7
�
� . In other words,

assuming no sources are rotation-dominated yields 30%–40%
greater attenuation compared to assuming all sources are
rotation-dominated, with less binary assumptions presumably
landing somewhere in between. Compared to the sizes of the
90% interval from variations in L(Mh) alone or v(Mh) alone,
this is a subdominant effect.

E.3. Summary of Effects

If we account for the range of allowable line width models in
addition to the range of allowable line-luminosity models, our
best estimate for the expected overall fractional attenuation due
specifically to line broadening is

P

P

0.07 90% lum 90% wid , E2
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0.07
0.04

0.06
0.04

%

� � �
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�( ) ( ) ( )

for a COMAP measurement of P0, with a possible systematic
effect of up to 40% relative increase (meaning to −0.10, not to
−0.47) from assuming that part or all of the emitter population
is not rotation-dominated and thus the inclinations of those
sources do not narrow line widths relative to the median
expectation.
We also recall that angular beam widths will impact the

attenuation, and this will vary from experiment to experiment.
However, the estimated overall P0(k) attenuation for scales
relevant to COMAP changed only by a few percent when
weighted by preliminary sensitivities at each k. (The change is
greater when looking at a specific wavenumber like
k= 0.25Mpc−1, but20% even so). The effect of the angular
beam on measurements is thus ultimately highly subdominant
to other uncertainties (including modeling uncertainties) at
present, and is an esoteric consideration for the current
experimental and theoretical LIM landscape.

Appendix F
The Ineffectiveness of Altering the Error Function-based
Fit for Global Effective Line Width to Account Explicitly

for the Presence of an Angular Beam

Consider devising an alternate veff that explicitly accounts
for beamwidth, altering the requirement for an effective σ∥
from Equation (42) to this:
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(Note that due to the properties of the error function, this is a
well-defined real-valued function even for σ⊥> σ∥.) We omit
consideration of source inclination angles in this section, as
these are not relevant to the particular comparison at hand. The
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key result here is that replacing &,erfT with &,erf,T T? does not
actually result in appreciable improvement in relative error.

Figure 16 illustrates this by showing calculations using the
criteria from both Equations (42) and (F1); we will dub the
velocity associated with the former veff and the velocity
associated with the latter veff,⊥. The L(Mh) model used is again
given by the parameters of Equations (27) through (31).

Somewhat paradoxically, the value of veff,⊥= 333 km s−1 is
somewhat higher than the value of veff= 325 km s−1, even if
only by a few percent. (Note again we neglect source
inclinations in this section, so the values are higher than the
inclination-inclusive veff= 283 km s−1 briefly mentioned in
Appendix E.)We have verified that this is not a numerical fluke
but a real difference between the optima of the fit objective
functions (the sum across k of the square of the difference
between the two sides of either Equation (42) or
Equation (F1)). The relative error is thus similar, and actually
a little larger, when using veff,⊥ compared to when using veff.

This is not a shortcoming of the design of the fit—the
estimated shot-noise attenuation being fit to, shown in
Figure 16 alongside the actual and approximated attenuation
curves, ties more closely to the full calculation of the
attenuation than to the approximate calculation using veff,⊥.
At first glance, both the actual and approximate attenuation
curves follow an inverted sigmoid function. But the error
function-based fit, corresponding to the left-hand side of
Equation (F1), asymptotes at high k differently (more quickly
to 100% attenuation, to be specific) compared to even the
attenuation of the shot-noise component in isolation, corresp-
onding to the right-hand side of Equation (F1). No matter what
exact value we use for the effective line width, the shape of the
left- and right-hand sides of Equation (F1) differ too much
across k when the angular smearing of the signal in comoving
space is comparable to or exceeds the line-of-sight smearing
from line broadening.

Ultimately, as we note in Section 7, the point is largely
esoteric for real-world analyses as they would likely not be

sensitive to (and thus not make significant use of) such high-k
modes in the presence of such an angular beam. But it is
another illustration of the shortcomings of attempting to
describe the attenuation of P0(k) with only one parameter.
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