
Peak Estimation for Uncertain and Switched Systems

Jared Miller1, Didier Henrion 2, Mario Sznaier1, Milan Korda2

Abstract— Peak estimation bounds extreme values of a
function of state along trajectories of a dynamical system.
This paper focuses on extending peak estimation to continuous
and discrete settings with time-independent and time-dependent
uncertainty. Techniques from optimal control are used to incor-
porate uncertainty into an existing occupation measure-based
peak estimation framework, which includes special considera-
tion for handling switching-type (polytopic) uncertainties. The
resulting infinite-dimensional linear programs can be solved
approximately with Linear Matrix Inequalities arising from
the moment-SOS hierarchy.

I. INTRODUCTION

Peak estimation under uncertainty aims to bound extreme
values of a state function subject to an adversarial noise
process. Examples include finding the maximum height of
an aircraft subject to wind, the maximum voltage in a
transmission line subject to thermal noise, and the maximum
speed of a motor subject to impedance within a tolerance. A
system with finite-dimensional state x ∈ RNx evolves under
Ordinary Differential Equation (ODE) dynamics defined by a
locally Lipschitz vector field f perturbed by uncertainty over
the time-range t ∈ [0, T ]. The time-independent uncertainty
θ ∈ Θ ⊂ RNθ is fixed (such as the unknown mass
of a system component within tolerance), while the time-
dependent uncertainty w(t) may change arbitrarily in time
within the region W ⊂ RNw . Let x(t | x0, θ, w(t)) denote a
trajectory in time starting from an initial point x0 subject
to uncertainties (θ, w(t)). The uncertain peak estimation
problem maximizing a state cost p(x) along trajectories with
variables (t, x0, θ, w(t)) may be posed as,

P ∗ = max
t∈[0,T ], x0∈X0, θ∈Θ, w(t)

p(x(t | x0, θ, w(t))) (1)

ẋ(t) = f(t, x(t), θ, w(t)), w(t) ∈W ∀t ∈ [0, T ].
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This paper proposes an infinite-dimensional linear program
(LP) in occupation measures to upper bound the quantity
P ∗ from (1). Measure-based peak estimation was introduced
in [1] and [2] for a stochastic setting, and was numerically
approximated by a discretizing set of finite LPs. The work in
[3] forms a sum-of-squares program from an LP dual to the
measure LP in [2]. Each of these are variations on the optimal
control framework in [4], [5], with an optimal stopping cost
rather than an integral (running) cost.

Occupation measure-based bounds for uncertain peak esti-
mation may be developed by adapting methods from optimal
control. Time-dependent uncertainty is an instance of an
adversarial optimal control which aims to maximize the state
function. Time-independent parameter uncertainty may be
incorporated by adding states, and switched systems can be
analyzed by splitting the occupation measure [6]. The true
peak cost P ∗ is upper bounded with an infinite dimensional
LP in occupation measures. The infinite LP is then truncated
into a sequence of Linear Matrix Inequalities (LMIs) by the
moment-SOS hierarchy [7].

This paper has the following structure: Section II reviews
preliminaries such as occupation measures and peak estima-
tion. Section III presents uncertainty models, and a unified
uncertain peak estimation model is presented in Section
IV. Section V extends uncertain peak estimation to discrete
systems. The paper is concluded in Section VI.

II. PRELIMINARIES

A. Notation

Let N be the set of natural numbers, Rn be an n-
dimensional real Euclidean space, and R[x] be the set of
polynomials in x with real-valued coefficients. For a set
X ⊆ Rn, the sets C(X) and C+(X) are respectively
the set of continuous functions on X and its nonnegative
subcone. The subcone C1(X) ⊂ C(X) is composed of
continuous functions on X with continuous first derivatives.
M+(X) is the set of nonnegative Borel measures over
X , and a duality pairing exists 〈f, µ〉 =

∫
X
f(x)dµ(x)

for all f ∈ C(X), µ ∈ M+(X). For every linear
operator L, there exists a unique linear adjoint L† such
that 〈Lf, µ〉 = 〈f,L†µ〉, ∀f, µ is satisfied. An indicator
function is IA(x) = 1 for a subset A ⊆ X if x ∈ A and
IA(x) = 0 otherwise. The measure of a set A ⊆ X with
respect to µ is µ(A) =

∫
A
dµ =

∫
X
IA(x)dµ. The quantity

µ(X) = 〈1, µ〉 is known as the ‘mass’, and µ is a probability
measure if µ(X) = 1. The Dirac delta δx′ ∈ M+(X) is a
probability measure supported only on x = x′. For measures
µ ∈ M+(X), ν ∈ M+(Y ), the product measure satisfies
(µ ⊗ ν)(A × B) = µ(A)ν(B) for all A ∈ X, B ∈ Y .
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The projection map πx : X × Y → X returns only the x
coordinate (x, y) → x. The pushforward by a function f is
the linear operator f# satisfying 〈v(x), f#µ〉 = 〈v(f(x)), µ〉
for any test function v ∈ C(X) and measure µ ∈ M+(X).
The x-marginal of a measure µ ∈ M+(X × Y ) may be
expressed as the pushforward of a projection πx#µ with
duality pairing 〈v(x), πx#µ〉 =

∫
X×Y v(x)dµ(x, y) holding

for all test functions v(x) ∈ C(X).

B. Peak Estimation and Occupation Measures

The standard (no uncertainty) peak estimation setting
involves a trajectory x(t | x0) starting at the initial point x0 ∈
X0 ⊂ X evolving according to dynamics ẋ(t) = f(t, x(t))
in a space X . The program to find the maximum value of a
state function p(x) along trajectories is,

P ∗ = max
t∈[0,T ], x0∈X0

p(x(t | x0)), ẋ(t) = f(t, x(t)). (2)

The extremum P ∗ may be bounded through the use of
occupation measure relaxations [2]. An optimal trajectory
satisfying P ∗ = p(x∗) = p(x(t∗ | x∗0)) is described by a
triple (x∗0, t

∗, x∗) [8]. The initial probability measure µ0 ∈
M+(X0) is distributed over the set of initial conditions. The
peak probability measure µp ∈ M+([0, T ] × X) is a free-
time terminal measure. For an optimal stopping time t∗ and
subsets A ⊆ [0, t∗], B ⊆ X , the µ0-averaged occupation
measure µ ∈M+([0, T ]×X) has a definition [2],

µ(A×B) =

∫
[0,t∗]×X0

IA×B ((t, x(t | x0)) dt dµ0(x0). (3)

The measure µ(A×B) yields the average amount of time a
trajectory with initial condition x0 drawn from µ0 will spend
in the region A×B.

The Lie derivative operator Lf may be defined for all test
functions v ∈ C1([0, T ]×X),

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x). (4)

The three measures (µ0, µp, µ) are linked by Liouville’s
equation for all test functions,

〈v(t, x), µp〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µ〉. (5)

Liouville’s equation ensures that initial conditions dis-
tributed as µ0 are connected to terminal points distributed
as µp by trajectories following the polynomial vector field
f . Two consequences of (5) are that 〈1, µ0〉 = 〈1, µp〉
(v(t, x) = 1) and that 〈1, µ〉 = 〈t, µp〉 (v(t, x) = t). Equation
(5) may be expressed in a weak sense using the adjoint
relaton 〈Lfv, µ〉 = 〈v,L†fµ〉,

µp = δ0 ⊗ µ0 + L†fµ. (6)

A convex measure relaxation of problem (2) is,

p∗ = max 〈p(x), µp〉 (7a)

µp = δ0 ⊗ µ0 + L†fµ (7b)

〈1, µ0〉 = 1 (7c)
µ, µp ∈M+([0, T ]×X) (7d)
µ0 ∈M+(X0). (7e)

Constraint (7c) ensures that both µ0 and µp are probability
measures. The objective (7a) is the expectation of p(x) with
respect to the peak measure µp. Program (7) has a dual
problem over continuous functions,

d∗ = min
γ∈R

γ (8a)

γ ≥ v(0, x) ∀x ∈ X0 (8b)
Lfv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (8c)
v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (8d)

v ∈ C1([0, T ]×X). (8e)

The variable v(t, x) is termed an auxiliary function in [3],
and is an upper bound on the cost function p(x) by (8d). The
graph (t, x(t | x0)) is contained in the sublevel set {(t, x) |
v(t, x) ≤ γ} for all x0 ∈ X0. Programs (7) and (8) satisfy
strong duality (p∗ = d∗) when the set [0, T ]×X is compact
(Theorem C.20 of [7]). The measure solution produces an
upper bound p∗ ≥ P ∗, and this bound is tight with p∗ = P ∗

when the set [0, T ]×X is compact (Sec. 2.3 of [3] and [4]).
The work in [2] approximates Problems (7) and (8) by a

discretized linear program over a fine mesh. The method in
[3] bounds (8) with a sum-of-squares (SOS) strengthening
of polynomial nonnegativity constraints. The SOS strength-
ening produces a converging sequence of upper bounds to
p∗ = d∗ when [0, T ] × X is compact. Optimal trajectories
can be localized by sublevel sets of v(t, x) and Lfv(t, x)
following the method in [3].

C. Moment-SOS Hierarchy

The α-moment of a measure µ for a multi-index α ∈ Nn
is yα = 〈xα, µ〉. The moment sequence y is the infinite
collection of moments {yα}α∈Nn of the measure µ. There
exists a linear (Riesz) functional Ly converting a polynomial
p(x) ∈ R[x] into a linear combination of moments in y,

Ly(p) = Ly
(∑

α∈N pαx
α
)

=
∑
α∈N pαyα. (9)

The moment matrix M[y] is a square symmetric matrix
of infinite size and is indexed by monomials (α, β) as
M[y]α,β = yα+β [7]. If a polynomial p =

∑
α pαx

α

with coefficients pα is treated as a vector p, evaluation of
〈p(x)2, µ〉 is equivalent to pTM[y]p by the Riesz functional
Ly . Nonnegativity of 〈p(x)2, µ〉 for all p(x) ∈ R[x] requires
that M[y] is Positive Semidefinite (PSD).

A basic semialgebraic set K = {x | gi(x) ≥ 0, i =
1, . . . , Nc} may be the support set for a measure µ ∈
M+(K). Because µ is supported over the region {x |
gi(x) ≥ 0}, the evaluation 〈p(x)2gi(x), µ〉 is nonnegative
for all polynomials p(x) ∈ R[x]. The PSD localizing matrix
associated with gi(x) ∈ R[x] and the moment sequence y is,

M[giy]α,β =
∑
γ∈Nn giγyα+β+γ . (10)

A necessary condition for a moment sequence y to cor-
respond with moments of a representing measure on K is
that M[y] and all M[giy] are PSD. This necessary condition
is sufficient if K is Archimedean [9]. A degree-d finite
truncation of these matrices keeps moments up to order 2d,
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which are located in the upper-left corners of the infinite
dimensional matrices. The quantities di can be defined for
each constraint gi(x) ≥ 0 as di = ddeg(gi)/2e. The
truncated moment matrix Md[y] has size

(
n+d
d

)
correspond-

ing to the monomials of x with degree ≤ d, and the
localizing matrix Md−di [giy] has size

(
n+d−di

d−ddeg(gi)/2e
)
. An

infinite dimensional LP in measures may be posed with
a polynomial objective p(x) and m polynomial constraint
functions aj(x) ∈ R[x], ∀j = 1, . . . ,m with b ∈ Rm as,

p∗ = max
µ∈M+(X)

〈p, µ〉 (11a)

〈aj(x), µ〉 = bj ∀j = 1, . . . ,m. (11b)

The degree-d finite truncation of (11) is an LMI with an(
n+2d

2d

)
-dimensional vector of moments y as a variable,

p∗d = max
y

∑
α pαyα (12a)

Md(y) � 0, Md−di(giy) � 0 ∀i = 1, . . . , Nc (12b)∑
α ajαyα = bj ∀j = 1, . . . ,m. (12c)

Increasing d results in a decreasing sequence of upper bounds
p∗d ≥ p∗d+1 ≥ . . . ≥ p∗, which is convergent if K is
Archimedean. The refinement of upper bounds to (11) by
LMIs of increasing complexity is the moment-SOS hierarchy
[7]. The moment-SOS relaxation to the peak estimation
program (7) is available in Equation (15) of [8], which is
an LMI in moment sequences (y0, yp, y) up to degree 2d
of the measures (µ0, µp, µ). These moment relaxations are
dual to the SOS programs in [3]. Near-optimal trajectories
extremizing p(x) may be recovered from LMI solutions if
the moment matrices for µ0, µp obey rank conditions [8].

III. UNCERTAINTY MODELS

This section summarizes techniques for incorporating un-
certainty into occupation-measure based frameworks, and
briefly notes their application to peak estimation. The meth-
ods mentioned here arose from optimal control and the
approximation of reachability sets. The two basic types
of uncertainty are time-independent (θ ∈ Θ) and time-
dependent (w(t) ∈ W ). It is assumed that Θ and W are
compact basic semialgebraic sets, just like X and X0.

A. Time-Independent Uncertainty

Time-independent uncertainty θ` for ` = 1 . . . Nθ may
take values in a set Θ ⊆ RNθ , and typically arises in
systems with parameter tolerances. The time-independent θ
may start at any value in Θ ⊂ RNθ and is then constant
along trajectories. By the methods in [5], [6], the state space
may be extended into X × Θ by adding new states θ with
constant dynamics θ̇` = Lfθ` = 0 for each ` = 1 . . . Nθ.

B. Time-Dependent Uncertainty

Systems with time-dependent uncertainty may have the
noise process w(t) change arbitrarily quickly in W over time
t. Such bounded time-varying noise may be found in driving
or piloting tasks with changing winds. The disturbance w(t)
is a Borel measurable function of time rather than the Itô-
type stochastic process considered in [1]. For an input w(t) ∈

W and a subset D ⊆W , the disturbance-occupation measure
µw(A×B ×D) is,∫

[0,T ]×X0

IA×B×D((t, x(t), w(t)) | x0)dt dµ0(x0). (13)

The disturbance w(t) may be relaxed into a distribution
dω(w | x, t), which is known as a Young Measure [10], [4].
The disturbance-occupation measure µw can be disentangled
into dµw(t, x, w) = dt dξ(x | t) dω(w | x, t) for conditional
distributions ξ, ω. Liouville’s equation with a relaxed dis-
turbance ω(w | x, t) influencing dynamics f(t, x, w) for all
v(t, x) ∈ C1([0, T ]×X) is,

〈v(t, x), µp〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µw〉. (14a)

Equivalent expressions are formed by rearranging operators,

〈v, µp〉 = 〈v, δ0 ⊗ µ0〉+ 〈Lfv, µw〉 ∀v, (14b)

〈v, µp〉 = 〈v, δ0 ⊗ µ0〉+ 〈v,L†fµ
w〉 ∀v, (14c)

〈v, µp〉 = 〈v, δ0 ⊗ µ0 + πtx#L
†
fµ

w〉 ∀v. (14d)

The measures of the two summands on the right hand
side of (14c) reside in different spaces, as δ0 ⊗ µ0 ∈
M+([0, T ] × X) while L†fµw ∈ M+([0, T ] × X × W ).
The (t, x)-marginalization πtx#L

†
fµ

w ∈ M+([0, T ] × X)
allows the measures to be added together inside the duality
pairing in (14d). The duality pairings 〈v(t, x),L†fµw〉 and
〈v(t, x), πtx#L

†
fµ

w〉 are equal for all v ∈ C1([0, T ] × X)
because v(t, x) is not a function of w. The weak dis-
turbed Liouville’s Equation is derived from (14d) by treating
∀v(t, x) ∈ C1([0, T ]×X) as implicit,

µp = δ0 ⊗ µ0 + πtx#L
†
fµ

w. (15)

Time-varying disturbances may be incorporated into peak
estimation by letting µ ∈ M+([0, T ] × X × W ) be a
disturbance-occupation measure of the form in (13) obeying
a disturbed Liouville equation (15). The support sets of
the measures µ0 ∈ M+(X0), µp ∈ M+([0, T ] × X) are
unchanged when time-dependent uncertainty is added.

C. Switching Uncertainty

An approach for analyzing switched systems with occupa-
tion measures is presented in [6]. Let {Xk}Nsk=1 be a closed
cover of X with Ns switching modes. The sets Xk are
not necessarily disjoint, and together satisfy ∪kXk = X
(definition of closed cover). Each region Xk has dynam-
ics ẋ = fk(t, x) for some locally Lipschitz vector field
fk. The closed cover formalism generalizes partitions of
X (deterministic dynamics) and arbitrary switching where
Xk = X ∀k (polytopic uncertainty). Polytopic uncertainty
is a model with dynamics f(t, x, k) =

∑
k wkfk(t, x) where

the disturbance wk ∈ RNs+ satisfies
∑
k wk = 1. Trajectories

from a switching system are equipped with a function S :
[0, T ] → 1 . . . , Ns yielding the resident subsystem at time
t−. Such a trajectory under switching may be written as
x(t | x0, S(t)). The switched measure program introduces
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an occupation measure µk ∈ M+([0, T ] × Xk) for each
subsystem fk,

µ =
∑
k µk L†µ =

∑
k L
†
kµk. (16)

A valid auxiliary function v(t, x) from (8c) must decrease
along all subsystems [11], [12]. Problem (8) may be modified
for switching by enlarging constraint (8c) to,

Lfkv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×Xk, k = 1 . . . Ns. (17)

IV. CONTINUOUS-TIME UNCERTAIN PEAK ESTIMATION

This section combines the uncertainty formulations from
section III to form a pair of primal-dual infinite-dimensional
LPs. The variables θ ∈ Θ, w ∈ W will respectively denote
time-independent and time-dependent uncertainties of sizes
Nθ, Nw. The dynamics f have Ns switching subsystems
fk(t, x, θ, w) which are valid in regions Xk ⊆ X .

A. Continuous-Time Measure Program

A combined uncertain peak estimation measure program
is detailed in Program (18) with indices k = 1, . . . , Ns for
the switching subsystems,

p∗ = max 〈p(x), µp〉 (18a)

µp = δ0 ⊗ µ0 +
∑
k π

txθ
# L

†
fk
µk (18b)

µ0(X0) = 1 (18c)
µk ∈M+([0, T ]×X ×Θ×W ) ∀k (18d)
µp ∈M+([0, T ]×X ×Θ) (18e)
µ0 ∈M+(X0 ×Θ). (18f)

Theorem 4.1: The solution p∗ to program (18) will yield
an upper bound to P ∗ in (1).

Proof: First assume Ns = 1 with X1 = X , so there
is only one switching domain. An optimal achievement of
(1) reaching the peak value of P ∗ may be characterized by
the tuple (x∗0, t

∗, x∗p, θ
∗, w∗(t)). The peak value p(x∗p) = P ∗

is achieved by following the trajectory x(t | x∗0, θ∗, w∗(t))
until time t = t∗. Measures (µ0, µp, µ) may be defined from
this optimal tuple such that the measures satisfy constraints
(18b)-(18f). The initial measure and peak measure may be
set to µ0 = δx=x∗0

and µp = δt=t∗⊗δx=x∗p⊗δθ=θ∗ based on
the optimal tuple. The measure µ ∈M+([0, T ]×X×Θ×W )
may be defined as the unique occupation measure satisfying,

〈ṽ, µ〉 =

∫ t∗

t=0

ṽ(t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t))dt, (19)

for all test functions ṽ ∈ C([0, T ] × X × Θ × W ). The
measures (µ0, µp, µ) satisfy constraints (18b)-(18f), so p∗ ≥
P ∗ when Ns = 1.

Optimal trajectories arising from a system with Ns > 1
may be described in a tuple as (x∗0, t

∗, x∗p, θ
∗, w∗(t), S∗(t)),

where S∗(t) is the sequence of switches undergone between
times t ∈ [0, t∗]. The measures µ0 and µp may remain
the same as in the non-switched case. Switching occupation
measures µk may be set to the unique occupation measure
supported on the graph (t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t))
between times t ∈ [0, t∗] when S(t) = k. These occupation

measures satisfy constraints (18b) and (18d), proving that
there exists a feasible solution to (18b)-(18f) with objective
P ∗ for the case of switching.

B. Continuous-Time Function Program
Dual variables v(t, x, θ) ∈ C1([0, T ]×X×Θ) and γ ∈ R

can be defined to find the Lagrangian of (18).

L = 〈p(x), µp〉+ 〈v(t, x, θ), δ0 ⊗ µ0 +
∑
k π

txθ
# L

†
fk
µk〉

+ 〈v(t, x, θ),−µp〉+ γ(1− 〈1, µ0〉).
The resulting dual program in (v, γ) is,

d∗ = min
γ∈R

γ (20a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(0, x, θ) (20b)
∀(t, x, θ, w) ∈ [0, T ]×Xk ×Θ×W : ∀k
Lfkv(t, x, θ) ≤ 0 (20c)
∀(t, x, θ) ∈ [0, T ]×X ×Θ :

v(t, x, θ) ≥ p(x) (20d)

v(t, x, θ) ∈ C1([0, T ]×X ×Θ). (20e)

Theorem 4.2: There is no duality gap between (18) and
(20) when the set [0, T ]×X ×Θ×W is compact.

Proof: Necessary and sufficient conditions for there to
be no duality gap between measure and function programs
are if all measures are bounded and if the affine map is
closed in the weak-* topology (Theorem C.20 of [7]). A
measure is bounded if all of its finite-degree moments are
bounded. Boundedness will hold if the mass of the measure
is bounded and the support of the measure is compact. In (18)
µ0 and µp each have mass 1, and the mass of

∑
k µk ≤ T

by Liouville’s equation. Compactness of [0, T ]×X×Θ×W
therefore assures that all measures are bounded. The image
of the affine map (µ0, µp, µk)→ (δ0⊗µ0+

∑
k π

txθ
# L

†
fkµk−

µp, µ0) induced by constraints (18b)-(18c) is closed in the
weak-* topology. Strong duality therefore holds by closure
and boundedness of measures.

The measure µ0 has Nx + Nθ variables, and µp has 1 +
Nx + Nθ variables. The Ns occupation measures µk each
have 1 +Nx+Nθ +Nw variables. If the switching structure
was not taken into account by the methods of section III-
C, there would be a single occupation measure µ with 1 +
Nx+Nθ+Nw+Ns variables. The affine uncertainty structure
breaks up the large µ (in terms of the number of variables)
into Ns smaller measures (µk).

C. Continuous-Time LMI Relaxation
The compact (Archimedean) basic semialgebraic sets in

the uncertain peak estimation setting are

X = {x | gi(x) ≥ 0 | i = 1, . . . , Nc} (21a)

X0 = {x | g0i(x) ≥ 0 | i = 1, . . . , N0
c } (21b)

Xk = {x | gki(x) ≥ 0 | i = 1, . . . , Nk
c } (21c)

Θ = {θ | gθi(θ) ≥ 0 | i = 1, . . . , Nθ
c } (21d)

W = {w | gwi(w) ≥ 0 | i = 1, . . . , Nw
c }. (21e)
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The localizing matrix degree bound di is di =
ddeg(gi)/2e, and similar quantities d0i, dθi, dwi, dki are
defined on corresponding polynomials. Monomials forming
moments may be indexed as xαtβθγwη for multi-indices
α ∈ NNx , β ∈ N, γ ∈ NNθ , η ∈ NNw . Define
y0 = {y0

αγ}, yp = {ypαβγ} as the moment sequences
for measures µ0 and µp. The moment sequence for the
occupation measure µk is yk = {ykαβγη} for each switching
subsystem k. The Liouville equation (18b) with test function
v(t, x, θ) = xαtβθγ has the form,

0 = 〈xαtβθγ , δ0 ⊗ µ0〉 − 〈xαtβθγ , µp〉 (22)

+
∑
k〈Lfk(t,x,θ,w)(x

αtβθγ), µk〉.

Define the operator Liouαβγ(y0, yp, yk) as the linear relation
between the moment sequences induced by (22) assuming
that each fk is a polynomial vector field. Given a degree
d, define the degrees d′k as d+ ddeg(fk)/2e − 1 for each k.
The degree-d LMI relaxation of the uncertain peak estimation
problem in (18) resulting in an upper bound p∗d ≥ P ∗ is,

p∗d =max
∑
α pαy

p
α00 (23a)

∀|α|+ |β|+ |γ| ≤ 2d :

Liouαβγ(y0, yp, yk) = 0 by (22) (23b)

y0
0 = 1 (23c)

Md(y
0),Md(y

p), ∀k : Md′k
(yk) � 0 (23d)

Md−1(t(T − t)yp) � 0 (23e)

∀k : Md′k−2(t(T − t)yk) � 0 (23f)

∀i = 1, . . . , N0
c :

Md−d0i(g0iy
0) � 0 (23g)

∀i = 1, . . . , Nθ
c :

Md−dθi(gθiy
0), Md−dθi(gθiy

p) � 0 (23h)

∀k : Md′k−dθi(gθiy
k) � 0 (23i)

∀i = 1, . . . , Nc :

Md−di(giy
p) � 0 (23j)

∀k, ∀i = 1, . . . , Nk
c :

Md′k−dki(gkiy
k) � 0 (23k)

∀i = 1, . . . , Nw
c :

∀k : Md−dwi(gwiy
k) � 0. (23l)

Constraints (23d)- (23l) are moment and localizing matrix
PSD constraints ensuring that there exist representing mea-
sures to the moment sequences (y0, yp, yk) supported on the
appropriate spaces. The sequence {p∗d} will converge to p∗

monotonically from above as d → ∞ if all sets in (21) are
Archimedean [7].

D. Continuous-Time Uncertain Examples

Code is available at github.com/jarmill/peak,
and is written in Matlab R2020a using Gloptipoly3 [13],
YALMIP [14], and Mosek 9.2 [15] to formulate and
solve LMIs. Demonstrations are available in the folder
peak/experiments uncertain and are run here on
an Intel i9 CPU at 2.30 GHz with 64.0 GB of RAM.

Dynamics based on Example 1 of [16] (adding w) are,

ẋ(t) =

[
−0.5x1 − (0.5 + w(t))x2 + 0.5

−0.5x2 + 1 + θ

]
. (24)

Figure 1 illustrates maximization of p(x) = x1 starting in
X0 = {x | (x1 +1)2 +(x2 +1)2 ≤ 0.25} for time t ∈ [0, 10].
The admissible disturbances w(t) are in w = [−0.2, 0.2].
Fig. 1a has Θ = 0 while Fig. 1b has Θ = [−0.5, 0.5] for
the time-independent uncertainty θ ∈ Θ. In each figure, the
black circles are initial conditions from the boundary of X0,
the blue curves are sampled trajectories, and the red plane
are level sets for upper bounds of x1 along trajectories. At
the order r = 4 LMI relaxation, Fig. 1a yields a bound of
P ∗ ≤ 0.4925 while Fig. 1b with θ results in P ∗ ≤ 0.7680.
The black surface containing all trajectories in Fig. 1a is the
level set {(t, x) | v(t, x) = 0.4925}.

(a) θ = 0 (b) θ ∈ [−0.5, 0.5]

Fig. 1: Maximize x1 at order 4 with w(t) ∈ w

The reduced three-wave model is a nonlinear model for
the interaction of three quasisynchronous waves in a plasma
[17]. These dynamics with parameters (A,B,G) are,

ẋ1 = Ax1 +Bx2 + x3 − 2x2
2

ẋ2 = −Bx1 +Ax2 + 2x1x2 (25)
ẋ3 = −Gx3 − 2x1x2.

This example aims to maximize x2 on the three-wave system
starting in X0 = {x | (x1 + 1)2 + (x2 + 1)2 + (x3 + 1)2 ≤
0.16}. Order 3 LMI relaxations are used to upper bound x2

over the region of interest X = [−4, 3]×[0.5, 3.6]×[0, 4] and
times t ∈ [0, 5]. The bound P ∗ ≤ 2.6108 is produced with
parameter values A = 1, B = 0.5, G = 2 (no uncertainty),
as illustrated in Fig. 2a. Fig. 2b adds uncertainty by letting
A ∈ [−0.5, 1.5] and B ∈ [0.25, 0.75] vary arbitrarily
with time, and G now possesses parametric uncertainty in
[1.9, 2.1] . Uncertainty in A,B are realized by switching
between 4 subsystems of (25) with (A,B) ∈ {0.5, 1.5} ×
{0.25, 0.75} Uncertainty in G is implemented as G = 2 + θ
where θ ∈ [−0.1, 0.1]. The order-3 bound under uncertainty
in Fig. 2b is P ∗ ≤ 3.296.

V. DISCRETE-TIME UNCERTAIN PEAK ESTIMATION

Uncertain peak estimation can be extended to discrete-
time systems, including switched discrete-time systems. A
discrete-time system from times t = 0, 1, . . . , T is consid-
ered for dynamics x+ = f(x) where x+ is the next state.
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(a) no uncertainty (b) with uncertainty

Fig. 2: Maximize x2 on three-wave system (25)

A trajectory starting at the initial condition x0 ∈ X0 is
xt(x0) The uncertain peak estimation problem for discrete-
time systems with uncertainties (θ, wt) and Ns subsystems
with switching sequence St is,

P ∗ = max
t, x0∈X0, θ∈Θ, wt, St

p(xt(x0, θ, wt, St)) (26)

x+ = fk(xt, θ, wt) if St = k

wt ∈W, St ∈ 1, . . . , Ns ∀t ∈ 0, . . . , T.

A. Discrete-Time Measure Background

Just as the Lie derivative Lfv yields the infinitesimal
change in v along continuous trajectories, the quantity
v(f(x))−v(x) is the change in v along a single discrete-time
step. The discrete-time occupation measure for sets A ⊆ X
with initial conditions distributed as µ0 ∈M+(X0) is,

µ(A) =

∫
X0

T∑
t=0

IA(f t(x0))dµ0. (27)

The quantity µ(A) is the averaged number of time steps
that trajectories distributed as µ0 spend in A. For measures
µ0 ∈ M+(X0), µp ∈ M+(X), µ ∈ M+(X), the strong
and weak discrete-time Liouville equations for all v are:

〈v(x), µp〉 = 〈v(x), µ0〉+ 〈v(f(x)), µ〉 − 〈v(x), µ〉, (28)
µp = µ0 + f#µ− µ. (29)

Time may be optionally included in system dynamics by set-
ting a state t+ = t+1 and incorporating t into dynamics. The
pushforward term in (29) would then be v(t+ 1, f(t, x))−
v(t, x). Discrete-time systems with uncertainties (θ, w) have
dynamics and Liouville equations according to,

x+ = f(xt, θ, wt), µp = µ0 + πxθ# (f#µ− µ). (30)

The uncertainty θ ∈ Θ is fixed, and the time-dependent
uncertainty has wt ∈ W for every time step t = 0, . . . , T .
Switching uncertainty from Section III-C with subsystems
fk valid over Xk may be realized by defining occupation
measures µk ∈M+(Xk ×Θ×W ) such that µ =

∑
k µk.

B. Discrete-Time Measure Program
A measure program may be formulated to upper bound

the peak-estimation task on discrete-time systems with un-
certainties (θ, w) and switching between dynamics fk over
Xk. The uncertain discrete-time peak estimation measure
problem with variables (µ0, µk, µp) is,

p∗ = max 〈p(x), µp〉 (31a)

µp = µ0 + πxθ# (
∑
k(fk#µk − µk)) (31b)

µ0(X0) = 1 (31c)
T ≥

∑
k〈1, µk〉 (31d)

µk ∈M+(Xk ×Θ×W ) ∀k (31e)
µp ∈M+(X ×Θ) (31f)
µ0 ∈M+(X0 ×Θ). (31g)

Remark 1: The composition of pushforwards in (31b) acts
as 〈v(x, θ), πxθ# fk#µk〉 = 〈v(fk(x, θ, w), θ), µk〉 for all test
functions v(x, θ) ∈ C(X ×Θ).

Theorem 5.1: The optimum p∗ of (31) is an upper bound
for P ∗ from discrete-time program (26).

Proof: This proof follows the same steps as the proof to
theorem 4.1. A trajectory achieving a peak value of P ∗ solv-
ing (26) may be expressed as a tuple (t∗, x∗0, x

∗
p, θ
∗, w∗t , S

∗
t )

with P ∗ = p(x∗p) = p(xt∗(x
∗
0, θ
∗, wt)). Measures may be

defined from this tuple to solve problem (31). The probability
distributions are µ0 = δx=x∗0

and µp = δx=x∗p ⊗ δθ=θ∗ .
Switching measures µk may be chosen as the unique oc-
cupation measures satisfying,

〈ṽk, µk〉 =
t∗∑
t=0

ṽ(xt(x
∗
0, θ
∗, w∗t ), θ∗, w∗t )I(St = k), (32)

for all test functions ṽk ∈ C(Xk × Θ × W ) and for
each k = 1, . . . , Ns. The measures (µ0, µp, µk) are feasible
solutions to (31b)-(31g) with objective value P ∗ = p(x∗p) =
〈p(x), µp〉, so p∗ ≥ P ∗ is a valid upper bound to (26).

Remark 2: Constraint (31d) is a technique from [18]
ensuring that the maximal time in optimization is T and
that each µk has a bounded mass.

C. Discrete-Time Function Program
With dual variables (v(x, θ) ∈ C(X × Θ), γ ∈ R) and a

new dual variable α ≥ 0, the Lagrangian of (31) is,

L = 〈p(x), µp〉+ 〈v(x, θ), µ0 − µp〉+ α(T − 〈1,
∑
k µk〉)

+ 〈v(x, θ), πxθ#

∑
k fk#µk − µk〉+ γ(1− 〈1, µ0〉).

The corresponding dual problem is,

d∗ = min
γ∈R, α≥0

γ + Tα (33a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(x, θ) (33b)
∀(x, θ, w) ∈ Xk ×Θ×W : ∀k
v(fk(x, θ, w), θ)− v(x, θ) ≤ α (33c)
∀(x, θ) ∈ X ×Θ :

v(x, θ) ≥ p(x) (33d)
v(x, θ) ∈ C(X ×Θ). (33e)
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Theorem 5.2: Strong duality p∗ = d∗ holds between (31)
and (33) if T <∞ and X ×Θ×W is compact.

Proof: This is affirmed by a similar process to Theorem
4.2. All measures have bounded finite moments given that
their masses are bounded and their supports are compact.
The image of the affine map in constraints (31b)-(31c) is
closed in the weak-* topology, concluding the conditions for
strong duality by Theorem C.20 of [7].

Remark 3: The LMI for Discrete-Time Uncertain Peak
Estimation is similar to LMI (23) in continuous time. If
time is not included, support constraints (23e)-(23f) are
unnecessary. The Liouville operator Liouαγ(y0, yp, yk) is
now the affine relation in moments induced from Liouville’s
Equation (31b) for every test function v(x, θ) = xαθγ ,

0 = 〈xαθγ , δ0 ⊗ µ0〉 − 〈xαθγ , µp〉 (34)
+
∑
k〈(fk(x, θ, w)αθγ − xαθγ , µk〉.

D. Discrete Example
An example to demonstrate uncertain discrete peak esti-

mation is to minimize x2 on the following subsystems,

f1(x,w) =

[
−0.3x1 + 0.8x2 + 0.1x1x2

−0.75x1 − 0.3x2 + w

]
(35a)

f2(x,w) =

[
0.8x1 + 0.5x2 − 0.01x2

1

−0.5x1 + 0.8x2 − 0.01x1x2 + w

]
. (35b)

The space under consideration is X = [−3, 3]2, and the
time varying uncertainty wt satisfies wt ∈ [−0.2, 0.2] = ∆.
The valid regions for subsystems of (35) are X1 = X and
X2 = X ∩ (x1 ≥ 0). When x1 ≥ 0 the system may switch
arbitrarily between dynamics f1 and f2, but when x2 < 0,
the system only follows dynamics f1. Figure 3 visualizes
minimizing x2 starting from the initial set X0 = {x |
(x1+1.5)2+x2

2 = 0.16} between discrete times t ∈ 0, . . . , T
with T = 50. A fourth order LMI relaxation of (31a) is
solved aiming to maximize p(x) = −x2. With w = 0 in Fig.
3a the bound is P ∗ ≤ 1.215 (minx2 ≥ −1.215), while the
time varying w in Fig. 3b yields a bound of P ∗ ≤ 1.837.

(a) wt = 0 (b) wt ∈ [−0.2, 0.2]

Fig. 3: Minimize x2 on system (35)

VI. CONCLUSION

The problem of peak estimation with uncertainty may be
bounded by the optimal value of an infinite-dimensional LP
in occupation measures. This LP is then approximated by
the moment-SOS hierarchy and Linear Matrix Inequalities.
Time-independent and time-dependent uncertainties are in-
corporated into this measure framework for continuous-time
and discrete-time systems. Future work includes uncertain
peak estimation for safety verification and hybrid systems,
and also exploiting specialized uncertainty structures.
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