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Abstract— Recently, there has been renewed interest in data-
driven control, that is, the design of controllers directly from
observed data. In the case of linear time-invariant (LTI)
systems, several approaches have been proposed that lead to
tractable optimization problems. On the other hand, the case
of nonlinear dynamics is considerably less developed, with
existing approaches limited to at most rational dynamics and
requiring the solution to a computationally expensive Sum of
Squares (SoS) optimization. Since SoS problems typically scale
combinatorially with the size of the problem, these approaches
are limited to relatively low order systems. In this paper, we
propose an alternative, based on the use of state-dependent
representations. This idea allows for synthesizing data-driven
controllers by solving at each time step an on-line optimization
problem whose complexity is comparable to the LTI case. Fur-
ther, the proposed approach is not limited to rational dynamics.
The main result of the paper shows that the feasibility of
this on-line optimization problem guarantees that the proposed
controller renders the origin a globally asymptotically stable
equilibrium point of the closed-loop system. These results are
illustrated with some simple examples. The paper concludes by
briefly discussing the prospects for adding performance criteria.

I. INTRODUCTION

Data-driven control (DDC), as a rapidly developing field,
has attracted increasing attention in recent years. Compared
with model-based control (MBC), it has the advantage that
full knowledge of the model is not required. Rather, the
controller is obtained directly from the data, avoiding issues
such as inaccurate modeling or the high cost of SysId. Some
early work towards DDC includes [1], [2], [3]. These meth-
ods assume a reference transfer function for the closed-loop
system. Then the parameter is tuned to minimize the error
between the reference and true signal. Later research focuses
on state-space based design. Work along these lines includes,
but is not limited to, [4], [5], [6], [7], [8] for linear systems,
and [9], [10], [11], [12] for nonlinear systems. Of particular
interest is [4], which establishes the equivalence between
DDC and MBC for noise-free LTI systems. On the other
hand, handling noisy measurements requires considering a
data-driven robust design.

The design of guaranteed robust data-driven controllers,
even for linear systems, is a relatively new research area. In
classical robust control, uncertainty descriptions are either
available or assumed and validated via model (in)validation.
On the other hand, these descriptions are not available
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in the data-driven case, necessitating the use of a set-
membership approach. In simple words, the noisy data-driven
case requires designing a controller that stabilizes all possible
systems compatible with the noisy measurements and some
priors (the consistency set). To the best of our knowledge,
the earliest work pursuing this approach is [13] where the
designed controller can stabilize all systems with noise
constrained by an `∞ bound. Further work in the `∞ norm
bounded scenario includes [14], where exploiting duality led
to the data-driven quadratic stabilization of a continuous
system. Recently, [15] proposed a non-conservative method
for the data-driven robust design problem with finite horizon
`2 bounded noise, based on a novel matrix S-lemma. Robust
stability is achieved by using this lemma to establish a con-
nection between two quadratic matrix inequalities (QMIs):
one defined by the noisy measurements, and the second
defined by the stability requirement. If the former set is a
subset of the latter set, the controller is guaranteed to stabilize
all plants in the consistency set.

Data-driven control of nonlinear systems is considerably
less developed. An approach guaranteed to generate robust
nonlinear controllers was proposed in [12]. While successful,
at the present time this approach is limited to rational dy-
namics. Further, since it requires the solution to a computa-
tionally expensive SoS optimization, it is limited to relatively
low order systems. An alternative approach was proposed in
[11], but since it is also based on SoS optimization, it suffers
from the same scaling problems.

To address these difficulties, in this paper we propose a
new approach to address the nonlinear data-driven control
(NLDDC) problem. This approach, based on combining the
S-lemma based framework developed in [15] with state-
dependent representations [16], allows for synthesizing data-
driven controllers by solving at each time step an on-line
optimization problem whose complexity is comparable to the
LTI case. Our main result shows that the resulting controllers
are guaranteed to render the origin a globally asymptotically
stable equilibrium point, as long as a given linear matrix
inequality (LMI) remains feasible along the trajectory. The
advantages of the proposed approach over existing tech-
niques are two-fold: (i) its computational complexity and
scaling are comparable to those of linear data-driven control,
and (ii) it is not limited to rational nonlinearities.

The remainder of the paper is organized as follows:
Section II covers the notation and background knowledge re-
quired to make the paper self–contained. Section III presents
the main result of the paper: an on-line optimization-based
algorithm for finding robust data-driven controllers for non-
linear systems, along with the supporting theoretical results.
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Section IV illustrates the efficiency of the proposed method
with three different systems. Finally, section V concludes the
paper and provides directions for further research.

II. PRELIMINARIES

A. Notation

We use the standard linear algebra notations. R and Rn

denote the real numbers and the real n-dimensional vector
space, respectively. x ∈ Rn is a vector and X ∈ Rm×n

is a matrix. X � 0 indicates a positive semi-definite (PSD)
matrix. Tr(X) is the trace of the matrix. ker(X) is the kernel
of the matrix. Kron(X,Y) denotes the Kronecker product
of two matrices. In is the n × n identity matrix (n may be
omitted when clear from the context) and 0 is the zero matrix
of suitable size.

B. State-Dependent Representations

In [16], Cloutier et. al. proposed to stabilize continuous
time nonlinear systems through the use of State-Dependent
Riccati Equations (SDRE). The main idea here was to recast
the nonlinear dynamics into a linear-like form by using
state-dependent representations and design a controller using
the (pointwise in the state) Riccati equations associated
with these representations. Existence of these representations
and the properties of the associated SDRE controllers are
discussed for instance in [17]. Motivated by these results,
in this paper we will use discrete time state-dependent
representations, e.g. given the nonlinear system

xk+1 = f(xk) + g(xk)uk (1)

we will represent it by

xk+1 = A(xk)xk + B(xk)uk (2)

where
f(xk) = A(xk)xk g(xk) = B(xk) (3)

Example.

xk+1 =

[
x2k,1

xk,1xk,2 + xk,2

]
+

[
xk,1 1

1 0

]
uk

=

[
xk,1 0
xk,2 1

]
xk +

[
xk,1 1

1 0

]
uk

(4)

This formulation will be key in using linear DDC control
tools to synthesize controllers for nonlinear systems.

C. Matrix S-lemma

For ease of reference, we restate Theorem 13 from [15]:

Theorem 1. Let M,N ∈ R(n+k)×(n+k) be symmetric
matrices, partitioned as

M =

[
M11 M12

MT
12 M22

]
N =

[
N11 N12

NT
12 N22

]
(5)

Define a set

SN
.
=
{

Z ∈ Rn×k
∣∣∣ [ I

Z

]T
N

[
I
Z

]
� 0
}

(6)

assume that
a. there exists some matrix Z̄ ∈ Rn×k satisfying[

I
Z̄

]T
N

[
I
Z̄

]
� 0 (7)

b. M22 � 0, N22 � 0 and ker(N22) ⊆ ker(N12)
Then we have[

I
Z

]T
M

[
I
Z

]
� 0 for all Z ∈ SN (8)

if and only if there exist scalars τ ≥ 0 and η > 0 such that

M− τN �
[
ηI 0
0 0

]
(9)

This theorem plays a central role in establishing the con-
nection between the noisy measurements and the stabilizing
controller.

D. Problem Statement

The goal of this paper is to solve a robust NLDDC
problem. Formally, the problem of interest is

Problem 1. Consider a system

xk+1 = f(xk) + g(xk)uk + wk (10)

with unknown dynamics f ,g and `2 bounded noise wk.
Given the measurements xk,uk, a bound ε on the energy
of the noise and a priori structural information on f ,g,
find a state-feedback controller uk = Kkxk that renders
the origin a globally asymptotically stable equilibrium point
of the closed-loop system.

III. MAIN RESULTS

In this section, we reformulate Problem 1 as a convex
optimization problem over LMIs. The key idea is to first
represent the nonlinear dynamics in a state-dependent form
and proceed as if the system is “linear”, by solving, at each
time k, a “frozen” quadratic regulation problem of the form:

min
∞∑
i=k

xT
i Qxi + uT

i Rui (11)

s.t. xi+1 = A(xk)xi + B(xk)ui (12)

where Q ∈ Rn×n � 0,R ∈ Rm×m � 0 are state and control
weights. That is, at each time k we obtain a state-dependent
representation, and then “freeze” these dynamics and proceed
by treating the system as LTI. The goal is to obtain, at each
time k, a robust data-driven controller that solves the problem
above for all “linear” systems in the consistency set. To this
effect, we use eq. (9) in [8], to rewrite Problem (11)-(12) as
(for simplicity, we omit x, i.e. A(xk) = Ak)

min Tr(QYk) + Tr(RLk)

s.t. Yk − (Ak + BkKk)Yk(Ak + BkKk)T − I � 0

Lk −KkYkKT
k � 0

(13)
Motivated by [15] we will solve a robust version of (13)

by minimizing an upper bound for all possible “linear”
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systems. To this effect, we define two sets: S1, the set of
all systems compatible with the noisy measurements, and
S2, the set of all systems that can be stabilized by a given
state-feedback controller. Finally, we apply Theorem 1 to
enforce the inclusion S1 ⊆ S2. To begin with, we make two
assumptions on the a-priori information.

Assumption 1. There exist known basis functions F ∈
Rnf×1,G ∈ Rng×m that span f ,g.

With this assumption, it is not hard to see that (10) can
be rewritten as

xk+1 = αF(xk) + βG(xk)uk + wk (14)

where α ∈ Rn×nf , β ∈ Rn×ng are the (unknown) coef-
ficients of f ,g and nf , ng the corresponding size of basis
functions. For example, (4) can be parameterized as

xk+1 =

[
0 1 0
1 0 1

] xk,2
x2k,1

xk,1xk,2

+

[
0 1 1 0
1 0 0 0

]
Kron(I2,

[
1
xk,1

]
)uk

(15)

Next we excite the system for T time steps and collect
samples of the states and inputs in matrix form

X
.
= [x0 . . .xT ]

U
.
= [u0 . . .uT−1]

(16)

and define the matrices

X+
.
= [x1 . . .xT ]

X
.
= [F(x0) . . .F(xT−1)]

U
.
= [G(x0)u0 . . .G(xT−1)uT−1]

W
.
= [w0 . . .wT−1]

(17)

Clearly (14) satisfies:

X+ = αX + βU + W (18)

Finally, we introduce an assumption on the noise

Assumption 2.[
I

WT

]T [
Φ11 Φ12

ΦT
12 Φ22

] [
I

WT

]
� 0 (19)

for known matrices Φ11 = ΦT
11, Φ12 and Φ22 = ΦT

22 ≺ 0.

In particular, if Φ12 = 0 and Φ22 = −I, (19) reduces to
W W T � Φ11, that is simply a bound on the covariance
of the noise.
By substitution of W in (18), we have I
αT

βT

T I X+

0 −X
0 −U

[Φ11 Φ12

ΦT
12 Φ22

]I X+

0 −X
0 −U

T  I
αT

βT

 � 0

(20)
Define S1 as the set of possible system parameters compat-
ible with the measurements

S1
.
= {α,β

∣∣ (20) holds} (21)

We now have a QMI related to the measurements. The
next step is to get an expression similar to (20) where
α,β are bounded by the QMI representing all the systems
stabilized by the state-feedback controller uk = Kkxk. We
consider now the state-dependent representations F(xk) =
A(xk)xk,G(xk) = B(xk) where A ∈ Rnf×n. In terms of
these matrices (14) can be restated as

xk+1 = αA(xk)xk + βB(xk)uk + wk (22)

To stabilize this system, we solve (13) with the
additional constraint that the control Lyapunov function
V (xk) = xT

k Y(xk)−1xk must be decreasing along the
trajectories, leading to (for simplicity, we omit x):

min Tr(QYk) + Tr(RLk)

s.t. Yk − (αAk + βBkKk)Yk(αAk + βBkKk)T − I � 0

Lk −KkYkKT
k � 0

Vk−1 − Vk > 0
(23)

It is not hard to see that the first inequality in (23) is
equivalent to I

αT

βT

T [
Yk−I 0 0

0 −AkYkA
T
k −AkYkK

T
k BT

k

0 −BkKkYkA
T
k −BkKkYkK

T
k BT

k

] I
αT

βT

 � 0

(24)
Defining Hk = KkYk to eliminate the bilinear term, we
have the equivalent expression I

αT

βT

T [Yk−I 0 0

0 −AkYkA
T
k −AkH

T
k BT

k

0 −BkHkA
T
k −BkHkY

−1
k HT

k BT
k

] I
αT

βT

 � 0

(25)
The set S2 that contains all the systems stabilized by the
state-feedback controller uk = HkY−1k xk is given by:

S2
.
= {α,β

∣∣ (25) holds} (26)

The inclusion S1 ⊆ S2 can be enforced now using Theorem
1. However, before proceeding, we need to verify that the
hypotheses of the theorem hold. Assumption a is trivially
satisfied. To check assumption b, we first define

M =

[
M11 M12

M21 M22

]

.
=


Yk − I 0 0

0 −AkYkAT
k −AkYkKT

k BT
k

0 −BkKkYkAT
k −BkKkYkKT

k BT
k


(27)

and

N =

[
N11 N12

N21 N22

]

.
=


I X+

0 −X

0 −U


[

Φ11 Φ12

ΦT
12 Φ22

]
I X+

0 −X

0 −U


T (28)
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Thus

M22 = −
[

Ak

BkKk

]
Yk

[
Ak

BkKk

]T
� 0 (29)

since Yk � 0. Similarly:

N22 = −
[
X
U

]
Φ22

[
X
U

]T
� 0 (30)

holds since Φ22 ≺ 0. Finally, We note that

ker(N22) = ker
([X

U

]T )
ker(N12) = ker

(
(Φ12 + X+Φ22)

[
X
U

]T ) (31)

Hence ker(N22) ⊆ ker(N12). Thus all the hypotheses of
Theorem 1 are satisfied. Directly application of the theorem
to (20) and (25) yields that S1 ⊆ S2 if and only ifYk − I− ηkI 0 0

0 −AkYkAT
k −AkHT

k BT
k

0 −BkHkAT
k −BkHkY−1k HT

k BT
k


− τk

I X+

0 −X
0 −U

[Φ11 Φ12

ΦT
12 Φ22

]I X+

0 −X
0 −U

T

� 0

(32)
Now we are ready to state the main theorem of the paper.

Theorem 2. Problem 1 is solvable if there exist matrices
Yk � 0,Hk,Lk and scalars τk ≥ 0, ηk > 0 satisfying
(33)-(35) below. Then the state-dependent feedback gain
Kk = HkY−1k renders the origin an asymptotically stable
equilibrium point of (10).

Yk − I− ηkI 0 0 0
0 −AkYkAT

k −AkHT
k BT

k 0
0 −BkHkAT

k 0 BkHk

0 0 HT
k BT

k Yk



− τk


I X+

0 −X
0 −U
0 0

[Φ11 Φ12

ΦT
12 Φ22

]
I X+

0 −X
0 −U
0 0


T

� 0

(33)[
Lk Hk

HT
k Yk

]
� 0 (34)

[
Vk−1 xT

k

xk Yk

]
� 0 (35)

Proof. The equivalence between (33) and (32) follows from
applying a Schur complement to (33). Similarly, (34)-(35)
follows from applying Schur complements to the last two
inequalities in (23). Finally, (35) guarantees that V (xk) =
xT
k Y−1k xk is a Lyapunov function for the closed-loop sys-

tem.
Motivated by the result above we propose the following

on-line optimization based robust data–driven control law:

Algorithm 1 Online NLDDC
1: Excite the system for k time steps and collect initial data

matrices X,U
2: Decide basis functions F,G, performance matrices

Q,R, Initial value of the Lyapunov function V0 and the
noise bound ε

3: repeat
4: Form data matrices X+(k),X (k),U (k)
5: Solve min Tr(QYk) + Tr(RLk) s.t. (33)-(35)
6: Apply the controller uk = Kkxk

7: Compute Vk = xT
k Y−1k xk

8: k = k+1
9: until

10: The system trajectories converge

IV. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the potential of the proposed
approach with several examples with sinusoidal, rational and
exponential dynamics. In all cases, we set Q = I,R = I and
V0 = 1000. The noise bound ε is computed from the largest
eigenvalue of W WT and we set Φ11 = εI,Φ12 = 0,Φ22 =
−I, that is we bound the noise covariance, i.e.

∑
k ‖wk‖2 ≤

ε. The initial state and input obey the normal distribution.
The noise obey Gaussian distribution with standard deviation
σ = 0.01. All discrete time models are obtained from a
discretization of continuous time systems using the forward
Euler method xk+1 = xk + Tcẋ + wk with Tc = 0.1. We
run all the simulations in MATLAB [18] and the optimization
problem is solved using YALMIP [19] with the MOSEK [20]
SDP solver.

Example 1. Inverted pendulum with friction

xk+1 =

[
xk,1 + Tcxk,2

xk,2 + Tc sinxk,1 − Tcxk,2

]
+

[
0
Tc

]
uk + wk

The goal here is to find a control action that stabilizes
the pendulum in the upright position [0, 0]. Note that since
the dynamics are not rational, this case cannot be addressed
by the approaches in [12], [21]. We excited the system
for 20 time steps, i.e. k = 20 and chose the basis F =
[x1, x2, sin(x1)]T , G = 1. Applying Algorithm 1, leads to
the trajectories shown in Figures 1-2
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Fig. 1. System Trajectories
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Fig. 2. Lyapunov Function Vk

Example 2. Simple rational dynamics

xk+1 =

[
xk,1 + Tc

xk,1

1+x2
k,1

xk,2 + Tcxk,1

]
+

[
Tc

1
1+x2

k,1

0

]
uk + wk

This system is open-loop unstable. Choosing k = 20 and
the basis F = [x1, x2,

x1

1+x2
1
]T , G = 1

1+x2
1

leads to
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Fig. 3. System Trajectories
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Fig. 4. Lyapunov Function Vk

Example 3. Cart and spring model [22]

xk+1 =

[
xk,1 + Tcxk,2

xk,2 − Tc k0

M e−xk,1xk,1 + Tc
h
M xk,2

]
+

[
0
Tc

M

]
uk+wk

We modified the original system in order to make it open-
loop unstable. The parameters are M = 1, k0 = 0.33, h =

1.1. Again, we set k = 20 and choose the basis F =
[x1,x2, e

−x1x1]T , G = 1. Running Algorithm 1, we have
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Fig. 5. System Trajectories
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Fig. 6. Lyapunov Function Vk

In the remainder of this section, we comment on three
issues: equivalent state-dependent realizations, the effect of
noise, and the effect of the choice of basis.

Remark 1. It is not hard to see that state-dependent rep-
resentations are not unique. Indeed, given Ak, any Âk =
Ak +Ek, such that Ekxk = 0 is also a valid representation.
For instance, (4) can also be parameterized as

xk+1 =

[
xk,1 0

0 1 + xk,1

]
xk +

[
xk,1 1

1 0

]
uk (36)

For the given examples, we ran our algorithm with different
representations and empirically observed no noticeable effect
on the stabilization of the system.

Remark 2. The amount of noise the system can tolerate
depends on the quality of the data. In general, the more
samples we have, the larger noise we can tolerate since
the uncertainty decreases (equivalently, the consistency set
is smaller). For Example 1, if we increase the noise to
σ = 0.05, then we need 80 samples to stabilize the sys-
tem, i.e. k = 80. On the other hand, σ = 0.1, requires
k = 400 samples. However, in the case of an open-loop
unstable system, the trajectories rapidly explode, preventing
the collection of enough samples. For example in Example
2, 3, with Tc = 0.1, we cannot collect enough samples before
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the trajectory explodes. In principle, this can be mitigated
by faster sampling. However, if the model originates from
the forward Euler discretization xk+1 = xk + Tcẋ + wk, a
smaller Tc results in a larger relative noise level, which may
require, once again, using a long horizon.

Remark 3. Effect of the dictionary choice. In all the simula-
tions, we used a dictionary containing only the required basis
functions. Using an overcomplete dictionary may lead to
parameter matrices α,β with additional elements, which in
turn, may require collecting more data to obtain comparable
sized consistency sets. Let us consider using a large basis
F = [x1, x2, x

2
1, x1x2, sin(x1), x1sin(x1)]T , G = 1 for

Example 1. In this case, finding a stabilizing controller
requires setting k = 70.

V. CONCLUSION

This paper proposes an on-line optimization-based method
for synthesizing robust nonlinear data-driven controllers
guaranteed to stabilize all plants in the consistency set.
It differs from existing approaches in that is not limited
to rational nonlinearities, and, more importantly, it does
not require solving a computationally expensive SoS op-
timization. Rather, the computational complexity at each
time step is comparable to that of designing a data-driven
controller for a linear system of comparable dimensions.
Our main theoretical results show that, as long as 3 LMIs
feasible along the trajectory, the proposed control law is
guaranteed to render the origin an asymptotically stable
equilibrium point for all plants in the consistency set. These
results were illustrated with several simple examples two
of which involve non-rational dynamics and hence cannot
be addressed with existing methods. An issue that was not
addressed in this paper is the effect of the choice of state-
dependent parameterizations. As noted in Remark 1, all
such parameterizations corresponding to a given nonlinear
dynamics can be described in terms of a free state-dependent
matrix Ek such that Ekxk = 0. In principle, this could
be accommodated by replacing Ak with Ak + Ek in (33)
and adding the linear constraint Ekxk = 0. However, this
will lead to terms of the form ET

k YkEk, so that (33) is no
longer an LMI. The resulting inequality can still be solved
using polynomial optimization ideas, but this will result
in a poorly scaling, computationally expensive algorithm,
defeating the purpose of the paper. Research is currently
underway seeking parameterizations that do not substantially
increase computational complexity. A second issue that has
not been addressed in this paper is performance. Note that
even though an equivalent LQR problem is solved at each
step, in principle no claim can be made relating the Lyapunov
function V (xk) = xT

k Y−1(xk)xk to the actual closed-
loop H2 cost for the nonlinear system. We believe that
this situation can be partially alleviated by considering a
robust version of the receding horizon approach pursued in
[23], where the Lyapunov function obtained from the state-
dependent representations is only used as a terminal cost.
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[2] A Karimi, L Mišković, and D Bonvin. Iterative correlation-based
controller tuning. International journal of adaptive control and signal
processing, 18(8):645–664, 2004.

[3] Hakan Hjalmarsson, Michel Gevers, Svante Gunnarsson, and Olivier
Lequin. Iterative feedback tuning: theory and applications. IEEE
control systems magazine, 18(4):26–41, 1998.

[4] Claudio De Persis and Pietro Tesi. On persistency of excitation and
formulas for data-driven control. arXiv preprint arXiv:1903.06842,
2019.

[5] Jun Ma, Zilong Cheng, Xiaocong Li, Masayoshi Tomizuka, and
Tong Heng Lee. Data-driven linear quadratic optimization for
controller synthesis with structural constraints. arXiv preprint
arXiv:1912.03616, 2019.

[6] Monica Rotulo, Claudio De Persis, and Pietro Tesi. Data-driven linear
quadratic regulation via semidefinite programming. arXiv preprint
arXiv:1911.07767, 2019.
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