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Abstract— Semidefinite programs (SDP) are a staple of to-
day’s systems theory, with applications ranging from robust
control to systems identification. However, current state-of-the
art solution methods have poor scaling properties, and thus are
limited to relatively moderate size problems. Recently, several
approximations have been proposed where the original SDP is
relaxed to a sequence of lower complexity problems (such as
linear programs (LPs) or second order cone programs (SOCPs)).
While successful in many cases, there is no guarantee that
these relaxations converge to the global optimum of the original
program. Indeed, examples exists where these relaxations "get
stuck" at suboptimal solutions. To circumvent this difficulty in
this paper we propose an algorithm to solve SDPs based on
solving a sequence of LPs or SOCPs, guaranteed to converge
in a finite number of steps to an ε-suboptimal solution of the
original problem. We further provide a bound on the number
of steps required, as a function of ε and the problem data.

I. INTRODUCTION

Semidefinite Programs (SDPs) of the form:
X∗PSD = argmin

X�0
Tr
(
CT X

)
s.t. Tr

(
ATi X

)
= bi i = 1, . . . ,M

(1)

have become a staple of control theory, leading to efficient
solutions to a wide range of problems [1], [2]. However, in
spite of this success, SDP has found limited applicability
in applications areas involving large date sets. To a large
extent, this limitation stems from the poor scaling properties
of conventional SDP solvers. For instance, computational
complexity of interior point methods scales as mn3, where
n and m denote the number of variables and constraints [3].

Several approaches have been proposed to address these
challenges by exploiting specific features of the problem, such
as sparsity [4], [5], structure of the constraints [6], as well as
first-order methods [7]. However, these methods do not apply
to general scenarios. An alternative approach seeks to obtain
lower complexity relaxations by replacing the semi-definite
constraints with linear or second order cone constraints [8],
[9], leading to an algorithm based that alternates between
Cholesky decompositions and linear (LP) or second order
cone (SOCP) programs. However, while successful in many
scenarios, there is no guarantee that it will converge to the
solution of the original SDP. Indeed, there are examples where
the approach does not converge to the global minimum.

To address these difficulties, in this paper we propose
a new algorithm, based upon a combination of Cholesky
factorizations and LPs of SOCPs. Our main theoretical result
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shows that this algorithm is guaranteed to converge, in
polynomial time, to an ε-optimal solution a generic SDP,
thus answering a question left open in [8], [9]. We further
provide a bound on the number of iterations needed in terms
of ε and the problem data. To the best of our knowledge, this
is the first globally convergent SDP algorithm based on LP
and SOCP programs. These results are illustrated with some
benchmark examples taken from the SDPLib data set that
challenge commonly used packages such as CVX.

II. BACKGROUND RESULTS

A. Interior Point Methods for SDPs and the Central Path

First formulated by Karmakar [10], interior point methods
(IPM) have become widely adopted due to their guaranteed
polynomial runtime [11]. These methods handle conic con-
straints by adding to the cost a “barrier" that tends to infinity
when approaching the boundary of the feasible set. To prevent
numerical instability, IPMs solve a sequence of optimization
problems in which the barrier is weighted by a factor 1/t,
where t is increased until ε-optimality is reached. In the case
of SDPs, the most widely used barrier function is the negative
log-determinant, which leads to problems of the form:

Xt = minimize
X

Tr
(
CT X

)
− 1

t
log (|X|)

s.t. Tr
(
ATi X

)
= bi i = 1, . . . ,M

(2)

The curve defined by the optimizers Xt of (2) as a function
of t > 0 is called the Central Path of the problem. As t→∞,
Xt converges to the optimizer of (1), X∗PSD. Moreover, due
to duality theory, the elements of the central path satisfy the
following inequality:

Tr
(
CT Xt

)
≥ Tr

(
CT X∗PSD

)
≥ Tr

(
CT Xt

)
−N/t (3)

which provides an optimality bound at any point in the path.

B. DD and SDD relaxations of Semidefinite Programming

In [9], the authors proposed a relaxation for general SDPs
based on replacing the positive semidefinite constraints by
lower complexity ones involving diagonally-dominant and
scaled diagonally-dominant matrices, defined below:

Definition 1: A symmetric matrix X with elements
X(i, j) is diagonally-dominant (DD) if

X(i, i) ≥
∑
j 6=i

|X(i, j)| ∀i

Definition 2: A symmetric matrix X is scaled diagonally-
dominant (SDD) if there exist a positive diagonal matrix D
and a DD matrix Y such that X = DYD.
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From these definitions it follows that DDN ⊂ SDDN ⊂
PSDN , where DDN , SDDN and PSDN denote the cones
of N × N DD, SDD and Positive Semi-Definite (PSD)
matrices. Thus, relaxations of the SDP (1) can be obtained by
simply replacing the constraint X � 0 with the stronger ones
X ∈ DDN or X ∈ SDDN . The following results, adapted
from [8], [12] provides an alternative characterization of
DD and SDD matrices that was used in [8] to show that
these relaxations indeed lead to LPs or SOCPs with lower
complexity than the original SDP. Define the mapping Ψi,j

from 2× 2 matrices to N ×N matrices:

Ψi,j(M) = M̄ where
{
M̄({i, j}, {i, j}) =M

0 otherwise.
i.e. the {i, j} sub-matrix of M̄ is M, and the other entries
of M̄ are 0. Ψi,j(.) allows for characterizing DD and SDD
matrices in terms of “exploded" 2×2 matrices as follows:

Lemma 1 ( [8], [12]):

Y ∈ DDN ⇐⇒ Y =
N∑
i,j

Ψi,j(Mi,j), Mi,j ∈ DD2

Similarly,

Y ∈ SDDN ⇐⇒ Y =

N∑
i,j

Ψi,j(Mi,j), Mi,j � 0

Thus, enforcing the constraint X ∈ DDN (SDD)N indeed
reduces to a set of linear (second order cone) constraints.

C. Iterative Basis Update

While replacing the PSD constraint in (1) with the stronger
one X ∈ DDN or X ∈ SDDN leads to a computationally
cheaper optimization, the solution to these relaxed problems
can be far from the true optimum. To alleviate this [8]
proposed an iterative algorithm with improve performance,
based on alternating between solving a sequence of DD/SDD
problems and performing Cholesky factorizations. Briefly, the
idea is to solve at step k a problem of the form

X∗k (Uk−1) = argmin
X,Y

Tr
(
CTX

)
s.t. Tr

(
ATi X

)
= bi i = 1, . . . ,M

UTk−1Y Uk−1 = X, Y ∈ DDN / SDDN

(4)

where Uk−1 is a Cholesky factor of the previous solution, e.g.
Xk−1 = UTk−1Uk−1. Note that since I ∈ DDN (SDDN ),
the previous iterate X∗k−1, is always a feasible solution of (4).
Hence the algorithm generates a sequence of solutions with
non-increasing cost. This sequence, however, is not guaranteed
to converge to the optimizer of the original SDP (1). Indeed,
in numerical tests the algorithm tends to converge to strictly
suboptimal values for all medium to large size problems
(N >> 10). This is precisely what motivates the present
paper. Our main result shows that indeed, it is possible to
obtain an LP/SOCP based globally convergent algorithm.

III. PROPOSED ALGORITHM

In this section we present a globally convergent algorithm
for solving the SDP (1) based on DD and SDD programs.
The algorithm is split in two phases. The first phase, the
decrease phase, consists of solving a sequence of DD/SDD

programs, exactly as in [8]. As noted above, this sequence
tends to stagnate on a suboptimal objective cost as the iterates
approach the boundary of the PSD cone and their conditioning
worsens. To prevent this, a second phase of the algorithm
that consists of a series of steps designed to improve the
iterates’ conditioning starts after the decrease phase. We
call these steps centering steps, as they guide the iterates
towards the center path of the SDP by solving a sequence
of analytic centerings on the DD/SDD set. These centering
steps constitute the centering phase of the algorithm.

Fig. 1: The algorithm alternates between a cost decreasing phase
and a centering phase that brings the iterate to a point εc-close
to the central path. After a finite number of phases, the iterate
is brought to a point εc-close to the central path with parameter
tκ ≥ t∗, guaranteeing εg-convergence to the solution of the SDP.

Figure 1 shows a graphical description of the proposed
algorithm. In the decrease phase, a sequence of problems of
the form (4) are solved, decreasing the cost. After a fixed
number sd of decrease steps1, the centering phase starts and
a sequence of problems of the form (5) are solved :

Xl (Ul−1) = argmin
X,Y

−φ (Y ) s.t.

Tr
(
ATi X

)
= bi i = 1, . . . ,M

Tr
(
CTX

)
= Tr

(
CTXl−1

)
UTl−1Y Ul−1 = X, Y ∈ DDN / SDDN

(5)

Here the function −φ(Y ) is the logarithmic barrier of the
DD/SDD sets and Ul−1 is the Cholesky factor of Xl−1. The
sequence of centering steps converges to a point εc close to
the central path of the SDP, i.e. the optimizer of the analytic
centering defined on the PSD cone. At the end of this sequence
the conditioning of the current iterate has improved and due
to the properties of the SDP central path, the optimality gap
is given by (3). At this point, a new decrease phase starts and
the algorithm keeps iterating between decrease and centering
phases, as outlined in Algorithm 1, until it converges. In the
next section. we will prove that the algorithm converges to an
ε-suboptimal solution of (1) in polynomial time and provide
a bound on the number of iterations as a function of ε and
the problem data.

1The theoretical guarantees developed in Section IV hold for any value
of sd ≥ 1. Thus, in the sequel we assume sd = 1 unless otherwise stated.
The impact the choice sd has on the algorithm performance is analyzed in
the full version of the paper, available from the authors.
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Algorithm 1: Globally Convergent DD/SDD Algorithm
Result: εg-optimal X∗

Initialize optimality gap as gSDP =∞; Initialize X0;
k = 0;

while gSDP > εg do
% Start Decrease Phase
for Number of decrease steps sd ≥ 1 do

k = k + 1; Compute Cholesky Factors of Xk−1;
Solve for Xk(Uk−1) as in (4);

end
Update optimality gap gSDP ;
% Start Centering Phase
Initialize centering gap gC =∞; l = 0, Xk,l = Xk;
while gC > εC do

l = l + 1; Compute Cholesky Factors of Xk,l−1;
Solve for Xk,l(Uk,l−1) as in (5);
Update centering gap gC ;

end
Update optimality gap gSDP ; Xk = Xk,l;

end
X∗ = Xk;

IV. CONVERGENCE PROOFS

In this section we develop the proof of global convergence
for Algorithm 1. This proof rests on the two following results.
The first is the that the Centering Phase converges to an iterate
εc-close to the central path in polynomial time. This will be
established by finding a polynomial upper bound on the
number of instances that problem (5) needs to be solved to
achieve εc-optimality. The second result is a formal proof that
Algorithm 1 reaches an iterate X∗ with an optimality gap of
εg with respect to the optimizer of (1) in at most a polynomial
number of combined decrease and centering phases. In order
to establish these results, we need the following assumptions:
A1: The data matrices C and Ai all satisfy that:

Tr
(
ATi Aj

)
= Tr

(
ATi C

)
= 0 ∀1 ≤ i, j ≤M

||C||F = ||Ai||F = 1 ∀i = 1, . . . ,M

A2: There exists at least one feasible X for (1) such that
X � 0 (Slater’s condition).

A3: The cost function evaluated at the optimizer of (1)
satisfies Tr(CTX∗PSD) > −∞.

Assumption A1 can be made to hold trivially for any SDP
by orthogonalization and projection; A2 guarantees strong
duality; and A3 guarantees that the optimal cost is finite.

A. Convergence of the Centering Phase

The goal of this proof is to show that a sequence of
problems of the form (5) converge to the optimizer of the
PSD analytic centering, which we define as:

X (Uk−1) = argmin
X,Y

−h(Y ), s.t.

Tr
(
ATi X

)
= bi i = 1, . . . ,M

Tr
(
CTX

)
= Tr

(
CTXk−1

)
UTk−1Y Uk−1 = X, Y � 0

(6)

where the objective function is defined as:
h(Y ) = (N − 1) log (|Y |)−N (N − 1) log (N − 1) (7)

i.e. a scaled and shifted variant of the common logarithmic
barrier for the PSD cone, the negative log-determinant. Next
we define the barriers for the DD and SDD cones used in
(5). Motivated by the decompositions in Lemma 1, we will
consider the following logarithmic barriers:

φDD(M) =
1

2

N∑
i,j>i

log
(
Mi,j(1, 1)2 −Mi,j(1, 2)2

)
+ log

(
Mi,j(2, 2)2 −Mi,j(1, 2)2

)
φSDD(M) =

N∑
i,j>i

log
(
Mi,j(1, 1)Mi,j(2, 2)−Mi,j(1, 2)2

)
(8)

It can be shown that these barrier functions are self-concordant
with respect to the entries of M.

Lemma 2: The following properties hold:
If Y = Ψ(M) ∈ DDN , then −φDD(M) ≥ −φSDD(M).
If Y = Ψ(M) ∈ SDDN , then −φSDD(M) ≥ −h(Y ).

Proof: Omitted for space reasons, can be found in the
ArXiv version of the paper.

Corollary 1: If Y = Ψ(M) ∈ DDN , then −φDD(M) ≥
−φSDD(M) ≥ −h(Y ). Moreover, if Mi,j = 1

N−1I2×2
for all i < j, then Y = Ψ(M) = I and −φDD(M) =
−φSDD(M) = −h(Y ) = N (N − 1) log (N − 1)
The proof of convergence rests on the self-concordance of
−φ(M) and the inequalities in the Lemma above. It uses
the following properties of self-concordant functions [13].
Consider the problem of minimizing a convex self-concordant
function f(x) using a Newton method [13]. Denote by x
the current iterate, x+ the iterate after taking a Newton step
from x, x∗ global minimizer of f(x) and by λ(x) the Newton
decrement of f(x) evaluated at x. Finally take the line-search
constants α ∈ (0, 0.5) and β ∈ (0, 1) and the variable η =
1−2α

4 . Then we have the following [13]:

f(x+) ≤ f(x)− αβ λ2(x)

1 + λ(x)
(9)

λ(x) ≤ η =⇒ f(x+) ≤ f(x)− αλ2(x) (10)
λ(x) ≤ 0.68 =⇒ f(x) ≥ f(x∗) ≥ f(x)− λ2(x) (11)

Next, we will apply these properties to the specific scenario
arising when solving problem (5) using a Newton method,
with the variable Y parametrized as Y = Ψ(M). Denote
by M0 the set where all elements of the set are Mi,j =

1
N−1I2×2, i.e. Y0 = Ψ(M0) = I , which by construction
is always a feasible solution of (5). Evaluating the Newton
decrement for2 −φ(M)|M=M0

as λφ(M0), then (9) leads
to the following lemma:

Lemma 3: Take Ul−1 to be the Cholesky factors of Xl−1.
Then if the Newton decrement of problem (5) satisfies
λφ(M0) > η√

N−1 , its optimizer Xl(Ul−1) satisfies:

−(N − 1) log (|Xl|) ≤ −(N − 1) log (|Xl−1|)− ξ
where ξ is a positive constant of the form:

ξ =
αβ√
N − 1

η2√
N − 1 + η

2As the proof applies to both DD and SDD cases, we drop the subscripts
for notation clarity.
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Similarly, (10) and (11) lead to:
Lemma 4: If the Newton decrement of (5) satisfies

λφ(M0) ≤ η√
N−1 , and the centering optimality gap between

Xl−1 and the optimizer X∗ of (6), gl−1 is given by:
gl−1 = (N − 1) (log (|X∗|)− log (|Xl−1|))

then gl is upper-bounded by:
N − 1− α
N − 1

min(η2, gl−1) ≥ gl

= (N − 1) (log (|X∗|)− log (|Xl|))

Lemmas 3 and 4 provide the foundation for the proof of
polynomial complexity of the Centering Phase:

Theorem 1: The Centering Phase described in Algorithm
1 converges to εC-optimality to the optimizer of (6) as:

εC ≥ (N − 1) (log (|X∗|)− log (|XL|))
in at most L iterations, where L is given by:

L = d (N − 1) (log (|X∗|)− log (|X0|))− εC
ξ

e

+ d
log (εC)− log

(
η2
)

log (N − 1− α)− log (N − 1)
e

and X0 is the starting point of the Centering Phase.
Proof: At each iteration the centering optimality gap is

reduced, either by a fixed amount ξ if λφ(M0) > η√
N−1

(Lemma 3), or by a multiplicative factor N−1−α
N−1 if

λφ(M0) ≤ η√
N−1 (Lemma 4). Bringing the centering gap

below εC requires at most L1 iterations for the fixed decrease,
with L1 = d((N − 1) (log (|X∗|)− log (|X0|))− εC) /ξe,
or L2 iterations for the relative decrease, where
L2d
(
log (εC)− log

(
η2
))
/ (log (N − 1− α)− log (N − 1))e,

leading to a total running time of at most L1 +L2 iterations:

L = L1 + L2 = d (N − 1) (log (|X∗|)− log (|X0|))− εC
ξ

e

+d
log (εC)− log

(
η2
)

log (N − 1− α)− log (N − 1)
e

B. Overall Convergence of the Proposed Algorithm

In this section we provide a sketch of the proof of finite time
convergence of the algorithm to an ε-suboptimal solution. Due
to space constraints, some of the proofs are omitted, but they
can be found in the ArXiv version of the paper. The main idea
of the proof is to show that alternating between decreasing
and centering phases leads to a sequence of solutions Xk

which are identical to the ones obtained using an interior point
algorithm to solve (2) for a specific sequence tk that satisfies
tk > χtk−1, where χ > 1 is a constant that depends on the
problem data. It follows that a desired value t∗ (corresponding
to a given optimality gap) can be found in at most κ =
d log(N/ε

∗)−log(t0)
log(χ) e iterations. For simplicity, we assume first

that εC = 0, i.e. exact convergence of the centering phase,
and then, at the end of this section, indicate how to extend
these results to the case of εC > 0.

The proof is divided into the following steps.
1) Step 1: Given Xk, the output after the kth combined

decrease and centering steps, find a value t̂k such that

tk ≥ t̂k > tk−1 and the solution X̂k of (2) with t =

t̂k satisfies Tr
(
CT X̂k

)
≥ Tr

(
CTXk

)
, that is, the

proposed algorithm generates a solution with a lower or
equal cost that the one that would have been generated
by an Interior Point method with t = t̂k.

2) Step 2: Use the result above, combined with the strictly
decreasing property of the solution to (2) to establish
that tk > χtk−1.

We start the proof of step 1 by recasting the PSD centering
problem (6) in its most simple form:

Xζ(c) = argmin
X�0

− log (|X|)

s.t. Tr
(
ATi X

)
= bi i = 1, . . . ,M

Tr
(
CT X

)
= c

(12)

Note the similarity between (12) and (2), where the former is
parametrized by the affine subspace Tr

(
CT X

)
= c and the

latter by the trade-off weight 1/t in the cost function. Next
we show that the optimizer of (12) is also an optimizer of
(2) for a particular value of t:

Lemma 5: Given Xζ(c) the optimizer of problem (12), the
optimizer Xt of (2) is equivalent to Xζ(c) when t = −τ ,
where τ is the dual variable of (12) associated to the linear
constraint Tr

(
CT X

)
= c evaluated at X = Xζ(c).

The dual of problem (2) is:

Zt, yt = argmin
Z�0,y

− bT y − 1

t
log (|Z|)

s.t. Z = C −
M∑
i=1

yiAi

(13)

From duality, it follows that Xt(t) = 1
tZ
−1
t (t) and yt = γi,t

[13], where γi,t are the dual variables of the linear constraints
of (2). Furthermore, it can be shown (see the ArXiv version)
that, for any value of t in the range t0 ≤ t ≤ t∗, the norm
of the dual variables γi,t is bounded above by

∑
i γ

2
i,t ≤ Θ,

where Θ is a finite positive constant that depends only on
the problem data. The KKT conditions of (2) yield:

X−1k−1 = X−1tk−1
= tk−1

(
C −

∑
γiAi

)
Hence, orthogonality of the data matrices C,Ai implies:

||X−1tk−1
||2F = t2k−1

(
1 +

∑
γ2i

)
(14)

Next we introduce a feasible solution Ŷ to problem (4). To
do so, we make use of the following Lemma:

Lemma 6: If ||Y − I||2F ≤ 1, then Y is scaled diagonally-
dominant. Furthermore, if ||Y −I||2F ≤ 2

N+1 , Y is diagonally-
dominant.

Consider now a positive constant Φ that satisfies Φ ≤
{2/(N +1), 1} for the DD and SDD case, respectively. Then
defining Q = U−Tk−1CU

−1
k−1, a feasible solution for (4) is given

by Ŷ = I −
√

Φ Q
||Q||F . By construction this solution satisfies

||Ŷ − I||2F = Φ, ensuring by Lemma 6 that Ŷ is contained
in the appropriate DD or SDD cone. Moreover, defining X̂
as X̂ = UTk−1Ŷ Uk−1, the linear constraints evaluated at X̂
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satisfy:

Tr
(
ATi X̂

)
= Tr

(
ATi U

T
k−1Ŷ Uk−1

)
= Tr

(
ATi Xk−1

)
−
√

Φ

||Q||F
Tr
(
ATi U

T
k−1QUk−1

)
= Tr

(
ATi Xk−1

)
−
√

Φ

||Q||F
Tr
(
ATi C

)
= Tr

(
ATi Xk−1

)
= bi

due to the orthogonality between Ai and C (Assumption A1).
Thus Ŷ is a feasible solution of (4) with associated cost:

Ĉk = Tr
(
CTUTk−1Ŷ Uk−1

)
= Tr

(
CTXk−1

)
−
√

Φ

||Q||F
Tr
(
CTC

)
= Tr

(
CTXk−1

)
−
√

Φ

||Q||F

(15)

where ||C||2F = 1 from Assumption A1. Using the properties
of the Frobenius norm, the norm of Q can be bounded as
||Q||F = ||U−Tk−1CU

−1
k−1||F ≤ ||C||F ||X

−1
k−1||F . The matrix

Xk−1 is the optimizer of the Centering Phase at stage k − 1
and thus by Lemma 5 satisfies Xk−1 = Xtk−1

. Combining
this with (14) yields: yields:

Tr
(
CTXk

)
≤ Tr

(
CT X̂

)
= Tr

(
CTXk−1

)
−
√

Φ

||Q||F

≤ Tr
(
CTXk−1

)
−

√
Φ

||C||F ||X−1k−1||F

≤ Tr
(
CTXk−1

)
−

√
Φ

tk−1
√

1 + Θ
< Tr

(
CTXk−1

)
(16)

Equation (16) provides conservative a bound on the cost
decrease after a decrease step is taken.
Step 2: From the strictly decreasing property of the objective
of (1) with respect to t, if follows that the values of t such
that the corresponding solution to (2) are Xk and Xk−1
satisfy tk > tk−1. However, in order to establish finite time
convergence we need to prove that tk ≥ χtk−1, with χ > 1.
This requires, given Xk, finding the corresponding value tk.
Since this is a non-trivial problem, we will find a function
g(.) such that g(tk) ≤ Tr

(
CTXk

)
and use it as a proxy, to

find some t̃k ≤ tk. The desired results will be established by
showing that tk ≥ t̃k ≥ χtk−1.

Lemma 7: Given to, let Xto denote the solution to (2)
corresponding to t = to. Then the function g0(t) =
Tr
(
CTXto

)
−N/t0 +N/t is a lower bound of Tr

(
CTXt

)
for any t ≥ t0.
Using the result above, we can now establish the main result
of the paper:

Theorem 2: Algorithm 1 converges to εg-optimality in at
most κ iterations of Decrease and Centering Phases, where
κ is given by:

κ = d log (N/ε∗)− log (t0)

log (χ)
e χ =

N
√

1 + Θ

N
√

1 + Θ−
√

Φ
> 1

(17)

Proof: Let Ĉk, t̂k denote the cost associated with the

feasible solution Ŷk and the corresponding value of the
parameter. We can use Lemma 7 to find a value t̃k such
that gk−1(t̃k) = Ĉk, which implies that t̂k > t̃k > tk−1. This
t̃k is given by:

gk−1(t̃k) = Ĉk =⇒ Tr
(
CTXk−1

)
− N

tk−1
+
N

t̃k
= Ĉk

≤ Tr
(
CTXk−1

)
−

√
Φ

tk−1
√

1 + Θ

=⇒ t̃k ≥ tk−1
N
√

1 + Θ

N
√

1 + Θ−
√

Φ
≡ tk−1 χ

(18)
where χ > 1 depends only on the problem data. Since
gk−1(t̃k) is a lower bound of Tr

(
CTXt̃k

)
, from monotonicity

it follows that t̂k ≥ t̃k ≥ χtk−1 Next, note that Xk, the
optimal solution to (4) satisfies Tr

(
CTXk−1

)
≤ Ĉk and

hence its associated parameter tk satisfies tk ≥ t̂k. Thus, it
follows that at the end of the decrease phase, the value of t
corresponding to the optimal solution Xk satisfies tk ≥ χtk−1.
Thus, the number of iterations needed to reach t∗ = N/ε∗ is
given by t∗ ≤ χκ t0 with κ given by (17).

So far we have considered, for simplicity, the case where
the centering phase returns exactly to the center path, that
is, Xk exactly solves (6). Below, we briefly show that the
convergence results hold, even if the centering phase provides
an εc suboptimal solution XL to (6), provided that εc < ε̄c,
where the constant ε̄c depends only on the problem data. The
intuition behind the proof, illustrated in Figure 2, is that if XL

and Xk are close enough, then the solution X̂ can be shown to
satisfy the norm constraint ||U−TL X̂ U−1L −I||2F ≤ Φ′, where
UL are the Cholesky factors of XL and Φ′ is a constant such
that Φ < Φ′ ≤ {2/(N + 1), 1}. Thus X̂ used in the proof of
step 1 above is within the feasible set of the decrease step
(4) taken from XL, rather than Xk (green circle in Fig 2).
Proceeding along these lines, the following results can be
established (see the ArXiv version of the paper for a proof)

Fig. 2: Outline of the proof of convergence when the centering
phase stops at a εC -optimal point XL. Circles in orange and
green signify volumes that lie within a decrease step of Xt and
XL, respectively. If Xt and XL are close enough, measured
by εC , then the orange volume is contained within the green
one and X̂ lies within a decrease step from XL, extending the
guarantees of Theorem 2 to the suboptimal ε > 0 case.
Theorem 3: Assume XL is an εC-optimal solution to the

centering phase. Assume further that Φ′ = {2/(N + 1), 1},
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for the DD and SDD case respectively, and that Φ < Φ′.
Then if:

ε∗c = − log

1−

(√
Φ′ −

√
Φ√

N +
√

Φ′

)3
 (19)

the cost function after a decrease step taken from XL is at
least as low as the cost function evaluated at X̂ .

C. Numerical Tests on SDPLib problems and random SDPs

In this section we test the numerical performance of the
proposed approach on some standard benchmark problems
from the SDPLib dataset [14] and on randomly generated
SDPs. From the SDPLib library, we use the theta number
instances of the SDPLib Theta-1 and Theta-2 and MaxCut
problems mcp100, mcp125-1, mcp125-2, mcp250-1 and
mcp250-2, which are also SDP relaxations of the well-known
NP-hard problem of finding the maximum cut in a graph.
In all cases we used the SDD cone and set the number
of decrease and centering steps sd = 5. The results of
running the algorithm implemented in Matlab R2016a on
a MacBook Pro system with a 3 GHz dual core processor
and 16 GB of RAM are shown in Table I. As shown there, the
algorithm solved all instances within εg = 10−3 of optimal
using comparatively modest computational resources.

Problem N M opt. c time (s)
theta1 50 104 -23 81.69
theta2 100 498 -32.879 2464.62

mcp100 100 100 -226.157 755.53
mcp124-1 124 124 -141.990 1508.26
mcp124-2 124 124 -269.880 1525.94
mcp250-1 250 250 -317.264 21259.07
mcp250-2 250 250 -531.930 22074.42

RandomSDP-1 50 50 -43.023 120.5
RandomSDP-2 50 100 -30.277 129.44
RandomSDP-3 100 50 -0.648 441.86
RandomSDP-4 100 100 0.968 608.83
RandomSDP-5 250 250 4265.157 15104.15

TABLE I: Execution time on SDPLib test problems and
randomly generated SDPs. In all case the algorithm converged
to the optimal values c∗ within a 10−3 tolerance.

V. CONCLUSIONS.

While semi-definite programs are one of the cornerstones of
modern control and identification, their use has been limited
to relatively small problems. This can be traced to the poor
scaling properties of existing SDP solvers. Interior point
methods scale at least as O(mn3) and first order ADDM
methods have a complexity of at least O(n3) per iteration,
typically requiring substantial more iterations than IP methods.
This poor scaling has prevented the use of SDPs in other
fields such as machine learning, typically involving large
data sets. To mitigate this computational complexity [8], [9]
proposed to solve relaxations where the diagonally-dominant
(DD) and scaled-diagonally dominant (SDD) cones are used
as proxies for the semi-definite cone. However, these methods
cannot guarantee convergence to the optimal value of the
original SDP. Indeed, numerical evidence show that these

relaxations tend to converge to strictly suboptimal values
for all medium to large size problems (N >> 10). To
circumvent this difficulty, in this paper we presented an
algorithm, based on the diagonally-dominant (DD) and scaled-
diagonally dominant (SDD) SDP relaxations developed in
[8], [9] to solve SDPs to global optimality. The proposed
approach relies on sequentially decreasing the cost of the
iterates and improving its conditioning until an εg-optimal
iterate is reached. The method is guaranteed to converge to
that εg-optimal solution after a polynomially bounded number
of iterations, resulting to the best of our knowledge in the
first globally convergent SDP algorithm based on DD and
SDD conic problems. The proposed algorithm is also shown
to converge in numerical experiments using SDP problems
from the SDPLib dataset [14] and randomly generated SDPs.
Besides the practical implications of this algorithm, our work
closes an open question in the field of efficient algorithms
for large-scale SDPs: whether or not it is possible to solve
an arbitrary SDP in polynomial time by solving a sequence
of lower complexity Linear Programs or Second Order Cone
Programs.
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